Армирование ленточного фундамента расчет: схемы, расчет арматуры укладка и вязка, фото

Содержание

Как рассчитать количество арматуры для заливки фундамента?

Казалось бы, всем понятно, что прочность и долговечность фундамента — это основа будущего дома. Ошибки, допущенные на этапе проектирования, армирования и заливки фундамента, в дальнейшем исправить практически невозможно. Поэтому во избежание трещин в фундаменте под действием нагрузок и движения грунта необходимо правильно рассчитать количество бетона, который будет работать на сжатие, а также количество и диаметр арматуры, которая будет работать на растяжение. В комплексе правильный расчет арматуры и четкое выполнение работ согласно проекту обеспечит вашему дому надежный фундамент на долгие годы.

Фундаменты бывают разные, и расчет арматуры для каждого из них проводится по отдельной схеме:

  1. Ленточный фундамент — наиболее популярный вид фундамента для частных домов.
  2. Свайный буронабивной — используется на слабом грунте при глубине промерзания до 1,5 метров.
  3. Свайно-ростверковый — это сочетание свай и железобетонной ленты, которое обходится дешевле ленточного фундамента, но при этом отлично себя показывает на склонах и при подвижной почве.
  4. Столбчатый фундамент — применим для легких домов и построек.
  5. Плитный фундамент – самый прожорливый в плане использования бетона и арматуры фундамент, который очень дорого обходится в частном домостроении.

Чтобы материал был более полезен для тех, кто пытается произвести расчет количества и диаметра арматуры самостоятельно, мы проведем расчет на примере ленточного фундамента под дачный дом 6 на 8 метров, а потом сравним расход арматуры на этот же проект с плитным и столбчатым фундаментом.

Металлобаза «Аксвил» продает оптом и в розницу:

• АРМАТУРУ РИФЛЕНУЮ А3
• ВЯЗАЛЬНУЮ ПРОВОЛОКУ
• СВАРНУЮ СЕТКУ

Первый поставщик проката. Низкие оптовые и розничные цены. Консультация по выбору. Оформление заказа на сайте и в офисе. Нарезка в размер. Доставка по Беларуси, в том числе, и в выходные дни.

 

Схемы армирования ленточного фундамента

Для расчета количества и диаметра арматуры в первую очередь нужно определиться со схемой армирования фундамента. В зависимости от нагрузки на фундамент и пучинистости грунта для строительства частных домов чаще всего применяют армирование:

  1. Четырьмя стержнями арматуры;
  2. Шестью стержнями арматуры;
  3. Восемью стержнями арматуры.

Как же определиться со схемой армирования, чтобы она была достаточно надежной, но в то же время не излишне затратной?

Согласно правилам по проектированию и строительству (СП 52-101-2003), максимальное расстояние между продольными стержнями арматуры должно быть не более 40 см. А также арматурные стержни должны отстоять от края опалубки, верха и низа мелкозаглубленного ленточного фундамента на 5-7 см.  

Исходя из этих данных, если проектом предусмотрен ленточный фундамент шириной 50 см, то лучше всего подойдет армирование в четыре стержня:

5+40+5=50 см.

При более широком фундаменте будет целесообразно использовать схему армирования 6-8 стержнями.

Расчет диаметра продольной арматуры

От диаметра арматуры зависит прочность всей конструкции: чем толще арматура, тем прочнее. При выборе ее толщины стоит ориентироваться на вес дома и тип грунта. Если грунт плотный, то под нагрузкой от дома он будет меньше деформироваться, а значит, от плиты требуется меньшая устойчивость.

Второй фактор — это вес здания. Если вы собираетесь построить легкий деревянный дом или гараж, то устойчивость такому дому может обеспечить и арматура диаметром 10 мм. Но если это капитальное строение в несколько этажей, то может потребоваться арматура 14-16 мм. Это все учитывается на этапе разработки проекта и отражается на глубине и ширине фундамента. Далее стоит полагаться на строительные нормы, которые зависят от ширины и высоты фундамента.

Согласно правилам по проектированию и строительству (СНиП 52-01-2003), минимальная площадь сечения продольной арматуры в ленточном фундаменте должна составлять 0,1% от общего поперечного сечения железобетонной ленты.

Для того, чтобы посчитать площадь поперечного сечения фундамента, нужно его ширину умножить на высоту. Допустим, высота нашего фундамента 80 см. Тогда при ширине 50 см поперечное сечение даст:

80*50=4000 см2

Тогда суммарная площадь поперечного сечения арматуры получится:

4000*0,1%=4 см2

При схеме армирования в 4 стержня и известной площади суммарного поперечного сечения арматуры в ленточном фундаменте мы можем определить диаметр продольной арматуры по таблице:

Казалось бы, при площади поперечного сечения арматуры в 4 см2 и 4 стержнях можно сделать вывод, что вам хватит и десятки. Но в таблице видно, что 4 стержня диаметром 10 мм имеют площадь поперечного сечения 3,14 см2. Не попадитесь на эту удочку и не допустите глупых математических ошибок при расчете фундамента вашего дома.

Выбрав столбец с 4 стержнями арматуры, нам нужно найти значение, наиболее приближенное к 4 см2, но не менее того. Поэтому нам подойдет значение 4,52 см2 и, соответственно, арматура 12 мм в диаметре.

Согласно таблице, при 4 стержнях площадь их поперечного сечения будет 4,52 см2 при диаметре арматуры 12 мм. Это наиболее ходовой тип арматуры, применяемый для армирования ленточных фундаментов малоэтажных строений.

Рассчитать диаметр арматуры при схеме армирования шестью или восемью стержнями можно аналогичным образом, найдя необходимой значение в соответствующей колонке.

Также правилами регламентируется минимальный диаметр арматуры в зависимости от ее длины: При длине фундамента до 3 м этот минимум составляет 10 мм, а при длине от 3 м — 12 мм.

Также отметим, что продольная арматура железобетонной ленты должна быть одинакового диаметра. Если же вы строите сарай или баню из остатков арматуры, то стержни большего диаметра должны оказаться в нижней части армокаркаса.

Расчет диаметра поперечной и вертикальной арматуры

Продольная арматура для ленточного фундамента должна быть рифленой, тогда как поперечная и вертикальная арматура может быть гладкой.

Рассчитать диаметр поперечной и вертикальной арматуры можно без сложных вычислений. Стоит ориентироваться на данные таблицы:

В нашем случае при высоте фундамента 80 см для поперечной и вертикальной арматуры можно брать гладкие стержни 6 мм в диаметре. Если же вы строите, скажем, двухэтажный коттедж, то для поперечной и вертикальной арматуры будет достаточно прутьев диаметром 8 мм.

Расчет количества продольной арматуры

Очень часто при возведении фундамента в разгар стройки становится понятно, что арматуры не хватает. Или же наоборот: после приемки работ оказывается, что несколько десятков погонных метров арматуры осталось, а ведь она не копейки стоит. А потом еще придется думать, куда ее пристроить. Поэтому так важно на этапе проектирования и планирования точно рассчитать количество необходимой арматуры для заливки фундамента.

К примеру, наш дачный дом имеет вот такую схему фундамента:

При фундаменте 6*8 нам потребуется посчитать периметр основания и добавить к нему длину несущих стен, под которыми также будет возводится фундамент. В нашем случае периметр равен:

 6+8+6+8=28 м

К периметру прибавим еще длину несущей стены:

28+6=34 м

Полученную цифру нам необходимо умножить на количество стержней в схеме армирования, в нашем случае на 4:

34*4=136 м

При расчете арматуры необходимо помнить, что обычно она поставляется в стержнях длиной 3-6 метров. Далеко не каждый поставщик металлопроката имеет возможность поставлять арматуру длиной 0,5 до 11,7 метров. Чаще всего на месте арматуру приходится резать в размер и стыковать внахлест, как показано на схеме.

При стыковке арматуры нужно помнить, что соседние прутья должны соединяться не строго друг над другом. Расстояние между соседними соединениями стержней арматуры должно составлять 1,5 длины нахлеста, но не менее 61 см.

Нахлест рассчитывается исходя из диаметра арматуры, умноженного на 30. В нашем случае это:

12*30=360 мм (36 см)

Чтобы добавить припуски с учетом нахлеста, можно:

  1. Посчитать количество стыков;
  2. Прибавить 10-15% к общей сумме длины арматуры.

Мы воспользуемся вторым способом и прибавим к нашей цифре 10%:

136+136*0,1=149,6 м

Учитываем то, что в угловой части фундамента арматуру придется изгибать  с загибом длиной 0,5 м. Итого на каждый угол придется 4 м таких выпусков или 20 м всего на весь фундамент. Прибавляем это количество к метражу ребристой арматуры:

149,6+20=169,6 м

Итого, для ленточного фундамента дачного дома 6*8 нам потребуется около 170 метров рифленой арматуры диаметром 12 мм.

Расчет количества вертикальной и поперечной арматуры

После того, как мы определились, сколько нам нужно купить рифленой арматуры 12 мм, нам нужно рассчитать, сколько потребуется гладкой арматуры диаметром 6 мм.

Взглянем на схему поперечного сечения фундамента:

Периметр каждого прямоугольника, который опоясывает продольную арматуру, в нашем случае составит:

40+70+40+70=220 см (2,2 метра)

Если взглянуть на припуски в местах соединения и учесть, что некоторые строители вертикальную арматуру вбивают в землю для устойчивости армокаркаса, то к этой сумме смело можно прибавлять сантиметров 20.

220+20=240 см (2,4 м)

Теперь нам нужно подсчитать, сколько таких прямоугольников разместится в нашем фундаменте. Это можно сделать двумя способами:

  1. Просто поделив длину нашего периметра и несущих оснований на расстояние между перемычками;
  2. Начертив схему фундамента и подсчитав места связок на чертеже.

Мы попробуем подсчитать количество связывающих колец на плане фундамента. Связки продольной арматуры вертикальными и поперечными прутьями необходимо производить каждые полметра (допустимо расстояние 0,3-0,8 метра). К тому же, на углах у нас разместится по две таких связки.

Сперва посчитаем, сколько таких опоясывающих прямоугольников поместится на стене 8 метров. Как видно из схемы, на восьмиметровой стене уже есть 6 угловых элементов. А если принять во внимание, что такие перемычки необходимо делать через каждые полметра, то на ней необходимо будет разместить еще 12 таких соединений. То же самое на второй восьмиметровой стене.

(6+12)*2=36 штук

Оставшиеся три стены по 5 метров предполагают еще по 9 перемычек:

9*3+36=63 перемычки

Получается, нам нужно длину гладкой арматуры, необходимой для фиксации в неподвижном состоянии продольной арматуры, умножить на количество таких соединений:

2,4*63=151,2 м

Получается, что для фундамента нашего дачного домика нам потребуется примерно 170 метров рифленой арматуры диаметром 12 мм и 150 гладкой арматуры диаметром 6 мм.

Учитывайте также, что в процессе работы часто остается много коротких стержней, непригодных для дальнейшего использования, поэтому к полученной цифре лучше прибавить еще процентов 10.

170+170*0,1=187 метров диаметром 12 мм

151,2+151,2*0,1=166,22 метров диаметром 6 мм

Зачастую поставщики считают количество арматуры не метрами погонными, а тоннами, поэтому на заключительном этапе подсчета вам может потребоваться перевести эти данные из расчета, что вес 1 мп рифленой арматуры 12 мм в диаметре равен 0,89 кг, а гладкой арматуры 6 мм в диаметре — 0,222 кг.

Итого:

187*0,89=166,43 кг

166,22*0,222=39,9 кг

Расчет количества вязальной проволоки

В места пересечения продольных, поперечных и вертикальных прутьев стыки связываются проволокой. Сварка при армировании фундамента крайне нежелательна, так как ухудшает свойства металла в местах соединения и может вызвать трещины при вибрации.

Рассчитать количество вязальной проволоки можно, зная количество стыков и длину проволоки, которая потребуется на каждый стык. Как правило, на каждый стык необходимо 15 см проволоки, сложенной вдвое, итого 30 см (0,3 м).

Ранее мы подсчитали, что в нашем фундаменте будет 63 перемычки, в каждой из которых 4 соединения для связки проволокой.

63*4=252 соединения

Далее нам необходимо количество соединений умножить на длину проволоки, необходимой для  каждого соединения:

252*0,3=75,6 метров

Если вы не имеете навыков вязки арматуры, то лучше вязальной проволоки взять с запасом, так как в неумелых руках даже обожженная проволока часто ломается.

Таким образом, для ленточного фундамента 6*8 с несущей стеной нам потребуется 166,43 кг рифленой арматуры диаметром 6 мм и 40 кг гладкой арматуры, а также 75,6 метров вязальной проволоки.

Расход арматуры в сравнении с плитным и столбчатым фундаментом

А теперь попробуем подсчитать, сколько бы нам понадобилось арматуры, если бы мы выбрали плитный или столбчатый фундамент.

Примерный расчет арматуры для плитного фундамента

Плитный фундамент состоит из двух арматурных сеток, связанных между собой. Для него, как правило, используется рифленая арматура диаметром 12 мм.

Ячейка между продольными и поперечными стержнями арматуры в сетке представляет собой квадрат 20*20 см. При фундаменте 6*8 нам потребуется узнать, сколько прутьев арматуры ляжет вдоль каждой стены с шагом в 20 см.

6/0,2=30 штук по 8 метров

8/0,2=40 штук по 6 метров

Если мы суммируем полученные цифры, мы получим количество прутков на одну сетку.

30*2+40*2=140 штук

В нашем варианте идеально было бы заказать 80 прутков длиной 6 метров и 60 прутков длиной 8 метров. Но чаще всего арматура продается длиной 3-6 метров, поэтому ее придется стыковать внахлест. Допустим, если заказать всю арматуру длиной 6 метров, то к 140 нужно будет прибавить еще 30 на наращивание по длинной стороне, которые потом разрежутся на трехметровые стержни с запасом на связку внахлест.

140+30=170 штук

170*6=1020 м рифленой арматуры

После этого необходимо соединить верхнюю и нижнюю сетку вертикальными стержнями, которых будет ровно столько, сколько пересечений продольной и поперечной арматуры.

30*40=1200 соединений

Допустим, высота плитного фундамента 20 см, то, соблюдая отступ от верха и низа бетонной плиты по 5 см, мы получим расстояние между верхней и нижней сеткой арматуры в 10 см.

1200*0,1=120 метров вертикальной арматуры

Общее количество арматуры для плитного фундамента составит:

1020+120=1122 метра погонных,
что в 6 раз больше, чем для ленточного фундамента.

Вязальной проволоки также нужно в несколько раз больше, так как в каждом месте, где пересекаются два горизонтальных и один вертикальный стержень, получится по два узла проволоки. Таких пересечений у нас 1200 в верхней сетке и столько же в нижней. На каждый узел необходимо в среднем 30 см вязальной обожженной проволоки.

1200*2*0,3=720 метров вязальной проволоки,
что в 10 раз больше, чем для ленточного фундамента на тот же дачный дом.

Примерный расчет арматуры для столбчатого фундамента

В принципе, для легкого дачного дома подойдет и столбчатый фундамент.

Для армирования свай достаточно арматуры диаметром 10 мм. Для вертикальных прутков используется ребристая арматура, горизонтальные прутки применяются только для того, чтобы связать их в единый каркас. Обычно арматурный каркас для столбика состоит из 2-4 прутков, длина которых равна высоте столба. Если диаметр столба превышает 20 см, то надо использовать больше стержней, равномерно распределяя их внутри столба. Для армирования 2-метрового столба диаметром 20 см можно ограничиться четырьмя прутками из арматуры диаметра 10 мм, которые расположены на расстоянии 10 см друг от друга и перевязаны в четырех местах гладкой арматурой диаметром 6 мм.

Предположим, что сваи для фундамента нашего дачного дома будут диаметром 200 мм с интервалом в 1,5 метра.

Делим периметр основания на шаг между сваями и получаем их количество:

34/1,5=22,6

Округляем до 23 столбов.

