Армирование ленточного фундамента шириной 40 см: Армирование ленточного фундамента шириной 40 см количество в ряду

Содержание

Как производится армирование ленточного фундамента своими руками

О необходимости усиления

Насколько необходимо укреплять бетонный массив стальной проволокой? Ведь бетон обладает достаточно высокими прочностными характеристиками. Действительно, бетон имеет повышенную устойчивость к сжимающим нагрузкам, но требует усиления от губительного воздействия разрывных усилий.

Наибольшая вероятность растяжения – на поверхности основания, именно там следует расположить арматуру

Компенсировать эту особенность бетона позволяет укладка стальных стержней на двух уровнях основы. Такое решение повышает прочностные характеристики массива, позволяя сохранять целостность под воздействием изгибающих нагрузок, крутящих моментов и разрывных усилий.

Расчеты

Определение количества свай и их длины производится по данным расчетной документации. Для участков с достаточно устойчивым грунтом достаточно опор длиной 2500 мм. При возведении объекта на неровном рельефе высота опоры учитывает перепады высоты почвы. При строительстве на сильно подвижных грунтах высота опоры должна быть такой, чтобы она достигала твердых слоев грунта плюс 15-20 см.

Рассчитать количество столбов можно, сложив все нагрузки, приходящиеся на фундамент. Для этого следует вычислить нагрузку (вес) 1 м3 стенового материала и умножить этот показатель на количество кубов всего помещения. Этот коэффициент суммируют с весом пола, перекрытий, окон и дверей, кровли, а также внутреннего оснащения (мебели, отделочных материалов, техники, коммуникаций).

Далее коэффициент нагрузок умножается на коэффициент надежности (это постоянная величина по СНиПу). Полученное число следует разделить на значение несущей способности одной опоры.

Расстояние между столбами выдерживается в пределах 100-250 см. Чем более тяжелым является объект, тем меньшее расстояние сохраняется между опорами. Увеличивать шаг более чем на 250 см не рекомендовано, поскольку в таком случае снижается прочность готовой постройки.

Для деревянных построек рекомендуется ставить столбы с шагом 3 м, в сооружениях из пенно- и газобетона – 2 м. Для кирпичных домов этот показатель равен 1,5-1,7 м. Иначе говоря, фундамент под дом из пеноблоков размерами 9х8 м в среднем требует как минимум 16 столбов, а деревянный аналог такого же размера – 12-14 опор.

Преимущества и недостатки ленточного фундамента

Ленточный фундамент – идеальный вариант для строительства своими руками бани, гаража, летней кухни и других построек. Подойдет он и для возведения собственного загородного дома. Такое основание отличается простой конструкцией и понятной методикой изготовления. Среди его прочих преимуществ выделяют:

  1. Небольшая стоимость. Все материалы, используемые в строительстве, стоят относительно недорого. К тому же не понадобится привлечение сложной спецтехники.

  2. Высокая скорость возведения. Все работы можно провести за один день. Еще несколько недель понадобится для высыхания конструкции.

  3. Возможность самостоятельного строительства. Потребуются минимальные навыки и знание технологии.

  4. Долговечность. При условии грамотной организации тепло- и гидроизоляции конструкция прослужит несколько десятков лет.

  5. Универсальность. Такое основание подходит для грунта любого типа. Даже если на участке почва неоднородна по структуре, ленточный фундамент защитит строение от неравномерного проседания и появления трещин.

  6. Способность выдерживать большую нагрузку. На основании такого типа можно возводить многоэтажные строения.

  7. Возможность организации подвального помещения.

Недостатком оснований такого типа становится необходимость проведения точных предварительных расчетов. Ошибки проектирования в дальнейшем невозможно будет исправить.

К минусам относят и необходимость проведения всех работ за один день. Потребуется большое количество бетона. Замешивать его самостоятельно сложно. А потому при строительстве домов, скорее всего, придется покупать готовый раствор. Но при возведении гаража или бани удастся обойтись бытовой бетономешалкой.

Этапы работ по обустройству арматурного каркаса

Основание под фундамент выполняется из слоя песка не менее 10 см, песок накрывается слоем щебня фракции 2-5, затем песчано-щебёночное основание трамбуется, и только потом следует приступать к укладке и вязке арматурного каркаса.

  1. Арматурные пруты, обрезанные по длине фундаментной ленты одной стороны, раскладываются на расстоянии 20-30 см между собой по дну фундамента. По углам они прикручиваются мягкой вязальной проволокой к вертикальным стержням, а также между собой при образовании нахлёста.

  2. Для создания вертикальных угловых опор каркаса горизонтальные нижние пруты каркаса изгибаются под углом 90 градусов. Удлиняются соединением внахлёст и креплением проволокой.

  3. Для облегчения производства работ по армированию углов фундамента допускается устройство анкеров, работы аналогичны устройству ростверков или армопоясов. По всем углам фундамента в грунт вбиваются по 4 металлических прута, снизу покрытые битумной смолой для гидроизоляции. Они выполняют роль анкеров для крепления каркаса. В сечении вбитые штыри-анкера должны образовать квадрат со сторонами, параллельными фундаментной ленте.

Вбитые в землю анкера, на которые крепится каркас

  1. К анкерам прикручиваются или прихватываются для фиксации вертикальные арматурные прутья , равные высоте фундамента.Все вертикальные пруты связываются или привариваются между собой по периметру, образуя конструкцию столба.

  2. Для того, чтобы избежать соприкосновения металла и песчано-щебёночного основания, по всей длине прута под него с интервалом в 1 м подкладывают половинки кирпича.

  3. Нарезаются пруты для поперечной укладки арматуры. Их длина должна быть меньше ширины монолитной ленты на 10 см, то есть поперечины должны быть полностью укрыты заливаемым бетоном с расстоянием от наружной стенки фундамента 5 см.

  4. Шаг армирования фундамента поперечными стержнями 50 см по всей длине продольной арматуры.

  5. Все соединения арматуры скручиваются вязальной проволокой.

  6. В зависимости от длины стороны фундамента расстояние между вертикальными стержнями колеблется от 30 до 80 см.

  7. Продольных рядов может быть достаточно лишь двух:верхнего и нижнего.

  8. Каждый горизонтальный ряд параллелен нижнему и аналогичен ему.

Каркас вполне допустимо собрать вблизи от фундамента, а затем просто опустить его в траншею или опалубки.

Каркас не обязательно собирать внутри подготовленной для фундамента ямы – монтаж можно сделать и снаружи, а потом опустить всю конструкцию вниз

Конечно, такой способ возможен только при наличии ровного участка для сборки, иначе трудно добиться точного выполнения работы.

Что важно знать

Фундамент в процессе эксплуатации любого сооружения регулярно испытывается на прочность различными нагрузками – от веса дома до движения почвы. Поэтому неверно сделанный расчет и небрежное армирование ленточного фундамента может привести к разрушению постройки.

При приобретении арматуры для ленточного фундамента обратите внимание на маркировку:

  • индекс С обозначает свариваемый арматурный прокат;
  • индекс К – материал обладает устойчивостью к коррозийным трещинам, которые возникают под высоким давлением.

Если индексы отсутствуют – материал не подходит. Прагматичный расчет в целях экономии на арматуре влечет за собой армирование низкого качества, следовательно, закономерное возникновение трещин в зимний период. Опытные строители при работе следуют требованиям СНиП, где схема армирования ленточного фундамента (в том числе шаг между продольными прутьями и шаг поперечного армирования) представлена подробно.

Чтобы знать, как правильно армировать ленточный фундамент, необходимо вооружиться некоторыми теоретическими знаниями. При обустройстве каркаса ленточного фундамента используют арматуру, которая монтируется на этапе монтажа опалубки, а после заливается бетонной смесью (слоями), и в конце выполняются гидроизоляционные работы с помощью рубероида и мастики.

Перед работой производится расчет армирования, где будет учтена максимальная нагрузка на фундаментную основу. От того, насколько правильно произведен расчет, зависит устойчивость всего строительного объекта, поэтому желательно доверить расчет профессионалам в данной области, который осуществляется в соответствии с индивидуальными особенностями каждого строения.

Расчет включает такие факторы, как:

  • конфигурация сооружения;
  • тип почвы;
  • технология возведения стен;
  • количество этажей;
  • тип перекрытий и т.д.

Некоторые строительные компании делают расчет бесплатно при условии заказа и последующей оплаты работ по армированию у них.

Схема расчета арматуры для ленточного фундамента

Армирование ленточного фундамента своими руками требует не только правильный расчет, но и правильный выбор размеров прутьев. Рекомендуется выбирать прут из стали А-III с периодическим профилем и диаметром от 10 до 22 миллиметров. Допустимый размер дополнительных прутьев – от 4 до 10 мм. Они располагаются вертикально и поддерживают низ и верх в рядах армирующего материала, а также обеспечивают прочность. Шаг установки вертикальных прутов должен равняться 0,5 – 0,8 м.

Металлический каркас погружается в бетонную смесь на следующее расстояние:

  • верхний ярус – на 50-60 мм;
  • нижний – на 70 мм и более.

Расстояние между горизонтальными рядами – не менее 30 см. Если обустраивается каркас в углубленном фундаменте, нужно использовать по два-четыре прута в ряду.

Минимальный шаг между арматурными стержнями в свету принимается с учетом диаметра армирующего материала, местоположения арматуры, метода укладки и уплотнения бетонного состава. Шаг между стержнями должен быть не меньше диаметра материала, но не больше 25 см. Шаг при расположении стержней продольной рабочей арматуры устанавливается с учетом особенностей железобетонного элемента, при этом шаг не должен превышать 400 мм.

Технология армирования ленточного фундамента

Арматура является одной из наиболее распространенных материалов. При подготовке площадки для строительства необходимо расчистить место постройки и прорыть канаву вдоль периметра основы. Это возможно сделать руками или с помощью спецтехники. Для ровности стен используют опалубку. Арматурный каркас устанавливают тогда же, когда и опалубку. Затем наливают бетонные прослойки, а также делают гидроизоляцию при помощи битумных мастик и рубероида.

Армирование оснований можно выполнять собственноручно. Следует знать, что после завершения гидроизоляции основания в полости засыпается песок. Для территорий с холодным климатом предпочтительно дополнительно утеплить ленточный фундамент, и для этого можно использовать пенопласт. Если армировать правильно, данный фундамент будет долговечным.

Необходимо выделить несколько моментов армирования ленточного фундамента:

  1. Бывает ситуация, когда отсутствует строительный проект. В таком случае можно прибегнуть к личному опыту строителей.
  2. Арматурный каркас должен содержать два вертикальных ряда прутов, а количество продольных нужно высчитывать согласно глубине пролегающему фундаменту. Фундаменты бывают:
    • слабо заглубленные;
    • сильно заглубленные.

У них разная высота основания. Помимо этого, у сильно заглубленных фундаментов боковые стены и дно более развиты.

  1. Учитывая этот факт, в слабо заглубленных фундаментах разрешается армирование лишь дна, а в сильно заглубленных есть необходимость в укреплении и наружной части.

Чтобы усилить мелко заглубленный фундамент, можно крепить дополнительно сетку из проволоки 10 × 10 см.

При возведении основания необходимо провести финансовый расчет затрат и составить для себя определенную схему. Обычно основные траты приходятся на строительный материал и сами работы по строительству. Они включают в себя копку канавы, монтаж опалубки, подготовку бетонного раствора, обработку готового уже основания, засыпка песка в канаву, который исполнит роль подушки для дна.

Для строений с упрощенной формой предпочтительнее использовать армирование монолитного ленточного типа по форме каких-нибудь геометрических фигур: квадрата либо прямоугольника. Таким образом, основание станет крепким, а оси займут правильное положение. Для армирования ленточного монолитного типа основания необходимо придерживаться правильной толщины подушки в траншее. Гидроизоляцию следует выполнить качественно, потому что при засыпке в траншею песка, можно повредить гидроизоляцию пенопласта. Эти работы лучше поручить профессионалу.

Среди существующих типов оснований ленточный – один из наиболее популярных, в особенности для частных домостроений. Преимущество его заключается в небольших затратах на материалы. Необходимо правильно рассчитать затраты на сырье и на постройку.

Так как бетон малопластичен и плохо переносит растяжение, при воздействии на него холода либо при деформации он может давать трещины. Чтобы их избежать, необходимо правильно армировать основу.

Типичные ошибки

Все способы угловых и примыкающих соединений арматуры направлены на сохранение целостности арматурного каркаса, независимо от его конфигурации. Прочность ленточного фундамента зависит от правильной анкеровки концевых элементов продольной арматуры. К неправильному армированию углов ленточного фундамента приводят следующие схемы:

1. Армирование угловых зон ленточного фундамента арматурными перекрестиями с вязкой стержней продольной арматуры под прямыми углами.
2. Установка в угловых и примыкающих зонах гнутой продольной арматуры без анкеровки.

Эти ошибки являются самыми распространёнными и могут привести к разрушению фундамента в местах угловых соединений и примыканий.

Угловые и примыкающие соединения, выполненные методом вязки перекрестий стержней продольной арматуры

Типичной ошибкой армирования углов и примыканий являются соединения продольной арматуры методом вязки перекрестий. Такое арматурное соединение без надлежащей анкеровки стержней может привести к разрушению бетонного монолита из-за разнонаправленных нагрузок, возникающих по углам ленточного фундамента.

Рис. 9. Частая ошибка при армировании углов

Применение гнутой продольной арматуры для армирования угловых соединений и примыканий

1. Угловые соединения без связки внутренней и внешней продольной арматуры (1) не обеспечивают жесткой стержневой фиксации.
2. Разрушение фундамента может происходить не только из-за образования поперечных трещин, но и из-за отслаивания внутренних углов.

Рис. 10. Ещё один пример неправильного армирования углов

Обязательно прочитайте: Можно ли армировать ленточный фундамент стеклопластиковой арматурой, если собираетесь ее использовать.

Чтобы не допустить появление на углах и примыканиях ленточного фундамента образование трещин, отколов и расслоений, необходимо правильно связать концевые стержни продольной арматуры и выполнить их надёжную анкеровку. Правильное армирование углов ленточного фундамента – залог надёжности и долговечности здания.

Хорошая реклама

Порядок выполнения армирования ленточного фундамента

Существующая схема армирования ленточного основания для строительства дома подразумевает следование нескольким обязательным правилам:

  1. Применение при проведении армирования стержней класса от А400
  2. Минимизация использования сварки при соединении стержней, так как такая технология способствует ослаблению сечений
  3. На углах каркас можно только связывать, использование сварки на углах не рекомендуется
  4. Защитный выложенный слой использующегося в конкретной ситуации бетона должен быть не менее 4 сантиметров для защиты металлических элементов от негативного воздействия окружающей среды, коррозии
  5. Не рекомендуется использование гладкой арматуры
  6. Бетон при выкладке обязан не иметь возможности застревать между стержнями, что позволит исключить контроль за отказом, за слишком частым расположением металлических стержней

Создать арматурный каркас поможет подробная пошаговая инструкция с приведенными для наглядности фото и видео. Существенным преимуществом армированных ленточных фундаментов становится сочетание высокой надежности и доступной стоимости. Сталь и бетон являются высокопрочными материалами.

Это важно для создания основания для строительства на любых грунтах, кроме и так от природы стабильных и надежных скал. В иных ситуациях любой фундамент армирование избавит от разрушений, возникающих из-за напряжения

Как формируется

При проведении таких работ, как армирование ленточного фундамента, чертежи включают три группы стержней:

  • Применяемые для укладки вдоль ленты использующиеся рабочие стержни
  • Горизонтальные элементы, располагающиеся поперечно
  • Вертикальные варианты, поперечные

Задачей поперечной арматуры становится соединение всех рабочих элементов в стабильное в применении единое целое надежных инновационных рабочих прутов. Она часто называется хомутами.

Важной особенность проведения работ становится использование при такой деятельности, как армирование ленточного фундамента снип и других нормативных специализированных документов. При расчете используется СНиП 52-01-2203

В этом нормативном документе легко найти все необходимые расчеты для создания армирования ленточного фундамента небольшого по площади загородного дома.

Какие требования к бетону определяются нормативными документами?

Если выдерживать порядок создания армирования, важно соблюсти обязательные требования к использующемуся в конкретной работе бетону. Создавая ленточный фундамент своими руками на месте проведения будущего строительства, стоит учитывать, что в число главных характеристик прочности бетонных конструкций входит показатель сопротивляемости осевому сжатию, готовность противостоять растяжению и не реагировать на поперечный излом

Поправочные коэффициенты надежности могут варьироваться от 1 до 1,5

Создавая ленточный фундамент своими руками на месте проведения будущего строительства, стоит учитывать, что в число главных характеристик прочности бетонных конструкций входит показатель сопротивляемости осевому сжатию, готовность противостоять растяжению и не реагировать на поперечный излом. Поправочные коэффициенты надежности могут варьироваться от 1 до 1,5.

Требования, предъявляемые к арматуре

Эти показатели определяются нормативами и стандартами. Надежный фундамент армирование использует на основе стержней:

  • горячекатную арматуру периодического профиля,
  • механически упрочненную арматуру
  • термически обработанную арматуру

Именно ГОСТ позволяет рассчитывать показатели предельных погруженных состояний, которые в нем строго разведены по группам. Показатели определяются на основании прописанных в госстандартах требований, которые определяются на испытательных стендах. Любая нормативно-техническая документация, которая используется при определении надежности армирования, должна быть обязательно утверждена официальными контролирующими органами.

Какие основные правила важно учитывать при выполнении работ?

Как правило, армирование при проведении загородного и строительства осуществляется самостоятельно. В этом случае требования СНиП и ГОСТ не всегда выдерживаются столь внимательно.

По этой причине, рассматривая, как армировать ленточный фундамент своими руками, важно придерживаться некоторых обязательных правил:

  • При выполнении армирование ленточного фундамента будущего строения, включающего 1-2 этажа, используются прутья с показателем диаметра 10-24 мм.
  • Не рекомендуется использование сварных соединений
  • При создании ленточного фундамента своими реками потребуется обязательное создание опалубки

Порядок выполнения армирования ленточного фундамента

Существующая схема армирования ленточного основания для строительства дома подразумевает следование нескольким обязательным правилам:

  1. Применение при проведении армирования стержней класса от А400
  2. Минимизация использования сварки при соединении стержней, так как такая технология способствует ослаблению сечений
  3. На углах каркас можно только связывать, использование сварки на углах не рекомендуется
  4. Защитный выложенный слой использующегося в конкретной ситуации бетона должен быть не менее 4 сантиметров для защиты металлических элементов от негативного воздействия окружающей среды, коррозии
  5. Не рекомендуется использование гладкой арматуры
  6. Бетон при выкладке обязан не иметь возможности застревать между стержнями, что позволит исключить контроль за отказом, за слишком частым расположением металлических стержней

Создать арматурный каркас поможет подробная пошаговая инструкция с приведенными для наглядности фото и видео. Существенным преимуществом армированных ленточных фундаментов становится сочетание высокой надежности и доступной стоимости. Сталь и бетон являются высокопрочными материалами.

Это важно для создания основания для строительства на любых грунтах, кроме и так от природы стабильных и надежных скал. В иных ситуациях любой фундамент армирование избавит от разрушений, возникающих из-за напряжения

Как формируется

При проведении таких работ, как армирование ленточного фундамента, чертежи включают три группы стержней:

  • Применяемые для укладки вдоль ленты использующиеся рабочие стержни
  • Горизонтальные элементы, располагающиеся поперечно
  • Вертикальные варианты, поперечные

Задачей поперечной арматуры становится соединение всех рабочих элементов в стабильное в применении единое целое надежных инновационных рабочих прутов. Она часто называется хомутами.

Важной особенность проведения работ становится использование при такой деятельности, как армирование ленточного фундамента снип и других нормативных специализированных документов. При расчете используется СНиП 52-01-2203

В этом нормативном документе легко найти все необходимые расчеты для создания армирования ленточного фундамента небольшого по площади загородного дома.

Какие требования к бетону определяются нормативными документами?

Если выдерживать порядок создания армирования, важно соблюсти обязательные требования к использующемуся в конкретной работе бетону. Создавая ленточный фундамент своими руками на месте проведения будущего строительства, стоит учитывать, что в число главных характеристик прочности бетонных конструкций входит показатель сопротивляемости осевому сжатию, готовность противостоять растяжению и не реагировать на поперечный излом

Поправочные коэффициенты надежности могут варьироваться от 1 до 1,5

Создавая ленточный фундамент своими руками на месте проведения будущего строительства, стоит учитывать, что в число главных характеристик прочности бетонных конструкций входит показатель сопротивляемости осевому сжатию, готовность противостоять растяжению и не реагировать на поперечный излом. Поправочные коэффициенты надежности могут варьироваться от 1 до 1,5.

Требования, предъявляемые к арматуре

Эти показатели определяются нормативами и стандартами. Надежный фундамент армирование использует на основе стержней:

  • горячекатную арматуру периодического профиля,
  • механически упрочненную арматуру
  • термически обработанную арматуру

Именно ГОСТ позволяет рассчитывать показатели предельных погруженных состояний, которые в нем строго разведены по группам. Показатели определяются на основании прописанных в госстандартах требований, которые определяются на испытательных стендах. Любая нормативно-техническая документация, которая используется при определении надежности армирования, должна быть обязательно утверждена официальными контролирующими органами.

Какие основные правила важно учитывать при выполнении работ?

Как правило, армирование при проведении загородного и строительства осуществляется самостоятельно. В этом случае требования СНиП и ГОСТ не всегда выдерживаются столь внимательно.

По этой причине, рассматривая, как армировать ленточный фундамент своими руками, важно придерживаться некоторых обязательных правил:

  • При выполнении армирование ленточного фундамента будущего строения, включающего 1-2 этажа, используются прутья с показателем диаметра 10-24 мм.
  • Не рекомендуется использование сварных соединений
  • При создании ленточного фундамента своими реками потребуется обязательное создание опалубки

Армирование ленточного фундамента шириной 40 см: своими руками, чертежи, фото

Усиление бетонных конструкций арматурой выполняют для повышения прочности основания. Пошаговая инструкция с чертежами и фото поможет выполнить армирование ленточного фундамента шириной 40 см своими руками.

Зачем армируют ленточный фундамент

При растягивании бетон удлиняется всего на несколько миллиметров. При высоких нагрузках неармированный фундамент подвержен деформации и разрушению. Бетон растрескивается, увеличивается риск обрушения здания.

Металлические элементы железобетонного фундамента выдерживают высокие нагрузки в десятки раз выше максимально допустимых для бетона. Стальная арматура предотвращает разрушение основания, сохраняет устойчивость построек.

Схема армирования

Для ленточного фундамента используют арматурную решетку. Если посмотреть в поперечном сечении на ленту, то металлический каркас повторяет ее форму в уменьшенном виде. Такую схему считают оптимальной для ленточного фундамента.

На основание действуют 2 основные нагрузки: давление грунта снизу при низкой температуре и вес здания сверху. Средняя часть нагружается меньше. Для мелкозаглубленного фундамента (до 1 м) достаточно 2х армирующих поясов: верхний и нижний для компенсации нагрузки.

Чем армировать ленточный фундамент

Так как на арматуру ложится основная нагрузка здания и грунта, необходимо правильно подобрать материалы.

Для продольных рабочих элементов выбирают рифленые прутья толщиной 12-16 мм класса А3. Ребристая поверхность лучше взаимодействует с бетонным раствором. Для вертикальных соединительных частей допустимо использовать прутья толщиной 6-8 мм.

Арматуру соединяют вязальной проволокой или сваркой. Первый метод не требует сложного оборудования, но он трудоемкий и долгий. В процессе используют проволоку диаметром 1-2 мм. Сварка быстрее, но требует опыта работы со сварочным оборудованием и немного уменьшает прочность в местах крепления.

