Сечение кабеля по диаметру: способы и примеры расчета
При покупке кабельной продукции необходимо убедиться, не занижено ли сечение жил покупаемого кабеля. И сделать это крайне важно, так как если у кабеля заниженное сечение, то тем больше его сопротивление и тем больше тепла, выделяемого на токопроводящей жиле при прохождении тока, следовательно заниженное сечение может привести к возгоранию изоляции и к короткому замыканию.
Расчет сечения кабеля по диаметру. Вариант № 1
Рис.1
Определить сечение кабеля возможно по диаметру жилы. На практике чаще всего замеряют диаметр жилы без изоляции штангенциркулем или микрометром. Чтобы вспомнить, как работать со штангенциркулем при измерении диаметра жилы посмотрите рис. 1
Зная диаметр жилы, достаточно легко определить сечение кабеля. Для этого нужно воспользоваться формулой сечения кабеля, которая совпадает с обычной школьной формулой расчета площадки круга (рис. 2/4=24,6 мм2
Ближайшее стандартное сечение 25мм2. Таким образом, на склад поставлен кабель ВВГнг 3х25.
Что делать, если фактическое сечение не совпадает с указанным в маркировке?
У производителей кабеля также существуют свои допуски относительно сечения жил кабеля. Эти допуски регламентируются ГОСТ 22483-77, в соответствии с которым сечение жилы должно соответствовать указанному в ГОСТ электрическому сопротивлению.
Например, для кабеля ВВГ (класс гибкости жил 1) диапазон диаметров жилы, соответствующих ГОСТ, рассчитан и приведен в таблице ниже:
Номинальное сечение, мм2 |
Max. диаметр жилы, мм |
Min. диаметр жилы исходя из max сопротивления по ГОСТ 22483-77, мм |
0,5 |
0,80 |
0,78 |
0,75 |
0,98 |
0,95 |
1 |
1,13 |
1,10 |
1,5 |
1,38 |
1,35 |
2,5 |
1,78 |
1,72 |
3 |
1,95 |
1,90 |
4 |
2,26 |
2,18 |
5 |
2,52 |
2,45 |
6 |
2,76 |
2,67 |
8 |
3,19 |
3,12 |
10 |
3,57 |
3,46 |
25 |
5,64 |
5,49 |
35 |
6,68 |
6,47 |
50 |
7,98 |
7,52 |
70 |
9,44 |
9,04 |
95 |
11,00 |
10,65 |
120 |
12,36 |
11,97 |
150 |
13,82 |
13,29 |
185 |
15,35 |
14,87 |
240 |
17,49 |
17,05 |
Подробнее об этом в нашей статье — Заниженное сечение кабеля. Допустимые нормы занижения сечения
Расчет сечения кабеля по диаметру. Вариант № 2
Если под рукой нет штангенциркуля или микрометра, позволяющих достаточно точно замерить диаметр жил малых сечений, то можно воспользоваться этим способом.
Одна из жил очищается от изоляции и наматывается на карандаш или ручку (рис.3,4). Чем больше витков, тем точнее получится измерение. Ширина намотки измеряется обычной линейкой и делится на количество витков. Получившееся число и будет диаметром жилы. Зная диаметр, вычисляем сечение варианту № 1.
Расчет сечения гибкого кабеля по диаметру
Принцип расчета сечения гибкого кабеля по диаметру остается тот же самый. Измерять диаметр всей жилы, состоящей из множества проволочек будет неправильно, так как между проволоками есть воздушный зазор.
Для расчета сечения по диаметру в гибком кабеле необходимо сначала высчитать сечение одной из проволочек в жиле. Диаметр проволочки вычисляется штангенциркулем (вариант №1) или витками для удобства по линейке (рис.5) (вариант 2). Далее по формуле (рис.2) в варианте №1 находим сечение одной проволочки и умножаем на количество проволочек, получаем сечение гибкого кабеля.
Как рассчитать сечение токоведущей жилы кабеля
Главным условием корректной и бесперебойной работы электроприборов и оборудования является правильно спроектированная система электроснабжения. Здесь важно правильно выполнить расчет сечения токоведущей кабеля — это должно осуществляться в соответствии с действующими правилами устройства электроустановок — ПУЭ Глава 1.3 седьмая редакция.
Основные способы расчета сечения токоведущей жилы кабеля
Основными параметрами, которые необходимо учитывать при расчете сечения токоведущей жилы кабеля являются:
- Р — мощность (кВт).
- І — номинальный ток сети (А).
- U — напряжение сети (B).
- количество фаз.
- материал, из которого изготовлен проводник.
Чтобы разобраться, как рассчитать сечение токоведущей жилы кабеля для бытовых нужд рассмотрим стандартные двухкомнатные квартиры.
Порядок расчета сечения
1) Необходимо определить суммарное значение потребляемой мощности отдельно для каждого помещения, а затем эти показатели сложить. Например, суммарная мощность в кухне рассчитывается следующим образом:
освещение — две лампочки по 100 ватт.
вытяжка — 100 ватт.
холодильник — 350 ватт.
хлебопечка — 450 ватт.
Все эти значения следует сложить — 2х100+100+350+450= 1100 Ватт. Такие же расчеты необходимо произвести и для остальных помещений.после этого, полученные результаты суммируются и получается общее значение потребляемой мощности. На сегодняшний день средний такой показатель составляет 7,5-8 кВт.
2) Выбрать материал жил кабеля. Обычно это алюминий или медь.
3) Определиться с напряжением в сети и количеством фаз. В большинстве случаев, это однофазная сеть с напряжением в 220 вольт. В некоторых домах бывает и трехфазная сеть с напряжением в 380 вольт. Чаще всего, в индивидуальных домах и частных отелях.