Свая будет армироваться тремя прутами рифленой арматуры и четырьмя хомутами — из гладкой. Посчитаем, сколько нужно рифленой арматуры на один столбик высотой 1,5 метра с выпуском под ростверк 0,3 м:

(1,5+0,3)*3=5,4 м

На все сваи уйдет:

5,4*23=124,2м рифленой арматуры

Для армокаркаса будет использоваться гладкая арматура, согнутая в окружность. Длина этой окружности с запасом составит:

3,14*0,2=0,628 м

Таких хомутов на одну сваю потребуется, как минимум, 4:

0,628*4=2,512 м

На все 23 столба гладкой арматуры потребуется:

2,512*23=57,776 м ≈58 м

Для расчета вязальной проволоки нам нужно посчитать количество соединений в наших столбах. Три прутка рифленой арматуры соединяются с четырьмя опоясывающими кольцами гладкой арматуры в шести местах:

3*4*0,3=3,6 метра проволоки на каждый столб

3,6*23=82,8 метра проволоки

Итого на свайный фундамент нашего дачного домика 6*8 потребуется около 125 метров погонных рифленой арматуры и 58 м гладкой арматуры, а также 83 м вязальной проволоки, что, конечно, получится экономичнее, чем ленточный фундамент и вполне подойдет для каркасного дачного дома.

Выводы:

 

В общем, совсем не сложно самостоятельно рассчитать количество и диаметр арматуры, необходимой для заливки фундамента. Особенно, при наличии проектно-сметной документации. Используя данный материал, вы без проблем сможете довольно точно рассчитать количество арматуры для заказа, чтобы потом не переплачивать за повторную доставку или излишний металлопрокат, оставшийся после стройки.

Сравнение расчетов количества арматуры для разных видов фундамента показало, что для дачного дома лучше всего подходят столбчатый и ленточный фундамент. А уж какой из них выбрать, будет зависеть от материала стен, кровли, перекрытий и количества этажей дома, пучинистости грунта и личных предпочтений.

 

Металлобаза «Аксвил» предлагает купить рифленую арматуру А3 и гладкую арматуру А1, вязальную проволоку, по безналичному и наличному расчету, оптом и в розницу с доставкой по Беларуси.

Расчет арматуры для фундамента: как правильно произвести

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Расчет арматуры для фундамента происходит уже на этапе проектирования и является важнейшим его компонентом. Его производят, принимая во внимание СНиП 52 – 01 — 2003 в вопросах выбора класса арматуры, ее количества и сечения. Армирование монолитных конструкций производится с целью улучшения прочности бетонной конструкции на растяжение. Ведь неармированный бетон может разрушиться при вспучивании грунта.

Армирование фундамента

Расчет арматуры для фундамента плитного типа

Плитный фундамент используют для строительства коттеджей и загородного жилья, а также прочих строений без подвального помещения. Это основание представляет собой монолитную бетонную плиту, которая армирована прутком в двух перпендикулярных направлениях. Толщина такого фундамента более 20 см, а сетка вяжется как сверху, так и снизу.

Статья по теме:

Столбчатый фундамент своими руками: пошаговая инструкция. Расчет, стоимость работ. Мелкозаглубленный столбчатый фундамент, фундамент каркасного дома, фундамент под баню, фото и видео.

Вначале определяются с типом прутка арматуры. Для плитного монолитного фундамента, который выполняют на прочных плотных и непучинистых грунтах, обладающих весьма низкой вероятностью горизонтального сдвига, возможно допускать использование ребристого арматурного прута диаметром от 10 мм, имеющего класс A-I. Если грунт довольно слабый, пучинистый или здание проектируется на уклоне – арматуру необходимо брать толщиной не менее 14 мм. Вертикальные связи между нижним и верхним рядом арматурной сетки вполне будет достаточно использовать гладкий 6-миллиметровый прут класса A-I.

Фундамент с армированием

Очень серьезное значение имеет и материал будущих стен здания. Ведь нагрузка на фундамент имеет существенные отличия у каркасных, а также деревянных домов и зданий из кирпича либо газобетонных блоков. Как правило, для легких строений возможно применить пруток арматуры, диаметр которого 10-12 мм, а для стен из кирпича либо блоков – не менее 14-16 мм.

Промежутки между прутьями в армирующей сетке обычно где-то 20 см в продольном, равно как и в поперечном направлении. Данное обстоятельство предполагает наличие 5 арматурных прутков на 1 метр длины стены фундамента. Между собой пересечения перпендикулярных прутьев связывают мягкой проволокой при помощи такого приспособления, как крючок для вязания арматуры.

Схема армирования фундамента

Полезный совет! Если объем строительства очень большой, то для вязки арматуры можно приобрести специальный пистолет. Он способен в автоматическом режиме связывать между собой прутки с очень большой скоростью.

Пример реального расчета

Предположим, что нам требуется выполнить расчет арматуры для фундамента частного дома из газобетонных легких блоков. Проектируется его установка на плитный фундамент, который имеет толщину 40 см. Данные геологических изысканий говорят о том, что грунт под фундаментом суглинистый со средней пучинистостью. Габариты дома – 9х6 м:

Каркас из арматуры

  • так как мы задумали достаточно большую толщину фундамента, то нам потребуется залить в него две горизонтальные сетки. Блочное строение на среднепучинистых почвах требует для горизонтальных прутков наличие диаметра в 16 мм и ребристости, а вертикальные стержни могут быть гладкими с толщиной 6 мм;
  • для вычисления требуемого количества продольной арматуры берут длину наибольшей стороны стены фундамента и осуществляют ее деление на шаг решетки. В нашем примере: 9/0,2 = 45 толстых арматурных прутьев, которые имеют стандартную длину 6 метров. Вычисляем общее количество прутков, которое равняется: 45х6 = 270 м;

Варианты армирования фундамента

  • таким же образом находим количество прутков арматуры для поперечных связок: 6/0,2 = 30 штук; 30х9 = 270 м;
  • умножением на 2 получаем требуемое количество горизонтальной арматуры в обеих сетках: (270+270) х 2 = 1080 м;
  • вертикальные связки обладают длиной, равной всей высоте фундамента, то есть 40 см. Их количество высчитывают по числу перпендикулярных пересечений продольных прутьев с поперечными: 45Х30 = 1350 шт. Перемножив 1350х0,4, получим общую длину 540 м;
  • получается, что для сооружения требуемого фундамента понадобится: 1080 м прутка A-III D16; 540 м прутка A-I D6.

Использование арматуры в строительстве фундамента

Полезный совет! Для того, чтобы посчитать массу всей арматуры, необходимо воспользоваться ГОСТ 2590. Согласно этого документа 1 п.м. арматурного прутка D16 обладает весом 1,58 кг, а D6 – 0,22 кг. Исходя из этого общая масса всей конструкции: 1080х1,58 = 1706,4 кг; 540х0,222 = 119,9 кг.

Для сооружения арматуры требуется еще и вязальная проволока. Ее количество тоже можно посчитать. Если вязать обычным крючком, то на один узел будет уходить примерно 40 см. Один ряд содержит 1350 соединений, а два — 2700. Поэтому полный расход проволоки для вязания будет 2700х0,4 = 1080 м. При этом 1 м проволоки с диаметром 1 мм весит 6,12 г. Значит полный ее вес вычисляется так: 1080х6,12 = 6610 г = 6,6 кг.

Пример армирования фундамента

Как правильно рассчитать потребность в арматуре для ленточного фундамента

Особенности ленточного фундамента таковы, что разрыв его наиболее вероятен в продольном направлении. Исходя из этого и рассчитывается потребность в арматуре для фундамента. Расчет здесь не особо отличается от предыдущего, что был сделан для плитного вида фундамента. Поэтому толщина прутка может составлять для продольного крепления 12-16 мм, а для поперечного, а также вертикального 6 — 10 мм. В случае ленточного фундамента выбирают шаг не более 10-15 см во избежание продольного разрыва, так как нагрузка в нем гораздо больше.

Для примера рассчитаем фундамент ленточного типа в применении к деревянному дому. Предположим, что его ширина 40 см, а высота 1 м. Геометрические размеры строения 6х12 м. Грунт супесчаный пучинистый:

Арматурные пруты

  • в случае ленточного фундамента в обязательном порядке производится устройство двух арматурных сеток. Нижняя предупреждает физический разрыв монолитной ленты при грунтовых просадках, а верхняя при пучении грунта;
  • оптимальным видится шаг сетки 20 см. Поэтому для правильного устройства ленты такого фундамента нужно 0,4/0,2= 2 прута продольных в обоих слоях арматуры;
  • для деревянного дома диаметр арматурного прутка берут 12 мм. Чтобы выполнить двухслойное армирование наиболее длинных сторон основания нужно 2х12х2х2 = 96 м прутка. Короткие стороны требуют 2х6х2х2 = 48 м;

Армирование ленточного фундамента

  • для поперечных перекладин берем пруток 10-миллиметровый. Шаг его укладки 50 см.
    Периметр здания: (6+12) х 2 = 36 м. Делим его на шаг: 36/0,5 = 72 арматурных поперечных прутка. Так как их длина равняется ширине фундамента, то общая потребность 72х0,4 = 28,2 м;
  • для вертикальных связей тоже применим пруток D10. Так как высота вертикальной составляющей арматуры равна полной высоте фундамента (1 м), то требуемое количество определяют по числу пересечений. Для этого умножают число поперечных прутов на количество продольных: 72х4 = 288 шт. Для высоты в 1 м общая длина будет 288 м;
  • то есть, для выполнения полноценного армирования нашего ленточного фундамента необходимо: 144 м прута A-III D12; 316,2 м прутка A-I D10.

Армирование столбчатого фундамента

Полезный совет! В соответствии с тем же ГОСТ 2590 можно определить массу всей арматуры из расчета того, что 1 п.м. прутка D16 обладает весом 0,888 кг; D6 – 0,617 кг. Отсюда общая масса: 144х0,8 = 126,7 кг; 316,2х0,62 = 193,5 кг.

Проведенные примеры расчета арматуры для фундамента помогут вам сориентироваться в потребности материалов в любом случае. Для этого нужно только подставить в формулы ваши данные.

Арматура для фундамента (видео)

ОЦЕНИТЕ
МАТЕРИАЛ

Загрузка. ..

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

СМОТРИТЕ ТАКЖЕ

REMOO В ВАШЕЙ ПОЧТЕ

Диаметр арматуры для ленточного фундамента: какую использовать

Содержание статьи

Фундамент — наиболее ответственная конструкция здания. После обратной засыпки котлована доступ к нему ограничен, и исправление каких-либо недостатков становится сложной задачей. Важно обеспечить достаточную прочность конструкции еще на стадии проектирования.

Зачем армируется ленточный фундамент

Бетон отлично работает на сжатие, но плохо справляется с изгибом. Грунт считается упругим основанием, которое не предотвращает небольшие прогибы ленты фундамента. Для увеличения прочности конструкции при воздействии поперечной нагрузки закладывают продольные стальные стержни.

Вся арматура в конструкции делится на два типа: рабочая и конструктивная. В ленточном фундаменте рабочим армированием становятся продольные пруты. Они подбираются расчетом. Конструктивное армирование назначается из минимальных требований нормативных документов, расчет не проводится. Они устанавливаются для совместной работы отдельных продольных стержней.

Классы арматуры и марки стали

Арматура отличается не только диаметром. Очень важно правильно выбрать класс изделий. Стержневая сталь обозначается маркировкой А, а проволочная Вр. Для фундамента используют металл класса по пределу текучести А400 (Аlll — устаревшая маркировка). Пруты легко отличают визуально:

  • А240 (Al) — гладкая поверхность;
  • А300 (All) — периодический профиль с кольцевым рисунком;
  • Необходимая для фундамента А400 (Alll) — периодический серповидный профиль, или как еще называют «елочкой».

Разрешается применять армирование более высоких классов, но в большинстве случаев это экономически не выгодно. Понижение класса арматуры не допускается.

При изготовлении стержней руководствуются ГОСТ «Сталь горячекатаная для армирования железобетонных конструкций. Технические условия». По этому документу арматура класса А400 изготавливается из стали с марками 5ГС, 25Г2С, 32Г2Рпс. Потребитель сам выбирает, какое сырье применять. При отсутствии в заказе марки стали, ГОСТ разрешает производителю назначать ее самостоятельно.

Помимо всего в нормативном документе указаны правила приемки арматуры, методы испытаний, условия транспортировки и хранения.

Минимальные диаметры арматуры

При расчете вычисляется суммарная площадь всей рабочей арматуры, а количество и сечение отдельных стержней уже подбирается по сортаменту.

Для удобства ограничения по диаметрам сводятся в одну таблицу.

Назначение армирования Минимальный диаметр стержней
Рабочее продольное при стороне менее 3 м суммарное сечение всего армирования — 0,1% от общего поперечного сечения ленточного фундамента, каждый стержень диаметром не менее 10 мм
при стороне более 3 м то же, каждый стержень диаметром не менее 12 мм
Конструктивное поперечное 6 мм
Конструктивное вертикальное при высоте ленты менее 80 см 6 мм
Конструктивное вертикальное при высоте ленты более 80 см 8 мм

Требование по подбору рабочей арматуры приведены в СП «Бетонные и железобетонные конструкции. Основные положения». Этот документ 2012 года является актуализированной редакцией одноименного СНиП, выпущенного в 2003 году. Основная информация в документах идентична, внесены лишь небольшие изменения. Более подробные указания представлены в Пособии по проектированию бетонных и железобетонных конструкций без предварительного напряжения арматуры.

Диаметр более 40 мм нельзя использовать для бетонных конструкций.

Расчет рабочего армирования

При возведении серьезных сооружений требуются подробные расчеты ленточного фундамента, которые с точностью определят какую арматуру использовать для данной конструкции. Все расчеты в строительстве проводятся по предельным состояниям, то есть определяются минимальные условия, в которых элемент будет выполнять свою функцию.

  1. Первая группа предельных состояний — расчет по прочности. Обеспечивается надежность и безопасная эксплуатация конструкции.
  2. Вторая группа предельных состояний — расчет по жесткости. Предотвращает чрезмерное раскрытие трещин, перекосы, большие прогибы.

Вычисления по данным формулам трудоемки и требуют наличия технического образования. Для упрощения проектирования небольших частных зданий, армирование ленточного фундамента принимают исходя из минимальных значений.

Пример расчета стержней для ленточного фундамента

Исходные данные:

  • высота ленты — 100 см;
  • ширина ленты — 40 см.

Требуется сконструировать каркас для индивидуального жилого дома. Используется продольная, поперечная и вертикальная арматура. Вертикальная принимается сечением 8 мм и устанавливается с шагом 25 см. Поперечная горизонтальная монтируется с таким же шагом, но диаметром 6мм.

Для того, чтобы определить какая нужна рабочая арматура выполняют простое вычисление

  1. Площадь поперечного сечения фундамента = ширина*высота = 100 см * 40 см = 4000 см².
  2. Требуемая площадь сечения стержней арматуры = 0,1% * 4000 см² = 4 см².

Далее чтобы определить, какую арматуру использовать, необходимо обратиться к сортаменту. Число прутов принимается четное, чтобы равномерно распределить их в нижнем и в верхнем горизонтальном слое.

Диаметр арматуры, мм Суммарная расчетная площадь поперечного сечения арматурных стержней, см2 Масса 1 метра арматуры, кг
2 стержня 4 стержня 6 стержней 8 стержней 10 стержней
8 применяется только при высоте фундамента 15 см и менее, что не подходит для ленточных конструкций 2,01 3,02 4,02 5,03 0,395
10 3,14 4,71 6,28 7,85 0,617
12 4,52 6,79 9,05 11,31 0,888
14 6,16 9,23 12,37 15,39 1,21
16 8,04 12,06 16,08 20,11 1,58
18 10,18 15,27 20,36 25,45 2,0
20 12,56 18,85 25,13 31,42 2,47

Для данного ленточного фундамента минимальный диаметр равняется 12 мм согласно документу «Армирование элементов монолитных железобетонных зданий. Пособие по проектированию» , его и принимаем. По сортаменту потребуется 4 стержня: 2 располагаются снизу и 2 сверху.

Если применяются стержни разных диаметров (те, которые имеются в наличии), пруты больших размеров располагают снизу.

Расчет количества арматуры на фундамент

Исходные данные:

  1. материалы указаны в предыдущем пункте;
  2. длина стен ленточного фундамента — 40 м.

Требуется рассчитать массу арматуры всех диаметров для ленточного фундамента.
Рабочее горизонтальное армирование

  1. Длина: периметр здания*количество стержней в сечении + запас на нахлест при сварке прутов = 40*6+5 = 245 м.
  2. Анкеровка углов: количество стержней в сечении*количество углов*минимальная длина анкеровки (50 диаметров арматуры) = 6*4*(50*12) = 14,4 м.
  3. Масса: длина*массу одного метра = (245+14,4)*0,888 = 230,3 кг прутов диаметром 12 мм.