Правила устройства каркаса установлены актуальным строительными нормами. Согласно рекомендациям при монтаже выдерживают следующие интервалы:

  1. Расстояние между продольными элементами – до 10 см.
  2. Интервал между ярусами арматуры – до 50 см.
  3. Вертикальные соединительные прутья устанавливают с шагом до 30 см.
  4. Расстояние от металлических прутьев до краев опалубки – от 5 см.
  5. Между дном и нижним ярусом арматуры сохраняют расстояние от 5 см. Для этого на фундаментную подушку кладут строительные кирпичи в качестве подпорки.

[stextbox id=’info’]Обратите внимание! Для сохранения правильной дистанции строители используют пластиковые ограничители. Они упираются в стенки опалубки, не давая металлу выходить за установленные пределы.[/stextbox]

Способы армирования

Различают 2 способа установки арматуры: внешний и в самой траншее.

Первый метод подразумевает сбор конструкции снаружи и установку готовых элементов в опалубку. Затем конструкцию заливают бетоном.

При выборе второго метода укладку арматуры и вязание прутьев проводят непосредственно в траншее. Для этого выполняют такой порядок действий:

  1. Дно ямы засыпают фундаментной подушкой из крупнофракционного песка и гравия.
  2. На подушку в ключевых точках кладут строительные кирпичи с шагом до 0.5 м. Высота кирпичей позволяет соблюсти минимальное расстояние от арматуры до дна фундамента.
  3. На кирпичную подпорку укладывают нижний слой продольной арматуры. Прутья связывают между собой поперечными элементами.
  4. К нижнему поясу крепят вертикальную арматуру.
  5. Верхний пояс из продольных рабочих и поперечных монтажных прутьев крепят к вертикальным стойкам.

[stextbox id=’info’]Обратите внимание! Для фундамента шириной до 40 см используют внешнюю сборку арматуры. Небольшое расстояние не позволяет собирать конструкцию внутри ямы.[/stextbox]

Расчет материалов

На стадии проектирования проводят расчет диаметра и количества металлических прутьев и сопутствующих деталей. Точное количество поможет правильно распределить расходы и не остаться без материалов в процессе работы.

Рассмотрим, как рассчитать необходимые материалы, на примере фундамента высотой 70 см, шириной 40 см и протяженностью 50 м.

  1. Составляют конфигурацию каркаса по проведенным замерам. Конструкция состоит из 2-х армослоев, по 3 продольных прута в каждом. Соединение выполняют сваркой или проволокой с шагом армирования 30 см. Выбирают арматуру диаметром 12 мм класса А3.
  2. Проводят подсчет продольных частей. Для этого длину основания умножают на количество элементов в верхнем и нижнем поясах – 50*6 = 300 м.
  3. Определяют количество поперечных и вертикальных перемычек. Для этого длину ленты делят на шаг. На расстоянии 50 м с шагом 30 см количество составит – 50/0.3 = 167 соединений.
  4. Умножают число соединений на длину вертикальных и поперечных перемычек. Полученный результат увеличивают вдвое, так как соединение проводят с обеих сторон. В примере получаем 201 м и 101 м соответственно. Результаты округлены в большую сторону.

Если в работе используют арматуру одинакового диаметра, то для заливки железобетонного ленточного фундамента закупают 603 м прутьев класса А3 диаметром 12 мм.

[stextbox id=’info’]Обратите внимание! Профессиональные строители рекомендуют делать запас в размере 10-15% от рассчитанного количества. Дополнительные части используют для соединения продольных прутьев и армирования углов.[/stextbox]

Относительно недавно в продаже появилась стеклопластиковая арматура. Производители заверяют, что материал не уступает в прочности металлу, не подвержен коррозии и дешевле по стоимости. Однако у арматуры из полимеров есть существенный недостаток – низкая стойкость на излом. В результате этого существенно ограничены области применения.

Также отмечают низкий порог упругости стеклопластиковых изделий. При высокой нагрузке этот показатель может привести к повреждению стержней и разрушению основания. Впоследствии технология может стать заменой металлической арматуре при усилении фундамента. Но пока что профессионалы рекомендуют отказаться от стеклопластика.

Усиление углов

Угловые части фундамента испытывают максимальную нагрузку, поэтому эти участки армируют дополнительно.

Схема показывает, как правильно уложить арматуру в углах.

Помимо соединений, углы усиливают Г-образными и П-образными хомутами. Элементы выполняют из прутьев для продольной рабочей арматуры. Вертикальные и поперечные перемычки устанавливают в углах с интервалом вдвое меньше, чем для прямых частей фундамента.

От правильного расположения по углам и в подошве зависит долговечность основания.

Вязка арматурной сетки

Для соединения продольных, поперечных, вертикальных и угловых частей используют стальную отожженную проволоку толщиной 1-2 мм.

Пошаговая инструкция как связать части арматурного каркаса:

  1. От мотка проволоки отрезают кусок длиной 25-30 см.
  2. Отрез сворачивают пополам, обматывают соединение 2 прутов по диагонали. Концы соединяют вместе.
  3. Вязальным крюком для арматуры цепляют согнутый край и наматывают, захватывая противоположные концы.
  4. Продолжают вращательные движения до достижения нужной силы натягивания.
  5. Для продольных соединений процесс вязки выполняют аналогично. Единственное отличие – прутья обхватывают поперечно, а не по диагонали.

Ознакомиться с процессом подробнее можно на видео:

Как выполняют армирование

Для прямых участков фундамента выбирают длинные прутья. Идеальный участок состоит из цельных продольных частей.

В угловых соединениях не допускается перпендикулярный перехлест арматуры. Пруты сгибают буквой «Г» или «П» и соединяют продольные отрезки.

Монтаж арматурной решетки проводят рядом с траншеей или непосредственно в ней. Первый вариант удобнее, но требует максимальной точности сборки. Во втором случае удобства меньше, но проще ориентироваться по размерам.

Подготовленные куски арматуры для нижнего пояса укладывают на кирпичную подставку, соединяют поперечными перемычками с соблюдением шага армирования. Угловые части укрепляют дополнительными вертикальными и горизонтальными элементами.

После готовности нижнего пояса устанавливают вертикальную арматуру, прихватывают сваркой или связывают стальной проволокой. Верхний пояс делают аналогично нижнему. После монтажа траншею заливают бетоном. Для фундамента под дом небольших размеров или под баню используют цементную смесь марки М-200.

Заключение

  1. Армирование позволяет улучшить показатели фундамента, увеличить максимальную нагрузку.
  2. Арматурную решетку делают из стальных прутов класса А3 диаметром 12-16 мм.
  3. Прутья связывают между собой вязальной проволокой или электросваркой. Последний вариант не рекомендован, так как ухудшает защитные свойства металла.
  4. В зависимости от ширины фундамента, металлический каркас собирают снаружи или внутри канавы. Первый способ проще, но требует точных расчетов длины. Второй метод сложнее из-за ограниченного пространства.
  5. Перед началом работ рассчитывают количество используемого материала. Длину металлоизделий определяют с помощью математических формул. Дополнительно предусматривают запас в размере 10-15% от расчетных значений.
  6. Углы несут наибольшую нагрузку и нуждаются в дополнительном усилении. Прутья соединяют, исключая поперечные стыки.

Из-за высокой нагрузки армирование мелкозаглубленного ленточного фундамента шириной 40 см является обязательным действием. Пошаговая инструкция с чертежами и фото поможет усилить основание своими руками. Обязательно делитесь советами и секретами быстрого строительства.

Армирование ленточного фундамента шириной 40 см. Армирование плитного фундамента. Монолитный фундамент и его армирование

Схема армирования железобетонной конструкции определяется проектом фундамента. Организация, имеющая лицензию на проектные работы, рассчитывает сопротивляемость балки на изгиб, кручение, сжатие….. выбирает вид арматуры, места ее заложения, марку бетона, размеры конструкции и так далее.

Но многие частники армируют свои фундаменты «по образу и подобию», исходя из опыта эксплуатации железобетонных конструкций. В качестве компенсации отсутствия точных технических расчетов применяется метод внедрения в конструкцию сверхзапаса по прочности. Что достигается благодаря перерасходу материалов.

Стена башни указана внешней двойной линией в этой точке чертежа. Другие стены одинаково сильны на первом и втором этажах, но слабее на третьем этаже. Значительно слабее северной стороны башни находятся другие три боковые стены. Это также совершенно ясно, поскольку с этих страниц было не так просто оценить противоположные высоты, создание штурмовых лестниц и тому подобное. Эта стена, которая закрывает башню на стороне реки на юг, сегодня полностью отсутствует. На верхнем этаже показаны два оконных проема на северной стороне.

Нижний край двери все еще находится на высоте 150 см над скалой, к которой, возможно, идет лестница. Цель этого выхода на скале, которая поднимается над кухней, трудно определить. Дверь, однако, была заброшена позже. Чтобы встретить сейчас простуду на этой воздушной высоте, умеренно. здесь внутренние поверхности стен были заколочены.

Как располагать арматуру

Имеются правила расположения арматуры в балке.
Так как ленточный фундамент будет противостоять в основном изгибающим силам в вертикальной плоскости (прочность на сжатие бетонной конструкции всегда достаточна по умолчанию для небольшой массы дома), поэтому соответственно арматура закладывается в местах наибольших изгибающих нагрузок. Это верхняя и нижняя поверхность ленты.

Чем ближе к поверхности будет заложена арматура, тем она будет ближе к зоне максимальных нагрузок.

Таким образом, в ленточном фундаменте основные пруты закладываются у верхней и у нижней поверхностей.

По-прежнему заметят впечатления в ступке стен. Отдельные этажи, вероятно, были связаны только с внутренними лестницами. Вход в верхнюю комнату был тогда в полу и мог быть закрыт сильным, сделанным из люков для досок или железным клапаном. Если врагу удалось проникнуть на нижний уровень башни, защитники отступили на верхние уровни. Затем люк был еще более забаррикадирован объектами, расположенными на нем.

В любом случае вход противника в башню означал кончину его команды, если не было последней меры. Поэтому очень часто подземный выход из башни привел к защитникам, когда башня стала несостоятельной. С этой стороны, безусловно, был установлен слабый шторм, двойной предохранитель. Внешние ограждающие стены оборудованы специально для обороны. Верхняя часть этих стен, судя по другим примерам, имела внутри себя парапет, более слабую кирпичную стену с плафонами и ставнями. Узкое пространство, которое ослабление слабого парапета, выпущенного из толщины стены, служило точкой зрения защитников.

Расстояние до краев

Но, в тоже время по правилам, стержни должны находиться внутри бетона и не выступать из него. В этом лишь случае сохраниться целостность бетона испытывающего напряжения.

Имеется выработанное решение – закладка основных прутов производится на расстоянии не ближе 5 сантиметров от края конструкции.

Т.е. расстояние от любой поверхности фундамента до арматуры внутри него должна быть не менее 5 сантиметров.

Если бы стена была недостаточно широкой, она была бы заменена деревянным каркасом из досок, опирающихся на опорные балки. На этом аппарате, который также назывался убийством, защитники могли двигаться вперед и назад. Конечно, здесь ничего не замечают об этих квадратных маленьких настенках, которые служили опорой для столпов убийств.

Такие стеновые отверстия относительно часто встречаются в кладке фактического замка Эйбенштейна. Эти отверстия, иногда округлые, проходят сквозь стены в полной толщине, но в этом случае они выходят из ящиков в конструкции; это лагеря тех лучей, которые выступали по обе стороны стены, чтобы нести доску, на которой стояли рабочие. Эти стрингеры были обнесены стеной; При отрыве лесов, просто отрезая выступающие части ферм, центральная часть оставалась в стене. На протяжении веков древесина, вероятно, распадалась; Однако в стенах Эйбенштейна в нескольких таких отверстиях все еще видны стеновые деревянные доски.

Какие стержни применяется

Применяется ребристая арматура, имеющая поэтому хорошую связь с бетоном, в основном класса А-3. Ее диаметр чаще — 10 — 12 мм. Но для надежного запаса прочности иногда берут и потолще — 14 — 16 мм. Для изготовления поперечин возможно применение и гладких стержней диаметром 6 — 8 мм.

Для ленты фундамента шириной до 40 см таких стержней должно быть по 2 (и более) в каждом ряду, — и в верхнем и в нижнем.

Расстояние межу прутами в одном ряду не должно превышать 30 см.

От этих деревянных строений выделяются те деревянные обрывки в стенах, которые, возможно, служили опорными балки деревянных лестниц или опорных балок деревянных ведомственных стен. Из вышесказанного можно сделать вывод, что хотя замок Эйбенштейна был действительно более крупным, более обширным, чем можно было бы подумать с первого взгляда, тем не менее он был весьма ограничен по количеству его мест обитания. Строители Эйбенштейна, конечно же, не были богатым сексом.

Простота внешнего вида замка, отсутствие какого-либо архитектурного декора, надписи над входными воротами зданий указывают, с одной стороны, что замок является одним из старейших в стране и более построен для обороны, убежища, комфорта но с другой стороны, что их строители и их потомки не были особенно великодушными или слишком развитыми.

Все несущие пруты скрепляются между собой арматурой меньшего диаметра (6 — 8 мм), — в горизонтальной и в вертикальной плоскостях. Так образовывается каркас арматуры, который впоследствии закладывается бетоном. Шаг установки таких поперечен обычно от 0,5 метра.

Правила закладки арматуры

На углах не допускается сочленение отдельных несущих арматурных стержней. Только изогнуты цельные закладываются в угол.

В подобном «домашнем» строительстве не применяется сварка. Соединение ведется вязкой. Часто неизвестно, какой именно металл применен и допускается ли вообще его плавление и сваривание. Некоторая сталь при сварке, сильно теряет свои качества, а самое соединение становится не прочным.

Лестницы были сделаны из дерева, потому что, если бы они состояли из каменных ступеней, следы или опоры внутренних сторон стены должны были появиться где-то. Несмотря на эту простоту, этот средневековый замок имеет все основные части, поскольку в противном случае они имеют более крупные, более великолепные здания такого рода. Мы назвали Фрауен — или Вейберхаус, также Кеменат или Гадем. Здесь была обычная комната для женщин и детей, здесь также были посещены женские визиты. Но также прямая комната, полотно и тому подобное были здесь, в средней комнате или на первом этаже.

Порядок армирования фундамента

Заготавливается арматура необходимой длины, в том числе и тонкая для связывания основных стержней. Готовится, изгибается для установки в углах.

В траншее, вырытой под фундамент, арматурные стержни нижнего ряда укладывается на песчаную подушку. Для обеспечения необходимого расстояния, между подошвой будущего фундамента и прутьями, последние просто кладутся на кирпичи.

Стержни связываются между собой в единые нитки по длине, а также поперечинами. При этом соблюдается заданное расстояние по ширине, а также части каркаса выравниваются по осям фундамента.

В то время жена рыцаря не находила под своей властью участия в домашних работах, особенно в ткачестве и ткачестве, или лично руководить работой горничных. Однако вид замка должен был быть гораздо более разнообразным со стороны напротив деревни, например, с противоположной высоты.

Здесь видно, что замок был террасирован, заднее здание всегда превышало вышесказанное. Сегодня Эйбенштейн по большей части является кучей мусора. Каменная кладка, которая остается, подвергается распаду. Но это не означает, что их игнорируют, потому что они обедневшие и их потомки все еще живут где-то. Аналогичным образом, возраст пола не всегда должен измеряться после первого упоминания об этом в деле. Возможно, прошло много поколений, прежде чем многие секты вышли на первый план из своей ничтожности и, как представляется, упоминаются в документе.

К нижним стержням подвязываются вертикально расположенные поперечины, затем монтируется верхние несущие пруты. Для этого они вывешиваются и стропуются в заданном положении, например, на положенных поперек траншеи палках, затем вяжутся с вертикальными поперечинами в каркас.
В итоге получается арматурный каркас стоящий на кирпичах.

Когда замок Эйбенштейна был разрушен, его нельзя точно определить. Вишер, однако, лично не записывал все замки, которые он опубликовал, но часто использовал рисунки, присланные ему. Возможно, это было также из-за одного из этих подателей, просто помогите не увековечить красиво расположенные и, конечно, не упускать из виду тисовый камень таким образом. На первых двух купленных полках 3 поврежденных полки. Некоторые винты требуют ключа для предварительной затяжки гаек, что настолько неуверенно, что доступ плотный изнутри и наиболее удобный для использования ключа только в конце для затягивания.

Контроль и количество

Важно что бы при монтаже арматуры контролировалось расположение стержней по отношению к центральной оси фундаментной ленты. Для этого на кольях над траншеей натягиваются нити, соответствующие осям фундамента. По ним с помощью отвесов и ориентируется армирующий каркас. Также важно сделать каркас строго вертикальным.

Сколько потребуется арматуры, ответить можно простым расчетом, сделанным самостоятельно. Не забываются перехлесты на 30 см для стыковки, скругления и необходимость обеспечения целостных стержней на сопряжениях стен. Припасается и сталистая проволока для связывания.

С плюсами дизайн довольно «чистый», без лишних вмятин или изгибов. Как вы это сделаете и сколько это будет стоить? Принимая правильное решение, зависит от многих факторов, таких как тип почвы, глубина основания, ширина и высота опор, уровень грунтовых вод, тип материалов, изготовленных из пола и подвальных стен, и т.д. самый важный ответ заключается в том, является ли подвал сухим, Проблема относительно легко преодолеть. Когда он влажный и в дополнение к плесени или грибам на стенах, объем необходимой работы растет настолько быстро, что весь проект может быть невыгодным.

Вариант армировки

Видео западного производства, где наглядно показана установка армирования внутри опалубки. Эта технология предусматривает готовые приспособления для подвески арматуры перед заливкой. Но взять на вооружение кое-что можно.

Еще одна вещь, на которую нужно обратить внимание, — это проблема с окнами. Если они есть, это хорошо, потому что в лучшем случае их нужно будет увеличить, даже если их нужно подразделить ниже уровня земли. Однако их отсутствие связано с необходимостью выбивать оконные проемы и перемычки в несущих стенах, что может быть как сложным, так и дорогостоящим. Перед открытием или расширением окна необходимо создать новую или усилить старую перемычку. В качестве опорных элементов стальные профили лучше всего подходят для размещения в ранее завязанных бороздах и болтами вместе.

Все мы знаем, что при воздействии нагрузки на бетон – невозможно вызвать его упругую деформацию или пронаблюдать его необычайную пластичность; потому-что данные свойства у него напрочь отсутствуют. Не смотря на то, что у бетона довольно высокий предел прочности, силовые нагрузки он испытывает соответствующие. Поэтому, под воздействием неравномерных сил морозного пучения, разнонаправленной нагрузки со стороны стен здания – возникают деформации, способные создавать трещины в фундаменте и его постепенное разрушение.

Открытие или открытие отверстия может быть выполнено только после перемычки. Это решение позволит избежать многих проблем, связанных с дождем и снегом. Однако, если вы имеете дело с глубоким подвалом, вам нужно углубить окна ниже уровня земли. Это связано с необходимостью создания оконных люков, которые могут быть выгравированы из сплошного кирпича, выполненного из железобетона или готового пластика. Важно, чтобы дно люков находилось как минимум на 15 см ниже подоконников и имели большое падение.

Кроме того, каждая скважина должна иметь дренаж дренажа дождевой воды на выходе, например, в дренажную скважину или дренажную канаву. Также хорошо устанавливать нагревательные кабели в таком выходе, чтобы обеспечить свободный дренаж воды из скважины даже в зимний период. Накройте колодец металлической сеткой, которая не только защитит безопасность прохожих, но также защитит колодец от падающих листьев и мусора.

Как видим, условий для разрушения фундамента – более чем достаточно. И наша цель, предотвратить его, уже на этапе строительства. Наиболее эффективной мерой, позволяющей обезопасить ваш фундамент от разрушений в ходе эксплуатации – является армирование фундамента
. При этом в «тело» фундамента закладывается каркас из металлической арматуры. Более пластичная и упругая, по сравнению с бетоном, сталь арматуры – принимает на себя часть разрушительной нагрузки и препятствует возникновению трещин.

Вам также необходимо различать такие вещи, как возможность согревания комнаты, обеспечение ее дополнительным отоплением и, прежде всего, функционирование канализации, отток которой из здания теперь может оказаться выше новых санитарных пунктов. В таких случаях вам нужно будет установить насосную станцию. Для одного семейного дома достаточно небольшого и относительно недорогого устройства. Он может быть подключен к унитазу, стиральной машине, умывальнику, ванной. Обычно это устройство оснащено крыльчаткой рабочего колеса.

Самое главное, однако, будет решение метода углубления фундамента. Конечно, решающим моментом в этом случае должен быть дизайнер здания, если он все еще может его найти, или инженер, специализирующийся на строительстве. Если мы не проконсультируем специалиста, но мы решили углубить подвал, самым простым и безопасным способом является удаление верхнего слоя пола и углубление подвала до глубины верхнего края подставки. Мы уверены, что консолидированное заземление между фундаментом, которое является типом стойки, которая препятствует перемещению стен в здание, не будет затронута.

Виды арматуры для фундамента

Итак, мы выяснили, что самой прочной конструкцией фундамента – будет конструкция с использованием арматуры. Если вы решили производить армирование фундамента своими руками
, в первую очередь необходимо определить класс и подходящий диаметр арматурных прутков. При строительстве фундамента, используется только специальные прутья, имеющие ребристую поверхность – это обеспечивает наилучший контакт стальных прутьев с бетоном. Совершенно ясно, что диаметр арматуры – во многом будет определять прочность будущей конструкции; поэтому выбирать ее толщину, следует исходя из предполагаемой нагрузки и типа грунтов. При армировании фундамента, арматура тоньше 10-ти мм, как правило, не используется

Однако это не всегда достаточная глубина, и раскопки должны быть сделаны на дне основания. Однако в этом случае необходимо сначала спроектировать и сделать стойки, несущие нагрузку от давления грунта на стены и опоры. Такая плита может представлять собой железобетонную плиту, залитую между скамейками или достаточно прочной стальной конструкцией. Однако в этом втором решении есть недостаток, заключающийся в том, что стальная конструкция должна быть покрыта вдоль стенок фундамента, что связано с необходимостью утолщения стены или созданием дефекта, который затем должен быть покрыт мебелью.

Если вы собрались строить деревянный дом на устойчивом грунте, в этом случае вполне подойдет арматура имеющая диаметр 10мм. Если дом тяжелый и строится на слабом грунте – арматура потребуется более толстая (14 – 16 мм.). Данные требования, применимы в основном к продольным, верхним и нижним элементам арматурной сетки. Поперечные, вертикальные и горизонтальные, связывающие прутья – в основном не попадают под действие больших нагрузок и используются исключительно как вспомогательные элементы для создания каркаса; а поэтому, могут иметь меньшую толщину и гладкую поверхность.

В зависимости от метода углубления фундамента и условий грунтовых вод необходимо будет создать новую прочную или водонепроницаемую изоляцию. Как правило, используется тепловое уплотнение, так как его легко сочетать с горизонтальной изоляцией под стенами фундамента, которая чаще всего используется в качестве смоляной бумаги. Также стоит уложить теплоизоляцию пола на землю. Эффективность гидроизоляции внутри стены будет зависеть в первую очередь от уровня давления воды, типа материала, из которого были построены стены подвала, способа изоляции.

Арматура для фундамента, при правильном расположении – представляет собой прочный каркас, из 4-х продольных и множества поперечных прутьев. Особого внимания, заслуживает создание каркаса, в угловых частях фундамента. Именно здесь могут возникать самые высокие нагрузки на фундамент, поэтому целостность арматурных прутьев в этом месте – играет очень важную роль. Продольные прутья, не следует разрезать, в местах поворота ленты фундамента. Арматура для фундамента легко сгибается, и поэтому угол каркаса – должен выполняться именно гнутыми, продольными прутками арматуры. Это всего лишь полезная рекомендация, но ее применение на практике – будет весьма кстати.