Важно учитывать. При расчете суммарной мощности необходимо всегда полученное значение округлять в большую сторону. Если же в результате расчет получается целое число, то к нему следует добавить 1.0. Это делается для того, чтобы система электроснабжения имела определенный запас прочности.
Еще один важный момент в расчете суммарной мощности — если планируется в дальнейшем приобретение какого-либо электрооборудования или электроприборов (микроволновка, кухонный комбайн, посудомоечная машина), то их мощность тоже нужно учитывать.
После того как выполнен расчет суммарной мощности потребляемой энергии необходимо выбрать материал, из которого выполнены жилы кабеля. Подбор провода или кабеля можно осуществлять по специальным таблицам, которые имеются в сети интернет и в специальной литературе. В нашем случае, значение сечения кабеля для алюминия будет составлять 6 мм2. (одна фаза — 220 В. или 4 мм2. — медная жила). При трехфазном подключении применяют понижающий коэффициент. Например, если общая потребляемая мощность составляет 7,5 кВт., то требуется кабель, сечением в 1,5 мм2. — медь и 2,5 мм2. — алюминий.
Токоведущие жилы кабеля по нагрузке
При этом варианте расчетов, за основной показатель берется предельно допустимая нагрузка (сила тока).
Чтобы рассчитать силу тока, проходящего в сети, необходимо суммарную мощность оделить на напряжение сети — нашем случае — это 7500/220 = 34,09 — это ток нагрузки. По действующим нормативам, принято использовать следующее соотношение — 1 мм2. сечение токоведущей жилы приходится 4 А. Значит получается 34,09/4 = 8,52 мм2. После этого, обратившись к специальным таблицам производится подбор сечения токопроводящих жил в зависимости от материала проводника, напряжения и количества фаз.
Программа для расчета сечения токоведущей жилы кабеля
Для тех, кто не знает, как рассчитать сечения токоведущей жилы кабеля или сомневается в правильности своих вычислений, существует специальная программа, с помощью которой можно быстро и точно осуществить расчет сечения токоведущей жилы кабеля. Для этого достаточно скачать на ПК (бесплатно), ввести необходимые параметры ми получить результат. Скачать можно здесь http://www.vip-montazh.com/#!raschet-sechenija-kabelej/c1ew7.
Ток по сечению кабеля. Расчёт сечения кабеля по мощности и току: как правильно рассчитать проводку
Таблица нагрузок по сечению кабеля: выбор, расчет
От правильного выбора сечения электропроводки зависит комфорт и безопасность в доме. При перегрузке проводник перегревается, и изоляция может оплавиться, что приведет к пожару или короткому замыканию. Но сечение больше необходимого брать невыгодно, поскольку возрастает цена кабеля.
Вообще, его рассчитывают в зависимости от количества потребителей, для чего сначала определяют общую мощность, используемую квартирой, а затем умножают результат на 0,75. В ПУЭ применяется таблица нагрузок по сечению кабеля. По ней можно легко определить диаметр жил, который зависит от материала и проходящего тока. Как правило, применяются медные проводники.
Сечение жилы кабеля должно точно соответствовать расчетному — в сторону увеличения стандартного размерного ряда. Наиболее опасно, когда оно занижено. Тогда проводник постоянно перегревается, и изоляция быстро выходит из строя. А если установить соответствующий автоматический выключатель, то будет происходить его частое срабатывание.
При завышении сечения провода, он обойдется дороже. Хотя определенный запас необходим, поскольку в дальнейшем, как правило, приходится подключать новое оборудование. Целесообразно применять коэффициент запаса порядка 1,5.
Расчет суммарной мощности
Общая потребляемая квартирой мощность приходится на главный ввод, который входит в распределительный щит, а после него разветвляется на линии:
- освещение;
- группы розеток;
- отдельные мощные электроприборы.
Поэтому самое большое сечение силового кабеля — на входе. На отводящих линиях оно уменьшается, в зависимости от нагрузки. В первую очередь, определяется суммарная мощность всех нагрузок. Это несложно, так как на корпусах всех бытовых приборов и в паспортах к ним она обозначается.
Все мощности складываются. Аналогично производятся расчеты и по каждому контуру. Специалисты предлагают умножать сумму на понижающий коэффициент 0,75. Это объясняется тем, что одновременно все приборы в сеть не включаются. Другие предлагают выбирать сечение большего размера. За счет этого создается резерв на последующий ввод в действие дополнительных электрических приборов, которые могут быть приобретены в будущем. Нужно отметить, что этот вариант расчета кабеля более надежен.
Как определить сечение провода?
Во всех расчетах фигурирует сечение кабеля. По диаметру его определить проще, если применять формулы:
- S = πD²/4;
- D = √(4×S/π).
Где π = 3,14.
В многожильном проводе сначала надо подсчитать количество проволочек (N). Затем измеряется диаметр (D) одной из них, после чего определяется площадь сечения:
S = N×D²/1,27.
Многожильные провода применяются там, где требуется гибкость. Более дешевые цельные проводники используются при стационарном монтаже.
Как выбрать кабель по мощности?
Для того чтобы подобрать проводку, применяется таблица нагрузок по сечению кабеля:
- Если линия открытого типа находится под напряжением 220 В, а суммарная мощность составляет 4 кВт, берется медный проводник сечением 1,5 мм². Данный размер обычно применяется для проводки освещения.
- При мощности 6 кВт требуются жилы большего сечения — 2,5 мм². Провод применяется для розеток, к которым подключаются бытовые приборы.
- Мощность 10 кВт требует использования проводки на 6 мм². Обычно она предназначена для кухни, где подключается электрическая плита. Подвод к подобной нагрузке производится по отдельной линии.
Какие кабели лучше?