Конструктивное горизонтальное армирование
Длина стержней принимается в зависимости о ширины стенки ленты за вычетом защитного слоя бетона — по 2-3 см с каждой стороны. Принимаем продольные пруты 34 см.

  1. Количество стержней: периметр здания/шаг хомутов(в предыдущем пункте принято 25 см) = 40/0,25 = 160 шт.
  2. Общая длина: количество*длина одного прута = 160*0,34 = 54,4 м.
  3. Масса: 54,4*0,222 (в таблице выше не указано, но имеется в полном сортаменте) = 12,1 кг стержней диаметром 6 мм.

Конструктивное вертикальное армирование
Все как в предыдущем пункте, стержни устанавливаются длинной равной:
Высота ленточного фундамента минус 3 см*2 = 100 — 3*2 = 94 см.

  1. Количество стержней: периметр здания/шаг хомутов(в предыдущем пункте принято 25 см) = 40/0,25 = 160 шт.
  2. Общая длина: количество*длина одного прута = 160*0,94 = 150,4 м.
  3. Масса: 150,4*0,395 = 59,41 кг стержней диаметром 8 мм.

Для удобства полученные цифры можно свести в таблицу.

Назначение Диаметр Общая масса
Рабочая 12 мм 230,3 кг
Поперечная 6 мм 12,1 кг
Вертикальная 8 мм 59,41 кг

Рекомендуем прочитать:

Можно ли использовать стеклопластиковую арматуру для ленточного фундамента.

Как правильно армировать ленточный фундамент.

Расчет диаметра арматуры занимает не больше 10 минут, но позволит избежать перерасхода материала или затрат на ремонт ленточных фундаментов. Полученную в последнем пункте таблицу удобно использовать при покупке материала.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Хорошая реклама

Читайте также

Как самостоятельно провести расчет арматуры для фундамента

Для восприятия деформационных нагрузок и формирования единой конструкции монолитный фундамент армируется. Если бетон прекрасно воспринимает сжимающие нагрузки, то арматура, как часто говорят, работает на растяжение. При условии, что вы решили своими руками возводить основание для дома, вам придется потрудиться над расчетами не только бетонной смеси, но и арматуры для фундамента. О том, как подсчитать необходимый метраж этого материала, а также рассчитать требуемое сечение арматуры, мы постараемся подробно расписать в этой статье.

Сколько должно быть арматуры в фундаменте

Чтобы процесс расчета был максимально понятным, в качестве примера мы рассмотрим ленточное основание высотой 600 мм с шириной ленты 400 мм для фундамента, схема которого изображена на рисунке ниже.

Минимально допустимое содержание армирующих элементов в ленточном основании определяется по СНиП 52-01-2003 «Бетонные и железобетонные конструкции». В пункте 7.3.5 сказано, что относительное содержание продольной арматуры не должно быть меньше 0,1% от площади сечения железобетонного элемента. Для ленточного фундамента учитывается отношение суммарного сечения арматуры и ленты.

В нашем случае имеем: площадь сечения ленты – 600×400=240 000 мм2. С учетом полученных данных определяем количество стержней, необходимое для продольного армирования ленты. Для этого воспользуемся частью таблицы из прил. 1 к пособию по проектированию «Армирование элементов монолитных железобетонных зданий», представленной на рисунке ниже. Предварительно переведем мм2 в см2 и умножим полученное значение на 0,001 (именно такую часть должна занимать суммарная площадь поперечного сечения продольной арматуры). Получаем: 240000 мм2 = 2400 см2, 2400 см2×0,001=2,4 см2.

Изучая данные таблицы 1, сложно понять, арматуру какого диаметра, и в каком количестве нужно использовать. Ведь при требуемой площади сечения в 2,4 см2, судя по таблице, можно использовать 2 стержня 14 мм арматуры, 3 стержня 12 мм, 4 стержня 10 мм и т.д. От чего отталкиваться при расчетах? В разделе 1 приложения 1 к пособию по проектированию «Армирование элементов монолитных железобетонных зданий» сказано, что при длине стороны более 3 м (как в нашем случае), минимальный диаметр арматуры составляет 12 мм. Для равномерного восприятия нагрузок потребуется два пояса армирования, содержащих по два прутка арматуры диаметром 12 мм.

Диаметр поперечной арматуры выбираем минимально допустимый для каркаса, высотой менее 800 мм (у нас ввиду высоты фундамента и требуемого отступа от наружного слоя бетона в 50 мм – 500 мм=600-2×50) – 6 мм. Он должен быть не меньше четверти диаметра продольных прутков: 12/4=3<6 условие соблюдается. Если бы каркас был высотой от 800 мм и выше,  то минимальный диаметр арматуры составлял бы 8 мм.

Выбор и расчет арматуры для плитного фундамента осуществляют таким же образом. Только данные таблицы 1 нужно будет умножить в зависимости от количества продольных прутков арматуры. А как быть, если необходимо провести арматурный расчет столбчатого фундамента? В этом случае достаточно использовать арматуру диаметром 10 мм: для свай, которые в диаметре меньше 200 мм, достаточно трех прутков, для остальных случаев их количество возрастает по мере увеличения диаметра сваи. Для соединения вертикальных прутков достаточно использовать гладкую арматуру диаметром 6 мм.

Если вы решили армировать основание дома своими руками, то перед покупкой строительных материалов очень важно провести как можно более точные расчеты требуемого количества. В нашем случае мы будем рассматривать расчет количества арматуры под дом 10×6, для которого возводится ленточный, плитный или столбчатый фундамент.

Количество арматуры для ленточного фундамента

Общая длина ленты составит: 10000×2+(6000-2×400)×3=35600 мм или 35,6 м. С учетом общего количества запусков суммарной длиной 40×250=10000 мм или 10 м и использования четырех продольных прутков арматуры суммарный метраж продольных армирующих элементов составит: 35,6×4+10=152,4 м. Это, что касается арматуры периодического профиля, но есть еще гладкая арматура.

При условии отступа от поверхности бетонного основания в 50 мм длина поперечной арматуры (горизонтальной и вертикальной на одно соединение) составит: 300×2+500×2=1600 мм или 1,6 м. Таких соединений при общей длине ленты в 35,6 м и шаге между поперечными прутками в 300 мм будет: 35,6/0,3=119. Итого общая длина поперечной гладкой арматуры составит: 119×1,6=190,4 м.

Количество арматуры для плитного фундамента

Для нашего дома 10×6 толщину плиты принимаем 300 мм (предварительно проводим расчет нагрузки на фундамент). Арматурный каркас будет состоять из двух поясов с шагом сетки 200 мм. Для одного пояса потребуется 10000/200=50 прутков поперек (шестиметровых) и 6000/200=30 прутков вдоль (десятиметровых). Итого на два пояса потребуется арматуры периодического профиля: (50×6+30×10)×2=1200 м

Если соединять пояса арматурными прутками, то общее количество соединений составит: 50×30=1500 шт. Длина каждого прутка с учетом отступа от края фундамента в 50 мм составит 200 мм. Итого гладкой арматуры потребуется: 1500×200=300000 мм или 300 м.

Количество арматуры для буронабивного свайного основания

В качестве примера приведем основание под тот же дом, только будем использовать буронабивные сваи (расстояние между опорами принимаем 2000 мм) и железобетонную обвязку высотой 400 мм. Нам потребуется 16 свай диаметром 200 мм и высотой 2000 мм. Сколько нужно арматуры для такого фундамента?

На сваи будем использовать 4 прутка длиной 2250 мм: 2000 мм на собственно сваю и 350 мм на запуск для связки с арматурным каркасом ростверка. Итого на одну буронабивную сваю потребуется 4×2350=9400 мм или 9,4 м арматуры периодического профиля. На 16 свай потребуется 150,4 м. Для формирования каркаса сваи будем использовать гладкую арматуру, которой соединим 4 вертикальных прутка в трех местах. Длина одного соединения составит примерно 3,14×200=628 мм, длина трех – 1884 мм или 1,9 м. Общий метраж гладкой арматуры, необходимый для формирования каркаса столбов составит: 1,9×16=30,4 м.

Расчет арматуры для ростверка проводится так же, как и в случае расчета ленточного фундамента. Прутков периодического профиля потребуется столько же, сколько и в вышеописанном случае (по ленточному основанию), т.е. 152,4 м. А вот на формирование каркаса с учетом высоты ленты нужно будет меньше гладкой арматуры: 119 (количество соединений) ×1,2 (сумма длин поперечной арматуры на одно соединение)= 142,8 м

Надеемся, что приведенная информация поможет вам понять процесс расчета и самостоятельно рассчитать необходимое количество арматуры и диаметр прутков применительно к фундаменту вашего дома.

Загрузка…

ленточного, плитного типа и столбчатого

Мероприятиям по возведению любого здания предшествуют проектные работы, в процессе которых определяется тип фундаментной базы и необходимое количество материалов для ее сооружения. Важной частью фундамента является арматурный каркас. Он повышает прочность основания, демпфирует растягивающие усилия и изгибающие нагрузки, а также предотвращает образование трещин. Для выполнения работ необходимо понимать, сколько арматуры нужно для армирования ленточного фундамента, а также для столбчатого и плитного основания. Разберемся с особенностями вычислений.

Расход арматуры на армирование ленточного фундамента

Готовимся выполнить расчет количества арматуры для фундамента – важные моменты

Планируя постройку частного дома, следует обратить особое внимание на конструкцию арматурной решетки, воспринимающую значительные нагрузки на фундамент. Квалифицированно разработанная схема силовой решетки и применение оптимального сечения арматуры позволяет обеспечить требуемый запас прочности фундаментной базы, а также ее продолжительный ресурс использования.

Самостоятельно рассчитать арматуру на фундамент можно различными способами:

  • с использованием программных средств и онлайн-калькуляторов, которые выполняют расчет арматуры после введения рабочих параметров;
  • выполняя вычисления вручную на основании информации о конструктивных особенностях фундамента, величине усилий и параметрам решетки.

Фундаментная основа, воспринимает нагрузку от массы здания и равномерно распределяет ее на опорную поверхность почвы.


Возведение зданий осуществляется на различных типах оснований:

  • ленточных;
  • плитных;
  • столбчатых.

Расчет арматуры для ленточного фундамента

 

До начала вычислений следует разобраться с конструкцией силового каркаса, который состоит из следующих элементов:

  • вертикальных и поперечных стержней, между которыми выдержан равный интервал;
  • вязальной проволоки, соединяющей продольно расположенные перемычки и вертикальные прутки;
  • муфт, обеспечивающих прочное соединение и удлинение арматурных прутков.

Для каждого вида основания применяется своя схема армирования фундамента, которая зависит от следующих факторов:

  • характеристик почвы;
  • габаритов здания;
  • конструктивных особенностей строения;
  • действующих нагрузок.

Применяется арматура, имеющая ребристую поверхность, которая отличается:

  • размером сечения;
  • классом;
  • уровнем воспринимаемых нагрузок;
  • расположением в силовой решетке;
  • стоимостью.

Укладка арматуры в ленточный фундамент

Для различных фундаментов на основании вычислений определяются следующие сведения:

  • количество арматуры для фундамента;
  • сортамент вертикальных и поперечных прутков;
  • общая масса арматурного каркаса;
  • методы фиксации стальных стержней в силовой конструкции;
  • технология сборки несущей решетки;
  • шаг обвязки арматурных элементов.

Важно правильно выполнить расчет. Арматура для фундамента в этом случае обеспечит необходимый запас прочности. Рассмотрим, какие необходимы исходные данные для расчетов, а также изучим методику выполнения вычислений для различных типов фундаментов.

Расчет количества арматуры для ленточного фундамента

Основание ленточного типа обеспечивает повышенную устойчивость строений на различных почвах. Конструкция представляет собой бетонную ленту, повторяющую контур здания и расположенную под капитальными стенами. Усиление стальной арматурой повышает прочностные характеристики бетонной основы и положительно влияет на ее долговечность. Для сооружения пространственной решетки можно использовать арматуру диаметром 10 мм.

Исходные данные для выполнения расчетов:

  • длина и ширина фундаментной базы;
  • сечение железобетонной ленты;
  • интервал между каркасными элементами;
  • общее количество обвязочных поясов;
  • размер ячеек силовой решетки.

Сколько арматуры нужно для фундамента

Рассмотрим порядок вычислений:

  1. Рассчитайте общую длину ленточного контура.
  2. Вычислите количество элементов в поясах.
  3. Определите метраж горизонтальных стержней.
  4. Вычислите потребность в вертикальных прутках.
  5. Рассчитайте длину поперечных перемычек.
  6. Сложите полученный метраж.

Зная общее количество стыковых участков, можно вычислить потребность в вязальной проволоке.

Расчет количества арматуры на фундамент плитного типа

Фундамент плитной конструкции применяется для строительства жилых зданий на пучинистых грунтах. Для обеспечения прочностных характеристик применяются арматурные стержни диаметром 10–12 мм. При повышенной массе строений диаметр прутков следует увеличить до 1,4–1,6 см.

Рассчитать количество арматуры для фундамента плитной конструкции можно, используя следующую информацию:

  • пространственный каркас из арматуры сооружается в двух уровнях;
  • соединение стержней выполняется в виде квадратных ячеек со стороной 15–20 см;
  • обвязка выполняется отожженной проволокой в каждой точке соединения.

Схема армирования монолитной плиты фундамента

Для определения потребности в арматуре выполните следующие операции:

  1. Определите количество горизонтальных прутков в каждом ярусе.
  2. Вычислите общий метраж арматурных стержней, формирующих ячейки.
  3. Прибавьте суммарную длину вертикальных опор, объединяющих ярусы.

Сложив полученные значения, получим общую потребность в арматуре. Зная количество стыков, несложно определить необходимый объем стальной проволоки.

Как рассчитать арматуру на фундамент столбчатой конструкции

Основание столбчатого типа широко применяется для строительства различных зданий. Оно состоит из железобетонных опор квадратного и круглого сечения, установленных в углах строения, а также в точках пересечения капитальных стен и внутренних перегородок. Для повышения прочности опорных элементов применяются ребристые стержни сечением 1–1,2 см.

Рассчитать количество арматуры на фундамент столбчатого типа несложно, учитывая следующие данные:

  • каркас опорного элемента квадратного профиля формируется из 4 стержней;
  • решетка железобетонной опоры круглого сечения выполняется из трех прутьев;
  • длина элементов усиления соответствует размерам опорной колонны;
  • поперечная обвязка каркаса опорной колонны производится с шагом 0,4–0,5 м.

Алгоритм расчета расхода арматуры фундамента

Алгоритм расчета:

  1. Определите длину вертикальных стержней в одной опоре.
  2. Вычислите метраж элементов поперечной обвязки одного каркаса.
  3. Рассчитайте общую длину, сложив полученные значения.

Умножив результат на количество опор, получим общую длину арматуры.

Как посчитать арматуру для фундамента – пример вычислений

В качестве примера рассмотрим, сколько нужно арматуры для фундамента 10х10, сформированного в виде монолитной железобетонной ленты.

Для выполнения вычислений используем следующую информацию:

  • ширина основы 60 см, позволяет уложить в каждом поясе по 3 горизонтальных стержня;
  • выполняется 2 пояса усиления, соединенные вертикальными прутками с интервалом 1 м.
  • для здания 10х10 м и глубиной основы 0,8 м используется арматура диаметром 10 мм.

Расход арматуры для ленточного фундамента

Алгоритм расчета:

  1. Определяем периметр фундаментной основы здания, сложив длину стен – (10+10)х2=40 м.
  2. Вычисляем количество горизонтальных элементов в одном поясе, умножив периметр на количество стержней в одном ярусе – 40х3=120 м.
  3. Общая длина продольных прутков определяется умножением полученного значения на количество ярусов 120х2=240 м.
  4. Рассчитываем количество вертикальных элементов, установленных по 10 пар на каждую сторону 10х2х4=80 шт.
  5. Суммарная длина вертикальных стержней составит 80х0,8=64 м.
  6. Определяем длину перемычек размером по 0,6 м каждая, установленных на двух поясах (по 20 на сторону) – 10х2х4х0,6=48 м.
  7. Сложив длину арматурных стержней, получим общий метраж 240+64+48=352 м.