В то время, когда вы производите армирование фундамента своими руками, все прутья будущего каркаса – следует прочно соединить между собой. Это можно сделать двумя способами: с помощью сварки и вязальной проволоки. В большинстве случаев используется электрическая сварка, но существует мнение, что температурный нагрев – способен ослабить прочность конструкции. Поэтому, вам решать – каким образом вы будете скреплять металлические элементы каркаса.

Ленточный фундамент и его армирование

Армирование ленточного фундамента, производится одновременно с монтажом опалубки. Высота ленточного фундамента, может быть значительно больше его ширины. Следовательно, он не сильно подвержен горизонтальному прогибу (например, по сравнению с плиточным фундаментом) – что оказывает влияние на толщину используемой арматуры. По этой причине, арматура для ленточного фундамента, используется с минимально допустимой толщиной в 10 мм и редко – более толстая.

Армирование ленточного фундамента, предполагает создание 2-х арматурных поясов (верхнего и нижнего), их количество не зависит от высоты фундамента. Для фундамента шириной 40см, вполне будет достаточно четырех продольных прутков арматуры (2 верхних и 2 нижних). На подвижных и сыпучих грунтах, в каждый арматурный пояс, добавляется до четырех продольных прутьев; в остальных случаях, такое усиление является нецелесообразным и только увеличивает стоимость фундамента.

Для строительства дома, имеющего размер 6 х 6 метров, с внутренней 6-ти метровой несущей стеной – понадобится соорудить фундамент, общая длинна которого составит 30 метров. Расход продольной, ребристой арматуры в этом случае, составит ровно 120 метров. Вертикальные и продольные прутья для связки, устанавливаются с интервалом, не менее 0,5 м. При ширине ленты фундамента 40 см и ее высоте 70 см, на каждое поперечное соединение, понадобится 1,6 метров гладкой арматуры (ее можно использовать более тонкого диаметра – например, 6 мм). Все данные взяты с учетом того, что продольные прутья отстоят от поверхности фундамента, на 5 см с каждой стороны, то есть внешние размеры металлического каркаса – несколько меньше размеров всей ленты фундамента.

Если для связки вы решили использовать вязальную проволоку, то на каждое поперечное соединение, состоящее из четырех прутьев, понадобится около 30 см вязальной проволоки. Зная это, не трудно вычислить ее полный расход (для нашего примера, понадобится 72 метра).

Монолитный фундамент и его армирование

Армирование монолитного фундамента, точнее его сложность состоит в том, что такой фундамент может иметь несколько частей – например, плитную и ленточную, а их каркас при этом должен представлять собой единое целое. Диаметр всех рабочих стержней арматуры – не должен быть менее 10 мм.

Армирование монолитного фундамента, состоящего из нескольких горизонтальных сеток, в частности его плиточной части – производится отдельными, взаимно перпендикулярными стержнями. Расстояние между прутами арматуры, не должно быть менее 10 см и более 20 см. Внутренние пересечения стержней в такой конструкции, фиксируются электродуговой сваркой или вязальной проволокой, в шахматном порядке. А два крайних ряда арматурных прутов, полностью соединяются по всему периметру.

Для заделки всевозможных монолитных, железобетонных стоек в такой вид фундамента, из конструкции последних – производятся выпуски арматуры, с дальнейшим присоединением к основному каркасу. Рассчитать количество материала для монолитного фундамента – будет несложно, зная его размеры.

Правила армирования

Правила армирования

Для продольного и поперечного армирования ленточного фундамента используется арматура класса A-III (A400) или А500. Для вспомогательного поперечного армирования (изготовления хомутов), помимо А400 и А500, может использоваться стержневая горячекатаная гладкая арматура класса A-I (А240), А-II, проволока (гладкая арматура) класса Вр-I. Продольные рабочие стрежни арматуры ленточного фундамента воспринимают совместно с бетоном основные нагрузки растяжения и сжатия, действующие вдоль продольной оси фундамента.  

   Кроме продольных стержней при армировании лент фундамент может устанавливаться поперечная арматура (хомуты) из расчета на восприятие нагрузок, действующих вдоль поперечной оси фундамента. Хомуты устанавливаются в ленту при её высоте более 15см.  Также поперечная арматура служит для ограничения развития трещин в бетоне, для удержания продольных стержней в проектном положении, и для закрепления от их бокового выпучивания при воздействии сжимающих нагрузок. В случае сжимающих нагрузок хомуты  следует устанавливать с шагом не более 15 диаметров сжатой продольной арматуры и не более 50 см, а конструкция хомутов должна обеспесивать отсутствие выпучивания продольной арматуры в любом направлении. Поперечная арматура устанавливается у всех поверхностей фундамента, вблизи которых устанавливается продольная арматура. Закрепление поперечной арматуры производят путем ее загиба и охвата продольной рабочей арматуры. 
 Также в фундаменте может использоваться конструктивная арматура, устанавливаемая  для восприятия непредусмотренных усилий, таких как усилия от усадки бетона или температурных деформаций. В частности, для фундаментных лент высотой сечения более 70 см рекомендуется установка дополнительной продольной  конструктивной арматуры на каждые  40 см  высоты ленты. По возможности арматуру следует монтировать укрупненными или пространственными заранее изготовленными элементами, по возможности сокращая объем применения отдельных стержней.

Процент армирования

   Существует некий допустимый диапазон армирования, определённый Сводом Норм и Правил (Пункт 7.3.5 СНиП 52-01-2003 «Бетонные и железобетонные конструкции»), который является одним из определяющих факторов выбора пространственной схемы армирования и может повлиять на выбор сечения ленты фундамента. Этот параметр лежит в диапазоне от 0,3 до 3% для балок, и не менее 0,1% для фундаментов. При армировании ленточных фундаментов, служащих опорой под колонны (например, при строительстве монолитного железобетонного каркаса здания) площадь сечения продольной арматуры для ребра Т-образного ленточного фундамента предусматривают с процентом армирования не менее 0,4% в каждом ряду. Это относительное содержание продольной рабочей арматуры в бетонном элементе от площади рабочего сечения этого элемента. Например, если у вас лента сечением 300х400мм, то площадь S сечения 300*400=120 000 мм.кв. Минимальное сечение арматуры составит 120 мм.кв., или 4 прута арматуры диаметром 8 мм (или 2 прута диаметром 10мм). Максимум можно заложить 10 прутов диаметром 22мм! Меньшее количество арматуры незначительно укрепит бетон и практически будет равно просто силе бетона на разрыв, но и больше 3% арматуры тоже не хорошо — арматуры будет столько, что она не успеет включится в работу, как бетон уже будет разрушен возникшей нагрузкой. Если расчёт приведёт вас к проценту армирования более 3%, нужно задуматься над увеличением сечения бетонного элемента. Сечение арматуры нетрудно посчитать, но для облегчения и визуализации я составил табличку сечений при разных количествах прутов арматуры:

Еще один пример из расчёта своего ростверка: У меня было рассчитано сечение ленты-ростверка как 22х30см, Это 66000 мм.кв. Расчёт армирования привёл меня к 6 прутам арматуры диаметром 12мм (3 снизу и 3 сверху) — это 678 мм.кв. арматуры. Посчитаем процент армирования: 678*100/66000=1,027% — он вписывается в допустимый диапазон от 0,1% до 3%, а значит выбранное соотношение между сечением бетона и армированием находится в «равновесии», количество арматуры и бетона экономически и расчётно обосновано. Подошло бы и 5 прутов по 12мм (565*100/66000=0,856%), расчёт по нагрузкам давал 45% запаса по прочности, однако я решил немного перестраховаться заложив 6-й прут и получил 90% запаса.

Диаметр арматуры

   Помимо минимального процента армирования существуют и требования по минимальному диаметру арматуры. Например, для продольной рабочей арматуры нельзя использовать арматуру диаметром менее 10мм. Продольную рабочую арматуру рекомендуется назначать из стержней одинакового диаметра. Если же применяются стержни разных диаметров, то стержни большего диаметра следует размещать внизу ленты фундамента,  в углах сечения ленты фундамента и в местах перегиба хомутов через рабочую арматуру. Стержни продольной рабочей арматуры должны размещаться равномерно по ширине сечения ленты фундамента. При этом размещение стержней арматуры верхнего ряда над просветами между арматурой нижнего ряда запрещается [пункт 3.94 Руководства по конструированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения, Москва, 1978]. При этом как в сварных, так и в вязаных каркасах диаметр продольных стержней должен быть не менее диаметра поперечных стержней арматуры. Максимальный диаметр сжатых стержней (для верхнего ряда) вряд-ли будет достигнут частными домостроителями, но для справки, он не должен быть более 40мм. Для удобства я собрал эти требования в нижеследующей табличке:

Минимальное количество стрежней продольной рабочей арматуры в одном ряду

     В балках и ребрах шириной более 15 см число продольных рабочих растянутых стержней в поперечном сечении должно быть не менее двух. При ширине элемента 15 см и менее допускается устанавливать в поперечном сечении один продольный стержень. При этом устройство ленточных фундаментов шириной менее 15 см не допускается.

Максимальное количество стержней продольной арматуры в одном ряду и минимальное расстояние между стержнями арматуры

   Максимальное количество стержней в одном ряду в поперечном сечении монолитной бетонной балки определяется минимальным расстоянием в свету между отдельными стержнями продольной арматуры. Это минимальное  расстояние определено необходимостью свободного протекания бетонной смеси в тело ленты между стержнями арматуры фундамента при заливке бетона, возможностью его уплотнения и хорошей связи бетона с арматурой для совместной работы под нагрузкой. Минимальные расстояния между стрежнями продольной арматуры определены в пункте 7.3.4 СНиП 52-01-2003  “Бетонные и железобетонные конструкции”. Минимальное расстояние между стержнями продольной арматуры не может быть меньше наибольшего диаметра стержней арматуры и не менее 25 мм для нижнего ряда арматуры и 30 мм — для арматуры верхнего ряда при двух рядах армирования. При трех рядах армирования расстояние между стрежнями арматуры в верхнем ряду должно составить не менее 50 мм. При большом насыщении арматурой должны быть предусмотрены отдельные места с расстоянием между стержнями арматуры в 60 мм для прохождения между арматурными стержнями наконечников глубинных вибраторов, уплотняющих бетонную смесь. Расстояния между такими местами должны быть не более 500мм. Например, имеем ленту фундамента сечением 40х30см с двумя рядами арматуры. Создаются следующие ограничения: 1 — защитный слой бетона по 40мм с каждой стороны; 2 — минимальный диаметр арматуры 10мм; 3 — минимальное расстояние между арматурой 30мм. Итого, соблюдая все ограничения, получается возможным разместить по 6 рядов арматуры, при этом в верхнем ряду нужно один прут исключить для прохождения наконечника вибратора. Допустим, если бы высота ленты была 100 см, то возникает необходимость использовать три ряда арматуры, а это увеличивает минимальное расстояние между арматурой до 50 мм. В этом случае в одном ряду умещается не более 4 прутов арматуры.

Количество рядов арматуры

   В обычных условиях для индивидуальных домов в фундаменте достаточно двух рядов арматуры. Нижний, в большей степени работающий на растяжение и верхний, работающий на сжатие, если не возникнут выталкивающие силы грунтов. При высоте ленты до 70 см средних рядов арматуры делать не нужно, т.к. она там не работает, там не возникает ни растяжений, ни сжатий (если только не аварийная ситуация). Дополнительное  продольное армирование может понадобиться, если высота фундаментной ленты превышает 70 см. В этом случае лента фундамента рассматривается как балка, которой требуется конструктивное армирование. Стержни арматуры при конструктивном армировании не у граней балки (в середине ширины балки) не требуются. Они должны ставиться тлько у боковых поверхностей балок высотой поперечного сечения более 70 см. Расстояние между конструктивными стрежнями арматуры по высоте должно быть не более 40 см.

    Площадь сечения таких арматурных стрежней определяется не менее 0,1 % площади сечения бетона, но не от всей площади сечения балки, а от площади, образуемой расстоянием между этими стержнями и половиной ширины балки, но не менее чем 20 см. Например, при расстоянии между рядами арматуры по вертикали в 40 см и ширине ленты 30 см, определяемая минимальная площадь сечения арматуры будет отсчитываться от площади в 400 мм x 300 мм /2 =60 000 мм2 х 0,001=60 мм2 . Эти арматурные стержни должны соединяться хомутами или шпильками диаметром 6 — 8 мм из арматуры класса A-I с шагом 50 см по длине ленты фундамента.

Максимальный шаг между продольными стержнями арматуры

Максимальный шаг установки поперечной арматуры

Толщина бетонного защитного слоя арматуры

   Защитный слой бетона, то есть расстояние от поверхности арматуры до соответствующей грани фундаментной ленты, предназначен для обеспечения совместной работы арматуры с бетоном, для закрепления (анкеровки) арматуры в бетоне и возможности устройства соединения арматуры. Также защитный слой бетона предохраняет арматуру от воздействия факторов окружающей среды, конструкций, в том числе и от огня.  Толщина защитного слоя бетона зависит от типа конструкции и роли арматуры в ней, ее диаметра и условий окружающей среды.

   Для продольной рабочей арматуры толщина защитного слоя должна быть, как правило, не менее диаметра стержня и не менее: 30 мм — для фундаментных балок и сборных фундаментов; 35 мм — для монолитных фундаментов при наличии бетонной подготовки; 70 мм — для монолитных фундаментов при отсутствии бетонной подготовки. При использовании бетонной подготовки (или на скальном грунте) – толщина бетонного защитного слоя снижается в отечественных нормах до 40 мм, а в американских до 25мм. Для сборных элементов минимальные значения толщины защитного слоя бетона рабочей арматуры уменьшают на 5 мм. Для конструктивной арматуры минимальные значения толщины защитного слоя бетона принимают на 5 мм меньше по сравнению с требуемыми для рабочей арматуры. Во всех случаях толщину защитного слоя бетона следует также принимать не менее диаметра стержня арматуры.
    По требованиям ACI 318-05  защитный слой бетона на уличную строну для арматуры до 20 мм составляет 25 — 40 мм. Для диаметра арматуры толще 20 мм — 50 мм. Защитный слой для арматуры диаметром до 40 мм на стороне не подверженной действию природных факторов составляет 20 мм. По отечественным нормам защитный слой бетона с обеих сторон составляет 40 мм. Требуемую величину защитного слоя нижней арматуры и проектное положение арматуры в процессе бетонирования можно установить с помощью пластиковых фиксаторов, подкладок из бетона и  путем конструирования арматурного каркаса таким образом, чтобы некоторые стержни упирались в опалубку, фиксируя положение каркаса. Нижний защитный слой можно установить, закладывая под нижние стержни арматуры заранее изготовленные бетонные прокладки (сухари) размером 100×100 мм и толщиной, равной требуемой толщине защитного слоя. Применение прокладок из обрезков арматуры, деревянных брусков и щебня запрещается. Также для задания толщины защитного можно использовать пластиковые фиксаторы — спейсеры требуемого стандартного размера. Фиксаторы для арматуры выпускаются в размерах от 15 до 50 мм с шагом размера 5 мм.
Толщина защитного слоя для поперечной арматуры бетонных элементов сечением меньше 25 см составляет 1 см, а для элементов сечением более 25 см – 1,5 см.

Требования к поверхности арматуры

    Арматуру следует монтировать укрупненными или пространственными заранее изготовленными элементами, по возможности сокращая объем применения отдельных стержней. С бетонной подготовки (подушки) в местах установки арматуры должны быть удалены мусор, грязь, снег и лед. Стержни арматуры должны быть обезжирены, очищены от любого неметаллического покрытия, краски, грязи, льда и снега, отслаивающегося налета ржавчины. Удаляется отслаивающаяся ржавчина с помощью металлической щетки. Разрешается наличие эпоксидного покрытия на арматуре. Существует мнение некоторых строителей — поливать водой арматуру за несколько дней перед укладкой, чтобы она заржавела и к ней сильнее прилипал бетон. В официальных комментариях к нормам указано: Обычная поверхностная неотслаивающаяся ржавчина усиливает силу сцепления арматуры с бетоном. Ржавая поверхность лучше склеивается с цементным гелем в составе бетона. Но отслаивающуюся ржавчину требуется удалить. Арматура периодического профиля имеет в 2-3 раза большее сопротивление выдергиванию, чем гладкая арматура. А арматура с гладкой полированной поверхностью держится в бетоне еще в 5 раз слабее.

Сварка или вязка арматуры

    Идеальным армированием фундамента является армирование сплошным безразрывным контуром арматуры. Однако, такое безразрывное армирование может быть получено только с использованием сварки или с использованием специальных резьбовых соединителей. В строительстве фундаментов часто применяют арматуру класса А-III А400 — такую арматуру сваривать недопустимо, она сильно теряет в прочности при нагревании. Сваривать можно только арматуру c литерой «С» в маркировке, например А500С.  Длина сварного шва для такой арматуры должна быть не менее 10 диаметров. Т.е. если арматура диаметром 12мм, то шов должен быть не менее 120мм. При этом отечественные нормы разрешают дуговую электросварку перекрестий арматуры только не менее 25 мм диаметром.

   Соединение арматуры нахлестом – самый распространенный вариант в дачном строительстве  из-за своей очевидной простоты исполнения. Однако есть ряд требований, которые необходимо выполнить, чтобы обеспечить правильную работу соединяемой арматуры. Соединение арматуры нахлестом допустимо для арматуры диаметром до 36 мм. Это ограничение связано с отсутствием экспериментальных данных по соединениям нахлестом для арматуры больших диаметров. Соединение арматуры не должно размещаться в местах концентрированного приложения нагрузки и местах наибольшего напряжения. Соединение арматуры нахлестом может производиться:

  • Со связкой стержней вязальной проволокой. В этом случае расстояние между прутами обусловлено лишь высотой выступов периодического профиля и может приниматься равным нулю.

  • Без связки. В случае свободного соединения с нахлестом расстояние между стыкуемыми нахлестом стержнями арматуры по вертикали и горизонтали должно быть не менее 25 мм или 1 диаметр арматуры, если диаметр арматуры больше 25 мм,  для обеспечения свободного проникновения бетона. Максимальное расстояние по ширине ленты фундамента между стыкуемыми свободным нахлестом стержнями должно быть не более 8 диаметров стержней арматуры. В нормативах ACI 318-05 рекомендуется делать свободные (не связанные) соединения стержней арматуры  в предварительно не напряженных конструкциях. Это объясняется тем, что при свободном соединении бетон охватывает все стороны каждого арматурного стержня и фиксирует стержень арматуры надежнее, чем при обхвате неполной окружности стержня при связке его проволокой с соседним стержнем.

  • Механическим способом.  C точки зрения экономии (перерасход арматуры на нахлесты до 27%), и безопасности здания (ограничение объема бетона в месте стыков), арматуру диаметром свыше 25 мм рекомендуется соединять механическим способом (винтовые муфты или опрессованые соединения).

  Соседние соединения арматуры по длине должны быть разнесены в разбежку так, чтобы в одном сечении одновременно соединялось не более 50% арматуры. минимальное расстояние между стыками арматуры по длине составляет 61 см. Не более половины всех стержней в одном расчетном сечении элемента фундаментной ленты могут иметь соединения. Стыкование отдельных стержней арматуры и сварных сеток без разбежки допускается при использовании арматуры для конструктивного (нерабочего) армирования.

  Нормы для анкеровки арматуры, работающей как на растяжение, так и на сжатие предусматривают нахлест стержней в 50 диаметров этих стержней, но не менее 30 см. Однако, величина нахлеста зависит и от класса (марки бетона: если для бетона класса В15 (M200) минимальный нахлест составляет  50d (диаметров арматуры), то при использовании бетона класса  В20 (M250), нахлест можно уменьшить до 40d. Для бетона класса В25 (M300) минимальный нахлест равен 35d. Для арматуры А-I и А-II минимальный нахлест равен 40d.

В общем, в двух словах: 1 — арматуру лучше вязать, чем варить, 2 — нахлёсты лучше не связывать, а оставлять между прутами расстояние около 25мм.

Наблюдения

  Только соблюдая все эти ограничения и рекомендации можно сказать, что вы получите достаточное для большинства случаев армирование без дополнительных расчётов! Жизненные наблюдения показывают, что обычно люди льют столько бетона в фундамены, что если бы они их так же основательно армировали, то можно было бы на их фундаментах строить многоэтажки (правда, несущая способность грунтов обычно никак не учитывается). В большинстве случаев застройщики стремятся к самому минимальному проценту армирования, поскольку бетона у них такое количество, что даже 0,1% арматуры выглядит внушительно.  

Основные нарушения правил армирования

  •   Некоторые строители армируют углы ленточных фундаментов и примыканий лент с помощью перекрестий стрежневой арматуры. Такой способ является грубейшим нарушением типовых схем армирования углов и примыканий, ослабляющих конструкцию, который может привести к расслоению бетона. Не смотря на именно такую рекомендацию автора технологии ТИСЭ Яковлева я считаю это совершенно неприемлемым способом.

  •    Арматуру класса А-III можно гнуть в холодном состоянии на угол до 90° по диаметру изгиба с оправкой радиусом равным пяти диаметром сгибаемой арматуры без потери прочности. При загибе арматуры на 180 градусов прочность арматуры снижается на 10%. По американским нормам диаметр оправки  для арматуры номинальным диаметром до 26 мм сгибается по диаметру равному шести диаметрам сгибаемой арматуры, а арматура диаметром 28-36 мм сгибается по восьмикратному диаметру. При этом свободный загибаемый конец арматуры должен быть не короче 12 диаметров стержня арматуры. Нельзя сгибать арматуру, один конец которой уже замоноличен в бетон.  

  •    Практикуется как минимум два широко распространенных недопустимых приема гибки арматуры.  Если заказчик требует от рабочих сгибать арматуру для армирования углов и примыканий фундаментной ленты (как и положено), а не класть ее перекрестиями, то рабочие, ленясь, либо нагревают место сгиба автогеном, на костре или паяльной лампой, либо надпиливают место сгиба арматуры болгаркой. Понятно, что оба способа значительно ослабляют стрежни арматуры, что может привести к разрушению их целостности под  нагрузкой. Требование (пункт 7.3.1 ACI 318-08) гласит: Все виды арматуры должны сгибаться в холодном состоянии, если иное не предписано проектировщиком.

  • Некоторые строители считают, что в качестве рабочей арматуры можно использовать любой металл любой конфигурации: трубы, алюминиевые изделия, плоские листы, отходы от промышленной вырубки деталей, сетку рабицу, проволоку и т.п. Все эти материалы не обладают требуемыми характеристиками, чтобы адекватно воспринять нагрузки на сжатие или растяжение, и не предохраняют бетон от деформаций и образования трещин. Армирование рельсами также не рекомендуется из-за низкого сцепления бетона с гладкой поверхностью металла.  Включение в состав бетона алюминия приводит к химическим реакциям, разрушающим бетон. 

Схема армирования ленточного фундамента — Всё про бетон

Армирование – это строительный процесс, который используется с целью усиления стойкости конструкции и повышения периода ее эксплуатации. Он представляет собой формирование сборного скелета, выступающего как защитный компонент, который противостоит воздействию почвы на стенки конструкции.

Чтобы добиться максимального результата следует четко рассчитать, сколько необходимо арматуры, а также точно провести армирование фундамента здания.

Правильное армирование ленточного фундамента своими руками

В основании фундамента первостепенным компонентом выступает бетонная смесь, сформированная из цемента, просеянного песка и чистой воды. Поскольку этот раствор не обладает достаточными физическими характеристиками, способными предоставить гарантию на отсутствие разнотипных деформаций в фундаменте конструкции, дополнительно используют металл.