Электрикам хорошо известен кабель немецкой марки NUM для офисных и жилых помещений. В России выпускают марки кабелей, которые по характеристикам ниже, хотя могут иметь то же название. Их можно отличить по подтекам компаунда в пространстве между жилами или по его отсутствию.
Провод выпускается монолитным и многопроволочным. Каждая жила, а также вся скрутка снаружи изолируется ПВХ, причем наполнитель между ними выполнен негорючим:
- Так, кабель NUM применяется внутри помещений, поскольку изоляция на улице разрушается от солнечных лучей.
- А в качестве внутренней и внешней электропроводки широко используется кабель марки ВВГ. Он дешев и достаточно надежен. Для прокладки в грунте его не рекомендуется применять.
- Провод марки ВВГ изготавливается плоским и круглым. Между жилами наполнитель не применяется.
- Кабель ВВГнг-П-LS делают с внешней оболочкой, не поддерживающей горения. Жилы изготавливаются круглые до сечения 16 мм², а свыше – секторные.
- Марки кабелей ПВС и ШВВП делаются многопроволочными и используются преимущественно для подключения бытовых приборов. Его часто применяют в качестве домашней электропроводки. На улице многопроволочные жилы использовать не рекомендуется по причине коррозии. Кроме того, изоляция при изгибе трескается при низкой температуре.
- На улице под землей прокладывают бронированные и устойчивые к влаге кабели АВБШв и ВБШв. Броня изготавливается из двух стальных лент, что повышает надежность кабеля и делает его устойчивым к механическим воздействиям.
Определение нагрузки по току
Более точный результат дает расчет сечения кабеля по мощности и току, где геометрические параметры связаны с электрическими.
Для домашней проводки должна учитывается не только активная нагрузка, но и реактивная. Сила тока определяется по формуле:
I = P/(U∙cosφ).
Реактивную нагрузку создают люминесцентные лампы и двигатели электроприборов (холодильника, пылесоса, электроинструмента и др.).
Давайте выясним, как быть, если необходимо определить сечение медного кабеля для подключения бытовой техники суммарной мощностью 25 кВт и трехфазных станков на 10 кВт. Такое подключение производится пятижильным кабелем, проложенным в грунте. Питание дома производится от трехфазной сети.
С учетом реактивной составляющей, мощность бытовой техники и оборудования составит:
- Pбыт. = 25/0,7 = 35,7 кВт;
- Pобор. = 10/0,7 = 14,3 кВт.
Определяются токи на вводе:
- Iбыт. = 35,7×1000/220 = 162 А;
- Iобор. = 14,3×1000/380 = 38 А.
Если распределить однофазные нагрузки равномерно по трем фазам, на одну будет приходиться ток:
Iф = 162/3 = 54 А.
На каждой фазе будет токовая нагрузка:
Iф = 54 + 38 = 92 А.
Вся техника одновременно не будет работать. С учетом запаса на каждую фазу приходится ток:
Iф = 92×0,75×1,5 = 103,5 А.
В пятижильном кабеле учитываются только фазные жилы. Для кабеля, проложенного в грунте, можно определить для тока 103,5 А сечение жил 16 мм²(таблица нагрузок по сечению кабеля).
Уточненный расчет по силе тока позволяет сэкономить средства, поскольку требуется меньшее сечение. При более грубом расчете кабеля по мощности, сечение жилы составит 25 мм², что обойдется дороже.
Падение напряжения на кабеле
Проводники обладают сопротивлением, которое необходимо учитывать. Особенно это важно для большой длины кабеля или при его малом сечении. Установлены нормы ПЭУ, по которым падение напряжения на кабеле не должно превышать 5 %. Расчет делается следующим образом.
- Определяется сопротивление проводника: R = 2×(ρ×L)/S.
- Находится падение напряжения: Uпад. = I×R. По отношению к линейному в процентах оно составит: U% = (Uпад./Uлин.)×100.
В формулах приняты обозначения:
- ρ – удельное сопротивление, Ом×мм²/м;
- S – площадь поперечного сечения, мм².
Коэффициент 2 показывает, что ток течет по двум жилам.
Пример расчета кабеля по падению напряжения
Например, необходимо рассчитать падение напряжения на переноске с сечением жилы 2,5 мм², длиной 20 м. Она необходима для подключения сварочного трансформатора мощностью 7 кВт.
- Сопротивление провода составляет: R = 2(0,0175×20)/2,5 = 0,28 Ом.
- Сила тока в проводнике: I = 7000/220 =31,8 А.
- Падение напряжения на переноске: Uпад. = 31,8×0,28 = 8,9 В.
- Процент падения напряжения: U% = (8,9/220)×100 = 4,1 %.
Переноска подходит для сварочного аппарата по требованиям правил эксплуатации электроустановок, поскольку процент падения на ней напряжения находится в пределах нормы. Однако его величина на питающем проводе остается большой, что может негативно повлиять на процесс сварки. Здесь необходима проверка нижнего допустимого предела напряжения питания для сварочного аппарата.
Заключение
Чтобы надежно защитить электропроводку от перегрева при длительном превышении номинального тока, сечения кабелей рассчитывают по длительно допустимым токам. Расчет упрощается, если применяется таблица нагрузок по сечению кабеля. Более точный результат получается, если вычисление производится по максимальной токовой нагрузке. А для стабильной и долговременной работы в цепи электропроводки устанавливают автоматический выключатель.
fb.ru
Расчет сечения кабеля по мощности: таблица с показателями
ПОДЕЛИТЕСЬ В СОЦСЕТЯХ
Качество проведения электромонтажных работ оказывает воздействие на безопасность целого здания. Определяющим фактором при проведении таких работ является показатель сечения кабеля. Для осуществления расчета нужно выяснить характеристики всех подключенных потребителей электричества. Необходимо провести расчет сечения кабеля по мощности. Таблица нужна, чтобы посмотреть требуемые показатели.