Определить длину стальной проволоки несложно. Количество соединений, умноженное на длину одного куска проволоки, равную 20–30 см, даст искомый результат.

Подводим итоги – насколько необходим расчет арматуры на фундамент

Планируя строительство дома, бани или дачного строения, несложно определить потребность в арматуре своими руками. Пошаговые инструкции позволят на калькуляторе рассчитать метраж стержней для изготовления арматурной решетки, усиливающей основу здания. Зная, как рассчитать арматуру, можно самостоятельно выполнить вычисления, не прибегая к помощи сторонних специалистов. Правильно выполненные расчеты обеспечат прочность фундаментной основы, устойчивость здания, а также длительный ресурс эксплуатации.

Армирование ленточного фундамента — Доктор Лом

1. Грунт под фундаментом можно рассматривать как упругое основание с постоянными физическими свойствами далеко не всегда. Более точный ответ на вопрос, как изменяются свойства грунта под фундаментом, может дать только геологоразведка. Но в любом случае, чем больше размеры строения в плане, тем больше вероятность, что свойства грунта под ленточным фундаментом будут не одинаковыми.

2. Со временем физические свойства грунта могут изменяться в результате жизнедеятельности человека или по природным причинам (например при изменении уровня грунтовых вод). Это может приводить к неравномерной осадке основания.

Для стен из натурального или искусственного камня наиболее неблагоприятной будет ситуация, когда наибольшая осадка произойдет под одним или несколькими углами здания. В этом случае в сечениях стены появятся дополнительные растягивающие напряжения, что может привести к образованию трещин. Впрочем и дополнительные сжимающие напряжения при просадке грунта ближе к середине ленты также могут оказаться не желательными.

3. Мелкозаглубленные ленточные фундаменты могут испытывать дополнительные нагрузки из-за пучения замерзшего грунта.

4. Принимаемая при расчетах нагрузка на фундамент далеко не всегда является равномерно распределенной по всей длине ленты фундамента. Наличие окон и дверей приводит как минимум к изменению значений нагрузки, а под достаточно широкими дверями нагрузки на ленту фундамента может вообще не быть. Кроме того, нагрузка на фундамент в летнее и зимнее время может быть разной.

5. В углах сопряжения перпендикулярных лент фундамента возможны скачки напряжений, если ширина лент фундамента определена неправильно или эти ленты делаются одной ширины из технологических соображений.

Как видим, причин для армирования ленточного фундамента вполне достаточно, даже если армирование по расчету не требуется. Такое армирование называется конструктивным, т.е. принимаемым без расчета. При этом конечно же должны соблюдаться общие требования по армированию балок, а также по анкеровке арматуры. Если же ленточный фундамент делается ступенчатым, то расчет армирования подошвы фундамента — отдельная тема.

Как правило в малоэтажном строительстве различные авторы многочисленных сайтов рекомендуют использовать для продольного армирования стержни диаметром 10-12 мм, но не более 40 мм.

На чем основана данная рекомендация, я не знаю. В известной мне технической литературе подобных рекомендаций нет. Впрочем эта литература предназначена для специалистов, а не для любителей. От себя могу добавить, что при выборе диаметра арматуры для конструктивного армирования кроме вышеизложенного следует руководствоваться следующими параметрами:

1. Длина ленты — чем больше длина, тем больший диаметр арматуры следует принимать).

2. Высота и ширина ленты — чем больше высота и ширина, тем меньший диаметр арматуры можно принимать.

3. Расчетные нагрузки — тут все просто, чем меньше нагрузки тем меньший диаметр арматуры можно принимать.

Тем не менее, чтобы все вышесказанное было более наглядно, представим себе следующую ситуацию: планируется ленточный фундамент (вместо фундаментной плиты), длина ленты по одной из наружных стен 8 м, высота 1 м и ширина 0.5 м, ширина подошвы фундамента 0.8 м высота подошвы 0.2 м.

Если под одной из наружных стен, например А3 (крайняя левая стена на рисунке 345.1.в) грунт в правом верхнем углу просядет сильнее, чем посредине, то в этом случае ленту фундамента под этой стеной можно рассматривать, как консольную балку длиной 4 м, соответственно потребуется армирование в верхней части ленты фундамента.

Рисунок 345.1. Примерный план 1 этажа для расчета фундаментной плиты.

Как мы уже выяснили, равномерно распределенная нагрузка на эту стену, составляет q = 6976 ≈ 7000 кг/м. Но это была нагрузка, равномерно распределенная как по фундаменту, так и по основанию, а при просадке основания нагрузка, действующая на консольную балку, будет описываться уравнением прогиба.

Чтобы упростить задачу, предположим, что эта дополнительная нагрузка описывается уравнением квадратной параболы, т.е. изменяется от максимума на конце до нуля на опоре. Тогда изгибающий момент на опоре составит:

М = (ql/3)3l/4 = ql2/4 = 7000·42/4 = 28000 кгс·м или 2800000 кгс·см

Примечание: в данном случае мы определили значение момента графоаналитическим методом, т.е. умножили площадь эпюры нагрузки на расстояние от центра тяжести эпюры до рассматриваемой точки — опоры балки.

Так как в данном случае лента фундамента представляет собой тавровую балку из-за наличия подошвы, то сначала нужно определить, где находится граница сжатой зоны:

M = 2800000 < Rbb’fh’f(ho — 0.5h’f) = 117·80·20(97 — 10) = 16286400

Это означает, что граница сжатой зоны находится в полке балки, тогда

am = M/b’fh20Rb = 2800000/(80·972·117) = 0.0318

Аs = Rbb’fho(1 — √1 — 2am)/Rs = 117·80·97(1 — √1 — 2·0.0318)/3600 = 8.15 см2

Примечание: если для упрощения расчетов данную балку рассматривать как прямоугольную шириной 0.5 м, то требуемая площадь сечения составит 8.23 см2, т.е. не намного больше.

Т.е. для армирования верхней зоны сечения ленты фундамента под рассматриваемой стеной в этом случае понадобится не менее 3 стержней Ø 20 мм, площадь сечения составит 9.41см2. Такие дела.

Примечание: если арматурные стержни будут и в нижней части сечения, т.е. в сжатой зоне, то их тоже можно учесть в расчетах. Впрочем это увеличит несущую способность балки на 3-5%, а у нас итак принята арматура с хорошим запасом.

Определение прогиба при такой нагрузке — отдельная сложная тема, но опять упростим задачу и предположим, что прогиб будет такой же (хотя в действительности прогиб будет немного меньше), как при равномерно изменяющейся нагрузке и составит (согласно расчетной схеме 2.6, таблицы 2):

f = 0.86·11ql4/120EI

где 0.86 — коэффициент учитывающий изменение высоты сжатой зоны сечения, который тоже требует более точного определения.

Начальный модуль упругости для бетона класса В20 составляет Е = 275000 кг/см2. Для определения момента инерции приведенного сечения следует решить кубическое уравнение, которое здесь не привожу. Скажу лишь, что граница сжатой области бетона будет проходить в ребре балки и потому момент инерции приведенного сечения будет составлять примерно I = 750000 см4.

При таких исходных данных максимальный прогиб составит:

f = 0.86·11·70·4004/(120·275000·750000) = 0.685 см

Это означает, что если осадка основания под этим углом будет даже незначительно больше, чем под серединой фундамента, то уже включится в работу арматура. А если разница достигнет 7 мм и больше, то арматура будет работать на полную мощность. Кроме того в материале стены появятся дополнительные растягивающие напряжения, для восприятия этих напряжений в стенах их натурального и искусственного камня обычно делается арматурный пояс по периметру.

А кроме того, наличие арматуры в фундаменте позволит соблюсти требования нормативных документов, в частности СНиП 2.02.01-83* «Основания зданий и сооружений», согласно которому относительная разность осадок по отношению к длине не должна превышать 0.002 для многоэтажных бескаркасных зданий с несущими стенами из крупных блоков или кирпича (согласно таблице 391.2).

В нашем случае Δs/L = 0.7/400 = 0.00175 < 0.002.

Тут может возникнуть вполне логичный вопрос, а что произойдет, если данный фундамент армирован 2 стержнями диаметром 12 мм в верхней зоне, согласно многочисленным рекомендациям?

Да в принципе ничего страшного не произойдет: лента фундамента окончательно треснет в наиболее напряженном поперечном сечении и после этого такую ленту можно рассматривать как 2 балки на упругом основании, лежащие рядом и несущая способность таких балок увеличится в несколько раз.

Вот только если разница просадок основания под углом и в середине будет увеличиваться, то будут расти и растягивающие напряжения в материале стены, а если никаких армирующих поясов при строительстве не было предусмотрено, то могут появиться и трещины на стенах.

Лента фундамента под примыкающей стеной в левом верхнем углу будет более длинной, около 12 м, однако и нагрузка на эту ленту почти в 2 раза меньше. Тем не менее, если и эту часть ленты фундамента рассматривать как консольную балку длиной 6 м высотой 1 м и шириной 0.5 м, то максимальный момент на опоре составит:

М = ql2/4 = 3600·62/4 = 32400 кгс·м или 3240000 кгс·см 

Это в 1.16 раза больше, чем возможный изгибающий момент в примыкающей более нагруженной ленте. Если учесть, что мы приняли сечение арматуры с хорошим запасом (в 1.154 раза), и наличие арматуры в сжатой зоне, то этого должно хватить даже не смотря на то, что в данном случае у нас не тавровая, а обычная прямоугольная балка.

К тому же возможный прогиб такой балки при неравномерной осадке фундамента будет больше, а значит у балки появится дополнительная опора — лента фундамента примыкающей стены. Все это может немного увеличить нагрузку на ленту, рассмотренную нами ранее и уменьшить нагрузку на примыкающую ленту.

Ну а насколько подобная ситуация может быть вероятна — решать вам. Я же трещины на кирпичных стенах примерно посредине (часто в районе оконного проема) наблюдал неоднократно.

Расчет и калькулятор арматуры для фундамента от московской компании «АСТИМ

получить скидку
В наши дни на всех строительных площадках, будь то малоэтажная застройка или высотное здание, используется арматура. Для подготовки оснований одно- двухэтажных частных коттеджей обязательно нужно рассчитать количество и тип усиливающих изделий.

Фундамент любого дома должен быть долговечным и прочным — от его правильного устройства будет зависеть срок эксплуатации всего объекта. Огромную роль в увеличении периода службы конструкции играет грамотный расчет арматуры. Для этого необходимо правильно определить тип и объем материала.

Калькулятор расчета арматуры

Номенклатура

Арматура 10 мм

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 В500С Ф10 мм0.61758000,00

Арматура А3 А500 Ф10 мм0.6456000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А1 А240 Ф10 мм в бухтах0.61736500,00

Арматура А1 А240 Ф10 мм мерная 6 метров0.61736500,00

Арматура А1 А240 Ф10 мм мерная 11.7 метров0.61736500,00

Арматура 14 мм

Арматура А3 А500 Ф14 мм0.9253000,00

Арматура А3 А500С Ф14 мм немерная1.2150000,00

Арматура А3 А500С Ф14 мм мерная 11,7 метров1.2153000,00

Арматура А3 А400 25Г2С Ф14 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 35ГС Ф14 мм мерная 11,7 метров0.88850000,00

Арматура А1 А240 Ф14 мм мерная 11,7 метров1.2132000,00

Арматура 16 мм

Арматура А3 А500 Ф16 мм1.6153000,00

Арматура А3 А500С Ф16 мм немерная1.5850000,00

Арматура А3 А500С Ф16 мм мерная 11,7 метров1.5853000,00

Арматура А3 А400 25Г2С Ф16 мм мерная 11,7 метров1.5850000,00

Арматура А3 А400 35ГС Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф16 мм мерная 11,7 метров1.5832000,00

Арматура 18 мм

Арматура А3 А500С Ф18 мм немерная250000,00

Арматура А3 А500С Ф18 мм мерная 11,7 метров253000,00

Арматура А3 А400 25Г2С Ф18 мм мерная 11,7 метров250000,00

Арматура А3 А400 35ГС Ф18 мм мерная 11,7 метров232000,00

Арматура А1 А240 Ф18 мм мерная 11,7 метров232000,00

Арматура 20 мм

Арматура А3 А500С Ф20 мм немерная2.4750000,00

Арматура А3 А500С Ф20 мм мерная 11,7 метров2.4753000,00

Арматура А1 А240 Ф20 мм мерная 11,7 метров2.4732000,00

Арматура 22 мм

Арматура А3 А500С Ф22 мм немерная2.9850000,00

Арматура А3 А500С Ф22 мм мерная 11,7 метров2.9853000,00

Арматура А3 А400 25Г2С Ф22 мм мерная 11,7 метров2.9855000,00

Арматура А3 А400 35ГС Ф22 мм мерная 11,7 метров2.9850000,00

Арматура 25 мм

Арматура А3 А500С Ф25 мм мерная 11,7 метров3.8553000,00

Арматура А3 А400 25Г2С Ф25 мм мерная 11,7 метров3.8555000,00

Арматура А3 А400 35ГС Ф25 мм мерная 11,7 метров3.8550000,00

Арматура 28 мм

Арматура А3 А500С Ф28 мм мерная 11,7 метров4.8353000,00

Арматура А3 А400 25Г2С Ф28 мм мерная 11,7 метров4.8355000,00

Арматура А3 А400 35ГС Ф28 мм мерная 11,7 метров1.2150000,00

Арматура 32 мм

Арматура А3 А500С Ф32 мм мерная 11,7 метров6.3153000,00

Арматура А3 А400 25Г2С Ф32 мм мерная 11,7 метров6.3155000,00

Арматура А3 А400 35ГС Ф32 мм мерная 11,7 метров6.3150000,00

Арматура 36 мм

Арматура А3 А500С Ф36 мм мерная 11,7 метров7.9953000,00

Арматура А3 А400 25Г2С Ф36 мм мерная 11,7 метров7.9955000,00

Арматура А3 А400 35ГС Ф36 мм мерная 11,7 метров7.9950000,00

Арматура 40 мм

Арматура А3 А500С Ф40 мм мерная 11,7 метров9.8753000,00

Арматура А3 А400 25Г2С Ф40 мм мерная 11,7 метров9.8768000,00

Арматура А3 А400 35ГС Ф40 мм мерная 11,7 метров9.8755000,00

Арматура 6 мм

Арматура А3 В500С Ф6 мм в бухтах0.22270000,00

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Арматура А1 А240 Ф6 мм в бухтах0.22239500,00

Арматура А1 А240 Ф6 мм мерная 6 метров0.22239500,00

Арматура гладкая А1 А240

Арматура 12 бухта0.88855000,00

Арматура А1 А240 32мм6.3155000,00

Арматура А1 А240 28мм4.8355000,00

Арматура А1 А240 25мм3.8555000,00

Арматура А1 А240 22мм2.9855000,00

Арматура А1 А240 Ф20 мм мерная 11,7 метров2.4732000,00

Арматура А1 А240 Ф18 мм мерная 11,7 метров232000,00

Арматура А1 А240 Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф14 мм мерная 11,7 метров1.2132000,00

Арматура А1 А240 Ф12 мм мерная 11.7 метров0.88833000,00

Арматура А1 А240 Ф10 мм в бухтах0.61736500,00

Арматура А1 А240 Ф10 мм мерная 6 метров0.61736500,00

Арматура А1 А240 Ф10 мм мерная 11.7 метров0.61736500,00

Арматура А1 А240 Ф8 мм в бухтах0.39538500,00

Арматура А1 А240 Ф8 мм мерная 6 метров0.39538500,00

Арматура А1 А240 Ф6 мм в бухтах0.22239500,00

Арматура А1 А240 Ф6 мм мерная 6 метров0.22239500,00

Арматура гладкая А1 10 мм

Арматура А1 А240 Ф10 мм в бухтах0.61736500,00

Арматура А1 А240 Ф10 мм мерная 6 метров0.61736500,00

Арматура А1 А240 Ф10 мм мерная 11.7 метров0.61736500,00

Арматура гладкая А1 14 мм

Арматура А1 А240 Ф14 мм мерная 11,7 метров1.2132000,00

Арматура гладкая А1 16 мм

Арматура А1 А240 Ф16 мм мерная 11,7 метров1.5832000,00

Арматура гладкая А1 18 мм

Арматура А1 А240 Ф18 мм мерная 11,7 метров232000,00

Арматура гладкая А1 20 мм

Арматура А1 А240 Ф20 мм мерная 11,7 метров2.4732000,00

Арматура гладкая А1 22мм

Арматура А1 А240 22мм2.9855000,00

Арматура гладкая А1 25мм

Арматура А1 А240 25мм3.8555000,00

Арматура гладкая А1 28мм

Арматура А1 А240 28мм4.8355000,00

Арматура гладкая А1 32мм

Арматура А1 А240 32мм6.3155000,00

Арматура гладкая А1 8 мм

Арматура А1 А240 Ф8 мм в бухтах0.39538500,00

Арматура А1 А240 Ф8 мм мерная 6 метров0.39538500,00

Гладкая арматура А1 6 мм (А240)