Он позволяет увеличить степень противостояния сдвигам основания, резким изменениям температур и иным отрицательно воздействующим факторам. Сам по себе металл пластичен, но он способен обеспечить достойную фиксацию, поэтому армирование – важный и необходимый процесс во всем комплексе строительства.

Армирование следует проводить лишь в местах, где существует большая степень уязвимости к растяжениям. Чаще всего оно встречается на поверхности, поэтому следует в обязательном порядке армировать верхний уровень основания. В целях избежания коррозии материала, следует его защитить слоем бетонного раствора.

Допустимый показатель расстояния арматурного пояса от поверхности должен составлять около 5 см.

Зоны возможной деформации:

  • нижняя часть, когда наблюдается прогибание его середины вниз;
  • верхняя часть – выгибание каркаса вверх.

Для среднего уровня основания армирование проводить необязательно, поскольку в этой зоне практически не существует растягивания.

Учитывая возможные варианты деформации, следует обязательно выполнить армирование низа и верха, используя арматуру с ребристой поверхностью и диаметром в пределах 10–12 мм. В подобном варианте наблюдается наиболее тесный контакт с бетонным раствором. Иные элементы скелета могут быть небольшого диаметра и иметь сглаженную поверхность.

Если проводится армирование фундамента с шириной до 40 см, используются 4 прута арматуры диаметром 10–16 мм, которые соединены в каркас с диаметром 8 мм.

Ленточный тип основания большой длины имеет сравнительно незначительную ширину, из-за чего в нем могут присутствовать только продольные растяжения без поперечных. Поэтому в данной ситуации лучше всего использовать гладкие и тонкие прутья для формирования каркаса, а не для принятия на основание больших нагрузок.

Больше всего следует уделять внимание при армировании углов, поскольку во многих случаях деформации происходят именно в этой части конструкции. Армирование углов конструкции необходимо проводить так, чтобы один из концов согнутого металла уходил в одну стену, а другой – в иную. Поскольку не каждый материал арматуры поддается сварке, скреплять элементы между собой лучше, используя проволоку.

Правила верного армирования фундамента ленточного типа:

  1. Работа начинается с установления опалубки, которая с внутренней стороны обкладывается пергаментом. Данная процедура в дальнейшем позволяет быстрее разобрать созданную конструкцию.
  2. Затем следует вбить арматурные прутья в грунт траншеи на расстоянии 5 см от опалубки и с шагом в 40–60 см. Длина прутьев должна быть равной глубине фундамента.
  3. На дно траншеи укладывается подставка размером в 8–10 см, а поверх нее формируется 2 или 3 нитки ряда арматуры. Как подставку можно применить обыкновенный кирпич, уложенный на ребро.
  4. Верхний и нижний пояс из арматуры с поперечными соединениями прикрепляется к вертикальным стержням.
  5. В местах, где происходит пересечение элементов, необходимо проводить крепление проволокой или сваркой.

Обязательно соблюдайте расстояние до будущей поверхности фундамента, для этого можно использовать кирпичи.

  1. Установив арматуру, следует сделать вентиляционные отверстия и провести заливку бетона.

Наличие вентиляционных дыр и отверстий увеличивает амортизационные показатели и предотвращает возникновение гнили.

Идеальным вариантом считается использование схемы для ленточного фундамента, состоящей из примитивных геометрических фигур, таких как квадрат или прямоугольник, тогда каркас проще смонтировать правильно, а фундамент в результате получается более надежным и крепким.

Основные ошибки армирования ленточного фундамента

Самые известные и часто допускаемые ошибки:

  1. Углы. Главная проблема и ошибка уложить стержни угла крест-накрест. Из-за подобной укладки в фундаменте очень часто возникают трещины. 
  2. Гидроизоляционный материал. Очень часто при создании опалубки забывают об использовании гидроизоляции, вследствие чего вода вымывает цемент и делает бетон менее устойчивым и прочным. Также это способствует возникновению усадочных трещин. Слой гидроизоляции следует очень хорошо и тщательно прикрепить к опалубке, чтобы устранить формирование нежелательных складок и впадин в фундаменте.
  3. Заливка бетона. Заполнение ленточного фундамента бетонной смесью по высоте очень часто не доходит до краев, а долив, проводят лишь через пару дней. Технология подобного типа уже не являет собой конструкцию из монолита, она похожа на две обыкновенные балки с однослойным армированием, которые объединяет между собой скрепление слоев бетонной смеси и поперечной арматуры. Заливка бетона при создании фундамента должна быть беспрерывной, а максимально допустимый интервал для перерыва должен быть не более двух часов.
  4. Вентиляция. Огромную ошибку совершают при установке и в процессе эксплуатации продухов необходимых для вентиляции холодного подполья. Они выполняются из труб диаметром 10 см. Самая минимальная площадь, требуемая для продуха, должна быть около 0,05 м2 (приблизительно 20х25 см).

Запрещается закрывать продухи на зиму, поскольку это приводит к отсутствию вентиляции и загниванию конструкции.

Зачем нужна арматура в ленточном фундаменте?

Со временем у любого дома возникает просадка, поскольку грунт, находящийся под подошвой основания, поддается давлению сверху и уплотняется. Чем больше давления на него оказывают, тем сильнее и быстрее он уплотняется. Если возникающий напор распределен равномерно по всей площади ленточного фундамента, то в этом нет особой проблемы.

Как правило, в реальных условиях давление на основание не симметрично из-за чего здание оседает неравномерно. Чтобы избежать подобной проблемы в фундаменте применяются ленты различной ширины, но даже этот прием не всегда способствует устранению и уравнению давления на фундамент.

Неравномерному осадку фундамента способствует:

  1. Разнообразные включения грунтовой почвы.
  2. Неравномерная и непостоянная влажность.
  3. Различные достройки и пристройки.
  4. Протечка водонесущих коммуникаций.
  5. Отсутствие с какой-либо стороны отмостки и т. п.

Под влиянием указанных причин осадки, поверхность грунта под фундаментом становится кривой относительно вертикального направления здания. Больше всего подвержены воздействию углы конструкции и места с большими перепадами нагрузки.

В подобной ситуации в фундаментной ленте возникает внутренне напряжение, которое способствует возникновению изгибающихся моментов и трещин. Чтобы устранить нежелательное давление на основание, снизить количество трещин и изгибов внутрь фундамента добавляют арматуру.

Какая арматура нужна для фундамента?

Существует два варианта, используемой в строительстве арматуры:

  1. Стальная, которая подразделяется на:
    • стержневую;
    • проволочную.
  2. Композитная арматура. Она применяется сравнительно редко из-за характерных для нее минусов.

Чтобы армировать фундамент ленточного типа используют стержневую арматуру в качестве основного (рабочего) материала и гладкую как дополнительного.

Главное свойство для рабочей арматуры способность быстро и хорошо сцепляться с бетоном. Подобный тип арматуры производят с периодическим профилем, подразделяя его по показателям прочности на классы.

Согласно ГОСТу, существовавшему в период СССР, для частного типа строительства применяется арматура класса А-ΙΙΙ или аналог А400 (по современному ГОСТу). Для поперечной арматуры используется гладкий стержень класса А-Ι или А240 (современный ГОСТ).

Между арматурой старого и современного образца существует отличие в виде измененного профиля серповидной формы, в остальных аспектах отличия отсутствуют.

Чтобы правильно выбрать арматуру для фундамента в магазине следует просто обратить внимание на обозначения:

  • Индекс С указывает на то, что арматурный прокат свариваемый;
  • Индекс К свидетельствует о том, что арматура обладает стойкостью к процессам коррозийного растрескивания, возникающих в связи с давлением на фундамент.

Если эти индексы отсутствуют на упаковке лучше не покупать такой подобный материал.

Конструктивные требования к ленточным фундаментам и их армированию

В связи с отсутствием возможности провести точный расчет диаметра для ленточного фундамента были разработаны специальные конструктивные требования к его армированию:

  1. У рабочих стержней должен быть диаметр минимум 12 мм. 
  2. Количество продольных прутьев должно быть минимум 4, а лучше 6.
  3. Продольные прутья соединяются между собой в пространственный каркас при помощи вязания проволоки или сваривания.
  4. Шаг для поперечного армирования должен быть 20–60 см, а диаметр арматуры 6–8 мм.
  5. Места с наиболее высоким уровнем возможной осадки, а также Т-образные пересечения требуют усиленного армирования с помощью арматурных лапок или вутов с диаметром равным тому, который используется для продольных стержней.
  6. Толщина ленточного типа основания, как правило, составляет около 30 см.

Сколько нужно арматуры для ленточного фундамента?

Для фундамента используется арматура с небольшим диаметром, например, для малоэтажного строительства употребляется арматура с диаметром 10–12 мм, несколько реже – 14 мм.

В независимости от высоты основания для армирования понадобится сделать два пояса из ребристой арматуры класса А3 на расстоянии 5 см от нижней и верхней части фундамента. Поперечные и вертикальные прутья могут быть выполнены из гладкого типа арматуры класса А1.

Для ширины фундамента около 40 см достаточно применить 4 продольных стержня арматуры, из которых два находится внизу и два вверху. Если ширина фундамента больше 40 см или строительство ведется на подвижных грунтах, следует применить больше стержней приблизительно 3 – 4 для верхнего и столько же для нижнего пояса.

Чтобы провести расчет количества необходимой арматуры существует два метода:

Самостоятельный подсчет

Пример. Длина фундамента под здание 6 на 10 м с двумя стенами будет равна 48 метрам (6+10+6+10+6+10=48м).

Если ширина основания 60 см, а армирование состоит из 6 продольных прутьев, то их длина составит 288 метров (6*48=248м).

Шаг между поперечными и вертикальными стержнями соблюдается в 0,5 м, ширина фундамента – 60 см, высота – 1,9 м, отступы стержней от каркаса по 5 см.

В этом случае длина гладкой арматуры с диаметром 6 мм на каждое соединение составляет 640 см или 6,4 м. ((60-5-5)*2+(190-5-5)*3=640 см), а соединений будет 97 штук (48/0,5+1=97 шт.), на них потребуется 620,8 метров арматуры (97*6,4=620,8м).

Для каждого соединения необходимо 6 пересечений для вязки арматуры и приблизительно 12 частей вязальной проволоки. На одну связку требуется 30 см проволоки. Исходя из этих данных, общий расход проволоки составит 349,2 м (0,3*12*97=349,2 м).

Использование коэффициента армирования

Для зданий с небольшой этажностью существует уже выведенный строителями показатель количества арматуры, который составляет 80 кг/м3

Пример. Если для фундамента необходимо 20 м3 бетонного раствора, значит, арматуры понадобится 20*80=1600 кг. Подсчет бетона делать несложно, необходимо лишь знать периметр дома, длину внутренних стен, задать высоту ленты 30 см и помножить ее на ширину.

Чтобы расчет был более экономным лучше всего сделать более точный подсчет необходимого количества арматуры, нарисовав схему армирования. А затем, просчитав погонаж на продольную и поперечную арматуру, вут, а также добавив к этому приблизительно 10 %, которые уйдут на обрезки, умножить полученный результат на вес погонного метра для каждого из используемых диаметров арматуры.

Армирование ленточного фундамента — вязать или варить?

Прутья из металла можно соединять между собой в каркас с помощью вязания или сваривания. Каждый вариант обладает своими положительными и отрицательными качествами.

Главным недостатком сваривания выступает, отсутствие возможности провести качественное поперечное соединение, используя ручной электрод. На заводах каркасы и сетки соединяют, применяя контактный, а не дуговой тип сварки.

В связи с этим очень часто наблюдаются недостаточно прочные соединения (непровар) или ослабление продольного стержня (подрез). Также большим недостатком сваривания является то, что не все материалы поддаются сварке, например, арматура класс А3 делается из стали марки 35ГС, которая не сваривается.

Также если учесть, что для сваривания необходим сам аппарат, наличие знаний, умение им пользоваться, а также расход электричества, то больше преимущества в строительстве отдают вязанию.

Вязание проводится с использованием проволоки диаметром 0,8–3 мм, а в качестве инструмента выступает специальный вязальный крючок. Единственным недостатком такого варианта соединения является высокая трудоемкость.

Какие материалы применяются для армирования?

Для армирования необходимы следующие материалы:

  1. Стальная либо композитная арматура, стержни которой выполненные из стеклопластика или металла.
  2. Зажимной инструмент (вязальный крючок).
  3. Стальная проволока (стяжные хомуты) для вязки. Для металла с индексом С, можно использовать сварку. В этом случае необходим сварочный аппарат.
  4. Ножовка по металлу и т. д.

Правильное армирование ленточного фундамента на долгие годы укрепит здание, снизит количество трещин в основании и на стенах, а также убережет конструкцию от осадки.

Армирование ленточного фундамента



Бетон – это основная составляющая ленточного фундамента. По своим свойствам он не имеет большую прочность и при малейшей сейсмической активности либо механическом воздействии даст трещину. Чтоб предотвратить разрушение самой главной части здания – фундамента, строители уже более двух веков используют технологию армирования бетона. Таким образом, с помощью арматурных прутьев создается основание с высокой прочностью и эластичностью. Довольно часто на фундамент воздействует неравномерная нагрузка, которая может объясняться разной структурой грунта либо существенным отличием массы определенных частей построенного здания. Под таким давлением верхняя часть фундамента сжимается, а нижняя растягивается. Армированный же слой противостоит этому растяжению, сохраняя прочность железобетонного изделия на протяжении 150 лет. Армирование ленточного фундамента производится в несколько этапов. Рассмотрим их более подробно.



Армирование фундамента арматурой



Для возведения ленточного фундамента используют арматурные прутья разных диаметров от 6-8 мм до 10-14 мм. Металлический каркас фундамента соединяется с помощью проволоки, данный процесс называется вязка арматуры. Чтоб правильно сделать расчет арматуры для фундамента необходимо учитывать следующие моменты:


  • Элементы каркаса, которые будут монтироваться горизонтально должны иметь максимальную прочность. Их диаметр выбирают с учетом качества грунта. Чем больше структура почвы отличатся по всему периметру, тем толще необходимо использовать металлические прутья. Чаще всего их диаметр колеблется в пределах 10-14 мм. Поверхность продольных прутьев должна иметь ребра для лучшей сцепки с бетоном. Для поперечных элементов можно использовать тоненькие и гладкие прутья (6-8мм). Они не подвергаются сильной нагрузке, при этом значительно меньше стоят.

  • Продольная арматура, которая укладывается по всему периметру фундамента, должна находиться на расстоянии 5 см от стен опалубки, дна траншеи, а так же от верхней части фундамента. Таким образом, бетон, покрывая все элементы каркаса, защитит их от коррозии.

  • Учитывая предыдущую рекомендацию, для ленты фундамента шириной 40 см необходимо использовать армированный каркас шириной 30 см. Высота его может колебаться в пределах 10-30 см (в зависимости от глубины траншеи, предполагаемой нагрузки и структуры почвы). Расстояние между поперечными элементами так же варьируется в пределах 10-30 см.


С глубиной траншеи не более 1,2 м используют три пары продольных прутьев. Соединяются они между собой двумя тонкими прутьями. Скрепление каркаса с помощью сварки не рекомендуется проводить, так как от воздействия высокой температуры металл теряет свою крепость. Для обвязки арматуры проволокой можно использовать специальный строительный крючок. Самым проблемным моментом при создании каркаса считаются углы. В предыдущей статье мы рассмотрели способы рытья котлованов.



Армирование углов



Углы ленточного фундамента подвергаются сильным нагрузкам.

При изготовлении каркаса в этих местах необходимо создать высокую прочность.

Обычное скрещение арматурных прутьев не создаст единой крепкой конструкции, что приведет к образованию трещин.

По правильной технологии армирования ленточного фундамента, прутья в угловых местах необходимо сгибать.


 


 



СНиП армирования фундаментов



Очень важно соблюдать все нюансы армирования ленточного фундамента. Это позволит построить долговечное здание с основанием, устойчивым к различным механическим нагрузкам, сейсмической активности и другим неблагоприятным факторам. Более детальную инструкцию армирования фундамента можно прочитать в специальном пособии к СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» и СНиП 2.02.01-83 «Основания зданий и сооружений». Конечно, там все описано техническим языком. Несмотря на это данная инструкция содержит всю необходимую информацию по строительству ленточного фундамента.



Видео об армировании ростверка





Вязка арматуры под ленточный фундамент

На основание здания воздействует не только его вес, но движение грунта, возникающее при сезонных изменениях. При замерзании почва расширяется и оказывает существенное давление на фундамент. Бетон недостаточно прочен и пластичен, чтобы выдержать такие нагрузки, поэтому выполняется армирование ленточного фундамента. Процесс включает создание металлического каркаса из прутков, который впоследствии заливается раствором.

Ленточный фундамент — особенности устройства

Ленточный вариант основания представляет собой железобетонный контур, проходящий под всеми несущими стенами. Его возводят на участках с различным грунтом, в том числе неоднородным, оказывающим неравномерную нагрузку на фундамент. Конструкция является оптимальным вариантом при планировании подвального помещения.

Использование для заливки одного бетона приведет к растрескиванию в зонах растяжения. Заложенная в конструкцию арматура имеет достаточную упругость, чтобы предотвратить деформацию.

Какой материал используют для создания каркаса?

В процессе подготовки к строительству необходимо решить, какая арматура нужна для ленточного фундамента. Материал для укрепления основания здания должен соответствовать следующим требованиям:

  • высокое нормативное сопротивление;
  • пластичность;
  • долговечность;
  • стойкость к высокой и низкой температуре;
  • способность к сцеплению с бетоном;
  • устойчивость к коррозии.

Продукция металлопроката в виде круглых прутков с гладкой или рифленой поверхностью — оптимальный вид материала для армирования фундамента. Периодичный профиль, выполненный под определенным углом, овивает изделие и способствует лучшей адгезии с бетоном. Именно такой вид металлопроката применяется для формирования продольных составляющих каркаса. Для обеспечения пространственной связи в поперечном и вертикальном направлении каркаса можно использовать гладкий пруток.  В каталоге цветного металлопроката можно выбрать подходящий для Вас.

Диаметр арматуры зависит от предполагаемой нагрузки, минимальный составляет 8 мм, а максимальный 16 мм. Легкая постройка на устойчивом грунте не требует массивного основания, значит, для армирования подойдет пруток 8-10 мм. Возведение опоры здания на пучистом участке требует использования стержней диаметром 14-16 мм.

Альтернативой стальной арматуры стали композитные изделия. Они прочнее, дешевле, не поддаются коррозии и действию химических веществ.

Несмотря на положительные характеристики, материал недостаточно изучен, поэтому стекловолоконную арматуру используют для ленточного фундамента очень редко.

Как рассчитать необходимое количество арматуры?

Соединение бетона и металла создает конструкцию, способную выдержать высокие динамические нагрузки. Особенностью ленточного основания является существенная длина при небольшой ширине, около 40 см. Такая конструкция получает значительную нагрузку в продольном направлении. На этом участке устанавливаются рифленые прутки сечением не менее 10 мм. При самостоятельном строительстве фундамента потребуется выполнить расчет арматуры.

Проведение вычислений потребует значения нескольких параметров:

  • ширина и длина здания;
  • глубина траншеи;
  • длина внутренних стен;
  • количество прутков в верхнем и нижнем поясе армирования.

Зная длину и ширину, рассчитывается периметр. Например, длина 10 м, ширина 6 м, плюс внутренняя стена 6 м.

(10 + 6) x 2 + 6 = 38 м — общая длина стен. В обычной обвязке используется по два прутка в верхнем и нижнем армирующем поясе. Это означает, что всю длину нужно умножить на четыре. 38×4 = 152 м рифленых стержней. Если здание строится на заглубленном основании, поясов армирования укладывается 3-4, соответственно увеличивается метраж металлопроката.

Количество гладкой арматуры для поперечного расположения рассчитаем с шагом 0,4 м, получаем 38 : 0,4 = 95 штук. Величина горизонтальных штырей равняется 0,4 — 0,1 = 0,3 м (по 5 см отступают от каждой стенки опалубки). Необходимый метраж металлопроката составит 95×0,3 = 28,5 м

Длина вертикальных прутков зависит от глубины фундамента, при значении 80 см она составит 0,8 — 0,1 = 0,7 см (10 см приходится на отступы сверху и снизу, необходимые при монтаже каркаса). Можно вычислить размер одной перевязки (0,3 + 0,7) x 2 = 2 м. Количество армирующих связок равно числу поперечных прутков 95×2 = 190 м — общее количество гладкой арматуры.

Для фиксации понадобится проволока сечением 1 мм, на каждую связку приходится около 0,3 м. Перед покупкой металлопроката необходимо с помощью ГОСТов перевести метраж в килограммы.

Используя чертежи проекта, составляется схема армирования. Имея наглядное пособие, проще выполнить расчет материала.

Особенности установки каркаса для ленточного фундамента

Чтобы основание было прочным и прослужило долгие годы необходимо защитить металлические элементы от соприкосновения с землей и окружающей средой. Для этого каркас должен располагаться не менее чем в 5 см от дна, стенок и верха траншеи.

Технология сооружения металлической конструкции включает следующие этапы:

  1. В траншею, выкопанную под фундамент, насыпается и утрамбовывается песчаная подушка. Ее высота зависит от заглубленности основания здания и составляет от 15 до 50 см.
  2. По периметру и в углах вбиваются вертикальные штыри, к которым производится привязка силовых поясов.
  3. На дно траншеи по всей длине укладывается кирпич или пластиковые подставки, которые обеспечат зазор между нижним поясом и грунтом.
  4. Рифленые прутки размещаются на кирпичных подставках, связываются между собой, поперечными и вертикальными стержнями. Между продольными прутьями оставляется расстояние 0,3 м, шаг поперечных перемычек — 20-50 см в зависимости от предусмотренной нагрузки. Стержни в местах пересечения фиксируются проволокой. Такое крепление не напрягает металл как сварка и создает «плавающий» каркас, не повреждающийся от движения грунта.
  5. Второй пояс привязывают к вертикальным стойкам и выполняют обвязку. Обязательно проверяется уровень горизонта каркаса на каждом этапе. Схема армирования предусматривает соединение продольных и поперечных стержней в квадратные или прямоугольные ячейки. Чтобы ускорить процесс, возможен вариант, не резать длинный пруток на части, а сгибать в форме четырехугольника с нужной длиной стороны.
  6. На углах фундамента продольные прутья должны загибаться и заходить друг на друга с нахлестом. Этот участок подвержен наибольшему числу различных нагрузок. Для усиления увеличивают количество продольных стрежней и добавляют специальную арматуру.

Технология связывания арматурного каркаса

В промышленном строительстве выполняется сварное соединение арматуры, этот способ значительно ускоряет процесс. При небольшом объеме работы для частного дома, предпочтительней использовать проволоку. Прежде чем приступить креплению каркаса, необходимо узнать, как правильно вязать арматуру и какие инструменты для этого понадобятся.

Для соединения используется проволока или пластиковые хомуты. Первый материал прочнее и надежней, второй быстрее крепится, но требует осторожности при заливке бетона. После застывания раствора свойства крепежа не различаются.

Вязка арматуры под ленточный фундамент выполняется следующими инструментами:

  • вязальный крючок;
  • пассатижи;
  • дрель с насадкой в виде крюка;
  • специальный пистолет.

Вязальный крючок — универсальный и практичный вариант, его можно изготовить самостоятельно. Компактный размер облегчает работу в ограниченном пространстве траншеи.

Связывание арматуры происходит по схеме:

  1. Отрезается кусок проволоки длиной 30 см.
  2. Складывается вдвое и заводится за прутья.
  3. Крючок цепляет петлю, затем в него заводится второй конец проволоки и начинается закручивание.
  4. Вращение выполняется по часовой стрелке. Нельзя сильно закручивать проволоку, иначе она порвется.