Качественный и подходящий кабель обеспечивает безопасную и долговечную работу любой сети
Содержание статьи
Расчет сечения кабеля по мощности: таблица с важными характеристиками
Оптимальная площадь сечения кабеля позволяет протекать максимальному количеству тока и при этом не нагревается. Выполняя проект электропроводки, важно найти правильное значение для диаметра провода, который бы подходил под определенные условия потребляемой мощности. Чтобы выполнить вычисления, требуется определить показатель общего тока. При этом нужно выяснить мощность всего оборудования, которое подключено к кабелю.
Такая таблица поможет подобрать оптимальные параметры
Перед работой вычисляется сечение провода и нагрузка. Таблица поможет найти эти значения. Для стандартной сети 220 вольт, примерное значение тока рассчитывается так, I(ток)=(Р1+Р2+….+Рn)/220, Pn – мощность. Например, оптимальный ток для алюминиевого провода – 8 А/мм, а для медного – 10 А/мм.
В таблице показано, как проводить расчеты, зная технические характеристики
Расчет по нагрузке
Даже определив нужное значение, можно произвести определенные поправки по нагрузке. Ведь нечасто все приборы работают одновременно в сети. Чтобы данные были более точными, необходимо значение сечения умножить на Кс (поправочный коэффициент). В случае, если будет включаться всё оборудование в одно и то же время, то данный коэф-т не применяется.
Чтобы выполнить вычисления правильно применяют таблицу расчетов сечения кабеля по мощности. Нужно учитывать, что существует два типа данного параметра: реактивная и активная.
Так проводится расчет с учетом нагрузки
В электрических сетях протекает ток переменного типа, показатель которого может меняться. Активная мощность нужна, чтобы рассчитать среднее показатели. Активную мощность имеют электрические нагреватели и лампы накаливания. Если в сети присутствуют электромоторы и трансформаторы, то могут возникать некоторые отклонения. При этом и формируется реактивная мощность. При расчетах показатель реактивной нагрузки отражается в виде коэффициента (cosф).
Особенности потребления тока
Полезная информация! В быту среднее значение cosф равняется 0,8. А у компьютера такой показатель равен 0,6-0,7.
Расчет по длине
Вычисления параметров по длине необходимы при возведении производственных линий, когда кабель подвергается мощным нагрузкам. Для расчетов применяют таблицу сечения кабеля по мощности и току. При перемещении тока по магистралям проявляются потери мощности, которые зависят от сопротивления, появляющегося в цепи.
По техническим параметрам, самое большое значение падения напряжения не должно быть больше пяти процентов.
Применение таблицы помогает узнать значение сечения кабеля по длине
Использование таблицы сечения проводов по мощности
На практике для проведения подсчетов применяется таблица. Расчет сечения кабеля по мощности осуществляется с учетом показанной зависимости параметров тока и мощности от сечения. Существуют специальные стандарты возведения электроустановок, где можно посмотреть информацию по нужным измерениям. В таблице представлены распространенные значения.
Узнать точный показатель можно, используя различные параметры
Чтобы подобрать кабель под определенную нагрузку, необходимо провести некоторые расчеты:
- рассчитать показатель силы тока;
- округлить до наибольшего показателя, используя таблицу;
- подобрать ближайший стандартный параметр.
Статья по теме:
Как повесить люстру на натяжной потолок. Видео пошагового монтажа позволит всю работу произвести самостоятельно без обращения к специалистам. Что нужно подготовить для работы и как избежать ошибок мы и расскажем в статье.
Формула расчетов мощности по току и напряжению
Если уже имеются какие-то кабели в наличии, то чтобы узнать нужное значение, следует применить штангенциркуль. При этом измеряется сечение и рассчитывается площадь. Так как кабель имеет округлую форму, то расчет производится для площади окружности и выглядит так: S(площадь)= π(3,14)R(радиус)2. Можно правильно определить, используя таблицу, сечение медного провода по мощности.
Стандартные формулы для определения силы тока
Важная информация! Большинство производителей уменьшают размер сечения для экономии материала. Поэтому, совершая покупку, воспользуйтесь штангенциркулем и самостоятельно промеряйте провод, а затем рассчитайте площадь. Это позволит избежать проблем с превышением нагрузки. Если провод состоит из нескольких скрученных элементов, то нужно промерить сечение одного элемента и перемножить на их количество.
Варианты кабеля для разных назначений
Какие есть примеры?
Определенная схема позволит вам сделать правильный выбор сечения кабеля для своей квартиры. Прежде всего, спланируйте места, в которых будут размещаться источники света и розетки. Также следует выяснить, какая техника будет подключаться к каждой группе. Это позволит составить план подсоединения всех элементов, а также рассчитать длину проводки. Не забывайте прибавлять по 2 см на стыки проводов.
Определение сечения провода с учетом разных видов нагрузки
Применяя полученные значения, по формулам вычисляется значение силы тока и по таблице определяется сечение. Например, требуется узнать сечение провода для бытового прибора, мощность которого 2400 Вт. Считаем: I = 2400/220 = 10,91 А. После округления остается 11 А.
Схемы прокладки кабелей
Чтобы определить точный показатель площади сечения применяются разные коэффициенты. Особенно данные значения актуальны для сети 380 В. Для увеличения запаса прочности к полученному показателю стоит прибавить еще 5 А.
Схема трехжильной проводки
Стоит учитывать, что для квартир применяются трехжильные провода. Воспользовавшись таблицами, можно подобрать самое близкое значение тока и соответствующее сечение провода. Можно посмотреть какое нужно сечение провода для 3 кВт, а также для других значений.