Арматура А1 А240 Ф6 мм в бухтах0.22239500,00

Арматура А1 А240 Ф6 мм мерная 6 метров0.22239500,00

Стальная арматура А1 12 мм

Арматура 12 бухта0.88855000,00

Арматура А1 А240 Ф12 мм мерная 11.7 метров0.88833000,00

Арматура мерная

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 А500С Ф40 мм мерная 11,7 метров9.8753000,00

Арматура А3 А500С Ф36 мм мерная 11,7 метров7.9953000,00

Арматура А3 А500С Ф32 мм мерная 11,7 метров6.3153000,00

Арматура А3 А500С Ф28 мм мерная 11,7 метров4.8353000,00

Арматура А3 А500С Ф25 мм мерная 11,7 метров3.8553000,00

Арматура А3 А500С Ф22 мм мерная 11,7 метров2.9853000,00

Арматура А3 А500С Ф20 мм мерная 11,7 метров2.4753000,00

Арматура А3 А500С Ф18 мм мерная 11,7 метров253000,00

Арматура А3 А500С Ф16 мм мерная 11,7 метров1.5853000,00

Арматура А3 А500С Ф14 мм мерная 11,7 метров1.2153000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А3 А400 25Г2С Ф40 мм мерная 11,7 метров9.8768000,00

Арматура А3 А400 25Г2С Ф36 мм мерная 11,7 метров7.9955000,00

Арматура А3 А400 25Г2С Ф32 мм мерная 11,7 метров6.3155000,00

Арматура А3 А400 25Г2С Ф28 мм мерная 11,7 метров4.8355000,00

Арматура А3 А400 25Г2С Ф25 мм мерная 11,7 метров3.8555000,00

Арматура А3 А400 25Г2С Ф22 мм мерная 11,7 метров2.9855000,00

Арматура А3 А400 25Г2С Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 25Г2С Ф18 мм мерная 11,7 метров250000,00

Арматура А3 А400 25Г2С Ф16 мм мерная 11,7 метров1.5850000,00

Арматура А3 А400 25Г2С Ф14 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 25Г2С Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 А400 35ГС Ф40 мм мерная 11,7 метров9.8755000,00

Арматура А3 А400 35ГС Ф36 мм мерная 11,7 метров7.9950000,00

Арматура А3 А400 35ГС Ф32 мм мерная 11,7 метров6.3150000,00

Арматура А3 А400 35ГС Ф28 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 35ГС Ф14 мм мерная 11,7 метров0.88850000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Арматура А3 А400 35ГС Ф25 мм мерная 11,7 метров3.8550000,00

Арматура А3 А400 35ГС Ф22 мм мерная 11,7 метров2.9850000,00

Арматура А3 А400 35ГС Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 35ГС Ф18 мм мерная 11,7 метров232000,00

Арматура А3 А400 35ГС Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф20 мм мерная 11,7 метров2.4732000,00

Арматура А1 А240 Ф18 мм мерная 11,7 метров232000,00

Арматура А1 А240 Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф14 мм мерная 11,7 метров1.2132000,00

Арматура А1 А240 Ф10 мм мерная 6 метров0.61736500,00

Арматура А1 А240 Ф8 мм мерная 6 метров0.39538500,00

Арматура 11,7 метров мерная

Арматура А3 А500С Ф40 мм мерная 11,7 метров9.8753000,00

Арматура А3 А500С Ф36 мм мерная 11,7 метров7.9953000,00

Арматура А3 А500С Ф32 мм мерная 11,7 метров6.3153000,00

Арматура А3 А500С Ф28 мм мерная 11,7 метров4.8353000,00

Арматура А3 А500С Ф25 мм мерная 11,7 метров3.8553000,00

Арматура А3 А500С Ф22 мм мерная 11,7 метров2.9853000,00

Арматура А3 А500С Ф20 мм мерная 11,7 метров2.4753000,00

Арматура А3 А500С Ф18 мм мерная 11,7 метров253000,00

Арматура А3 А500С Ф16 мм мерная 11,7 метров1.5853000,00

Арматура А3 А500С Ф14 мм мерная 11,7 метров1.2153000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А400 25Г2С Ф40 мм мерная 11,7 метров9.8768000,00

Арматура А3 А400 25Г2С Ф36 мм мерная 11,7 метров7.9955000,00

Арматура А3 А400 25Г2С Ф32 мм мерная 11,7 метров6.3155000,00

Арматура А3 А400 25Г2С Ф28 мм мерная 11,7 метров4.8355000,00

Арматура А3 А400 25Г2С Ф25 мм мерная 11,7 метров3.8555000,00

Арматура А3 А400 25Г2С Ф22 мм мерная 11,7 метров2.9855000,00

Арматура А3 А400 25Г2С Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 25Г2С Ф18 мм мерная 11,7 метров250000,00

Арматура А3 А400 25Г2С Ф16 мм мерная 11,7 метров1.5850000,00

Арматура А3 А400 25Г2С Ф14 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф40 мм мерная 11,7 метров9.8755000,00

Арматура А3 А400 35ГС Ф36 мм мерная 11,7 метров7.9950000,00

Арматура А3 А400 35ГС Ф32 мм мерная 11,7 метров6.3150000,00

Арматура А3 А400 35ГС Ф28 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 35ГС Ф14 мм мерная 11,7 метров0.88850000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф25 мм мерная 11,7 метров3.8550000,00

Арматура А3 А400 35ГС Ф22 мм мерная 11,7 метров2.9850000,00

Арматура А3 А400 35ГС Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 35ГС Ф18 мм мерная 11,7 метров232000,00

Арматура А3 А400 35ГС Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф20 мм мерная 11,7 метров2.4732000,00

Арматура А1 А240 Ф18 мм мерная 11,7 метров232000,00

Арматура А1 А240 Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф14 мм мерная 11,7 метров1.2132000,00

Арматура 6 метров

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А3 А400 25Г2С Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 А400 35ГС Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Арматура А1 А240 Ф10 мм мерная 6 метров0.61736500,00

Арматура А1 А240 Ф8 мм мерная 6 метров0.39538500,00

Арматура немерная

Арматура 12 бухта0.88855000,00

Арматура А3 В500С Ф6 мм в бухтах0.22270000,00

Арматура А3 В500С Ф8 мм в бухтах0.39555000,00

Арматура А3 А500С Ф22 мм немерная2.9850000,00

Арматура А3 А500С Ф20 мм немерная2.4750000,00

Арматура А3 А500С Ф18 мм немерная250000,00

Арматура А3 А500С Ф16 мм немерная1.5850000,00

Арматура А3 А500С Ф14 мм немерная1.2150000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А1 А240 Ф10 мм в бухтах0.61736500,00

Арматура А1 А240 Ф8 мм в бухтах0.39538500,00

Арматура А1 А240 Ф6 мм в бухтах0.22239500,00

Арматура в бухтах

Арматура 12 бухта0.88855000,00

Арматура А3 В500С Ф6 мм в бухтах0.22270000,00

Арматура А3 В500С Ф8 мм в бухтах0.39555000,00

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А1 А240 Ф10 мм в бухтах0.61736500,00

Арматура А1 А240 Ф8 мм в бухтах0.39538500,00

Арматура А1 А240 Ф6 мм в бухтах0.22239500,00

Немерная арматура 12

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура Ф8 мм

Арматура А3 В500С Ф8 мм в бухтах0.39555000,00

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Арматура А3 А400 25Г2С Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 35ГС Ф8 мм мерная 6 метров0.39556000,00

Арматура А1 А240 Ф8 мм в бухтах0.39538500,00

Арматура А1 А240 Ф8 мм мерная 6 метров0.39538500,00

Рифленая арматура А3

Арматура 12 бухта0.88855000,00

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 В500С Ф12 мм0.88856000,00

Арматура А3 В500С Ф6 мм в бухтах0.22270000,00

Арматура А3 В500С Ф10 мм0.61758000,00

Арматура А3 В500С Ф8 мм в бухтах0.39555000,00

Арматура А3 А500 Ф16 мм1.6153000,00

Арматура А3 А500 Ф14 мм0.9253000,00

Арматура А3 А500 Ф12 мм1.2555000,00

Арматура А3 А500 Ф10 мм0.6456000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А3 А400 25Г2С Ф40 мм мерная 11,7 метров9.8768000,00

Арматура А3 А400 25Г2С Ф36 мм мерная 11,7 метров7.9955000,00

Арматура А3 А400 25Г2С Ф32 мм мерная 11,7 метров6.3155000,00

Арматура А3 А400 25Г2С Ф28 мм мерная 11,7 метров4.8355000,00

Арматура А3 А400 25Г2С Ф25 мм мерная 11,7 метров3.8555000,00

Арматура А3 А400 25Г2С Ф22 мм мерная 11,7 метров2.9855000,00

Арматура А3 А400 25Г2С Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 25Г2С Ф18 мм мерная 11,7 метров250000,00

Арматура А3 А400 25Г2С Ф16 мм мерная 11,7 метров1.5850000,00

Арматура А3 А400 25Г2С Ф14 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 25Г2С Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 А400 35ГС Ф40 мм мерная 11,7 метров9.8755000,00

Арматура А3 А400 35ГС Ф36 мм мерная 11,7 метров7.9950000,00

Арматура А3 А400 35ГС Ф32 мм мерная 11,7 метров6.3150000,00

Арматура А3 А400 35ГС Ф28 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 35ГС Ф14 мм мерная 11,7 метров0.88850000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Арматура А3 А400 35ГС Ф25 мм мерная 11,7 метров3.8550000,00

Арматура А3 А400 35ГС Ф22 мм мерная 11,7 метров2.9850000,00

Арматура А3 А400 35ГС Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 35ГС Ф18 мм мерная 11,7 метров232000,00

Арматура А3 А400 35ГС Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А3 25Г2С

Арматура А3 А400 25Г2С Ф40 мм мерная 11,7 метров9.8768000,00

Арматура А3 А400 25Г2С Ф36 мм мерная 11,7 метров7.9955000,00

Арматура А3 А400 25Г2С Ф32 мм мерная 11,7 метров6.3155000,00

Арматура А3 А400 25Г2С Ф28 мм мерная 11,7 метров4.8355000,00

Арматура А3 А400 25Г2С Ф25 мм мерная 11,7 метров3.8555000,00

Арматура А3 А400 25Г2С Ф22 мм мерная 11,7 метров2.9855000,00

Арматура А3 А400 25Г2С Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 25Г2С Ф18 мм мерная 11,7 метров250000,00

Арматура А3 А400 25Г2С Ф16 мм мерная 11,7 метров1.5850000,00

Арматура А3 А400 25Г2С Ф14 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 25Г2С Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 35ГС

Арматура А3 А400 35ГС Ф40 мм мерная 11,7 метров9.8755000,00

Арматура А3 А400 35ГС Ф36 мм мерная 11,7 метров7.9950000,00

Арматура А3 А400 35ГС Ф32 мм мерная 11,7 метров6.3150000,00

Арматура А3 А400 35ГС Ф28 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 35ГС Ф14 мм мерная 11,7 метров0.88850000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Арматура А3 А400 35ГС Ф25 мм мерная 11,7 метров3.8550000,00

Арматура А3 А400 35ГС Ф22 мм мерная 11,7 метров2.9850000,00

Арматура А3 А400 35ГС Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 35ГС Ф18 мм мерная 11,7 метров232000,00

Арматура А3 А400 35ГС Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А500

Арматура А3 А500 Ф16 мм1.6153000,00

Арматура А3 А500 Ф14 мм0.9253000,00

Арматура А3 А500 Ф12 мм1.2555000,00

Арматура А3 А500 Ф10 мм0.6456000,00

Арматура А500С

Арматура 12 бухта0.88855000,00

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А500С 12 мм А3

Арматура 12 бухта0.88855000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А500С 6мм

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура Ф8 А500С

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Описание и характеристики арматуры Ф10 А500С

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура В500С

Арматура А3 В500С Ф12 мм0.88856000,00

Арматура А3 В500С Ф6 мм в бухтах0.22270000,00

Арматура А3 В500С Ф10 мм0.61758000,00

Арматура А3 В500С Ф8 мм в бухтах0.39555000,00

Рифленая арматура А3 10 мм

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 А500 Ф10 мм0.6456000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Рифленая арматура А3 12 мм

Арматура 12 бухта0.88855000,00

Арматура А3 А500 Ф12 мм1.2555000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Рифленая арматура А3 6 мм

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Стальная арматура 12 мм

Арматура А3 В500С Ф12 мм0.88856000,00

Арматура А3 А500 Ф12 мм1.2555000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Арматура А1 А240 Ф12 мм мерная 11.7 метров0.88833000,00

Сделать заказ

Схема армирования ленточного основания

Чтобы грамотно рассчитать арматуру в железобетонной ленте, рассмотрим типовые случаи ее расположения в таких фундаментах.

При возведении частных малоэтажных объектов используются два основных варианта армирования:

  • шестью усиливающими элементами;
  • четырьмя изделиями.

Какой вариант лучше?

В соответствии с требованиями СП 52-101-2003, при расположении соседних прутов максимальное расстояние должно быть не больше 40 см (400 мм). При расчете арматуры отступают 5–7 см (50–70 мм) между крайним стержнем и боковой стенкой основания. Если ширина опорной конструкции здания больше 50 см, используют схему армирования шестью прутками.

Было выбрано оптимальное расположение стержней, теперь необходимо определить их другие параметры.

Расчет диаметра арматуры

Определение параметров вертикальных и поперечных усиливающих элементов. Для правильного выбора воспользуйтесь информацией из таблицы:

Условия использования арматуры Минимальный диаметр арматуры, мм
Вертикальная арматура при высоте поперечного сечения ленты менее 80 см 6 мм
Вертикальная арматура при высоте ленты более 80 см 8 мм
Поперечная арматура 6 мм

При строительстве малоэтажных коттеджей (до 2 этажей) для вертикальной и поперечной обвязки используются прутки диаметром 8 мм. Этого показателя достаточно для закладки прочного ленточного фундамента.

Расчет диаметра арматуры продольного типа

В соответствии с требованиями СНиП 52-01-2003, минимальная площадь сечения арматурных прутов в ленточном основании должна быть 0,1 % от общего поперечного размера железобетонной ленты.

Площадь сечения железобетонной конструкции определяем путем умножения ширины на высоту. Например, при параметрах ленты 40 х 100 см, при расчете получается 4000 см². Площадь арматуры составляет 0,1 % от сечения фундамента, поэтому 4000 см²/1000 = 4 см².

Чтобы не рассчитывать показатель для каждого стержня, пользуйтесь таблицей. В ней есть незначительные неточности из-за округления чисел, не влияющие на окончательный результат.

Важно! Если длина ленты составляет менее 3 м, принимают минимальный диаметр арматуры 10 мм. При размере конструкции больше 3 метров выбирают стержни с показателем 12 мм.

Рассчитывая арматуру, мы получили минимальную площадь поперечного сечения прутков в сечении ленточного основания — она равна 4 см² (с учетом числа продольных элементов).

Если ширина фундамента составляет 40 см, достаточно применять схему армирования с четырьмя стержнями. Вернемся к таблице, чтобы узнать значение для 4 стержней и подбираем показатель.

В ходе расчета определяем, что для основания шириной 40 см и высотой 1 м, самой подходящей будет арматура диаметром 12 мм, так как площадь сечения 4 элементов составляет 4,52 см².

Для конструкции с шестью стержнями все действия производятся аналогично. Нужно только воспользоваться значениями из соответствующего столбца.

Продольные усиливающие элементы для ленточного основания должна иметь одинаковый диаметр. Если по каким-то причинам стержни получились с разными диаметрами, то прутки с большим показателем используют в нижнем ряду.

Как рассчитать количество арматуры для основания?