Дрель или шуруповерт с насадкой облегчат процедуру при большом объеме работы. Использование автоматического пистолета, имеющего микрочип для контроля натяжения проволоки, повышает производительность и дает хорошее качество скрутки. Цена такого инструмента высокая и его чаще используют профессиональная монтажники.

Разобравшись, как правильно армировать фундамент, можно выполнить весь объем работы своими силами. Важно уделить внимание каждому этапу создания каркаса от выбора прутков до скрутки каждого элемента. От этого зависит конечная прочность возводимой конструкции.

Строительство опор стен — материалы и размеры

🕑 Время чтения: 1 минута

Стеновые опоры представляют собой подкладные или раздвижные и ленточные опоры, которые используются для поддержки структурных или неструктурных стен для передачи и распределения нагрузок на почву таким образом, чтобы не превышалась несущая способность почвы. Помимо предотвращения чрезмерной осадки и вращения, а также обеспечения достаточной защиты от скольжения и опрокидывания.

Стеновой фундамент проходит по направлению стены.Размер фундамента и толщина фундаментной стены уточняются в зависимости от типа грунта на участке. Ширина основания стены обычно в 2–3 раза больше ширины стены.

Основание стены может быть выполнено из камня, кирпича, простого бетона или железобетона. Экономичное основание стены может быть построено при условии, что прилагаемая нагрузка, которую необходимо передать, имеет небольшую величину, а нижележащий слой почвы состоит из плотного песка и гравия. Поэтому настенный фундамент лучше всего подходит для небольших зданий.

Строительство
настенных опор

1. Фундамент в кирпичной стене

  • В случае кирпичных стен основание состоит из нескольких рядов кирпичей, причем самый нижний ряд обычно в два раза больше ширины стены, расположенной выше.
  • Увеличенная ширина основания фундамента стены достигается за счет отступов по 5 см с каждой стороны стены.
  • Глубина каждого ряда может составлять один кирпич или кратную толщине кирпича.
  • Основание опорной стены опирается на гладкую бетонную основу, которая выступает на 10-15 см за пределы последнего кирпичного смещения, как показано на рис.1.
  • Ширина у основания не должна быть меньше ширины опорной стены плюс 30 см.

Рис.1: Фундамент стены из кирпичной кладки

2. Фундамент для каменной кладки

  • В случае стен из каменной кладки отступы могут составлять 15 см при высоте ряда 30 см. Поэтому размер отступов немного больше, чем у фундаментов кирпичной стены.
  • Глубина бетонирования должна быть не менее 15 см.
  • В целом пропорции тощей бетонной смеси составляют 1: 4: 8 (1 Цемент: 4 Мелкий заполнитель: 8 Крупный заполнитель) или 1: 5: 10 (1 Цемент: 5 Мелкий заполнитель: 10 Крупный заполнитель) смесь
  • Угловой разброс нагрузки от стены не должен превышать 1 вертикаль на 112 горизонталей в кирпичной кладке и 1 вертикаль на 1 горизонталь для цементного бетона.

Рис.2: Фундамент в каменную стену

3. Опоры железобетонных стен

Если нагрузка на стену велика или грунт имеет низкую несущую способность, может быть предусмотрено железобетонное ленточное основание.

Толщина полосы может быть уменьшена по направлению к краю для экономии.

Рис.3: Фундамент в железобетонной стене

Несущая способность ленточного фундамента на армированном песке

J Adv Res. 2015 сен; 6 (5): 727–737.

Кафедра структурной инженерии, инженерный факультет, Университет Танта, Танта, Египет

Поступила в редакцию 8 января 2014 г .; Пересмотрено 2 апреля 2014 г .; Принято 11 апреля 2014 г.

Авторские права © 2014 Производство и хостинг компанией Elsevier B.V. от имени Каирского университета.

Это статья в открытом доступе под лицензией CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Эта статья цитируется в других статьях в PMC.

Abstract

В данной статье предельная несущая способность фундамента-оболочки на неармированном и армированном песке была определена с помощью лабораторных модельных испытаний. Серия нагрузочных испытаний была проведена на основании модели оболочки с однослойным армированием и без него.Испытания проводились на фундаменте-оболочке при различной глубине заделки оболочки и плотности земляного полотна. Результаты сравнивались с результатами для плоских фундаментов без армирования. Результаты испытаний модели были проверены с помощью конечно-элементного анализа с помощью программы PLAXIS. Экспериментальные исследования показали, что предельная несущая способность основания оболочки на усиленном земляном полотне выше, чем на неармированном основании, и кривые осадки под нагрузкой были значительно изменены. Фундамент-оболочка поверх армированного земляного полотна можно считать хорошим методом увеличения эффективной глубины фундамента и уменьшения возникающей осадки.Кроме того, поверхность разрыва армированной системы оболочки была значительно глубже, чем обычное основание и основание корпуса без армирования. Численный анализ помогает понять деформационное поведение исследуемых систем и определить поверхность разрушения армированного основания оболочки.

Ключевые слова: Фундамент с ракушкой, Предельная грузоподъемность, Песок, Армирование, Эффективность ракушки, Коэффициент оседания

Введение

Фундамент с ракушкой считается лучшим фундаментом мелкого заложения для переноса большой нагрузки на слабые грунты, в которых используется обычный фундамент мелкого заложения чрезмерная осадка из-за его экономического преимущества в области с высоким соотношением материальных и трудовых затрат.Куриан [1] и Фарид и Давуд [2]. Фундамент с конической оболочкой, представляющий собой комбинированный фундамент, подходит для резервуаров с водой и башенных конструкций. Концепция каркаса не нова в конструкции фундамента, учитывая, что в прошлом в этой категории использовался фундамент с перевернутой кирпичной аркой. Использование перевернутых кирпичных арок в качестве фундамента уже давно практикуется во многих частях мира. Оболочки — это, по сути, тонкие конструкции, поэтому конструктивно они более эффективны, чем плоские конструкции.Это преимущество в ситуации, когда большие сверхструктурные нагрузки передаются на более слабые почвы. Фундамент оболочки ограничен несколькими геометрическими формами, например конической, пирамидальной, гипер- и сферической опорой. Структурные характеристики основания оболочки в отношении мембранных напряжений, изгибающего момента, сдвига, прогиба и предела прочности самой оболочки исследовались в широком диапазоне, как заявили Паливал и Рай [3], Паливал и Синха [4] и Мелерски. [5]. Однако геотехническому поведению фундамента оболочки для определения реакции грунта в отношении осадки, несущей способности, распределения контактного давления и деформации в массиве грунта уделялось мало внимания.Экспериментальные и численные исследования, которые проводились для определения геотехнических характеристик фундамента оболочки, были ограничены. Абдель-Рахман [6], Ханна и Абдель-Рахман [7] сообщили о результатах экспериментов на конических основаниях оболочки на песке для условий плоской деформации. Махарадж [8], Хуат и Мохамед [9] и Кентаро и др. [10] провели анализ методом конечных элементов и экспериментальный анализ фундамента из оболочки, чтобы изучить эффекты увеличения модуля упругости грунта в дополнение к исследованию геотехнического поведения фундамента из оболочки.В большинстве публикаций в литературе изучается только поведение различных оснований из ракушек на неармированном песке, без учета существования армированного элемента ниже этого типа. Все работы проводились только на плоском фундаменте, размещенном на однослойной или многослойной арматуре, как это обсуждали многие исследователи, такие как Латха и Сомванши [11] и Патра и др. [12], за исключением Шалиграма [13], который изучал поведение треугольного основания оболочки на армированном слоистом песке. Его исследование представляет собой исследование поверхности, которое объясняет только влияние такой техники на несущую способность без определения напряжения и деформации принятой системы.Следовательно, в этом исследовании был принят новый подход к изучению геотехнического поведения фундамента из ленточной оболочки, опирающегося на однослойную арматуру, с целью подтверждения эффекта армирования в сочетании с использованием фундамента из оболочки. Настоящее исследование было выполнено с использованием как экспериментального, так и численного анализа для подтверждения результатов испытаний модели и определения деформационных характеристик исследуемой системы.

Экспериментальный

Испытательный резервуар

a показывает схематический вид экспериментальной модели стального устройства, использованного в этом исследовании.Испытательный бокс, имеющий внутренние размеры 90 × 30 см в плоскости и 120 см в глубину, толщина стенок резервуара составляет 6 мм. Резервуар был построен достаточно жестким, чтобы поддерживать условия плоской деформации за счет сведения к минимуму смещения вне плоскости во всех направлениях. Стенки резервуара крепились к внешней поверхности с помощью горизонтальной стальной балки, установленной на средней глубине резервуара. Внутренние стенки резервуара гладко отполированы, чтобы уменьшить трение о почву, насколько это возможно, за счет оцинкованного покрытия на внутренней стене.

Схематическое изображение: (а) испытательной установки и (б) модели фундамента оболочки.

Погрузочная система состоит из гидравлического домкрата с ручным приводом и предварительно откалиброванного нагрузочного кольца для ручного приложения нагрузки к грунтовой системе основания, а оседание измерялось стрелочными индикаторами, закрепленными на поверхности основания.

Модели фундамента

Модели фундаментов из ленточной оболочки были изготовлены из стальных пластин постоянной ширины ( B = 150 мм) в горизонтальной проекции с разной глубиной заделки a ( a = 60, 75 и 112.50 мм) и толщиной 20 мм. Поперечная длина опоры составляет 29 см, чтобы удовлетворить условию плоской деформации. Эскизы моделей фундаментов показаны на б. Приблизительное состояние основания было достигнуто за счет фиксации тонкого слоя песка на основании основания модели с помощью эпоксидного клея. Нагрузка передается на опору через стальной погрузочный рычаг, который был жестко закреплен сваркой в ​​середине модели фундамента, как показано в соответствующем пункте b.

Материалы для испытаний

Песок, использованный в данном исследовании, представляет собой кварцевый песок со средним и крупным размером частиц.Образовался однородный слой сухого кварцевого песка. Средний размер зерна D 50% = 0,33 мм, а коэффициент однородности равен 3,5. Физические свойства испытанного песка следующие: удельный вес был определен с использованием метода газового ящика и оказался равным 2,65; максимальная и минимальная плотность в сухом состоянии были получены японским методом и составили 17,96 и 15,6 кН / м 3 , соответственно.

Для подготовки уплотненного песчаного слоя был принят японский метод [14] с использованием ручного компактора.Глубина песка во время испытаний поддерживалась постоянной. Были проведены три серии испытаний на рыхлом, среднем и очень плотном песке. Удельный вес песка и, следовательно, требуемая относительная плотность контролировались путем заливки заранее определенного веса песка в испытательный резервуар для заполнения каждого слоя, а затем поверхность песка выровнялась и уплотнилась. Рыхлый песок был получен за счет укладки слоев почвы толщиной 50 мм на нулевой высоте падения. Чтобы получить плотную структуру песка, песок укладывают слоями, каждый слой имеет толщину 50 мм и уплотняют с помощью ручного уплотнителя 35 Н.Количество проходов уплотнения предварительно оценивается для каждого слоя в начале программы для достижения требуемой плотности песка. Для среднего и плотного ящика высота падения составляет 40 см и 90 см соответственно. Относительная плотность, достигнутая в ходе испытаний, контролировалась и оценивалась путем сбора образцов в небольшие емкости известного объема, помещенные в различные произвольные места в емкости для испытаний. Относительные плотности во время программы испытаний составили 50%, 72% и 83%. Соответствующие углы сопротивления сдвигу составляют 31 °, 36 ° и 41 °, соответственно, которые были получены путем применения серии испытаний на прямой сдвиг в боксе при соответствующей относительной плотности при различных нормальных напряжениях.

Чтобы подготовить ядро ​​грунта под модель оболочки, пространство под оболочкой было заполнено песком в соответствии с требуемым удельным весом, указанным Ханной и Абдель-Рахманом [7]. Процесс заполнения модели оболочки песком был выполнен путем размещения тонкой стальной пластины на дне модели оболочки перед ее установкой на место. Затем стальную пластину медленно вытащили горизонтально под корпус сбоку.

Армирование, принятое в настоящем исследовании, представляло собой термосваренный нетканый геотекстиль (Typar-3857), изготовленный из полипропиленовых мультифиламентных волокон.По данным производителя, он имеет номинальную толщину 2 мм и массу на единицу площади 290 г / м. 2 . Предел прочности при растяжении по методу испытания полосы составляет 20,1 кН / м, а относительное удлинение при максимальной нагрузке составляет 10%.

Программа экспериментальных испытаний

Всего было проведено 34 испытания на заранее подготовленных моделях фундамента с использованием трех различных плотностей песка и при различной глубине заделки ( a / B ). Была проведена серия нагрузочных испытаний для фундамента как на неармированном, так и на армированном песчаном грунте с использованием геотекстиля, который был размещен на фиксированном расстоянии, равном 0.5B ниже кончика фундамента с постоянной длиной, равной 4B, как утверждали Androwes [15], Abdel-Baki и Raymond [16] и Abu-Farsakh et al. [17]. Во всех программах испытаний обе стороны плит фундамента оболочки были погружены в песок.

Увеличение предельной нагрузки основания оболочки по сравнению с ее плоским аналогом признано в настоящем исследовании как коэффициент полезного действия оболочки ( η ). Он определяется, как указано в формуле. (1), как отношение разницы предельных нагрузок на опоры оболочки к предельной нагрузке на плоские опоры.

где η : КПД оболочки; Q us : предельная нагрузка на подошву корпуса; Q uf : предельная нагрузка на плоское основание.

Для исследования характеристик осадки оснований из оболочек по сравнению с традиционными плоскими, был введен безразмерный коэффициент осадки ( F δ ). Коэффициент осадки был рассчитан при предельной нагрузке ( Q и ), чтобы отразить характеристики осадки опор в процессе загрузки.Расчетный коэффициент представлен в формуле. (2). Следует отметить, что более низкое значение коэффициента расчетности указывает на лучшие расчетные характеристики.

где δ u : осадка при предельной нагрузке; γ : удельный вес грунта; A b : опорная площадка в горизонтальной проекции; Q и : предельная нагрузка.

Результаты и обсуждение

Кривые осадки фундамента оболочки с арматурой и без нее

Данные по расчетной нагрузке суммированы для данных испытаний из-за ограниченного пространства, и некоторые результаты представлены в.Представлены графики расчета нагрузок для плоских и оболочечных фундаментов с армированием и без армирования при разной плотности песка. Было обнаружено, что кривые осадки нагрузки были значительно изменены по мере увеличения плотности земляного полотна. Наличие опоры корпуса может улучшить и увеличить предельную нагрузку по сравнению с плоской опорой. Можно видеть, что предельная нагрузка увеличивается из-за эффектов оболочки и усиления, как показано на соответствующем рисунке, на глубине заделки оболочки ( a / B = 0.5). Из этого рисунка также можно видеть, что предельная нагрузка увеличивается с увеличением угла сопротивления сдвигу, а также опоры оболочки имеют более высокие предельные нагрузки, чем плоские. Наличие арматуры под фундаментом корпуса может значительно улучшить и увеличить предельную несущую способность фундамента корпуса. Несущая способность фундамента оболочки над армированным земляным полотном выше, чем у основания оболочки без армирования; это указывает на то, что усиление оказывает значительное влияние на увеличение несущей способности фундамента с увеличением глубины заделки оболочки.Основание корпуса обеспечивает лучшую изоляцию корпуса внутри пространства основания, предотвращая вытекание почвы наружу. Кроме того, клин грунта внутри основания корпуса постепенно уплотняется на этапах загрузки; таким образом улучшается грунт земляного полотна и уменьшается осадка. Это может быть очень значительным, особенно когда плотность почвы плохая / низкая.

Сводка кривых расчета нагрузок для плоского и оболочкового фундамента при разной плотности с армированием и без него.

Несущая способность опоры на рыхлом песке увеличена по сравнению с опорой на ровном грунте. С другой стороны, армирование может вызвать дополнительное улучшение оболочки, где клин грунта между оболочкой и грунтом над арматурой был эффективно заблокирован, и было достигнуто уплотнение земляного полотна. Это связано с армированием, которое контролирует и уменьшает вертикальную деформацию, вызывая постепенное уплотнение. Можно видеть, что был индуцирован комбинированный эффект, который представлен в эффекте оболочки и в эффекте усиления.Таким образом, и грунт внутри клина оболочки, и грунт над усиленным слоем стали более жесткими, как единое целое и эффективно сцепились. В результате увеличилась несущая способность фундамента и уменьшилась осадка.

Степень улучшения предельной несущей способности системы зависит от соотношения ( a / B ) и плотности грунта или угла сдвига. Эти результаты согласуются с Ханной и Адель-Рахманом [7].

Влияние глубины заделки обечайки и усиления на предельную нагрузку

Для изучения влияния глубины заделки обечайки и арматуры на предельную несущую способность фундамента была установлена ​​связь между углами сопротивления сдвигу от предельной нагрузки. нанесены на разную глубину заделки обечайки как с армированием, так и без него.Замечено, что увеличение глубины заделки увеличивает предельную нагрузочную способность основания оболочки по сравнению с плоской опорой. Поскольку увеличение глубины заделки приводит к эффективному увеличению глубины фундамента и замкнутой зоны, таким образом увеличивается предельная несущая способность. По мере увеличения угла сдвига земляного полотна грузоподъемность основания также увеличивается. Настоящий армированный слой под носком оболочки снижает давление, создаваемое внутри земляного полотна, и увеличивает предельную нагрузочную способность, как показано в соответствующих случаях, для различных армированных случаев.Комбинированный эффект такой арматуры может существенно снизить степень деформации в зоне сдвига и ограничить наведенные деформации растяжения, возникающие при разрушении. Кроме того, этот рисунок еще раз подтверждает, что армирование может заметно улучшить способность земляного полотна за счет комбинированного эффекта (эффект оболочки и армирования).

Соотношение между углом сопротивления сдвигу и предельной нагрузкой для плоского и оболочечного фундамента с армированием и без него при различных подъемах оболочки.

Взаимосвязь между предельной нагрузкой ( Q и ) и углом сдвига земляного полотна ( ϕ ) для основания оболочки с армированием и без него может быть выражена следующей нелинейной зависимостью, основанной на регрессионном анализе:

, где C 1 и C 2 — факторы, связанные с соотношением ( a / B ) и наличием армирующего слоя. Значения факторов C 1 и C 2 в различных случаях были извлечены из соотношения ( a / B ) для основания оболочки с армирующим слоем и без него, как показано на рис.Было обнаружено, что увеличение глубины заделки оболочки может увеличить значения коэффициента C 1 как для основания оболочки с армированием, так и без него. Однако значения коэффициента C 1 усиленных корпусов выше, чем у основания корпуса без усиления (а). Это также может подтвердить влияние армирования на увеличение предельной несущей способности основания оболочки на армированном песке.

Изменение коэффициента C 1 и C 2 с соотношением a / B для фундамента из раковины с армированием и без него.

С другой стороны, было обнаружено, что резкое уменьшение коэффициента C 2 было достигнуто для неармированного основания оболочки, когда коэффициент заделки a / B увеличился с 0,5 до 0,75 (b). Значения коэффициента C 2 для усиленного корпуса выше, чем для неармированного основания корпуса, но есть тривиальная разница между усиленным и неармированным корпусом. Также было обнаружено, что коэффициенты C 1 и C 2 зависят от начальной плотности земляного полотна, особенно от угла внутреннего трения.

Это уравнение можно использовать в качестве приблизительного ориентира для определения предельной прочности основания корпуса в исследуемых условиях. Можно видеть, что на основе приведенного выше уравнения конечные теоретические значения почти равны конечным лабораторным значениям. Поскольку разница между полученными значениями незначительна, это уравнение справедливо выражает измеренные значения Q и в лабораторных испытаниях, если принять во внимание коэффициент C 1 , C 2 и угол сопротивления сдвигу. известны.

Влияние оболочки и арматуры на эффективность основания

представляет расчетные коэффициенты эффективности оболочки ( η , которые были выведены в ходе настоящего экспериментального исследования. В целом можно сделать вывод, что эффективность оболочки увеличивается с увеличением заделки оболочки. глубина ( a / B ). Видно, что влияние конфигурации оболочки уменьшается, когда почва становится более плотной. Более того, коэффициент полезного действия оболочки значительно уменьшается, когда почва более плотная.Это мнение аналогично мнению, высказанному Ханной и Адель-Рахманом [18]. Эффективность оболочки заметно возрастает в испытаниях, проведенных на армированном земляном полотне, по сравнению с основанием оболочки без армирования.

Коэффициент полезного действия оболочки по сравнению с оболочкой увеличивается для фундаментов оболочки с армированием и без него при разной относительной плотности.

Коэффициенты эффективности оболочки также уменьшаются с увеличением угла сопротивления сдвигу, что подтверждается в. На этом рисунке представлено изменение эффективности оболочки ( η ) в зависимости от угла сдвига ( ϕ ) при различной глубине заделки оболочки.Отмечено резкое снижение КПД оболочки при увеличении угла сдвига, а значения КПД оболочки увеличиваются с увеличением глубины заделки оболочки. Было обнаружено, что увеличение плотности земляного полотна значительно снижает коэффициент полезного действия оболочки как для усиленного, так и для неармированного основания оболочки. Можно сделать вывод, что при более высокой плотности земляного полотна диапазон улучшений невелик по сравнению с рыхлой и средней относительной плотностью. Это происходит из-за увеличения степени улучшения рыхлого состояния за счет эффекта оболочки и лучшего улучшения за счет наличия армированного слоя.

Изменение эффективности оболочки в зависимости от угла сопротивления сдвигу для опор оболочки с армированием и без него при разном коэффициенте подъема.

Влияние конфигурации оболочки и арматуры на характеристики осадки

В этой части была предпринята попытка изучить влияние основы оболочки, а также наличие армированного слоя на результирующую осадку при разрушении. Расчетный коэффициент осадки ( F δ ), который был выведен из настоящего экспериментального исследования при различных изученных параметрах, нанесен на график.Как правило, для любого основания коэффициент осадки уменьшается для более плотного песка. Сравнение опор из оболочки и плоских оснований для любого данного состояния песка показывает, что опоры из оболочки имеют более низкий коэффициент осадки, что демонстрирует лучшие характеристики осадки для опор из оболочек. Сравнение фундамента из оболочки без армирования и с армированием показывает, что коэффициент осадки заметно уменьшается для фундамента из оболочки с армированием. Также на коэффициенты осадки влияет глубина заделки оболочки.Увеличение глубины заделки оболочки ( a / B ), очевидно, снижает осадку грунтовой системы основания оболочки как в усиленных, так и в неусиленных условиях. Но снижение осадки для усиленного фундамента корпуса выше, чем для неармированного корпуса. Было обнаружено, что при низкой относительной плотности и на глубине заделки ( a / B = 0,75 усиленное состояние) улучшение коэффициента осадки достигает 50% от исходного значения плоского основания, в то время как это значение составляет 26%. для фундамента без армирования.С другой стороны, в плотном состоянии эти значения достигают 55% для усиленного основания оболочки при ( a / B = 0,75) и 31% для неармированного основания оболочки. Это еще раз подтвердило эффективность армированного слоя в регулировании вертикальной осадки основания оболочки за счет результирующего комбинированного эффекта.

Соотношение между углом сопротивления сдвигу и коэффициентом осадки для плоского и оболочкового фундамента с армированием и без армирования различной плотности.