У проводов разного типа предусмотрены свои тонкости расчетов. Трехфазный ток применяется там, где нужно оборудование значительной мощности. Например, такое используется в производственных целях.
Для выявления нужных параметров на производствах важно точно рассчитать все коэффициенты, а также учесть потери мощности при колебаниях в напряжении. Выполняя электромонтажные работы дома, не нужно проводить сложные расчеты.
Следует знать о различиях алюминиевого и медного провода. Медный вариант отличается более высокой ценой, но при этом превосходит аналог по техническим характеристикам. Алюминиевые изделия могут крошиться на сгибах, а также окисляются и имеют более низкий показатель теплопроводности. По технике безопасности в жилых зданиях используется только продукция из меди.
Основные материалы для кабелей
Так как переменный ток передвигается по трем каналам, то для монтажных работ используется трехжильный кабель. При установке акустических приборов применяются кабели, имеющие минимальное значение сопротивления. Это поможет улучшить качество сигнала и устранить возможные помехи. Для подключения подобных конструкций применяются провода, размер которых 2*15 или 2*25.
Подобрать оптимальный показатель сечения для применения в быту помогут некоторые средние значения. Для розеток стоит приобрести кабель 2,5 мм2, а для оформления освещения – 1,5 мм2. Оборудование с более высокой мощностью требует сечения размером 4-6 мм2.
Варианты соединения проводов
Специальная таблица окажет помощь, если возникают сомнения при расчетах. Для определения точных показателей нужно учитывать все факторы, которые оказывают влияние на ток в цепи. Это длина отдельных участков, метод укладки, тип изоляции и допустимое значение перегрева. Все данные помогают увеличить производительность в производственных масштабах и более эффективно применять электрическую энергию.
Расчет сечения кабеля и провода по мощности и току, для подключения частного дома (видео)
ПОДЕЛИТЕСЬ В СОЦСЕТЯХ
Загрузка. ..
aquatic-home.ru
Выбор сечения кабеля. Расчет сечения проводов и кабелей по току, мощности.
В таблице приведены данные мощности, тока и сечения кабелей и проводов, для расчетов и выбора зашитных средств, кабельных материалов и электрооборудования. В расчете применялись данные таблиц ПУЭ, формулы активной мощности для однофазной и трехфазной симметричной нагрузки.
Сечение токопро водящей жилы, мм2 | Медные жилы проводов и кабелей | |||
Напряжение, 220 В | Напряжение, 380 В | ток, А | мощность, кВт | ток, А | мощность, кВт |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33,0 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66,0 | 260 | 171,6 |
Алюминивые жилы, проводов и кабелей
Сечение токопро водящей жилы, мм2 | Алюминивые жилы проводов и кабелей | |||
Напряжение, 220 В | Напряжение, 380 В | ток, А | мощность, кВт | ток, А | мощность, кВт |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11,0 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22,0 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,0 |
Пример расчета
Задача: запитать ТЭН мощностью W=4,75 кВт медным проводом в кабель-канале. Расчет тока: J = W/U. Напряжение нам известно: 220 вольт. Согласно формуле протекающий ток J = 4750/220 = 21,6 ампера.
Ориентируемся на медный провод, потому берем значение диаметра медной жилы из таблицы. В колонке 220В — медные жилы находим значение тока, превышающего 21,6 ампера, это строка со значением 27 ампера. Из этой же строки берем Сечение токопро водящей жилы, равное 2,5 квадрата.
Расчет необходимого сечения кабеля
№ | Число жил, сечение мм. Кабеля (провода) | Наружный диаметр мм. | Диаметр трубы мм. | Допустимый длительный ток (А) для проводов и кабелей при прокладке: | Допустимый длительный ток для медных шин прямоугольного сечения (А) ПУЭ | |||||||||||
ВВГ | ВВГнг | КВВГ | КВВГЭ | NYM | ПВ1 | ПВ3 | ПВХ (ПНД) | Мет.тр. Ду | в воздухе | в земле | Сечение, шины мм | Кол-во шин на фазу | ||||
1 | 1х0,75 | 2,7 | 16 | 20 | 15 | 15 | 1 | 2 | 3 | |||||||
2 | 1х1 | 2,8 | 16 | 20 | 17 | 17 | 15х3 | 210 | ||||||||
3 | 1х1,5 | 5,4 | 5,4 | 3 | 3,2 | 16 | 20 | 23 | 33 | 20х3 | 275 | |||||
4 | 1х2,5 | 5,4 | 5,7 | 3,5 | 3,6 | 16 | 20 | 30 | 44 | 25х3 | 340 | |||||