Часто бывает, что арматурные стержни доставили на объект, а при вязке каркаса обнаруживается недостаток материала. Приходится докупать необходимый объем, оплачивать доставку, нести дополнительные расходы, которые ведут к удорожанию возведения частного дома.

Например, у нас есть следующий план:

Давайте попробуем рассчитать арматуру для конструкции такого типа.

Определение числа продольных прутков

Проведем грубые вычисления. Для этого находим длину всех стен фундамента:

6 х 3 + 12 х 2 = 42 м,

полученный параметр умножаем на 4:

4 х 42 = 168 м.

Мы получили общую длину продольных прутков. Чтобы правильно рассчитать арматуру, нужно учесть еще несколько факторов. Подсчитывая объем материала, учитывайте запуск арматурных изделий при стыковке, ведь длина одного элемента может составлять 4–6 метров, и для заполнения расстояния 12 м необходимо связывать несколько отрезков. Стыковка прутков производится внахлест с запасом минимум 30 диаметров. Чтобы рассчитать арматуру (при ее диаметре 12 мм) определяем запуск 12 х 30 = 360 мм (36 см).

Чтобы учесть запас, используются два способа:

  • составляется план размещения прутков и осуществляется расчет числа стыков;
  • прибавляем 10–15 % к полученному значению.

Определение количества вертикальной и поперечной арматуры

По плану на один «прямоугольник» необходимо:

2 х 0,35 + 2 х 0,90 = 2,5 м

Рассчитывая арматуру, принимаем значения с запасом (а не 0,3 и 0,8), чтобы обвязка была немного больше получившегося прямоугольника.

Важно! При сборке каркаса в подготовленной траншее вертикальные арматурные пруты устанавливают на дно, иногда их углубляют в грунт для повышения устойчивости конструкции. Тогда при расчете арматуры нужно принимать длину не 0,9 м, а увеличивать ее на 10–20 см.

Находим такие части во всей конструкции, с учетом расположения на местах стыковки стен и углах по 2 «прямоугольника».

Чтобы рассчитать арматуру, рисуем схему фундамента и определяем число получившихся фрагментов.

Берем длинную сторону (12 метров), на ней находятся 6 «прямоугольников» и два отрезка стены по 5,4 м, где находится по 10 перемычек. В результате получается:

6 + 10 + 10 = 26 шт.

Рассчитать число перемычек на участке 6 метров можно аналогичным способом, получаем 10 штук. Умножаем значение на количество стен:

2 х 26 + 10 х 3 = 82

Ранее было подсчитано, что на каждую часть получается по 2,5 метра арматуры, поэтому:

82 х 2,5 = 205 м

Итоговое количество материала

Рассчитывая арматуру, определили, что продольные усиливающие элементы имеют диаметр 12 мм, а вертикальные и поперечные — 8 мм. Прутков первого типа необходимо 184,4 м, а второго — 205 м.

Часто при вязке каркаса остаются небольшие обрезки, которые нельзя использовать. Поэтому, рассчитав арматуру, необходимо приобрести материал с запасом. Нужно купить около 190–200 метров прутков 12 мм, а также 210–220 м изделий с диаметром 8 мм. Благодаря таким несложным подсчетам легко определить необходимый объем арматурных стержней.

Расчет ленточного фундамента

Справка

Введите необходимые размеры в миллиметрах

X — ширина фундамента
Y — длина основания
A — толщина фундамента
H — Высота фундамента
C — расстояние до оси перемычки


A — толщина фундамента
H — высота фундамента
S — шаг между соединениями
G — горизонтальные ряды
V — вертикальные стержни
Z — шатуны



Необходимое количество цемента для изготовления одного кубометра бетона в каждом конкретном случае разное.

Зависит от марки цемента, желаемой марки получаемого бетона, размера и пропорций наполнителей.
Указывается в пакетах.

Не нужно повторять, насколько важна конструкция дома для расчета количества стройматериалов для фундамента дома.

Потому что стоимость монолитного фундамента составляет треть стоимости дома.

Данная услуга облегчит планирование и расчет подвала дома.Помогите рассчитать количество бетона, арматуры, опалубки для устройства ленточного фундамента.


Что можно узнать:

Площадь основания фундамента (например, чтобы определить объем гидроизоляции для покрытия готового подвала)

Количество бетона для фундамента и плит перекрытия или заливка цокольного этажа (тут будет весело, когда из-за элементарных ошибок в умножении бетона не хватает)

Армирование — количество створок, автоматический расчет веса исходя из его длины и диаметра.

Площадь опалубки и количество пиломатериалов в кубометрах и в штуках

Площадь всех поверхностей (для расчета гидроизоляции цоколя) и боковых поверхностей и основания

Добавлен расчет стоимости строительных материалов фундамента.

Эта же программа нарисует план фундамента.

Надеюсь, сервис будет полезен тем, кто строит фундамент своими руками, и профессионалам-строителям.

Состав бетона


Пропорция и количество цемента, песка и гравия для изготовления бетона даны по умолчанию, как рекомендовано производителями цемента.

Так же в цене цемент, песок, щебень.

Однако товарный бетон сильно зависит от размера фракции щебня или гравия, марки цемента, его свежести и условий хранения.Известно, что при длительном хранении цемент теряет свои свойства и качество цемента с повышенной влажностью ухудшается быстрее.


Обращаем ваше внимание, что стоимость песка и щебня указана в программе за 1 тонну. Продавцы также объявили цену за кубометр песка, щебня или гравия.

Удельный вес песка зависит от его происхождения. Например, речной песок тяжелее карьерного.

1 кубометр песка весит 1200-1700 кг, в среднем — 1500 кг.

С гравием и щебнем сложно. По разным данным, вес 1 кубометра от 1200 до 2500 кг в зависимости от габаритов. Тяжелее — более чем нормально.

Итак, посчитайте стоимость тонны песка и гравия, которую вам, возможно, придется уточнить или у продавцов.

Однако расчет все же помогает узнать ориентировочные затраты на стройматериалы для заполнения подвала.
Не забудьте еще проволоку для вязания арматуры, гвозди или саморезы для опалубки, доставку стройматериалов, стоимость земляных и строительных работ.

Пример конструкции опоры для ленты

— PDFCOFFEE.COM

Пример проектирования 3: Армированный ленточный фундамент. | Инженер-строитель
Страница 1 из 6
Дом инженера-строителя
Сообщения RSS
SE

Просмотры 208
Загрузки 8
Размер файла 759KB

Отчет DMCA / Copyright

СКАЧАТЬ ФАЙЛ

Рекомендовать истории


Предварительный просмотр цитирования


Пример проектирования 3: Армированный ленточный фундамент.| Инженер-строитель

Страница 1 из 6

Инженер-строитель Главная

Сообщений RSS

Поиск

Комментарии RSS

Пример проектирования 3: усиленный ленточный фундамент. Twittear

2

0

Echo The Concrete Experts Универсальный предварительно напряженный бетон Позвоните нашему эксперту

Me gusta

Всего просмотров страниц

564,755

7

Несущая стена одноэтажного здания опирается на широкий армированный ленточный фундамент.Исследование участка выявило рыхлые и средние зернистые почвы от уровня земли

Feed

до некоторой значительной глубины. Почва изменчива с

Введите свой адрес электронной почты:

безопасная несущая способность

в диапазоне 75–125 кН / м2. Также были выявлены некоторые слабые места,

, где нельзя было полагаться на несущую способность

Subscribe

.

Поставлено FeedBurner

Здание могло поддерживаться на грунтовых балках и сваях, снятых до прочного основания, но в этом случае было выбрано решение спроектировать широкий усиленный ленточный фундамент, способный перекрывать мягкую зону номинальной ширины.Чтобы свести к минимуму перепад оседания и учесть мягкие участки, допустимое давление в опоре будет ограничено до na = 50 кН / м2 на всем протяжении. Мягкие участки, возникшие во время строительства, будут удалены и заменены тощей бетонной смесью; Кроме того, основание будет спроектировано таким образом, чтобы охватить предполагаемые впадины шириной 2,5 м. Это значение было получено из руководящих указаний по местным впадинам, которые были даны позже на фундаментах плотов. Плита пола спроектирована так, чтобы ее можно было подвесить, хотя она будет залита с использованием земли в качестве несъемной опалубки.Нагрузки

Если фундамент и надстройка проектируются в соответствии с принципами ограниченного состояния, нагрузки должны храниться как отдельные нефакторные характеристические мертвые и заданные значения (как указано выше), как для расчета давления на опору фундамента, так и для проверок работоспособности. Затем нагрузки должны быть учтены при расчете отдельных элементов в предельном состоянии, как обычно. Для фундаментов, подверженных только статическим и прилагаемым нагрузкам, факторные нагрузки для расчета арматуры лучше всего выполнять путем выбора среднего коэффициента частичной нагрузки, γP, для покрытия как статических, так и накладываемых нагрузок надстройки из рис.11.22 (это копия Рис. 11.20 Армированная

Поиск

бетонных полос по расчетным условиям.). Поиск

Следуйте @Engineershrb

http://www.abuildersengineer.com/2013/01/design-example-reinforced-strip.html

5/7/2015

Пример проекта 3: Усиленный ленточный фундамент. | Builder’s Engineer

Страница 2 из 6

Найдите нас на Facebook

The Builder Нравится

145 людям нравится The Builder.

Социальный плагин Facebook

Рис.11.22 Комбинированный частичный коэффициент безопасности для статических + приложенных нагрузок.

Этикетки ФУНДАМЕНТЫ

(134) СВАИ (61) ГИДРОИЗОЛЯЦИЯ (58) КОНСТРУКЦИИ (57) ПОЧВЫ (47) ФУНДАМЕНТЫ (30) ИССЛЕДОВАНИЕ ПЛОЩАДКИ (30) ЗДАНИЕ (29) ФУНДАМЕНТЫ (18) Полоса На рис. комбинированный частичный коэффициент запаса прочности по нагрузкам надстройки γP = 1,46.

ФУНДАМЕНТЫ

(18)

БЕТОН

(15)

ПЛОТ

ФУНДАМЕНТЫ (14) БУРЕННЫЕ ФУНДАМЕНТЫ (13) Вес основания и обратной засыпки, f = средняя плотность × глубина

НАКОНЕЧНИК (10) ЭККАВАЦИИ (9) ПОВЕРХНОСТЬ

= 20 × 0.9 = 18,0 кН / м2. Это все статическая нагрузка, следовательно, комбинированный коэффициент частичной нагрузки для нагрузок на фундамент γF = 1,4. Определение ширины фундамента. Новые уровни земли аналогичны существующим, поэтому (вес) нового фундамента не требует дополнительных сборов и может быть проигнорирован. Минимальная ширина фундамента указана в

Популярные столбы. КОМПОНЕНТЫ ЗДАНИЯ: основание и надстройка. Здание состоит из двух основных частей: (i) основание или фундамент и (ii) надстройка. Подконструкция или фундамент — нижняя п… Пример проектирования 3: Армированный ленточный фундамент. Несущая стена одноэтажного дома должна опираться на широкий армированный ленточный фундамент. Исследование места показало … Пример: конструкция свайной заглушки.

Принять усиленный ленточный фундамент шириной 1,2 м и глубиной 350 мм из бетона марки 35

Для передачи нагрузки требуется свайный колпак

(см. Рис. 11.23).

от колонны 400 мм × 400 мм до четырех свай диаметром 600 мм, как показано на рис. 14.30.Шапки … МЕТОДЫ РАССТОЯНИЯ — ИССЛЕДОВАНИЕ ОБЪЕКТА. Обычно используются следующие различные методы растачивания: (i) Шнековое растачивание. (ii) Растачивание шнеков и гильз. (iii) Мыть скучно. (iv) Ударные … ОСНОВЫ ДЛЯ ЧЕРНЫХ ХЛОПКОВЫХ ПОЧВ. Черно-хлопковые и другие экспансивные почвы имеют типичные характеристики усадки и набухания из-за движения влаги через них. Du … ОБРАБОТКА ТРАНШЕЙ — ПОЧВЫ. При большой глубине траншеи или при рыхлом грунте стороны траншеи могут обваливаться.Проблему можно решить, приняв … Пример конструкции 5: Основание колодки — осевая нагрузка плюс изгибающий момент (небольшой эксцентриситет). Основание подушки колонны подвергается осевой нагрузке в 200 кН (статическая) плюс 300 кН

http://www.abuildersengineer.com/2013/01/design-example-reinformed-strip.html

5/7 / 2015

Пример проектирования 3: Армированный ленточный фундамент. | Инженер-строитель

Страница 3 из 6

(наложенный), и изгибающий момент 40 кНм. Подходит для … БЕЗ ЦЕНТРИЧНО НАГРУЖЕННОЙ ФУТБОЛКИ.Опоры имеют такую ​​конструкцию и пропорции, что C.G. наложенной нагрузки совпадает с C.G. площади основания, так что … ЖИВЫЕ НАГРУЗКИ В ЗДАНИИ: на перекрытиях, на крышах. Живые нагрузки, также называемые сверхналоженными нагрузками, состоящими из движущихся или переменных нагрузок, создаваемых людьми или жильцами, их мебелью, временными … Фундаменты ростверка — Описание. Фундамент ростверка состоит из ряда слоев балок, обычно уложенных под прямым углом друг к другу и используемых для распределения большой точечной нагрузки… Работает на Blogger.

Архив блога ► 2015 (6) ► 2014 (29) Рис. 11.23 Пример расчета усиленного ленточного фундамента — нагрузки и опорные давления.

▼ 2013 (158) ► Декабрь (4)

Реактивное расчетное давление вверх для расчета боковой арматуры ► Ноябрь (4) ► Октябрь (4) ► Сентябрь (5) ► Август (4) ► Июль (5) ► Июнь ( 5) ► май (8) ► апрель (9) ► март (17) ► февраль (31) ▼ январь (62) Пример конструкции: прямоугольный сбалансированный фундамент. Уравновешенные фундаменты (прямоугольные, консольные, тр… Боковой изгиб и сдвиг = 1000 мм.

Пример конструкции: основание рамы связанного портала. Связанные основы — Дизайн. Связанные и сбалансированные основы. Связанные и сбалансированные основы. Конструкция — Подъемный плот Конструкция — Плавучесть. Конструкция — Плот балочно-полосовой. Дизайн — сотовый плот с крышкой. Дизайн — сотовый плот. Пример конструкции: сэндвич-плот скольжения. Дизайн — Slip Sandwich Raft. ОТКАЗЫ ТРУБОПРОВОДОВ ПРИ ПОРЕЗАХ ПЕСКА. СОЕДИНИТЕЛЬНЫЕ ПОРЕЗЫ.

http://www.abuildersengineer.com/2013/01/design-example-reinformed-strip.html

07.05.2015

Пример проектирования 3: усиленный ленточный фундамент. | Инженер-строитель

Страница 4 из 6

КРЕПЛЕНИЕ БЕЗОПАСНЫХ ИЗДЕЛИЙ. Crust Raft — Дизайн. Пример расчета: номинальный размер корки. Конструкция — Номинальная основа для корки — Полугибкие полужесткие плоты: расчетный пролет для … Расчет давления на подшипник — Полугибкие плоты. Проектирование макетов полужестких плотов Принципы проектирования — полужесткие плоты. Пример конструкции: плавающая плита. Калибровка плиты. Проектные решения — плавающие плиты.Плавающие плиты (грунтовые плиты). Размеры конструкции: балки сплошные. Проектные решения: балки сплошные. Прямоугольные и тавровые балки сплошные полосы. Пример проектирования 5: Основание подушки — осевая нагрузка плюс изгиб … Фундаменты подушки с осевыми нагрузками и изгибом … Пример конструкции: усиленное основание подушки. Пример проектирования 3: Армированный ленточный фундамент. Проектные решения — Определение размеров проекта — Укрепление … Железобетонные опоры и полосы. Полосы неармированные бетонные. Таким образом, vu

Пример конструкции: Основание из массивного бетонного основания.

Нагрузка для перекрытия углублений

Пример конструкции: Фундамент полосы заполнения траншеи.

В местах локального углубления фундамент действует как подвесная плита. Предельная нагрузка, вызывающая изгиб и сдвиг в фундаменте, — это общая нагрузка, т.е. нагрузка надстройки + нагрузка на фундамент, которая дается согласно

Решения по проектированию фундамента с заполнением траншеи. Полоски для заполнения траншеи. Неармированные бетонные площадки и полосы. Основы: Общая методика проектирования. Конструктивное проектирование членов фонда.Проектирование фундамента: расчет установленной опоры … Конструкция фундамента: определение опоры

Продольный изгиб и сдвиг из-за впадин

Давления ….