Механизм разрушения несущей способности системы

В следующем анализе приводятся некоторые полезные комментарии о разрыве системы грунтов основания оболочки с одинарным армированным слоем и без него.экспериментально и теоретически показаны режимы разрушения фундамента оболочки с армированием и без него. Как правило, в случае нормального плоского основания, расположенного в среднем и плотном состоянии, можно видеть, что общее разрушение при сдвиге представляет собой четко определенный образец, который состоит из непрерывной поверхности разрушения, которая развивается от одного края основания до поверхности земли. . Механизм обрушения грунта нормального плоского основания на армированном слое, размещенном на заданной глубине ниже основания, подробно исследовали Яхмамото и Кусуда [19] и Михаловски и Ши [20].Их исследование доказало, что разрушение было вызвано и образовалось непосредственно под арматурой. Армирование может способствовать увеличению несущей способности за счет значительного изменения геометрии схемы обрушения, предотвращая проникновение механизма глубоко в почву. Армирование предотвращает возникновение наиболее неблагоприятных механизмов, приводящих к увеличению предельной нагрузки. Основная роль включения заключается в уменьшении скорости деформации в зоне сдвига и уменьшении предельного напряжения сдвига, возникающего в зоне сдвига.Армирование обеспечивает эффективное сдерживание и играет важную роль в предотвращении вертикального распространения почвы. В результате прочность земляного полотна на сдвиг заметно увеличивается, а характер разрушения изменяется, как заявили Михаловски и Ши [20].

Модифицированная картина разрушения фундамента оболочки без и с усиленным одинарным армирующим слоем, a / B = 0,50.

Применяя эту терминологию к испытанному основанию оболочки на армированном песке, можно сделать вывод, что присутствие такого армированного слоя под основанием оболочки вызывает постепенное уплотнение замкнутого земляного полотна и действует как улучшенная зона.Зона между оболочкой и арматурой может постепенно уплотняться на этапах нагружения и вести себя как закладной блок или один блок (как указано в уплотненном треугольнике или клине, как показано на a, с воображаемой шириной основания B в зависимости от передачи нагрузки механизм). В результате разрушение грунта при сдвиге происходит ниже армированного элемента из-за более высокой деформации армированного слоя при разрушении. Фундамент оболочки и почва внутри оболочки, расположенная над арматурой, могут препятствовать эффекту глубокого фундамента.Это подтверждает, что основание оболочки и замкнутый грунт поверх арматуры ведут себя как заложенный фундамент или жесткий блок, а разрушение грунта распределяется непосредственно под арматурой, что подтверждается экспериментальными результатами, показанными в b и c. Этот рисунок продемонстрировал, что плоскости разрушения при сдвиге начинаются и рассеиваются ниже армированного слоя.

Необходимо отметить, что не только форма фундамента и плотность грунта, но и другие вышеупомянутые определяющие факторы влияют на изменение характера индуцированных отказов.Например, увеличение глубины заделки может значительно увеличить действующее напряжение на арматуру, в результате чего повышается несущая способность и модифицируется механизм разрушения. Также воображаемая ширина подошвы оболочки на поверхности армированного слоя может играть важную роль в изменении плоскости разрушения ( B, , ). Увеличение ширины обечайки увеличило воображаемую ширину, следовательно, увеличилась несущая способность. Поверхности разрушения или плоскости сдвига имели место в нижней части армированного слоя (с).На этом рисунке показан механизм передачи нагрузки и концентрация напряжения, которая в основном находится под арматурой.

Анализ методом конечных элементов подтверждает и показывает изменение характера разрушения испытываемого основания оболочки.

С другой стороны, для основания оболочки с армированием и без него, поверхность разрыва изменяется, как показано на рисунках a, b и c, и нарушение несущей способности происходит на носке оболочки. Клин поверхности разрушения основания оболочки более глубокий, чем у плоского основания, из-за эффекта закладки.Можно сделать вывод, что использование ракушечного фундамента можно считать хорошим методом увеличения эффективной глубины фундамента, как это ясно видно на диаграммах соединения. Таким же образом армированный слой под подошвой основания оболочки также может заметно увеличить эффективную глубину фундамента, и поверхность разрушения возникает непосредственно под армированным слоем. Отмечено, что клин поверхности разрыва основания оболочки с арматурой более глубокий, чем у других систем.Это связано с тем, что образовавшийся клин грунта внутри оболочки и над арматурой больше, чем в основании оболочки без армирования. Это также указывает на то, что фундамент с армированием имеет более высокую несущую способность, чем другие системы. В то время как при низкой относительной плотности усиленная опора оболочки может значительно уменьшить вызванное пробивным сдвигом разрушение в виде упругой осадки по сравнению с большой оседкой, вызванной в случае плоской опоры.

Численное моделирование

В следующей части представлена ​​проверка численного анализа по результатам модельных испытаний.Результаты, полученные в результате модельных испытаний, были проверены путем проведения численных исследований с использованием метода конечных элементов. Упругопластический анализ методом конечных элементов плоской деформации проводился с использованием коммерческой программы PLAXIS [21]. Этот анализ направлен на выявление характера разрушения и поведения напряжений в системе усиленной оболочки. Это также считается хорошим методом для проверки параметров, которые нельзя измерить в лаборатории, например, масштабного эффекта при использовании крупномасштабного основания оболочки.

Почва в этом анализе моделировалась критерием разрушения Мора – Кулона. Это просто и достаточно совместимо, и согласуется с результатами экспериментальных испытаний по сравнению с другими моделями. Для этого анализа использовались условия плоской деформации и 6-узловые треугольные элементы. Модуль упругости грунта при различной плотности песка был получен в результате трехосных испытаний.

Элемент основания оболочки, использованный в этом исследовании, представляет собой элемент балки, который считается очень жестким и грубым (прочность на границе R inter была взята 0.67, границы раздела из песчаной стали). Свойства материала балки: упругая нормальная жесткость EA и жесткость на изгиб EI . Принимая во внимание, что E : модуль упругости используемого материала балки, A : площадь поперечного сечения и I : момент инерции модели основания оболочки. Армированный слой принятой модели был смоделирован как геотекстильный элемент, который определяется осевой горизонтальной жесткостью EA (кН / м) для геотекстильного материала.Виртуальный интерфейсный элемент с геотекстильным элементом был смоделирован до создания сетки. В программе моделируются положительные и отрицательные элементы интерфейса с виртуальной толщиной.

Во всех расчетах, описанных в этом исследовании, рассматривается метод управления силой, в котором сосредоточены точечные силы, силы, которые действуют на геометрическую точку в центре опор оболочки. Точечные силы на самом деле являются линейными нагрузками, направленными вне плоскости. Входные значения точечных сил даны в силе на единицу длины (например, кН / м).Значение приложенной точки (система нагрузки A) берется в соответствии с полученным значением в результате модельного испытания, деленным на ширину основания в плоскости.

Свойства принятого песка, которые были смоделированы и определены в программе, следующие: ( γ = 18 кН / м 3 , ν = 0,3, E = 7500 кПа, угол трения ϕ = 41 ° и угол дилатансии = 11 °). Фундамент оболочки моделируется как элемент упругой балки и определяется с коэффициентом заделки ( a / B = 0.75). Основные свойства фундамента (осевая жесткость EA = 20,1 кН / м и жесткость на изгиб EI = 151 200 кН / м 2 / м).

Верификация анализа методом конечных элементов

Сравнение между реакциями на смещение нагрузки было рассчитано с использованием анализа методом конечных элементов, и результаты, полученные в ходе соответствующих испытаний модели для основания оболочки с армированием и плоского основания, показаны на рис. Расчеты методом конечных элементов умеренно корректны для расчетных значений предельных нагрузок.Результаты конечных элементов близки к результатам лабораторных испытаний моделей и согласуются с теми же тенденциями.

Кривые осадки под нагрузкой для модельных испытаний и численных результатов в плотном состоянии, ϕ = 41 °.

Результаты анализа методом конечных элементов подтверждают экспериментальное значение. Однако есть небольшая разница между результатами анализа методом конечных элементов и результатами модельного испытания. Это различие связано с обычными условиями деформации и эффектом масштаба в дополнение к условиям окружающей среды в лаборатории.

Численные результаты

Результаты анализа методом конечных элементов и его выходные данные показаны на a – g для различных вариантов фундамента: плоского, оболочки без армирования и с армированием. Вектор полного смещения, полученный в результате анализа, показан на (a – c) при соответствующей предельной несущей способности. Можно видеть, что оболочка и арматура могут значительно изменить направление деформации по сравнению с плоскими случаями (а), в то время как деформация и поток частиц грунта для плоского основания происходит в основном под основанием, а вдоль сторона плоской опоры, как ясно показано, и наличие оболочки приводит к значительному вспучиванию почвы вдоль каждой стороны оболочки (b).Кроме того, армирование может ограничивать и уменьшать деформацию грунта, как показано в c. Как правило, сравнение плоского фундамента и фундамента из оболочек показывает, что поверхность разрыва фундамента оболочки глубже, чем поверхность разрыва плоского типа. Это также подтверждает характер отказов системы, показанный и согласуемый с Абд-аль-Рманом [6].

Отклик нормального и оболочечного фундамента с армированием и без него ( a / B = 0,75 и ϕ = 41 °).

Кроме того, при выходе из строя происходит постепенное уплотнение. Следовательно, клин грунта внутри оболочки, который расположен непосредственно над армированным элементом, ведет себя как единое целое и оседает одновременно, как указано в c. Это показывает, что векторы смещения распределяются непосредственно под арматурой и простираются до глубины, равной 0,5B, что подтверждает наличие встроенного блока.

С другой стороны, деформации сдвига, связанные с разрушением, показаны на (d – f) для различных типов фундаментов.Распределение предельных деформаций сдвига представлено в заштрихованной области, где красная заливка относится к максимальным деформациям. Замечено, что для плоского основания максимальные деформации или зоны с высоким сдвигом находятся непосредственно под основанием на глубине, равной B, и заметно уменьшаются как на более низкой глубине, так и по горизонтали на соседних сторонах основания (d). В то время как для испытанного основания оболочки без армирования максимальные деформации (зоны с высоким сдвигом) возникают на краю основания оболочки и уменьшаются на более низкой глубине грунта.Он также увеличен до расстояния, равного 2B, как показано на e. Это еще раз подтверждает, что оболочка может значительно сделать поверхность разрушения глубже, чем это плоское основание, тогда как наличие арматуры под основанием оболочки изменяет результирующие экстремальные напряжения. Максимальные деформации сдвига обнаруживаются только на носке оболочки и распространяются на расстояние, равное 0,5B, вдоль сторон оболочки, как ясно показано красной штриховкой f. Это относится к эффективности оболочки и армирования в изменении распределения деформаций.Это также оправдывает эффект армирования при изменении плоскости разрушения. Замечено, что разрушение грунта при сдвиге происходит под арматурой непосредственно под опорным блоком оболочки, который действует как закладной фундамент. Этот фундаментный блок оседает одновременно и передает напряжение ниже арматуры, как показано на f. Он показал, что максимальные деформации сдвига возникают ниже армированного грунтового блока. Таким образом, g подтвердил и обосновал возникновение разрушения грунта при сдвиге в нижней части армированного элемента.Как видно из этого рисунка, пластические точки и отсечки растяжения находятся в основном в ограниченной зоне и простираются на глубину ниже арматуры. Это подтверждает и подтверждает, что разрушение грунта при сдвиге изменяется и становится отличным от основания оболочки без армирования. Это также подтверждает полученные и ожидаемые ранее результаты, представленные в.

Для изучения влияния основания оболочки и наличия арматуры значения контактного давления под фундаментом оболочки с армированием и без него были численно извлечены из результатов программы при различной плотности земляного полотна и глубине заделки ( a / В ).Эти значения были определены на глубине, равной расстоянию ( a /2) ниже центральной линии оболочки, и в пределах ограниченной области стенками оболочки.

Как правило, можно заметить, что контактное давление при разрыве увеличивается с увеличением глубины заделки оболочки, как показано на. Увеличение глубины заделки оболочки обеспечивало большее ограничение для более плотного состояния песка, так как угол сопротивления сдвигу увеличивается, а контактное давление при разрушении увеличивается. Сравнение основания оболочки с армированием и без него показывает, что арматура имела более ограниченное давление, как показано на соответствующем рисунке, в то время как значения контактного давления плоского основания на той же глубине ниже основания были меньше, чем у корпусов корпусов. .

Изменение контактного давления в зависимости от отношения a / B для фундамента оболочки с армированием и без него ниже центра оболочки на глубине a /2, полученное в результате численного анализа.

Масштабный эффект

Как и во всех небольших модельных испытаниях, особенно в песке, необходимо учитывать масштабные эффекты. Есть несколько важных факторов, которые делают невозможным использование мелкомасштабных моделей, которые были построены из песка и испытаны при весе 1 г.Работа, описанная в этом исследовании, была выполнена на мелкомасштабных физических моделях весом 1 г. Для таких мелкомасштабных моделей размер частиц грунта, методы строительства, граничные условия, особенности сопряжения грунта и армирования, жесткость арматуры и дилатансия при низком напряжении являются важными факторами, которые необходимо учитывать. Кусакабе [22] обобщил данные испытаний и указал, что влияние размера частиц на несущую способность основания становится менее заметным для отношения ( D 50 / B ), которое меньше 1/100.Следовательно, влияние размера частиц в этом исследовании должно быть меньше, поскольку отношение D 50 / B , используемое в модели, составляло 0,0092. Согласно Брансби и Смиту [23], с гладкими боковыми стенками и относительно широким резервуаром, боковое трение и граничные условия не имеют существенного влияния на результаты модели уменьшенного масштаба. Таким образом, внутренние стенки контейнера гладко отполированы, чтобы уменьшить трение о песок, насколько это возможно. Кроме того, чтобы пренебречь влиянием граничных условий, длина резервуара была взята в 6 раз больше ширины основания, а толщина слоя почвы в 7 раз больше ширины основания [24,25].Кроме того, чтобы обеспечить надлежащую жесткость модели резервуара и предотвратить любое боковое смещение стенок контейнера, его борта и верх были усилены за счет установки стальных уголков. Строительные методы, использованные для построения макета модели в лаборатории, были аналогичны полевым требованиям.

Эффект масштаба и валидация использования такого армирования с опорой раковины маломасштабной модели были обеспечены и сопоставлены с результатами лабораторной опоры модели, как было представлено ранее.

Эта часть исследования направлена ​​на изучение масштабного эффекта принятой оболочки-фундамента на усиленный грунт с использованием анализа методом конечных элементов, как указано DeMerchant et al.[26] и Чен и Абу-Фарсах [27]. Модель конечных элементов была сначала проверена результатами лабораторных модельных испытаний фундаментов, как представлено в, а затем использовалась для численного исследования реакции на нагрузку и оседание различных размеров фундаментов больших размеров и глубины заделки ( a / B ) на армированном основании. грунтовые основания. В этом исследовании принятая ширина основания оболочки составляет 2 м, а коэффициент заделки варьируется и принимается, как указано в этом исследовании. Результаты крупномасштабных модельных фундаментов оболочек сравнивались с модельными испытаниями безразмерным образом.Было получено улучшение предельной несущей способности опор корпуса как для малых, так и для больших опор по сравнению с плоскими опорами. Соотношение нагрузок на опоры корпуса на армированном песке определялось при различной глубине заделки ( a / B ). Коэффициент нагрузки может быть получен из следующего выражения ( Lr = Q ultR / Q ultF ), где Qi ultR — это предельная несущая способность оболочки на армированном песке, а Q ultF — это максимальная грузоподъемность плоских оснований без армирования.показывает изменение отношения нагрузки к коэффициенту заделки как для модельной, так и для аналитической крупномасштабной опоры оболочки в плотном состоянии. Было замечено, что численные результаты натурного фундамента оболочки на армированном песке согласуются с результатами лабораторных испытаний модели и имеют ту же тенденцию. Но есть небольшое расхождение в результатах около 7%. Как видно на этом рисунке, значения численного анализа (полномасштабного) близки к значениям лабораторных тестовых моделей, подтверждая результаты, полученные в обоих исследованиях.Конечно, небольшие различия между экспериментальными (малая модель) и численными значениями (натурные) связаны с ошибками и условиями окружающей среды в лаборатории. В дополнение к изменению уровня напряжения, которое применялось к армированному элементу как в модельном испытании, так и в программе, можно сделать вывод, что текущие результаты модельного испытания могут подтвердить полномасштабный фундамент, представленный DeMerchant et al. [26] и Чен и Абу-Фарсах [27].

Сравнение повышения несущей способности фундамента оболочки на усиленном земляном полотне для модельных испытаний и теоретического анализа крупномасштабного фундамента оболочки.

Выводы

В данной статье геотехническое поведение фундамента из оболочки с однослойным армированием и без него было исследовано экспериментально и по сравнению с плоским основанием. Следующие основные выводы, насколько это возможно, изложены в количественной форме. Несмотря на то, что приведенные таким образом значения применимы к конкретным данным, используемым в анализе, их можно считать показательными для общей тенденции этих результатов.

  • 1.

    Клин грунта между оболочкой и грунтом над арматурой эффективно блокируется, и достигается уплотнение земляного полотна, в результате повышается несущая способность основания и уменьшается осадка.

  • 2.

    Было обнаружено, что несущая способность основания оболочки на усиленном плотном земляном полотне увеличилась примерно в 2,5 раза по сравнению с плоским основанием, когда коэффициент глубины заделки a / B увеличился с 0,40 до 0,50, и увеличилась в 2,9 раза при увеличении коэффициента глубины заделки с 0,5 до 0,75.

  • 3.

    Повышение несущей способности основания оболочки на усиленном рыхлом грунтовом полотне достигнуто до 2.80 раз ровное основание при коэффициенте глубины заделки 0,75.

  • 4.

    Увеличение угла сопротивления сдвигу земляного полотна с 31 ° до 41 ° для усиленного основания оболочки снижает коэффициент осадки плоского типа на 200–230% для плоского основания при a / B = 0,75.

  • 5.

    Коэффициент осадки основания оболочки на усиленном рыхлом грунтовом полотне уменьшился на 200% от плоского основания при соотношении глубины заделки a / B = 0.75 и уменьшена на 230% для плотного состояния.

  • 6.

    Происходит резкое снижение эффективности оболочки при уменьшении угла сдвига и увеличение значений эффективности оболочки с увеличением глубины заделки оболочки.

  • 7.

    Эффективность оболочки заметно возрастает при испытаниях, проводимых на основании оболочки на усиленном земляном полотне, по сравнению с основанием оболочки без армирования.

  • 8.

    Наличие армированного слоя под носком кожуха значительно изменяет нарушение несущей способности.Клин поверхности разрыва фундамента оболочки с армирующим слоем более глубокий, чем у плоского фундамента и фундамента без арматуры.

  • 9.

    Анализ методом конечных элементов был подтвержден результатами модельных испытаний и определяет характер разрушения основания оболочки с армированием и без него.

  • 10.

    Рекомендуется для будущей работы обеспечить результаты на крупномасштабной основе в полевых условиях, чтобы сделать общие и исчерпывающие выводы на основе этой рукописи.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Соответствие этическим требованиям

Эта статья не содержит исследований с участием людей или животных.

Сноски

Экспертная проверка под ответственностью Каирского университета.

Список литературы

1. Куриан Н.П. Экономия гиперболических параболоидальных оснований оболочек. Geotech Eng. 1977; 8: 53–59. [Google Scholar]

2.Фарид А, Давуд Р. Цилиндрические оболочки на упругом основании. Всемирный конгресс, ракушечные и пространственные конструкции. Мадрид, Испания; 1979, 1 (3). п. 33–46.

3. Паливал Д.Н., Рай Р.Н. Неглубокая сферическая оболочка на фундаменте Пастернака, подверженная повышенным температурам. J Тонкостенная конструкция. 1986. 5 (1): 343–349. [Google Scholar] 4. Паливал Д.Н., Синха С.Н. Статическое и динамическое поведение мелких сферических оболочек на фундаменте Винклера. J Тонкостенная конструкция. 1986. 4 (2): 411–422. [Google Scholar] 5. Мелерски Э. Тонкостенный фундамент, опирающийся на стохастический грунт.J Struct Eng ASCE. 1988. 114 (8): 2692–2709. [Google Scholar]

6. Абдель-Рахман М. Геотехническое поведение оснований из оболочек. Кандидатская диссертация. Факультет гражданского строительства Университета Конкордия, Монреаль, Канада; 1996.

7. Абдель-Рахман М., Ханна А.М. Максимальная несущая способность треугольных опор на песке. J Geotech Eng ASCE. 1990; 116 (2): 851–1863. [Google Scholar] 8. Махарадж Д.К. Конечно-элементный анализ фундамента конической оболочки. Electron J Geotech Eng — EJGE. 1990; 348: 500–516. [Google Scholar] 9.Хуат Б., Мохамед А. Исследование методом конечных элементов с использованием кода КЭ Plaxis геотехнического поведения основания оболочки. J Comput Sci. 2006. 2 (1): 104–108. [Google Scholar] 10. Кентаро Ю., Андрия В., Мизуки Х. Несущая способность и механизм разрушения различных типов фундаментов на песке. J Обнаружена почва. 2009. 49 (4): 305–314. [Google Scholar] 11. Лата Г.М., Сомванши А. Несущая способность квадратных фундаментов на геосинтетическом армированном песке. Geotext Geomembr. 2009. 27 (2): 81–294. [Google Scholar] 12. Патра К., Дас Б., Аталар С. Несущая способность закладного ленточного фундамента на песке, армированном георешеткой. J Geotex Geomembr. 2010. 23 (1): 454–462. [Google Scholar] 13. Шалиграм П.С. Поведение треугольного ленточного фундамента на геоармированном слоистом песке. Int J Adv Eng Tech IHEAT. 2011. 2 (1): 192–196. [Google Scholar]

14. Йоскими Ю., Тохано И. Статистическая значимость относительной плотности. Оценка относительной плотности и ее роли в геотехнических проектах с участием несвязных грунтов: ASTM STP523-EB.7744-1, Лос-Анджелес; 25–30 июня 1972 г.п. 74–84.

15. Androwes KZ. Изменение поведения почвы включениями. Конференция по наземной инженерии, Париж; 1978. стр. 234–45.

16. Абдель-Баки С., Раймонд Г.П. Повышение несущей способности фундамента за счет однослойного армирования, В: Материалы конференции по геосинтетике в Ванкувере; 1994. стр. 356–67.

17. Абу-Фарсах М., Чен К., Шарма Р. Экспериментальная оценка поведения опор на геосинтетически армированном песке. Почва найдена. 2013. 53 (2): 335–348.[Google Scholar] 18. Ханна А., Абдель-Рахман М. Экспериментальное исследование фундаментов из ракушек на сухом песке. Кандидат Геотек Дж. 1998; 35: 847–857. [Google Scholar] 19. Яхмамото К., Кусуда К. Механизмы разрушения и несущая способность усиленного фундамента. Geotex Geomembr. 2001. 19 (3): 127–162. [Google Scholar] 20. Михаловски Р.Л., Ши Л. Модели деформации армированного песка для фундамента при разрушении. J Geotech Geonviron Eng. 2003. 129 (3): 439–449. [Google Scholar]

21. Bringkgreve RB, Vermeer PA. Программа конечных элементов Plaxis для анализа грунтов и горных пород.Версия 7 Plaxis B.V., Нидерланды; 1998.

22. Кусакабэ О. Фонды. В: Тейлор Р.Н., редактор. Геотехническая центрифуга. Блэки Академический и Профессиональный; Лондон: 1995. Глава 6. [Google Scholar] 23. Брансби П.Л., Смит И.А.А. Боковое трение в модельных экспериментах с подпорной стенкой. J Geotech Eng, ASCE. 1975; GT7: 615–632. [Google Scholar]

24. Абдель-Баки С., Раймонд Г.П. Армирование грунта для неглубокого фундамента. В: Материалы 2-й инженерно-геологической конференции, Каир; 1993 г.п. 488–99.