5 | 1х4 | 6 | 6 | 4 | 4 | 16 | 20 | 41 | 55 | 30х4 | 475 | |||||
6 | 1х6 | 6,5 | 6,5 | 5 | 5,5 | 16 | 20 | 50 | 70 | 40х4 | 625 | |||||
7 | 1х10 | 7,8 | 7,8 | 5,5 | 6,2 | 20 | 20 | 80 | 105 | 40х5 | 700 | |||||
8 | 1х16 | 9,9 | 9,9 | 7 | 8,2 | 20 | 20 | 100 | 135 | 50х5 | 860 | |||||
9 | 1х25 | 11,5 | 11,5 | 9 | 10,5 | 32 | 32 | 140 | 175 | 50х6 | 955 | |||||
10 | 1х35 | 12,6 | 12,6 | 10 | 11 | 32 | 32 | 170 | 210 | 60х6 | 1125 | 1740 | 2240 | |||
11 | 1х50 | 14,4 | 14,4 | 12,5 | 13,2 | 32 | 32 | 215 | 265 | 80х6 | 1480 | 2110 | 2720 | |||
12 | 1х70 | 16,4 | 16,4 | 14 | 14,8 | 40 | 40 | 270 | 320 | 100х6 | 1810 | 2470 | 3170 | |||
13 | 1х95 | 18,8 | 18,7 | 16 | 17 | 40 | 40 | 325 | 385 | 60х8 | 1320 | 2160 | 2790 | |||
14 | 1х120 | 20,4 | 20,4 | 50 | 50 | 385 | 445 | 80х8 | 1690 | 2620 | 3370 | |||||
15 | 1х150 | 21,1 | 21,1 | 50 | 50 | 440 | 505 | 100х8 | 2080 | 3060 | 3930 | |||||
16 | 1х185 | 24,7 | 24,7 | 50 | 50 | 510 | 570 | 120х8 | 2400 | 3400 | 4340 | |||||
17 | 1х240 | 27,4 | 27,4 | 63 | 65 | 605 | 60х10 | 1475 | 2560 | 3300 | ||||||
18 | 3х1,5 | 9,6 | 9,2 | 9 | 20 | 20 | 19 | 27 | 80х10 | 1900 | 3100 | 3990 | ||||
19 | 3х2,5 | 10,5 | 10,2 | 10,2 | 20 | 20 | 25 | 38 | 100х10 | 2310 | 3610 | 4650 | ||||
20 | 3х4 | 11,2 | 11,2 | 11,9 | 25 | 25 | 35 | 49 | 120х10 | 2650 | 4100 | 5200 | ||||
21 | 3х6 | 11,8 | 11,8 | 13 | 25 | 25 | 42 | 60 | Допустимый длительный ток для медных шин прямоугольного сечения (А) Schneider Electric IP30 | |||||||
22 | 3х10 | 14,6 | 14,6 | 25 | 25 | 55 | 90 | |||||||||
23 | 3х16 | 16,5 | 16,5 | 32 | 32 | 75 | 115 | |||||||||
24 | 3х25 | 20,5 | 20,5 | 32 | 32 | 95 | 150 | |||||||||
25 | 3х35 | 22,4 | 22,4 | 40 | 40 | 120 | 180 | Сечение, шины мм | Кол-во шин на фазу | |||||||
26 | 4х1 | 8 | 9,5 | 16 | 20 | 14 | 14 | 1 | 2 | 3 | ||||||
27 | 4х1,5 | 9,8 | 9,8 | 9,2 | 10,1 | 20 | 20 | 19 | 27 | 50х5 | 650 | 1150 | ||||
28 | 4х2,5 | 11,5 | 11,5 | 11,1 | 11,1 | 20 | 20 | 25 | 38 | 63х5 | 750 | 1350 | 1750 | |||
29 | 4х50 | 30 | 31,3 | 63 | 65 | 145 | 225 | 80х5 | 1000 | 1650 | 2150 | |||||
30 | 4х70 | 31,6 | 36,4 | 80 | 80 | 180 | 275 | 100х5 | 1200 | 1900 | 2550 | |||||
31 | 4х95 | 35,2 | 41,5 | 80 | 80 | 220 | 330 | 125х5 | 1350 | 2150 | 3200 | |||||
32 | 4х120 | 38,8 | 45,6 | 100 | 100 | 260 | 385 | Допустимый длительный ток для медных шин прямоугольного сечения (А) Schneider Electric IP31 | ||||||||
33 | 4х150 | 42,2 | 51,1 | 100 | 100 | 305 | 435 | |||||||||
34 | 4х185 | 46,4 | 54,7 | 100 | 100 | 350 | 500 | |||||||||
35 | 5х1 | 9,5 | 10,3 | 16 | 20 | 14 | 14 | |||||||||
36 | 5х1,5 | 10 | 10 | 10 | 10,9 | 10,3 | 20 | 20 | 19 | 27 | Сечение, шины мм | Кол-во шин на фазу | ||||
37 | 5х2,5 | 11 | 11 | 11,1 | 11,5 | 12 | 20 | 20 | 25 | 38 | 1 | 2 | 3 | |||
38 | 5х4 | 12,8 | 12,8 | 14,9 | 25 | 25 | 35 | 49 | 50х5 | 600 | 1000 | |||||
39 | 5х6 | 14,2 | 14,2 | 16,3 | 32 | 32 | 42 | 60 | 63х5 | 700 | 1150 | 1600 | ||||
40 | 5х10 | 17,5 | 17,5 | 19,6 | 40 | 40 | 55 | 90 | 80х5 | 900 | 1450 | 1900 | ||||
41 | 5х16 | 22 | 22 | 24,4 | 50 | 50 | 75 | 115 | 100х5 | 1050 | 1600 | 2200 | ||||
42 | 5х25 | 26,8 | 26,8 | 29,4 | 63 | 65 | 95 | 150 | 125х5 | 1200 | 1950 | 2800 | ||||
43 | 5х35 | 28,5 | 29,8 | 63 | 65 | 120 | 180 | |||||||||
44 | 5х50 | 32,6 | 35 | 80 | 80 | 145 | 225 | |||||||||
45 | 5х95 | 42,8 | 100 | 100 | 220 | 330 | ||||||||||
46 | 5х120 | 47,7 | 100 | 100 | 260 | 385 | ||||||||||
47 | 5х150 | 55,8 | 100 | 100 | 305 | 435 | ||||||||||
48 | 5х185 | 61,9 | 100 | 100 | 350 | 500 | ||||||||||
49 | 7х1 | 10 | 11 | 16 | 20 | 14 | 14 | |||||||||
50 | 7х1,5 | 11,3 | 11,8 | 20 | 20 | 19 | 27 | |||||||||
51 | 7х2,5 | 11,9 | 12,4 | 20 | 20 | 25 | 38 | |||||||||
52 | 10х1 | 12,9 | 13,6 | 25 | 25 | 14 | 14 | |||||||||
53 | 10х1,5 | 14,1 | 14,5 | 32 | 32 | 19 | 27 | |||||||||
54 | 10х2,5 | 15,6 | 17,1 | 32 | 32 | 25 | 38 | |||||||||
55 | 14х1 | 14,1 | 14,6 | 32 | 32 | 14 | 14 | |||||||||
56 | 14х1,5 | 15,2 | 15,7 | 32 | 32 | 19 | 27 | |||||||||
57 | 14х2,5 | 16,9 | 18,7 | 40 | 40 | 25 | 38 | |||||||||
58 | 19х1 | 15,2 | 16,9 | 40 | 40 | 14 | 14 | |||||||||
59 | 19х1,5 | 16,9 | 18,5 | 40 | 40 | 19 | 27 | |||||||||
60 | 19х2,5 | 19,2 | 20,5 | 50 | 50 | 25 | 38 | |||||||||