Предельный момент из-за перекрытия фундамента — предполагается, что он просто поддерживается — на локальном участке 2,5 м депрессия

ПОРЯДОК РАСЧЕТА ПРОЕКТИРОВАНИЯ ФУНДАМЕНТА. Эксплуатация жесткости фундамента и в результате … Выбрать фонд: подвергнуть сомнению информацию и … Общий подход к выбору фундамента.Сбор / оценка информации — Structural Co …

Ширина для расчета арматуры b = B = 1200 мм.

Выбор подходящего фонда. Фундаменты ростверков — Описание. Поддерживающие стены. Фундаменты из опор и балок. Плавающие грунтовые плиты перекрытия.

http://www.abuildersengineer.com/2013/01/design-example-reinformed-strip.html

5/7/2015

Пример проектирования 3: усиленный ленточный фундамент. | Инженер-строитель

Страница 5 из 6

Подвесные плиты первого этажа.Свайные заглушки и фундаментные балки. Анкерные блоки — Описание. Анкерные сваи — Описание. Стальные сваи — Описание. Деревянные сваи — Описание.

► 2012 (304)

Таким образом, ву

Рис. 11.24 Пример расчета армированного ленточного фундамента — арматура. Категории: ЛЕНТОЧНЫЕ ФУНДАМЕНТЫ

Сообщение по теме: ЛЕНТОЧНЫЕ ФУНДАМЕНТЫ Определение размеров конструкции: Непрерывные балочные полосы. Проектные решения: балки сплошные. Прямоугольные и тавровые балки сплошные полосы. Проектные решения — Градуировка проекта — Железобетонные площадки и полосы.. Прокладки и полосы железобетонные. Полосы неармированные бетонные. Пример конструкции: опорная плита с засыпкой траншеи.

http://www.abuildersengineer.com/2013/01/design-example-reinformed-strip.html

5/7/2015

Пример проектирования 3: усиленный ленточный фундамент. | Инженер-строитель

Страница 6 из 6

Решения по проектированию фундамента с засыпкой траншеи. Полоски для заполнения траншеи.

1 комментарий: Сатья сказал … действительно полезно … четко и по делу 2 апреля 2015 г., 22:39

Добавить комментарий

Введите свой комментарий…

Комментарий как:

Опубликовать

Следующее сообщение »

Выбрать профиль …

  

Предварительный просмотр

На главную

« Предыдущее

Инженер строителя | По дизайну Tricks-Collection | Неограниченное количество развлечений, таких как телешоу и коллекции фильмов

http://www.abuildersengineer.com/2013/01/design-example-reinforced-strip.html

5/7/2015

Анализ

и проектирование опор железобетонных стен на основе ACI 318-19

🕑 Время чтения: 1 минута

318M-19: Требования Строительных норм к бетону и комментарии Конструкция фундамента стен, также называемого ленточным фундаментом, основана на принципах действия балок с небольшими изменениями.

Стеновые опоры должны быть спроектированы так, чтобы обеспечивать надежную опору структурных или неструктурных стен, а также передавать и распределять нагрузки на грунт таким образом, чтобы не превышалась несущая способность грунта. В дополнение к предотвращению чрезмерной осадки и вращения и обеспечению достаточной защиты от скольжения и опрокидывания.

Стеновой фундамент проходит по направлению стены. Размер фундамента и толщина фундаментной стены указываются в зависимости от типа грунта на площадке и условий нагрузки.Площадь и распределение армирования выполняются в соответствии с требованиями ACI 319-19 (Строительные нормы и правила для конструкционного бетона.

Анализ фундамента в стене

Простые принципы действия балок применимы к настенным фундаментам с небольшими изменениями. На рис. 1 показано настенное основание с действующими на него силами. Если бы изгибающие моменты были рассчитаны на основе этих сил, максимальный момент оказался бы в середине ширины.

На самом деле, очень большая жесткость стены изменяет эту ситуацию, достаточно вычислить момент на поверхности участка 1-1 стены.Трещины от растяжения образовывались под лицевой стороной стены, а не посередине.

Рис.1: Критические сечения момента и поперечной силы в опоре стены

Для фундаментов, поддерживающих каменные стены, максимальный момент вычисляется на полпути между серединой и лицевой стороной стены, поскольку каменная кладка менее жесткая, чем бетон. Максимальный изгибающий момент (Mu) в опорах под бетонными стенами рассчитывается по уравнению 1.

Где:

qu: предельная несущая способность грунта под фундаментом стены, равная предельной распределенной нагрузке, деленной на требуемую площадь основания.

b: ширина подошвы стены.

a: ширина стены, поддерживаемой опорой стены.

Вертикальную поперечную силу (Vu) можно рассчитать на участке 2-2, расположенном на расстоянии d от поверхности стены. Уравнение 2 можно использовать для вычисления поперечной силы. Расчет длины развертки основан на участке максимального момента (раздел 1-1).

Где:

d: расстояние между лицевой стороной стены и местом приложения вертикальной поперечной силы, равное эффективной глубине секции основания стены.

Размер опоры

Размеры опор определены для необработанных нагрузок и эффективного давления грунта (qe), которое рассчитывается на основе допустимого опорного давления (qa). Причина использования нефакторных нагрузок заключается в том, что при проектировании фундаментов безопасность обеспечивается общими факторами безопасности.

Допустимое давление в опоре устанавливается на основании принципа механики грунта, на основании испытаний под нагрузкой и других экспериментальных определений. Допустимое давление в подшипнике при эксплуатационных нагрузках рассчитывается с коэффициентом запаса прочности 2.5–3. Этот запас прочности предотвратит превышение несущей способности грунта и удержит его осадку в допустимых пределах.

Площадь опоры (Areq) определяется как сумма эксплуатационных нагрузок, деленная на допустимое давление в подшипнике с использованием уравнения 3.

Где

D: статическая нагрузка на опору.

л: живая нагрузка на опору.

qe: эффективное опорное давление, равное допустимой несущей способности (вес засыпки + вес бетона)

Если присутствуют другие нагрузки, такие как ветровые нагрузки и сейсмические нагрузки, тогда также следует использовать уравнение 4 для вычисления площади опоры.Большее значение этих двух уравнений считается площадью опоры.

Где:

w: равно 1,3, если ветровая нагрузка рассчитывается на основе ASCE, в противном случае она была бы равна 1.

Вт: ветровая нагрузка

E: сейсмические силы

Ширина фундамента стены рассчитывается исходя из требуемой площади. Длина опоры принимается равной 1м.

Глубина копания

В соответствии с ACI 318-19 раздел 13.3.1.2, общая глубина фундамента должна выбираться так, чтобы эффективная глубина усиления дна составляла не менее 150 мм.

В наклонных, ступенчатых или конических фундаментах глубина и расположение ступеней или угол наклона должны быть такими, чтобы проектные требования выполнялись на каждом участке.

Расчет площадей армирования

Основная арматура

Площадь основного армирования вычисляется с использованием следующего выражения.

Где:

As: зона основного армирования

Mu: предельный момент взят из уравнения 1.

Phi: коэффициент уменьшения прочности, равный 0.9.

фу: предел текучести стали.

d: эффективная глубина, взять бетонное покрытие 75 мм.

a: глубина прямоугольного напряженного блока.

Глубина прямоугольного блока напряжений принимается в уравнении 5. Затем методом проб и ошибок вычисляется площадь стали. Рекомендуется три испытания, и рекомендуется использовать (глубина стопы 0,2x) в качестве первого испытания для a.

Минимальное армирование

Минимальное армирование рассчитывается с использованием следующих выражений:

Для стали менее 420:

Для стали 420:

Где:

b: ширина опоры

h: глубина опоры

Распределенная область армирования равна значению уравнения 7.Итак, это значение распределенной арматуры для настенного основания.

Расстояние между стержнями / размещение

Площадь армирования, вычисленная по уравнению 5, делится на площадь одного стержня (Ab), чтобы оценить количество стержней (n). Затем количество стержней, использованных для вычисления расстояния для основной арматуры, с использованием следующего выражения

Расстояние между основной балкой:
Распределенное расстояние между стержнями:

Количество распределенных стержней равно площади стали из уравнения 7, деленной на площадь одного стержня, используемого для распределенной арматуры.Затем расстояние вычисляется путем деления ширины фундамента на количество распределенных стержней.

Максимальный интервал:

Максимальный интервал — наименьший из 3h или 450 мм. Таким образом, расстояние между стальными стержнями не должно быть больше этого значения.

Прочность бетона на сдвиг

Расчетная прочность бетона на сдвиг должна быть равна или больше предельной силы сдвига, рассчитанной по уравнению 2, в противном случае следует увеличить глубину основания. Прочность бетона на сдвиг рассчитывается следующим образом:

Где:

Vc: прочность бетона на сдвиг

Phi: коэффициент уменьшения прочности, равный 0.75.

Ламда: равно 1 для бетона нормальной прочности.

fc ‘: прочность бетона на сжатие, которая должна быть не менее 17 МПа.

b: ширина подошвы.

d: эффективная глубина опоры.

Рис. 2: Деталь подкрепления

Краткое изложение процедуры проектирования

  1. Оцените толщину опоры (h), которая должна соответствовать требованиям к сдвигу и обеспечивать минимальную эффективную глубину 150 мм.
  2. Рассчитайте вес насыпи и вес основания.
  3. Рассчитайте эффективную несущую способность, qe.
  4. Оцените требуемую площадь, Areq
  5. Рассчитайте расчетное давление (qu) на основании (Areq) из-за факторизованных нагрузок.
  6. Вычислите силу сдвига и расчетную прочность бетона на сдвиг, чтобы проверить требования к сдвигу.
  7. Рассчитайте максимальный момент, а затем площадь армирования.
  8. Вычислить минимальное армирование и максимальное расстояние.
  9. Оцените расстояние между основными и распределенными стержнями.
  10. Нарисуйте эскизный проект.

Подробнее:

Каковы требования к толщине ленточного фундамента?

Что нужно знать о ленточном железобетонном фундаменте :: EPLAN.HOUSE

Монолитный ленточный фундамент — самый распространенный тип фундамента в жилищном строительстве. Разобьем его на кости.

В результате расчета получаем ширину подошвы фундамента, то есть ширину основания фундамента.Это основная ценность, обеспечивающая надежность нашего фонда. Ширина подошвы может быть разной. Предположим, что она будет максимальной под несущей средней стеной (поскольку плита перекрытия опирается на обе стороны, нагрузка наибольшая), а под торцевыми самонесущими стенами она будет минимальной (плита перекрытия не будет упираться на них вообще).

В этой статье я не буду рассматривать расчет фундамента. Допустим, мы провели анализ и получили данные размеров и армирования.Но мы рассмотрим результаты расчета, чтобы понять, что получено и что нужно учесть при проектировании фундамента.

Ширина фундамента — это основная и самая важная величина. Если вы думаете о земле как о водной поверхности и о фундаменте как о путях жизни, легко представить, как все зависит от ширины этих «поплавков». Чем больше площадь поплавка, тем меньше у него шансов затонуть. Стены по-разному нагружены: одни стены поддерживают крышу, другие — пол, а третьи — почти ничего, но сама стена имеет вес.

Ширина фундамента — это основная и самая важная величина.

А если у них под ними такая же и даже узкая опора «поплавков», то дом утонет, предварительно разрушившись, потому что более тяжелые стены начнут «уходить под воду» раньше более легких. Это создаст перекосы, и стены потрескаются — зданию не избежать обрушения. Если все не так плохо, и наш дом не уйдет под воду из-за более широкой опоры, а сделан опять же не расчетом, а на глаз, то есть риск более медленного разрушения.

Часто девелоперы допускают такую ​​ошибку: фундамент шире по периметру дома, а средняя стена (я не понимаю их логику) ставится на более узкую основу. Однако максимальное количество плит ложится на центральную стену дома. В результате площади фундамента «плывет» под средней стеной не хватает, и он начинает постепенно «уходить под воду». Одновременно внешние стены с большей уверенностью держатся за свои более широкие полосы, но самый слабый элемент цепи начинает тянуть их вниз.В итоге — снова трещины, потому что нагрузка даже от одной «тонущей» стены не мала — это просто невыносимая многотонная нагрузка для соседних стен и фундаментов.

Другой пример.

По результатам расчетов опоры бывают очень разные (по ширине) из-за очень разных нагрузок. И трудолюбивый дизайнер решил сделать фундамент одинаковой ширины для всего дома. Что будет в этом случае? Скажу одно: трещины появятся гораздо позже, чем в здании со слабым фундаментом, но вероятность их появления все же есть.А причина здесь в других осадках.

Независимо от того, какой у вас фундамент, почва под ним со временем будет проседать. Это нормально. Я видел старые, вековые дома, которые провалились в землю до подоконников. В общем, факт просадки есть у всех фундаментов. И это зависит от двух вещей: нагрузки и ширины опоры. Если нагрузка одинаковая, то опора должна быть одинаковой ширины. Если давление под стенами другое, ширина опоры должна быть меньше или больше.Что произойдет, если ширина основания будет такой же при других нагрузках? В месте с большей нагрузкой фундамент будет больше прогибаться. Напротив, в зоне меньшей нагрузки он будет меньше провисать. Если осадка фундамента небольшая, конструкции выдержат. Но с годами накапливаются осадки, и в какой-то момент в самых слабых местах (например, возле окон) это может привести к диагональным трещинам, которые отрывают провисшую часть дома от не провисающей части. Они могут, правда, и не возникнуть, но зачем нам эта лотерея?

Таким образом, используя простую аналогию, мы представили, как фундамент работает на земле.

Вывод: делаем ширину подошвы по расчету и спим спокойно.

Толщина подошвы.

Он меньше влияет на судьбу дома, но его стоимость также важна.

Если фундамент будет слишком тонким, фундамент рухнет. Если он будет слишком толстым — получим от застройщика перерасход материалов и денег.
В среднем толщина подошвы составляет 250-300 мм. Это наиболее распространенное значение для жилых домов.От куда это?

По результатам расчета ширины основания получаем значение ширины основания и реакцию грунта под основанием. Что это? Стена давит на нижнюю сторону с определенной силой N. В то же время земля создает противодавление R, которое удерживает наш фундамент «на плаву». Но само основание зажато между двумя силами N и R, и его основная задача — не разрушиться, как показано на рисунке.

Трещина в основании

Для этого при расчете проектировщик выбирает толщину основания и его арматуру.В противном случае (как видно из рисунка) мы получим гораздо более узкую основу и два бесполезных, закопанных в землю фрагмента фундамента. И как мы уже проанализировали, более узкий подвал быстрее «уйдет на дно», то есть результат: снова трещины. Поэтому тем, кто хочет сэкономить и сделать цоколь тоньше, необходимо произвести расчет (по двум предельным состояниям и обязательно — по раскрытию трещины) и выбрать толщину цоколя и арматуры.

3. Армирование фундамента. На самом деле это неприхотливо, но следует учесть несколько моментов.

Во-первых, армирование неразрывно связано с толщиной основания — чем больше толщина, тем меньше арматуры и наоборот.

В основном армирование камбаловидной мышцы представляет собой сетку, уложенную вдоль дна. Иногда стержни в этой сетке имеют одинаковый диаметр. Иногда стержни в этой сетке бывают одного диаметра (причем небольшого), иногда разного.И есть случаи, когда больший диаметр укладывается в продольном направлении (вдоль стены), а есть случаи, когда он укладывается в поперечном направлении. А теперь разберемся.

— Если грунты хорошие, фундамент узкий, нагрузки небольшие, то фундамент фундамента укрепляют конструкционной арматурой. Обычно это №3 или №4 с шагом 200-300 мм в двух направлениях.

— Если полоса широкая, арматура в ней устанавливается по расчету и может быть значительных диаметров.В этом случае рабочая арматура в полосе поперечная, большего диаметра. Это армирование поглощает нагрузку противодавления почвы, о которой мы говорили выше. Если полоса достаточно широкая и нагрузки на фундамент достаточно велики, диаметр арматуры может быть № 5 или № 6 — расчет покажет.