25. Раймонд Г.П. Армированный сыпучий грунт для улучшения грунта для цементирования опор пути. ASCE Geotech Special Publ. 1992. 30 (2): 1104–1115. [Google Scholar] 26. ДеМерчант М., Валсангкар А., Шрайвер А. Испытания под нагрузкой плиты на легком заполнителе из расширенного сланца, армированного георешеткой. Geotex Geomembr. 2002. 20 (3): 173–190. Дата публикации в сети: 01.06.2002. [Google Scholar] 27. Чен К., Абу-Фарсах М. Численный анализ для изучения масштабного эффекта неглубокого фундамента на укрепленных грунтах. Гео-границы.2011: 595–604. [Google Scholar]

The Ultimate Building Foundation Guide

Что такое фундамент здания?

Фундамент здания — один из самых важных элементов любого проекта, даже если он не виден, когда дом или строение построено.

Фундаментом называется нижняя часть конструкции, которая предназначена для равномерного распределения веса нового здания и обеспечения прочной опоры. Крайне важно выбрать правильный тип фундамента и бетон — для типа почвы и области применения — поскольку ошибки могут иметь серьезные последствия и даже привести к сносу завершенного проекта.Взгляните на наше руководство по типам бетона и, если сомневаетесь, всегда обращайтесь за советом к эксперту, например, инспектору строительства или инженеру-строителю.

Строительные нормы и правила и фундаменты

Правильная установка фундамента вашего здания или пристройки с первого раза жизненно важна для достижения успешного результата. Это относится не только к типу используемого фундамента, но и к ряду других факторов, таких как расстояние до границ, тип почвы, прилегающие конструкции, деревья, водостоки и коллекторы.

Как и в случае с любым другим проектом, получите совет и поддержку экспертов на раннем этапе, чтобы убедиться, что ваш проект соответствует всем применимым нормам и у вас не будет никаких неприятных потрясений в будущем.

Типы фундаментов в строительстве

Перед тем, как решить, какой тип фундамента вам нужен, стоит провести исследование почвы, так как грунтовые условия играют важную роль. Обычно это делается путем рытья ям в различных точках участка и использования результатов для предположения условий повсюду.

Фундаменты обычно делятся на две категории: мелкие и глубокие. Неглубокие фундаменты — наиболее распространенный тип, используемый для небольших зданий и жилых домов. Их глубина обычно меньше их ширины, и они обычно используются для фундаментов пристройки дома.

Более высокие коммерческие или жилые здания или здания, построенные на очень слабом грунте, потребуют глубокого фундамента, который переносит нагрузку конструкции через слабый грунт на более прочный грунт или скалу под ним.Предлагаем бетоны, подходящие для всех типов фундаментов.

Типы фундаментов неглубокого заложения
Отдельные или изолированные фундаменты

Этот тип фундамента, также известный как фундамент с широким фундаментом или подушечным фундаментом, используется для поддержки одной колонны и имеет квадратную, прямоугольную или круглую форму. Они имеют одинаковую толщину и предназначены для несения и распределения сосредоточенных нагрузок. Размер рассчитан на нагрузку и грунтовые условия.

Комбинированная опора

Эти бетонные опоры обычно имеют прямоугольную форму и поддерживают две или более колонны, которые расположены так близко друг к другу, что их отдельные опоры могут перекрывать друг друга.

Ленточный фундамент

Ленточный фундамент используется для несущих стен, в том числе фундаментов пристроек и зимних садов, а также фундаментов домов. Они также используются для размещения ряда близко расположенных столбцов. Более широкое основание этого типа фундамента распределяет вес по большей площади и обеспечивает лучшую устойчивость.

Плотный или матовый фундамент

Плотный или матовый фундамент — это большая плита, поддерживающая несколько колонн и стен. Этот тип фундамента распространяется по всей площади здания и используется, когда давление грунта низкое или когда колонны и стены расположены так близко, что отдельные опоры не подходят или не рентабельны.

Типы глубоких фундаментов
Свайные фундаменты

Свайные фундаменты используются, когда грунтовые условия вблизи поверхности не подходят для тяжелых нагрузок. Сваи забиваются в землю с помощью специального оборудования и заполняются бетоном перед добавлением грунтовой балки, чтобы обеспечить поверхность для строительства.

Просверленные валы или кессоны

Просверленные валы, также известные как кессоны, представляют собой фундаменты, отлитые на месте. Колонна просверливается на необходимую глубину перед тем, как в отверстие опускается арматурная сталь, а затем заливается бетоном.

Строительный фундамент: пошаговое руководство по созданию бетонных оснований

Ваша готовая конструкция всегда будет настолько хороша, насколько хороша основа, на которой она построена, поэтому, если вы сомневаетесь, какой тип фундамента использовать, получить квалифицированную консультацию у строительного инспектора или инженера-строителя. После того, как вы приняли решение, убедитесь, что у вас есть бетонное основание, следуя нашему пошаговому руководству:

Подготовьте землю

Неважно, насколько велика или мала ваша бетонная заливка, первый шаг — раз все соответствующие разрешения есть — это подготовить почву.Используйте деревянные колышки и веревку, чтобы разметить область, где будет заливаться бетон, оставив дополнительные 75 мм для размещения опалубки, которая будет удерживать влажный бетон на месте при его высыхании.

Затем выкопайте фундамент на необходимую глубину: для ленточных фундаментов это, как правило, ненарушенный твердый грунт, а для отдельных опор и плит перекрытия необходимо предусмотреть достаточную глубину для основания основания (100 мм) и гидроизоляционной мембраны ( dpm), а также сам бетон.Это намного быстрее и проще с небольшим механическим экскаватором — если есть доступ. Убедитесь, что весь мусор, камни и растительный материал удалены, прежде чем выравнивать и уплотнять почву, чтобы создать ровное основание.

Затем добавьте основание и снова уплотните. Для большинства бытовых бетонных оснований, таких как приставные фундаменты, достаточно 100 мм основного заполнителя. Затем положите dpm, убедившись, что края загнуты вверх, чтобы образовался лоток, а все стыки перекрывались и заклеивались скотчем. Это защитит нижнюю часть бетона от подъема влаги и любых химических веществ, которые грунтовые воды могут ввести в контакт с бетоном, а также поможет предотвратить его слишком быстрое высыхание из-за попадания воды в основание, что улучшит конечный результат. прочность и уменьшить вероятность его растрескивания.

Следующим шагом является создание опалубки, которая обычно изготавливается из деревянных досок толщиной 25 мм с хорошей опорой, чтобы бетон оставался на месте до тех пор, пока он не схватился. Опалубка должна быть такой же глубиной, как бетонная плита.

Крайне важно использовать лазерный или спиртовой уровень для проверки ровности опалубки, поскольку это определяет конечный уровень бетона.

Заказ бетона

Когда площадка подготовлена, можно приступать к укладке бетона.Помимо типа фундамента, важно также знать, какой тип бетона использовать. Например, почвы, содержащие сульфаты, могут со временем разрушить бетон и вызвать реакцию расширения. Этого можно избежать, используя расчетные химические классы (DC), которые помогают обеспечить долговечность. Если вы не уверены, ознакомьтесь с нашими рекомендациями и / или обратитесь за советом к инженеру-строителю.

Вы также можете использовать калькулятор бетона, чтобы решить, сколько бетона нужно заказывать.Он запросит основную форму области — квадрат / прямоугольник, прямоугольный треугольник, части круга — и размеры (длину, ширину и глубину), чтобы предоставить вам приблизительный объем, который вам нужен. Если вам нужно оценить сложную область, вы можете построить вычисления, сложив вместе разные формы. Необходимая вам глубина бетона будет зависеть от использования: например, опоры для пристроек должны быть толщиной не менее 200 мм, а глубина около 100 мм должна быть достаточной для основания сарая.

Также нужно учесть необходимость заказа бетононасоса. Использование насоса идеально, когда вы имеете дело с большими объемами бетона или когда время ограничено, и у вас нет рабочей силы для использования тачки (вы можете перекачивать около 1 м3 бетона в минуту). Вам также потребуется использовать насос, если автобетоносмеситель не может подойти достаточно близко к зоне заливки или доступ к вашему объекту ограничен, под землей, в пределах существующего здания или на высоте.

Заливка бетона

Время не на вашей стороне, поскольку бетон обычно начинает уходить в течение двух часов после смешивания.Фактическое время будет зависеть от типа бетона и температуры окружающей среды: в холодную погоду бетон может затвердеть в два раза дольше; в жаркую погоду время схватывания можно сократить до 30 минут.

В результате бетон необходимо будет выгрузить и выровнять как можно быстрее, поэтому убедитесь, что у вас есть все необходимые инструменты под рукой, включая грабли / лопату, чтобы перемещать бетон и грубо выравнивать его, а также прямой брус для утрамбовки бетона и устранения воздушных карманов.Бетон обычно достаточно влажный, чтобы его можно было протянуть вокруг траншеи с помощью граблей (мы предлагаем консистенцию S4 для заполнения траншеи) до того, как поверхность будет выровнена и утрамбована для удаления любого захваченного воздуха. Наиболее эффективно это достигается с помощью вибрационной кочерги подходящего размера. Когда поверхность утрамбована до размеченного уровня, ее можно разгладить и выровнять обычной ручной теркой.

Важно убедиться, что на территории достаточно места для грузовика: им около 9.5 метров в длину, три метра в ширину и четыре метра в высоту с радиусом поворота около 17,5 метров и весом до 32 тонн. Автобетоносмесители имеют выдвижные аппарели, которые могут достигать примерно трех или четырех метров, поэтому, если бетон не может быть выгружен в различных местах на участке, вам может потребоваться бетононасос.

Если вы используете тачки, убедитесь, что у вас есть рабочая сила для ускорения работы, так как 1 м3 бетона заполнит около 30-40 тачек! Дорожки к заливке должны быть расчищены и уложены доски, чтобы справиться с любыми склонами или неровностями земли.

Не рекомендуется укладывать бетон в любых неблагоприятных погодных условиях, но, если это неизбежно, следует учесть несколько моментов. Минимальная температура воздуха для заливки бетона составляет 3 ° C, чтобы в смеси не образовывался лед, который может снизить прочность бетона. Вы также никогда не должны заливать лед или иней, поэтому, если это кажется вероятным, защитите основание с помощью изолирующих одеял или разморозьте его с помощью нагревателей перед заливкой, или спросите о нашем ассортименте бетона Fast Track.

Можно заливать бетон под дождем, если земля хорошо дренируется и нет бассейнов с дождевой водой. После заливки накройте брезентом или пленкой, пока она застынет. Сильный дождь повредит поверхность бетона, поэтому, если внешний вид важен, убедитесь, что есть укрытие, защищающее от дождя, пока вы не будете готовы нанести окончательную отделку.

Бетон будет достаточно влажным при заливке, поэтому можно использовать лопату или грабли, чтобы примерно выровнять бетон. Затем кусок дерева с прямыми краями можно использовать для утрамбовки бетона, устраняя любые воздушные карманы.Повторная утрамбовка приведет к получению достаточно гладкой поверхности, но можно использовать стальной шпатель, поскольку бетон начинает затвердевать для более тонкой отделки. Стоит отметить, что гладкий бетон может быть довольно скользким, поэтому часто предпочтительнее «грубая» утрамбовка или обработка щеткой.

Отверждение бетона

Важно, чтобы бетон не высыхал слишком быстро, поскольку он затвердевает, поскольку это может привести к образованию слабой / пыльной поверхности. Самый простой способ добиться этого — сохранить плиту влажной, накрыв ее пластиковой пленкой, убедившись, что края герметичны, чтобы предотвратить эффект аэродинамической трубы.Это особенно важно при температуре выше 20 ° C или при сильном ветре, который может высушить поверхность. Кроме того, если температура может упасть ниже 4 ° C, следует использовать морозное покрывало или аналогичный материал для изоляции плиты и защиты поверхности от мороза. Более подробную информацию о бетоне для холодных погодных условий можно найти здесь.

Последующие работы должны быть возможны в течение 48 часов, хотя стоит проконсультироваться с вашим поставщиком бетона, и лучше всего оставить опалубку на 72 часа, чтобы избежать любого возможного повреждения краев бетона.Строительный инспектор может также настоять на проверке бетонного фундамента перед укладкой каких-либо кирпичей или блоков, поэтому убедитесь, что вы проверили это, прежде чем начинать следующий этап. Бетон набирает полную прочность за 28 дней.

Численный анализ несущей способности многополосного фундамента на неармированных и армированных песчаных пластах

Модель конечных элементов используется для обнаружения влияния угла расширения, угла внутреннего трения и расстояния между опорами на характеристики полосового фундамента, поддерживаемого неармированным и армированный песок.Кроме того, также представлено изменение распределения напряжения и осадки в различных случаях.

Влияние угла расширения (ψ) на значение N

γ для одиночного основания на армированном и неармированном песке

В этом разделе представлены результаты исследования влияния угла дилатансии на предельную несущую способность одиночного опора на неармированные и армированные песчаные пласты. Хорошо известно, что во время сдвига положительный угол расширения относится к расширению почвы, а отрицательный — к тому, что почва, в которой чистое движение частиц вызывает сжатие [42].Определение дилатансии почвы обычно извлекается из существующих соотношений напряжение-сдвиг. Пиковая прочность почвы обычно связана с максимальной скоростью расширения. Большое внимание было уделено связи между углом трения (ϕ) и углом расширения (ψ) [38, 39, 43]. Различное понимание относительно определения дилатансии почвы было зарегистрировано из-за нескольких влияющих факторов. Большинство соотношений показали значительное влияние напряженного состояния, плотности почвы, формы частиц и содержания мелких частиц на дилатансию почвы.Кроме того, взаимодействие между армированием грунта и прилегающим грунтом изменяет поведение дилатансии грунта, при котором увеличивается объем грунта в плоскости разрушения, что приводит к увеличению угла расширения [44]. Поэтому в этом разделе исследуется диапазон угла расширения, чтобы оценить его влияние на реакцию опоры. Значения коэффициента несущей способности N γ представлены на рис. 5 для различных значений ϕ из-за изменения угла дилатансии. Хотя во многих исследованиях угол расширения принимался равным нулю, отрицательный угол расширения, как показано на рис.5г, приемлемо для довольно рыхлого песка из-за его усадочных свойств при сдвиге. На рис. 5 показано значительное увеличение N γ с увеличением угла дилатансии для случая армированного песка. Это может быть связано с увеличением дилатансии из-за увеличения ограничивающего эффекта армирования. Очевидно, что влияние изменения угла дилатансии в случае армированного песка больше, чем в случае неармированных песчаных пластов. Тщательный анализ данных, представленных на рис.5 показывает, что более высокие значения N γ наблюдались с увеличением количества армирующих слоев. Кроме того, взаимосвязь между N γ и углом расширения имеет три стадии. На первом и третьем этапах наблюдалось небольшое увеличение N γ по мере увеличения дилатансии. Третья стадия, по-видимому, начинается при угле расширения около 20 °, 15 °, 10 ° и 5 ° для ϕ = 40 °, 35 °, 30 ° и 25 ° соответственно. В то время как вторая стадия, по-видимому, является переходной зоной, которая характеризовалась значительным увеличением N γ с увеличением угла расширения, но это зависело от угла трения грунта и количества слоев армирования.Резкое увеличение N γ в переходной зоне могло быть связано с увеличением объема грунта при сдвиге, что привело к уменьшению эффекта провисания [45]. Следовательно, будут минимальные значения для угла расширения для преодоления эффекта провисания в различных армированных грунтах в зависимости от состояния уплотнения грунта и количества слоев армирования.

Рис. 5

Влияние угла внутреннего трения и угла расширения на коэффициент несущей способности, N γ , для одиночной опоры, опирающейся на армированный и неармированный песок

Коэффициент полезного действия (

ζ ) для многополосного фундамента на армированном песке

На рисунке 6 показано влияние столкновения между опорами на предельную несущую способность, которая оценивается с использованием коэффициента эффективности ( ζ ).Коэффициент полезного действия ( ζ ) является безразмерным фактором и определяется как отношение предельной несущей способности одного фундамента в группе ленточных фундаментов над армированными песчаными слоями к той, которая наблюдается для одиночного фундамента в тех же условиях. Следует отметить, что коэффициент полезного действия был выражен как функция отношения расстояний, которое часто принимается как отношение расстояния в свету к ширине основания. На рисунке 6 показана величина ( ζ ) для различных значений угла трения с изменяющимся отношением зазоров (S / B).Можно заметить, что для всех случаев значение ( ζ ) больше 1 и увеличивается с уменьшением значения (S / B). Очень ограниченное взаимодействие между соседними опорами наблюдалось на расстоянии, которое было вдвое или более ширины опоры. Результаты показывают, что угол трения играет важную роль во взаимодействии между опорами и, следовательно, в коэффициенте эффективности. Коэффициент полезного действия всегда увеличивается с увеличением угла трения. В случае песчаного пласта с углом трения 40 ° коэффициент полезного действия варьировался от 204 до 1 для случая N = 1 и от 232 до 1 для песчаных пластов с двумя слоями армирования.С другой стороны, для других значений угла трения (ϕ) было обнаружено, что значения коэффициента полезного действия находятся в диапазоне от 1 до 6,8 для случая N = 1 и от 1 до 18 для случая N = 2. Можно заметить, что увеличение количества армирующих слоев не помогло в рыхлом песках, тогда как оно хорошо работало в песках средней и плотной с ϕ> 30 °. Те же результаты проиллюстрированы в другой форме на рис. 7, тогда как коэффициент полезного действия связан с углом внутреннего трения, и можно наблюдать ту же тенденцию.Понятно, что коэффициент полезного действия увеличивается с уменьшением расстояния между несколькими опорами, количества слоев усиления и угла трения.

Рис. 6

Коэффициент эффективности для армированного песка при изменении угла внутреннего трения и расстояния между опорами (S / B)

Рис.7

Коэффициент эффективности для неармированного и армированного в зависимости от угла внутреннего трения

Рисунок 8 иллюстрирует пример распределения касательного напряжения в неармированных и армированных песчаных пластах.Можно отметить, что напряжение сдвига t xy вдоль вертикальных плоскостей при граничном условии (ось симметрии) становится равным нулю.

Рис.8

Распределение касательного напряжения для группы ленточных фундаментов

Распределение нормального напряжения (σ y ) под близко расположенными ленточными фундаментами как для армированных, так и для неармированных грунтовых пластов представлено на рис. 9 и 10. Можно заметить, что армирующие слои играют важную роль в перераспределении напряжения.При том же уровне приложенной нагрузки на рис. 9 показано сравнение неармированного и армированного песка (N = 1, 2) с точки зрения σ y для случая ϕ = 30 ° и S / B = 0,3. Все три корпуса нагружены предельным опорным давлением, которое было определено на неармированном песчаном пласте. Как показано в, максимальное значение σ y для армированного грунта уменьшилось на 39,7% и 42,6% для случаев песчаных пластов с одним и двумя слоями армирования соответственно по сравнению с таковыми на неармированных песчаных пластах.Это может быть связано с влиянием армирования на поперечное распространение индуцированного напряжения, чем это происходит на неармированном грунте, то есть объем грунта, который выдерживает нагрузку на опору, больше из-за кажущейся когезии, вызванной армированием. Другими словами, для неармированного песка прилагаемое давление на опору распределяется по относительно небольшой площади, которая зависит от угла трения и глубины от нижней части опоры. С другой стороны, в случае армированного песка на механизм передачи нагрузки сильно влияет наличие армирующих слоев.Создание касательных напряжений на обеих сторонах армирующих слоев приводит к перераспределению напряжений по большей зоне. Кроме того, введение армирующих слоев увеличивает ограничивающее напряжение вокруг нагруженной области по сравнению с неармированным песком при том же уровне нагрузки и глубине.

Рис. 9

Распределение нормальных напряжений для армированного и неармированного песка при одинаковом уровне нагрузки для случая ϕ = 30 °, S / B = 0,3

Рис. 10

Распределение нормальных напряжений для армированного и неармированного песка при предельной несущей способности для случая ϕ = 30 °, S / B = 0.3

На рис. 11 показано распределение горизонтального движения грунта Ux для тех же случаев при тех же условиях, чтобы подчеркнуть сдерживающий эффект, вызванный арматурой. Это ясно показывает, что горизонтальное движение под ленточным фундаментом сильно зависит от армирования грунта. При этом горизонтальное смещение по сравнению с неармированным песчаным пластом уменьшилось на 57,6% и 61,8% на усиленном песчаном пласте с одним и двумя слоями армирования соответственно. Можно сделать вывод, что наличие армирующих слоев увеличивает взаимодействие между близко расположенными основаниями и вызывает заметное ограничение, которое, в свою очередь, значительно увеличивает сопротивление грунта приложенному опорному давлению.

Рис. 11

Распределение горизонтального смещения (Ux) для армированного и неармированного песка при одинаковом уровне нагрузки для случая ϕ = 30 °, S / B = 0,3

С другой стороны, на рис. 10 показано распределение σ yu внутри массива грунта при предельной несущей способности для каждого случая. Можно заметить, что отношения между максимальным нормальным напряжением на армированном песчаном слое и для неармированного песчаного слоя составляют 1,57 и 2,74 для одного и двух слоев армирования соответственно.Кроме того, из-за армирующих материалов сцепление между частицами грунта увеличивается, что приводит к более глубокому распределению напряжений в случае укрепленных слоев, чем это наблюдается на неармированном песчаном грунте.

Эквивалентное сцепление для армированного песка

В этом разделе представлен эквивалентный подход для оценки предельной несущей способности ленточного основания на армированном песке, чтобы избежать моделирования сложных взаимодействий между грунтом и слоями армирования.Улучшение предельной несущей способности за счет армирования достигается за счет предположения очевидного сцепления. При этом глубина армирования (d) заменяется эквивалентным слоем с однородными свойствами. Прочностные характеристики определяются как углом трения (ϕ), так и сцеплением (c). {\ prime} $$

(4)

, где r обозначает армированный состав, τ r = прочность на сдвиг; c r = кажущееся сцепление, σ ′ = эффективное нормальное напряжение.Несколько исследований были выполнены для изучения характеристик прочности на сдвиг армированного грунта путем проведения испытаний на сдвиг и трехосных испытаний [47, 48].

В этом численном анализе была добавлена ​​кажущаяся когезия наряду с углом внутреннего трения песка для моделирования преимуществ армирования в попытке упростить моделирование и затраты на вычисления взаимодействий между слоями арматуры и прилегающими грунтами.

Основано на результатах, полученных Das et al. [20], которые обсуждались в разд.4.2 оценивается применимость подхода эквивалентной сплоченности. Их экспериментальное исследование моделируется путем выполнения настоящей численной модели без армирования для прогнозирования эквивалентного сцепления, которое представляет собой повышение предельной несущей способности, вызванное армированием. В таблице 2 приведены значения эквивалентной когезии (c re ) при изменении количества армирующих слоев для армированного песка (ϕ = 41 °, u = h = 25,4 мм). На рисунке 12 показано хорошее согласие между результатами, предсказанными с помощью аналогичного подхода.Поэтому он предположил, что подход эквивалентности кажется многообещающим и может значительно сократить время вычислений. Дальнейшие исследования проводятся для полной оценки с использованием экспериментальных данных.

В таблице 2 приведены значения эквивалентной когезии (c re ) при изменении количества армирующих слоев
Рис. 12

Эквивалентный подход по сравнению с Das et al. [20]

(PDF) Правило эффективной ширины при анализе основания на армированном песчаном откосе

Studia Geotechnica et Mechanica, 2019; 41 (1): 4255

Исследовательская статья Открытый доступ

Абдельмаджид Абди *, Хелифа Аббеш, Джамель Атмания, Мунир Буассида

Правило эффективной ширины при анализе основания

на усиленном песчаном склоне

https: // doi.org / 10.2478 / sgem-2019-0005

получено 25 сентября 2018 г .; принята 28 января 2019 года.