61 | 27х1 | 18 | 19,9 | 50 | 50 | 14 | 14 | |||||||||
62 | 27х1,5 | 19,3 | 21,5 | 50 | 50 | 19 | 27 | |||||||||
63 | 27х2,5 | 21,7 | 24,3 | 50 | 50 | 25 | 38 | |||||||||
64 | 37х1 | 19,7 | 21,9 | 50 | 50 | 14 | 14 | |||||||||
65 | 37х1,5 | 21,5 | 24,1 | 50 | 50 | 19 | 27 | |||||||||
66 | 37х2,5 | 24,7 | 28,5 | 63 | 65 | 25 | 38 |
www. eti.su
Расчет сечения кабеля. Таблица расчета сечения кабеля
Для долгой и надежной службы кабеля его необходимо правильно выбрать и рассчитать. Электрики при монтаже проводки большей частью выбирают сечение жил, основываясь в основном на опыте. Порой это приводит к ошибкам. Расчет сечения кабеля необходим, прежде всего, в плане электробезопасности. Будет неправильно, если диаметр проводника будет меньше или больше требуемого.
Сечение кабеля занижено
Этот случай является наиболее опасным, поскольку проводники перегреваются от высокой плотности тока, при этом изоляция плавится и происходит короткое замыкание. При этом может также разрушиться электрооборудование, произойти пожар, а работники могут попасть под напряжение. Если для кабеля установить автоматический выключатель, он будет слишком часто срабатывать, что создаст определенный дискомфорт.
Сечение кабеля выше требуемого
Здесь главный фактор — экономический. Чем больше сечение провода, тем он дороже. Если сделать проводку всей квартиры с большим запасом, это обойдется в большую сумму. Иногда целесообразно делать главный ввод большего сечения, если предполагается дальнейшее увеличение нагрузки на домашнюю сеть.
Если для кабеля установить соответствующий автомат, будут перегружены следующие линии, когда на какой-либо из них не сработает свой автоматический выключатель.
Как рассчитать сечение кабеля?
Перед монтажом целесообразно произвести расчет сечения кабеля по нагрузке. Каждый проводник обладает определенной мощностью, которая не должна быть меньше, чем у подключаемых электроприборов.
Расчет мощности
Самым простым способом является расчет суммарной нагрузки на вводной провод. Расчет сечения кабеля по нагрузке сводится к определению общей мощности потребителей. У каждого из них имеется свой номинал, указанный на корпусе или в паспорте. Затем суммарную мощность умножают на коэффициент 0,75. Это связано с тем, что все приборы не могут быть включены одновременно. Для окончательного определения необходимого размера применяется таблица расчета сечения кабеля.
Расчет сечения кабеля по току
Более точным методом является вычисление по токовой нагрузке. Расчет сечения кабеля производится через определение проходящего через него тока. Для однофазной сети применяется формула:
Iрасч. = P/(Uном∙cosφ),
где P — мощность нагрузки, Uном. — напряжение сети (220 В).
Если общая мощность активных нагрузок в доме составляет 10 кВт, то расчетный ток Iрасч. = 10000/220 ≈ 46 А. Когда делается расчет сечения кабеля по току, вводится поправка на условия прокладки шнура (указываются в некоторых специальных таблицах), а также на перегрузку при включении электроприборов приблизительно в сторону увеличения на 5 А. В результате Iрасч. = 46 + 5 = 51 А.
Толщина жил определяется по справочнику. Расчет сечения кабеля с применением таблиц позволяет легко найти нужный размер по длительно допустимому току. Для трехжильного кабеля, проложенного в дом по воздуху, надо выбрать значение в сторону большего стандартного сечения. Оно составляет 10 мм2. Правильность самостоятельного расчета можно проверить, применив онлайн-калькулятор — расчет сечения кабеля, который можно найти на некоторых ресурсах.
Нагрев кабеля при прохождении тока
При работающей нагрузке в кабеле выделяется тепло:
Q = I2Rn вт/см,
где I — ток, R — электрическое сопротивление, n — количество жил.
Из выражения следует, что количество выделяемой мощности пропорционально квадрату проходимого по проводу тока.
Расчет допустимой силы тока по температуре разогрева проводника
Кабель не может бесконечно нагреваться, так как тепло рассеивается в окружающую среду. В конце концов наступает равновесие и устанавливается постоянная температура проводников.
Для установившегося процесса справедливо соотношение:
P = ∆t/∑S = (tж — tср)/(∑S),
где ∆t = tж-tср — разница между температурой среды и жилы, ∑S — температурное сопротивление.