— При просадочных грунтах; неравномерные, существенно меняющиеся нагрузки по полосе; неравномерно сложенные грунты под зданием (например, локальные включения другого грунта или насыпных грунтов) или другие неблагоприятные факторы, которые могут вызвать неравномерную осадку здания, в этом случае рабочая арматура в полосе продольная.В случае деформации грунта под днищем эта арматура защитит фундамент от трещин и разрушения. Рассчитать диаметр и шаг такой арматуры очень сложно, потому что предсказать процессы в грунте в цифрах практически невозможно. Поэтому конструктор закладывает арматуру, исходя из опыта (в пределах разумного, ведь чем больше запас, тем надежнее, но дороже). Я бы порекомендовал в таких неблагоприятных случаях использовать арматуру диаметром не менее №4 с шагом 6-8 дюймов.

Следует отметить, что установка продольной рабочей арматуры не отменяет поперечную — расчетом. Наоборот.

И еще один нюанс: рабочая арматура ставится ближе к краю секции. Его очень просто запомнить, потому что правило легко объясняется. Основное значение при расчете арматуры — это рабочая высота сечения элемента. Чем он больше, тем лучше работает конструкция.

На рисунке показаны два варианта, когда значение hc отличается на диаметр арматуры.Казалось бы, немного — ну а что поделаешь эти 1/2 «? Но в некоторых ситуациях их не хватает, и приходится устанавливать арматуру большего диаметра или увеличивать толщину конструкции. К тому же любой опытный человек, увидевший халатность дизайнера в этом вопросе, может сделать вывод, что он не разбирается в деталях расчета, то есть не имеет достаточного опыта в этом вопросе.

Итак, мы рассмотрели все составляющие ленточного фундамента. Надеюсь, что эта статья поможет вам не ошибиться при выборе между экономичностью и надежностью.Хорошей постройки!


Какой фундамент для моего дома лучше всего?

Стоит ли проводить геологические исследования перед строительством дома или нет?

Экономическая стена на грунтовом фундаменте

(PDF) Расчет ленточного фундамента на твердом упругом основании с учетом карстового обрушения

3

1234567890

ITE8 IOP Publishing

IOP Conf. Серия: Материаловедение и инженерия 221 (2017) 012023 DOI: 10.1088 / 1757-899X / 221/1/012023

Однако реализация этих мероприятий не всегда исключает возможность развития

карстовых деформаций, а в некоторых случаях становится технически невозможным или нецелесообразным их использование.

В этом случае обеспечить строительные мероприятия, назначенные на основании расчета фундаментов

и

подземных сооружений с учетом возможного развития карстовых деформаций

[14, 15].

Строительство фундаментов зданий, возведенных на карстовых территориях, имеет свои

характеристики. Расчеты фундаментов выполнены на основе прогноза размеров

карстовых проявлений

и вероятности их образования в основании проектируемого здания.

Расчетные места повреждений различаются и назначаются исходя из наиболее неблагоприятных условий эксплуатации

строительства фундамента.Основы расчета задач на карстовых грунтах с учетом

с учетом совместной работы с надземными сооружениями решаются на компьютере.

Известные аварийные здания и строительные объекты в карстовых областях включали геотехническую категорию опасности

. Деформация из-за проседания земной поверхности передается в виде оседания

. В этой надстройке конструкция не срезана по вертикали, а сдавлена ​​с боков смещения

в свободное пространство.Поскольку смещение породы по направлению к центру тяжести полого пространства также формируется

вдоль горизонтального движения к вертикальному, что может вызывать удлинение или укорочение поверхностных структур

на месте расположения площадки, приводит к эффектам, что строительство растяжения или

сжатие. Эти или другие элементы процесса перемещаются по-разному, действуют на структуру в целом или на ее отдельную структуру

. Соответственно, требуются различные меры безопасности или специальные работы.Равномерное напыление

не создает дополнительных напряжений при строительстве зданий и поэтому не учитывается при проектировании и расчетах. Тем не менее, это может повлиять на условия санитарии

и относительный подъем грунтовых вод к поверхности, что приведет к созданию базовых сооружений гидратации. В

могут быть проблемы с подземными коммуникациями.

Разница в скорости седиментации приводит к наклону базовой структуры, который составляет

для максимума перехода от выпуклой части к проседанию вогнутой части.В связи с этим в

возникают дополнительные горизонтальные составляющие силы перекоса наряду с обычными вертикальными силами

, которые вызывают изгибающие моменты в строительных конструкциях. Напряжения, возникающие от изгибающих моментов

, зависят от прочности на изгиб и прочности соединения структурно связанных частей конструкции. Большинство зданий

имеют некоторую жесткость, поэтому они могут до некоторой степени следовать кривизне без повреждений.

При более жесткой опорной конструкции возможна более высокая концентрация напряжений [16].

При внезапном образовании провалов на грунте в некоторых частях конструкции образуются

пролетами фундамента и консоли. В этих случаях происходит перераспределение напряжений и, следовательно, неравномерное распределение нагрузки

конструкций на подложке, при котором нагрузка не может быть частично перераспределена. В конструкции

имеются сжимающие и растягивающие напряжения, которые могут восприниматься только до определенной степени,

— предел прочности при растяжении, превышающий трещину пласта.

При статическом анализе конструкций должна применяться обоснованная оценка диаметра разрушения, а также

, учитывающая глубину и частоту карста. Программы исследований преследуют следующие цели

: объекты с высоким риском карсто-разрушения должны быть тщательно защищены конструктивно,

необходимо для мониторинга возможных деформаций. При больших очагах поражения зачастую экономичнее

демонтировать

постройки и начать новое строительство [17, 18].

Теоретический анализ балок на упругом основании имеет большое значение в строительной практике.

Специалистам инженерных сооружений часто приходится прибегать к многократному проектированию при поиске эффективных форм

строительства этих зданий. В первую очередь это относится к зданиям на мягком грунте, ленточным фундаментам

, железобетонным виадукам

, плавучим мостам, высоким фундаментам знаний, подкрановым путям, этажам

промышленных зданий, бетонным покрытиям и аэродромам [19].На строительство таких объектов

уходит

почти половина бетона, используемого в строительстве. Такие огромные материальные и финансовые затраты требуют пристального внимания к вопросам расчета конструкций на упругом основании. Задачи

, связанные с исследованием конструкций, лежащих на упругом основании, представляют собой одну из наиболее актуальных, сложных

и интересных задач строительной механики. В последнее время внимание к этим проблемам

все больше растет.С одной стороны, это связано с насущными потребностями инженерной практики, а на

, с другой — развитием и совершенствованием методов расчета. Большую роль играет

Технологическая схема армирования и расчет армирования ленточных фундаментов

Технологическая схема армирования и расчет арматуры

Армирование фундамента — это процесс, необходимый для усиления конструкции и увеличения срока службы здания.Другими словами, это сборка «каркаса», который играет роль защитного компонента, сдерживающего давление грунта на стенки основания. Но для того, чтобы эта функция была реализована в максимальной степени, необходимо не только правильно рассчитать арматуру для ленточного фундамента, но и уметь организовать ход строительных работ.

Содержание

  • Как армировать ленточный фундамент
  • Схема структуры армирования
  • Расчет расхода материала

Как армировать ленточный фундамент

Фундаментом ленточного фундамента является бетонный раствор состоящий из цемента, песка и воды.К сожалению, физические характеристики строительного материала не гарантируют отсутствие деформации основания здания. Для повышения способности выдерживать сдвиги фундамента, перепады температур и другие негативные факторы необходимо наличие металла в конструкции.
Материал пластиковый, но обеспечивает надежную фиксацию; Поэтому армирование — важный этап в комплексе работ.

Армирование ленточного фундамента — стальной стержень с ребрами жесткости

Армирование фундамента требуется в местах, где могут возникнуть зоны растяжения.Отмечено, что наибольшее натяжение возникает на поверхности основания, что создает предпосылки для армирования вблизи верхнего уровня. С другой стороны, во избежание коррозии каркаса его необходимо защитить от внешних воздействий бетонным слоем.

Важно! Оптимальное расстояние армирования для фундамента — 5 см от поверхности.

Так как развитие деформации невозможно предсказать, зоны растяжения могут возникать как в нижней части (при изгибе середины), так и в верхней (при изгибе рамы вверх).Исходя из этого арматура должна проходить снизу и сверху арматурой диаметром 10-12 мм, причем эта арматура для ленточного фундамента должна иметь ребристую поверхность.

Обеспечивает идеальный контакт с бетоном.

Ленточные опорные зоны

Остальные части каркаса (горизонтальные и вертикальные поперечные стержни) могут иметь гладкую поверхность и меньший диаметр.
При армировании монолитного ленточного фундамента, ширина которого обычно не превышает 40 см, допускается применение 4 стержней арматуры (10-16 м), соединенных с каркасом диаметром 8 мм.

Важно! Расстояние между горизонтальными стержнями (шириной 40 см) — 30 см.

Ленточный фундамент имеет при большой длине небольшую ширину, поэтому в нем будут возникать продольные напряжения, а поперечных вообще не будет. Из этого следует, что поперечные вертикальные и горизонтальные стержни, которые будут гладкими и тонкими, нужны только для создания каркаса, а не для восприятия нагрузок.

Усиление углов требует особого внимания

Особое внимание следует уделить армированию углов: бывают случаи, когда деформация происходит не в середине, а в угловых частях.Углы следует укрепить так, чтобы один конец гнутой арматуры входил в одну стену, а другой — в другую.
Специалисты советуют шатуны использовать проволоку. Ведь не всякая арматура изготавливается из стали, которая поддается сварке. Но даже если сварка допустима, часто возникают проблемы, которых можно избежать с помощью проволоки, например, перегрев стали, приводящий к изменению свойств, утонение прутка в месте сварки, недостаточная прочность сварного шва и т. Д.

Схема конструкции армирования

Армирование начинается с установки опалубки, внутренняя поверхность которой выложена пергаментом, что позволяет упростить демонтаж конструкции в будущем.Создание каркаса производится по схеме:
1. В грунт траншеи вбиваются арматурные стержни длиной, равной глубине основания. Сохраняйте расстояние от опалубки 50 мм и шаг 400-600 мм.
2. На нижнюю установите опоры (80-100 мм), на которые нужно уложить 2-3 нитки нижнего ряда арматуры. Кирпичи, установленные на краю, вполне подходят в качестве опор.
3. Верхний и нижний ряд фитингов закрепляются поперечными перемычками на вертикальных шпильках.
4. На перекрестке закрепить проволокой или сваркой.

Важно! Следует строго соблюдать расстояние до внешних поверхностей будущего фундамента. Лучше с кирпичами. Это одно из важнейших условий, так как металлические конструкции не должны опираться непосредственно на дно. Они должны быть подняты над землей не менее чем на 8 см.

Армирование ленточного фундамента

После установки арматуры остается проделать вентиляционные отверстия и залить бетонным раствором.

Вам нужно знать!
Вентиляционные отверстия не только способствуют износу фундамента, но и предотвращают возникновение гнилостных процессов.

Расчет материалоемкости

Для расчета ленточного фундамента нужно заранее знать некоторые параметры. Рассмотрим пример. Предположим, что наш фундамент имеет прямоугольную форму и следующие размеры: ширина — 3,5 метра, длина — 10 метров, высота отливки — 0,2 метра, ширина ленты — 0.18.
В первую очередь необходимо рассчитать общий объем отливки, для чего нужно узнать размеры основания, как если бы оно имело форму параллелепипеда. Для этого произведем несколько простых манипуляций: узнаем периметр основания, а затем умножим периметр на ширину и высоту отливки.
P = AB + BC + CD + AD = 3,5 + 10 = 3,5 + 10 = 27
V = 27 x 0,2 x 0,18 = 0,972

Но на этом расчет монолитного фундамента не заканчивается.Мы узнали, что сама база, а точнее отливка, занимает округленный объем, равный 0,97 м3. Теперь нужно узнать объем внутренней части фундамента, то есть того, что находится внутри нашей ленты.

Получаем объем «начинки»: умножаем ширину и длину основания на высоту отливки и находим общий объем:
10 х 3,5 х 0,2 = 7 (кубометров)
Отнимаем объем отливки:
7 — 0,97 = 6,03 м3

Результат: объем отливки равен 0.97 м3, внутренний объем наполнителя 6,03 м3.

Теперь нужно рассчитать количество арматуры. Допустим, диаметр будет 12 мм, в отливке — 2 горизонтальные резьбы, т.е. 2 стержня, а по вертикали, например, стержни будут располагаться через каждые полметра. Периметр известен — 27 метров. Итак, мы умножаем 27 на 2 (горизонтальные полосы) и получаем 54 метра.

Вертикальные стержни: 54/2 + 2 = 110 стержней (108 интервалов 0,5 м и два по краям). Добавляем в угол еще один стержень и получаем 114 стержней.
Допустим, высота стержня 70 см. Получается: 114 х 0,7 = 79,8 метра.

Последний штрих — опалубка. Допустим, мы построим его из досок толщиной 2,5 см, длиной 6 метров и шириной 20 см.
Рассчитать площадь боковых поверхностей: периметр умножить на высоту отливки, а затем на 2 (с запасом, не учитывая уменьшение внутреннего периметра по отношению к внешнему): (27 x 0,2) x 2 = 10,8 м2
Площадь доски: 6 х 0,2 = 1,2 м2; 10,8 / 1,2 = 9
Нам понадобится 9 досок длиной 6 метров.Не забудьте добавить платы для подключения (на ваше усмотрение).

Результат: требуется 1 м3 бетона; Заполнитель 6,5 м3; 134 метра фурнитуры и 27 погонных метров досок (шириной 20 см), шурупов и брусков. Показанные значения округлены.

Результаты кропотливых расчетных работ

Теперь вы знаете не только, как правильно армировать ленточный фундамент, но и как рассчитать необходимые составляющие. А это значит, что построенный вами фундамент будет надежным и прочным, что позволит возводить монолитные конструкции любой конфигурации.

Проектирование ленточных фундаментов — Руководство по конструкции

Подушечки, комбинированные, ленточные, перевернутые Т-образные фундаменты, ленточные фундаменты и т. Д. Чаще используются в качестве фундаментов мелкого заложения. В зависимости от состояния грунта для возведения конструкций используются разные типы фундаментов мелкого заложения.

Ленточные опоры используются при плохих грунтовых условиях в соответствии с рекомендациями инженеров-геотехников.

При установке ленточного фундамента значительно увеличивается несущая поверхность фундамента.

Следовательно, на грунтах с низкой несущей способностью можно использовать эти типы фундаментов.

Есть два метода, которые можно использовать для анализа ленточных фундаментов.

  1. Жесткий метод анализа
  2. Гибкий метод анализа

Жесткий анализ

Предполагается, что давление подшипника под опорой будет постоянным по всей длине и по всей длине опоры.

Площадь опоры = (Общая нагрузка на колонну) / (Допустимое давление на опору)

Приведенное выше уравнение чаще используется для определения площади опоры.

Поскольку нам известны нагрузки на колонну и давление на опору, изгибающие и поперечные силы могут быть найдены с помощью простого анализа. Это можно сделать с помощью программного обеспечения, такого как SAP2000, SAFF, ETAB, или ручных расчетов.

Гибкий анализ

Считается, что давление почвы под основанием изменяется по длине основания.

В реальных условиях давление меняется вдоль основания, создавая более высокое давление грунта под колоннами. Использование такого программного обеспечения, как SAP2000, SAFF, ETAB, — самый простой способ выполнить этот тип анализа, поскольку ручные вычисления более точны.

Однако площадь основания рассчитывается по приведенному выше уравнению, которое используется в жестком анализе для поддержания давления грунта под основанием в допустимых пределах.

Основными элементами этого анализа являются колонны, фундамент и грунт.

Нагрузка на колонну может быть добавлена ​​как точечная нагрузка на фундамент, а фундамент может быть смоделирован с помощью элементов оболочки, а грунт моделируется с помощью пружинящих элементов. В вышеупомянутом программном обеспечении, определяя реакцию грунтового основания, мы можем моделировать почву как пружинные элементы.

Согласно книге Боуэла по основам, в большинстве случаев мы можем определить реакцию нижнего уровня по следующему уравнению.

Реакция земляного полотна = (SF) x 40 x (Допустимая несущая способность)

Здесь «SF» обозначает коэффициент безопасности, который учитывается при определении допустимой несущей способности. Обычно, когда значение этого коэффициента недоступно, предполагается значение в диапазоне 2–3.

Зная нагрузки на колонну, предполагаемую толщину основания и реакцию земляного полотна, можно найти изгибающие моменты и поперечные силы, необходимые для проектирования основания.