Аннотация: В статье представлены результаты, полученные в результате экспериментальной программы

и численных исследований

, проведенных при модельных испытаниях ленточного фундамента, опирающегося на

армированных и неармированных песчаных откосов. Исследование

было сосредоточено на определении предельной несущей способности

ленточного фундамента, подверженного эксцентрической нагрузке, расположенной либо

по направлению к облицовке склона, либо напротив нее.Ленточный фундамент

Модели

были испытаны при различных эксцентриситетах

вертикальной нагрузки. Полученные результаты испытаний, проведенных

на неармированном песчаном откосе, показали, что увеличение эксцентриситета

приложенной нагрузки по отношению к облицовке склона

снижает предельную несущую способность основания.

Прогнозы предельной несущей способности, полученные с помощью правила

эффективной ширины, хорошо согласуются с теми

, которые были предложены с учетом общей ширины опоры

, подверженной эксцентрической нагрузке.Предел несущей способности

эксцентрично нагруженной опоры на армированном песке

склона может быть получен из осевой нагрузки опоры

, опирающейся на горизонтальный песчаный грунт, при принятии правила эффективной ширины

и коэффициента уменьшения, причитающегося

к склону. При увеличении расстояния между границей опоры

и гребнем склона для неармированного и

уклона грунта, усиленного георешетками, на предельную несущую способность опоры

больше не влияет наклонный грунт.

Ключевые слова: несущая способность; эксцентриситет; опора;

георешетка; модельный тест; склон.

1 Введение

Многие типы фундаментов мелкого заложения могут быть спроектированы, когда

подвергаются эксцентрической нагрузке, которая зависит от их геометрической формы

или других влияющих факторов, как для фундаментов

, расположенных на наклонной поверхности. В этом контексте многие исследователи

обнаружили, что предельная несущая способность

опор, подвергающихся эксцентрической нагрузке на склонах

, значительно снижается по сравнению с

горизонтальной поверхностью земли.Это значительное уменьшение на

, скорее всего, связано с эксцентриситетом нагрузки и расположением

основания относительно гребня склона [1, 2]. Снижение предельной несущей способности

из-за эксцентриситета

и / или угла наклона

было изучено несколькими исследователями

. Мейерхоф [3] предложил аналогичное уравнение для

, которое предложил Терзаги [4], введя эффективную ширину опоры

. Согласно этому методу, предельная нагрузка

ленточного фундамента может быть определена, если предположить, что осевая нагрузка

приложена к эффективной ширине основания.

Пракаш и Саран [5] исследовали несущую способность эксцентрично нагруженной опоры

на плотном песке, а также на рыхлом песке

. Опоры шириной B испытывались с нулевой глубиной заделки

, Df, т.е. на поверхности земли и при

заделке

, равной ширине опоры: Df / B = 1. Эксцентриситет нагрузки

изменялся от 0,1B до 0,4. Б. Разумное согласие

было обнаружено между аналитическими результатами

и результатами испытаний модели.Пуркаястха и Чар

[6] подробно изучали проблему опоры на опору, подвергшую

эксцентрическим нагрузкам. Эффективная ширина, введенная

Meyerhof, широко использовалась для определения

несущей способности опор с внецентренной нагрузкой.

Михаловски и Вы [7] исследовали применимость этого метода

для оценки несущей способности фундаментов мелкого заложения

. Правило эффективной ширины приводит к подходящим результатам

для оценки несущей способности

эксцентрично нагруженных опор и для любого типа поверхности раздела между

опорой и грунтовым фундаментом, когда эксцентриситет

мал, e.грамм. менее 0,15В. Лукидис и др. [8] выполнил

метод конечных элементов для прогнозирования предельной несущей способности

основания, опирающегося на чисто фрикционный грунт

, подверженный эксцентрической нагрузке. Это исследование привело к такому же выводу

при рассмотрении эффективной ширины; the

* Автор, ответственный за переписку: Абдельмаджид Абди, Департамент гражданского строительства

Инженерный факультет, Технологический факультет Университета Батны 2, Батна,

Алжир, Эл. почта: [email protected]

Khelifa Abbeche: Департамент гражданского строительства, факультет

Технологический университет Батны 2, Батна, Алжир

Джамель Атмания: Департамент гражданского строительства, Университет

Тебесса, Route de Constantine, 12002 Tébessa, Algeria

Mounir Bouassida: Université de Tunis El Manar, Ecole Nationale

d’ingénieurs de Tunis, Ingénierie Géotechnique, LR14ES03, BP 37,

Le Belvédèzre 2017; 1 (2): 122–135

Первое десятилетие (1964-1972)

Исследовательская статья

Макс Мустерман, Пол Плейсхолдер

Чем отличается

Нейроусиление?

Это так и есть нейроусиление?

Фармакологическая и психическая самотрансформация в этике

Сравнение

Pharmakologische und mentale Selbstveränderung im

ethischen Vergleich

https: // doi.org / 10.1515 / xyz-2017-0010

получено 9 февраля 2013 г .; принято 25 марта 2013 г .; опубликовано в Интернете 12 июля 2014 г.

Аннотация: В концепции эстетического формирования знания и его как можно скорее

и ориентированном на успех применении, идеи и выгоды

без ссылки на аргументы, разработанные около 1900 года. расследование также

включает период между вступлением в силу и представлением в его текущей версии

.Их функция как часть литературного изображения и повествовательной техники.

Ключевые слова: Функция, передача, расследование, принципал, период

Посвящается Полю Placeholder

1 Исследования и расследования

Основное расследование также включает период между вступлением в силу и

презентации в текущей версии. Их функция как часть литературного портрета и повествовательной техники.

* Макс Мустерман: Институт морской биологии, Тайваньский национальный океанский университет, 2Pei-Ning

Road Keelung 20224, Тайвань (R.OC), e-mail: [email protected]

Paul Placeholder: Институт морской биологии, Национальный Тайваньский океанский университет, 2Pei-Ning

Road Keelung 20224, Тайвань (ROC), e-mail: email @ mail .com

Открытый доступ. ©  Mustermann and Placeholder, опубликовано De Gruyter. Это произведение

под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives . License.

Открытый доступ. © 2019 Абдельмаджид Абди и др., Опубликовано Sciendo. Эта работа находится под лицензией Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 Лицензия.

Microsoft Word — 10301016.doc

% PDF-1.4
%
1 0 объект
>
эндобдж
5 0 obj
>
эндобдж
2 0 obj
>
транслировать
PScript5.dll Версия 5.22007-11-16T16: 51: 20 + 05: 302007-11-16T16: 51: 20 + 05: 30application / pdf

  • Microsoft Word — 10301016.doc
  • Технический
  • Acrobat Distiller 8.0.0 (Windows) uuid: 27264771-17b3-460e-9001-9b33b512a020uuid: a3887f9a-2541-47cc-baa0-840ff0b8ee2e

    конечный поток
    эндобдж
    3 0 obj
    >
    эндобдж
    4 0 obj
    >
    эндобдж
    6 0 obj
    >
    эндобдж
    7 0 объект
    >
    эндобдж
    8 0 объект
    >
    эндобдж
    9 0 объект
    >
    эндобдж
    10 0 obj
    >
    эндобдж
    11 0 объект
    >
    эндобдж
    12 0 объект
    >
    эндобдж
    13 0 объект
    >
    эндобдж
    14 0 объект
    >
    эндобдж
    15 0 объект
    >
    эндобдж
    16 0 объект
    >
    эндобдж
    17 0 объект
    >
    эндобдж
    18 0 объект
    >
    эндобдж
    19 0 объект
    >
    эндобдж
    20 0 объект
    >
    эндобдж
    21 0 объект
    >
    эндобдж
    22 0 объект
    >
    эндобдж
    23 0 объект
    >
    эндобдж
    24 0 объект
    >
    эндобдж
    25 0 объект
    >
    эндобдж
    26 0 объект
    >
    эндобдж
    27 0 объект
    >
    эндобдж
    28 0 объект
    >
    эндобдж
    29 0 объект
    >
    эндобдж
    30 0 объект
    >
    эндобдж
    31 0 объект
    >
    эндобдж
    32 0 объект
    >
    эндобдж
    33 0 объект
    >
    эндобдж
    34 0 объект
    >
    эндобдж
    35 0 объект
    >
    эндобдж
    36 0 объект
    >
    эндобдж
    37 0 объект
    >
    эндобдж
    38 0 объект
    >
    эндобдж
    39 0 объект
    >
    эндобдж
    40 0 объект
    >
    эндобдж
    41 0 объект
    >
    эндобдж
    42 0 объект
    >
    эндобдж
    43 0 объект
    >
    эндобдж
    44 0 объект
    >
    эндобдж
    45 0 объект
    >
    эндобдж
    46 0 объект
    >
    эндобдж
    47 0 объект
    >
    эндобдж
    48 0 объект
    >
    эндобдж
    49 0 объект
    >
    эндобдж
    50 0 объект
    >
    эндобдж
    51 0 объект
    >
    эндобдж
    52 0 объект
    >
    эндобдж
    53 0 объект
    >
    эндобдж
    54 0 объект
    >
    эндобдж
    55 0 объект
    >
    эндобдж
    56 0 объект
    >
    эндобдж
    57 0 объект
    >
    эндобдж
    58 0 объект
    >
    эндобдж
    59 0 объект
    >
    эндобдж
    60 0 объект
    >
    эндобдж
    61 0 объект
    >
    эндобдж
    62 0 объект
    >
    эндобдж
    63 0 объект
    >
    эндобдж
    64 0 объект
    >
    эндобдж
    65 0 объект
    >
    эндобдж
    66 0 объект
    >
    эндобдж
    67 0 объект
    >
    эндобдж
    68 0 объект
    >
    эндобдж
    69 0 объект
    >
    эндобдж
    70 0 объект
    >
    эндобдж
    71 0 объект
    >
    транслировать
    h ބ T] o0} ϯ $ \ c (f
     (cQ ~ v4!% & => S} 13X = & C \ 8ǁ {HX xc \ S0 nPX% R ‘~’ ^ fsV0nWhjN]

    AR362 — Структурные системы в архитектуре IV Лекция: Основы

    Презентация на тему: «AR362 — Структурные системы в архитектуре IV Лекция: Основы» — стенограмма презентации:

    ins [data-ad-slot = «4502451947»] {display: none! important;}}
    @media (max-width: 800px) {# place_14> ins: not ([data-ad-slot = «4502451947»]) {display: none! important;}}
    @media (max-width: 800px) {# place_14 {width: 250px;}}
    @media (max-width: 500 пикселей) {# place_14 {width: 120px;}}
    ]]>

    1

    Лекция 11 — 12: Основы
    AR362 — Структурные системы в архитектуре IV Лекция: Основы Рез.Асс. Эркан ДУРМАЗГЕЗЕР Департамент гражданского строительства Измир, ТУРЦИЯ

    2

    ФУНДАМЕНТЫ В конструкции внутренние силы передаются от элементов колонны к фундаменту. Передача усилия необходима для безопасной работы. Прочность грунта намного меньше прочности колонны, следовательно, элементы стенок колонн и сдвиговых стенок не входят в грунт напрямую. Напряжение, создаваемое колоннами, плитами (или балками) первого этажа, располагается между грунтом и колоннами первого этажа.В противном случае вертикальные элементы (колонна или стена сдвига) оседают в грунте, что приводит к структурному повреждению конструкции. Независимо от типа надстройки, железобетонные фундаменты предпочтительнее из-за соображений долговечности и почвенных условий.

    3

    Стеновые опоры (Duvar Altı Temel)
    ТИПЫ ФУНДАМЕНТОВ Стеновые опоры (Duvar Altı Temel) Индивидуальные опоры (Tekil — Münferit Temel) Комбинированные опоры (Birleşik Temel) Ленточный фундамент (Sürekli Temel) a) Односторонний ленточный фундамент b) Двусторонний ленточный фундамент 5) Фундамент с матом (или плотом) (Radye Temel) a) С балкой b) Без балки 6) Фундамент на сваях (Kazıklı Temel)

    4

    Стеновые опоры (Duvar Altı Temel)
    ВИДЫ ФУНДАМЕНТОВ Стеновые опоры (Duvar Altı Temel) Обычно используются в 1-2-этажных каменных конструкциях.Общие размеры Ширина железобетонной фундаментной балки 50 — 70 см Высота железобетонной балки 30 — 40 см.

    5

    ВИДЫ ФУНДАМЕНТОВ 2) Индивидуальные опоры (Текил Темель)

    6

    2) Отдельные опоры (Tekil Temel)
    ВИДЫ ФУНДАМЕНТОВ 2) Отдельные опоры (Tekil Temel) Поперечные балочные элементы используются для связывания отдельных опор, что позволяет эффективно передавать силы землетрясения через систему фундамента.Ширина поперечных балок не менее 15 см. Размер основания выбирается таким образом, чтобы передача напряжения между фундаментом и почвой происходила безопасно. Напряжение, создаваемое опорой, должно быть меньше несущей способности грунта. Не подходит для жилых домов из-за склонности к разной осадке элементов колонн.

    7

    3) Комбинированная опора (Birleşik Temel)
    ВИДЫ ФУНДАМЕНТОВ 3) Комбинированная опора (Birleşik Temel) Если расстояние между двумя колоннами близкое, используется комбинированная опора.Ступеньку можно постепенно расширять там, где уровень осевой нагрузки выше.

    8

    ВИДЫ ФУНДАМЕНТОВ 4a) Фундамент с односторонней лентой (Bir Yönde Sürekli Temel)

    9

    4a) Односторонний ленточный фундамент (Bir Yönde Sürekli Temel)
    ТИПЫ ФУНДАМЕНТОВ 4a) Односторонний ленточный фундамент (Bir Yönde Sürekli Temel) Высота фундамента не менее 30 см; тогда как ширина 100 см.Ширина опоры определяется таким образом, чтобы напряжение, создаваемое опорой, было меньше несущей способности почвы. Не подходит для жилых домов, так как этот тип фундамента подходит только для конструкций, у которых направления колонн в плане одинаковы.

    10

    ВИДЫ ФУНДАМЕНТОВ 4b) Двухсторонний ленточный фундамент (İki Yönde Sürekli Temel)

    11

    4b) Двухсторонний ленточный фундамент (İki Yönde Sürekli Temel)
    ВИДЫ ФУНДАМЕНТОВ 4b) Двухсторонний ленточный фундамент (İki Yönde Sürekli Temel) Высота фундамента не менее 30 см; тогда как ширина 100 см.Ширина опоры определяется таким образом, чтобы напряжение, создаваемое опорой, было меньше несущей способности почвы. Подходит для жилого типа дома. Риск различного оседания в столбцах относительно невелик, поскольку элементы привязаны в обоих направлениях.

    12

    5) Фундамент с матом или плотом (Radye Temel)
    ТИПЫ ФУНДАМЕНТА 5) Фундамент с матом или плотом (Radye Temel) Фундамент с матом без балки: под элементами колонны формируется одна пластина большого размера.Такой тип фундамента требуется при низком допустимом давлении грунта. Подходит для предотвращения разного оседания колонн. Толщина фундаментной плиты должна быть не менее 30 см; тогда как высоту перекрытия в жилых домах можно оценить как 10-кратное число этажей в см.

    13

    ВИДЫ ФУНДАМЕНТОВ 5) Фундамент для матов или плотов (Radye Temel)

    14

    6) Свайный фундамент (Kazıklı Temel)
    ТИПЫ ФУНДАМЕНТОВ 6) Свайный фундамент (Kazıklı Temel) Свая представляет собой длинный цилиндр из прочного материала, такого как бетон, который вдавливается в землю, чтобы служить устойчивой опорой для конструкций. построен поверх него.Когда на поверхности есть слой рыхлой почвы. Этот слой не может выдержать вес здания, поэтому нагрузки здания должны обходить этот слой и переноситься на более прочный слой почвы или породы, который находится ниже слабого слоя. Когда здание имеет очень тяжелые сосредоточенные нагрузки, например, в многоэтажном сооружении, мосту или резервуаре для воды. Свайные фундаменты используются в следующих ситуациях:

    15

    Свойства поперечной балки (Bağ Kirişlerin Özellikleri)
    Минимальный размер поперечного сечения не может быть меньше, чем пролет между двумя колоннами / 30.Значения, указанные для расчетной осевой нагрузки в поперечной балке в первой строке, представляют собой% сжимающей нагрузки на колонну. Пример конструкции поперечной балки. Материал C25 — S420. Тип почвы D.

    16

    Свойства поперечной балки (Bağ Kirişlerin Özellikleri)
    Решение N = 0,12×2000 = 240 кН Размер поперечного сечения должен быть не менее 300 мм x 300 мм. Продольная арматура 4ϕ18. Площадь продольной арматуры = 1018 мм2 По требованию = Н / 365 МПа = 657 мм2.ДОВОЛЕН !!!

    17

    МОДЕЛЬ НАПРЯЖЕНИЯ ПОЧВЫ — ОПРЕДЕЛЕНИЯ
    Nd = Расчетная нагрузка на колонну, включая схемы нагрузки G + Q. h = Глубина фундамента. σz = напряжение грунта, образовавшееся под фундаментом из-за расчетной нагрузки. σzem = нагрузка на грунт. fzn = допустимая нагрузка на грунт. γz = плотность грунта γb = плотность бетона = 25 кН / м3 Напряжение грунта = напряжение от сил колонны + напряжение от бетона фундамента — напряжение, создаваемое выемкой грунта

    18

    МОДЕЛЬ НАПРЯЖЕНИЯ ПОЧВЫ — ОПРЕДЕЛЕНИЯ
    Напряжение грунта = напряжение из-за сил колонны + напряжение из-за бетона фундамента — напряжение, создаваемое выемкой грунта σz γb h γz h <1.5 σzem σz (γb - γz) h <1,5 σzem, где γb - γz = γ σz <1,5 σzem - γh γ = 18-20 кН / м3 fzn = 1,5 σzem - γh (чистая прочность грунта) Решите h и определите fzn так, чтобы до σz

    19

    РАСЧЕТНАЯ МОДЕЛЬ Nd2, Nd5, Nd8 = Расчетные нагрузки на колонну (кН)
    σz1, σz2, σz3 = Напряжение, создаваемое в грунте силами колонны (кН / м2) q1 = σz1b, q2 = σz2b, q3 = σz3b = Эквивалентное линейное напряжение производятся расчетными нагрузками на колонну (кН / м).Чтобы уменьшить напряжение, создаваемое силами колонны, можно удлинить фундаментную балку (a1 и a2). Линейные напряжения, создаваемые расчетными нагрузками, находятся в равновесии с линейными напряжениями q1, q2, q3.

    20

    РАСЧЕТНАЯ МОДЕЛЬ Расчетные силы колонны определяются путем анализа надстройки. Линейные напряжения q1, q2, q3 рассчитываются численно. 2) Для каждого пролета значения напряжения грунта усредняются для простоты.

    21 год

    РАСЧЕТНАЯ МОДЕЛЬ

    22

    РАСЧЕТНАЯ МОДЕЛЬ Определение ширины опоры b:
    Внутренний сдвиг и влияние момента в консоли опоры:

    23

    МОМЕНТЫ И ДИАГРАММЫ СДВИГА ФУНДАМЕНТАЛЬНОЙ БАЛКИ
    Фундаментная балка может иметь такую ​​длину, чтобы уменьшить нагрузку на грунт, но длина консоли не может быть превышена 1.5м. Высота фундаментной балки определяется таким образом, чтобы выдерживать не менее 80% сдвига, создаваемого надстройкой. Оставшийся эффект сдвига может быть обеспечен сдвиговой арматурой. При расчетах арматуры на изгиб сечение в области пролета является Т, а сечение в опоре — прямоугольным. В большинстве случаев достаточно минимального количества продольной арматуры, так как высота сечения задана щедро. Арматура As1 и As2 рассчитывается по диаграмме моментов, показанной выше.

    24

    ЭТАП РАСЧЕТА Выбрана длина консоли a1 и a2.
    Выбрана ширина фундаментной балки bw. Выбирается высота фундамента. Выбрана прозрачная крышка. Высота фундамента оценивается исходя из того, что фундамент без поперечной арматуры должен выдерживать не менее 80% сдвига. Оценивается ширина фундамента. При необходимости оценивается усиление сдвига фундамента. Определяется напряжение почвы. Оцениваются продольные арматуры. Дополнительные подкрепления назначаются в районе поддержки, если это необходимо. Толщина покрытия «t» регулируется.Оценивается подкрепление опор. Нарисовано усиление балки.

    25

    ПОЛОСНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННЕМ направлении
    ПРИМЕР Односторонний фундамент будет сформирован под колоннами 30 см x 60 см. Расчетные усилия колонны показаны на рисунке. Выполните необходимый анализ фундамента, чтобы безопасно выдержать расчетные усилия. Контур земли указан на расстоянии 1,4 м слева от колонны и 3 метра справа от колонны.Допустимая нагрузка на грунт σзем = 150 кН / м2. Использованные материалы C25 — S420. fcd = МПа fctd = 1,2 МПа, fyd = fywd = 365 МПа min ρ = 0,8 fctd / fyd = max ρ = 0,02 max (ρ — ρ ’) = 0,85 ρb =

    26 год

    ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННИЕ
    ПРИМЕР Ширина балки фундамента bw выбрана равной 50 см. Высота фундамента t = 30 см. Бетонное покрытие 5см. Определение высоты фундаментной балки h: Сдвиг должен переноситься фундаментной балкой, но в этом случае размер фундамента не является экономичным.Высота фундамента оценивается исходя из того, что фундамент без поперечной арматуры должен выдерживать не менее 80% сдвига.

    27

    ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННЕМ направлении
    ПРИМЕР Определение ширины фундамента b:

    28 год

    ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОПОЛОЖЕНИИ
    ПРИМЕР

    29

    ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННИЙ КАНАЛ
    Продольное армирование: В большинстве случаев достаточно минимального количества продольного армирования, так как высота секции задается щедро.Расчет будет производиться по максимальному изгибающему моменту. Пролет B — C: Md = кНм, d = 100 — 5 = 95 см = 950 мм Табличное решение (для Т-образной балки, поскольку она имеет дело с областью пролета).

    30

    ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННИЙ КАНАЛ
    Продольное армирование: В большинстве случаев достаточно минимального количества продольного армирования, так как высота секции задается щедро. Расчет будет производиться по максимальному изгибающему моменту.Пролет B — C: Md = кНм, d = 100 — 5 = 95 см = 950 мм Табличное решение (для Т-образной балки, поскольку она имеет дело с областью пролета). b / bw = 3 (но таблица формируется только для конкретного соотношения — используется 4 t / d = 30/95 = ~ 0,3 Kfcd = 1500 x 9502 / [178,1 (106)] x 16,67] = (намного больше из приведенного выше запись вверху) Означает, что минимального количества арматуры достаточно.

    31 год

    ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННИЙ КАНАЛ
    Продольное армирование: В большинстве случаев достаточно минимального количества продольного армирования, так как высота секции задается щедро.Расчет будет производиться по максимальному изгибающему моменту. Пролет A — B: Md = 99,8 кНм, d = 100 — 5 = 95 см = 950 мм Достаточно минимального количества арматуры.

    32

    ЛЕНТОЧНЫЙ ФУНДАМЕНТ В ОДНОСТОРОННИЙ КАНАЛ
    Продольное армирование: В большинстве случаев достаточно минимального количества продольного армирования, так как высота секции задается щедро. Расчет будет производиться по максимальному изгибающему моменту.Опора C и опора A: Максимальный момент составляет кНм Md = кНм, d = 100 — 5 = 95 см = 950 мм Табличное решение (для прямоугольной балки, поскольку она имеет дело с областью опоры — таблица на следующем слайде). Означает, что минимального количества арматуры достаточно (не видно по таблице). Как мин. = X500x950 = 1235 мм2 В наличии = = 1055 мм2 По мере необходимости = 1235 — 1055 = 180 мм2 (добавлено 1ϕ16). Опора B Дополнительного усиления не требуется. Поскольку min = x500x950 = 1235 мм2