Длительно допустимый ток, проходящий по кабелю, находится из выражения:
Iдоп = √((tдоп — tср)/( Rn∑S)),
где tдоп- допустимая температура разогрева жил (зависит от типа кабеля и способа прокладки). Обычно она составляет 70 градусов в обычном режиме и 80 — в аварийном.
Условия отвода тепла при работающем кабеле
Когда кабель проложен в какой-либо среде, теплоотвод определяется ее составом и влажностью. Расчетное удельное сопротивление грунта обычно принимается равным 120 Ом∙°С/Вт (глина с песком при влажности 12-14 %). Для уточнения следует знать состав среды, после чего можно найти сопротивление материала по таблицам. Для увеличения теплопроводности траншею засыпают глиной. Не допускается наличие в ней строительного мусора и камней.
Теплоотдача от кабеля через воздух очень низкая. Она еще больше ухудшается при прокладке в кабель-канале, где появляются дополнительные воздушные прослойки. Здесь нагрузку по току следует снижать по сравнению с расчетной. В технических характеристиках кабелей и проводов приводят допустимую температуру короткого замыкания, составляющую 120 °С для изоляции ПВХ. Сопротивление грунта составляет 70 % от общего и является основным при расчетах. Со временем проводимость изоляции возрастает из-за ее высыхания. Это необходимо учитывать в расчетах.
Падение напряжения в кабеле
В связи с тем, что проводники обладают электрическим сопротивлением, часть напряжения уходит на их нагрев, и к потребителю его приходит меньше, чем было в начале линии. В результате по длине провода теряется потенциал из-за тепловых потерь.
Кабель надо не только выбирать по сечению, чтобы обеспечить его работоспособность, но также учитывать расстояние, на которое передается энергия. Увеличение нагрузки приводит к росту тока через проводник. При этом возрастают потери.
На точечные светильники подается небольшое напряжение. Если оно незначительно снижается, это сразу заметно. При неправильном выборе проводов дальше расположенные от блока питания лампочки выглядят тусклыми. Напряжение существенно снижается на каждом следующем участке, и это отражается на яркости освещения. Поэтому необходим расчет сечения кабеля по длине.
Самым важным участком кабеля является потребитель, расположенный дальше остальных. Потери считаются преимущественно для этой нагрузки.
На участке L проводника падение напряжения составит:
∆U = (Pr + Qx)L/Uн,
где P и Q- активная и реактивная мощность, r и x- активное и реактивное сопротивление участка L, а Uн- номинальная величина напряжения, при котором нагрузка нормально работает.
Допустимые ∆U от источников питания до главных вводов не превышают ±5 % для освещения жилых зданий и силовых цепей. От ввода до нагрузки потери не должны быть больше 4 %. Для линий с большой протяженностью нужно учитывать индуктивное сопротивление кабеля, которое зависит от расстояния между соседними проводниками.
Способы подключения потребителей
Нагрузки могут подключаться по-разному. Наиболее распространенными являются следующие способы:
- в конце сети;
- потребители распределены по линии равномерно;
- к протяженному участку подключается линия с равномерно распределенными нагрузками.
Пример 1
Мощность электроприбора составляет 4 кВт. Длина кабеля равна 20 м, удельное сопротивление ρ = 0,0175 Ом∙мм2.
Ток определяется из соотношения: I = P/Uном = 4∙1000/220 = 18,2 А.
Затем берется таблица расчета сечения кабеля, и выбирается соответствующий размер. Для провода из меди он составит S = 1,5 мм2.
Формула расчета сечения кабеля: S = 2ρl/R. Через нее можно определить электрическое сопротивление кабеля: R = 2∙0,0175∙20/1,5 = 0,46 Ом.
По известной величине R можно определить ∆U = IR/U∙100 % = 18,2*100∙0,46/220∙100 = 3,8 %.
Результат расчета не превышает 5 %, значит, потери будут допустимыми. В случае больших потерь следовало бы увеличить сечение жил кабеля, выбрав соседнее, большей величины из стандартного ряда — 2,5 мм2.
Пример 2
Три цепи освещения подключены параллельно друг с другом на одну фазу трехфазной линии, сбалансированной по нагрузкам, состоящей из четырехжильного кабеля на 70 мм2 длиной 50 м и проводящего ток 150 А. По каждой линии освещения длиной 20 м проходит ток 20 А.
Межфазные потери при действующей нагрузке составляют: ∆Uфаз= 150∙0, 05∙0,55 = 4,1 В. Теперь следует определить потери между нейтралью и фазой, поскольку освещение подключается на напряжение 220 В: ∆Uф-н = 4,1/√3 = 2,36 В.
На одной подключенной цепи освещения падение напряжения составит: ∆U = 18∙20∙0,02=7,2 В. Общие потери определяются через сумму Uобщ = (2,4+7,2)/230∙100 = 4,2 %. Расчетное значение находится ниже допустимых потерь, которые составляют 6 %.
Заключение
Для предохранения проводников от перегрева при длительно работающей нагрузке с помощью таблиц делается расчет сечения кабеля по длительно допустимому току. Кроме того, необходимо правильно рассчитать провода и кабели, чтобы потери напряжения в них не были больше нормы. При этом с ними суммируются потери в цепи питания.
fb.ru
Как рассчитать сечение кабеля по мощности, длине, току
На сегодняшний день существует широкий ассортимент кабельной продукции, с поперечным сечением жил от 0,35 мм. кв. и выше.
Если неправильно выбрать сечение кабеля для бытовой проводки, то результат может иметь два итога:
- Чересчур толстая жила «ударит» по Вашему бюджету, т.к. ее погонный метр будет стоить дороже.
- При неподходящем диаметре проводника (меньшем, чем необходимо), жилы начнут нагреваться и плавить изоляцию, что вскоре приведет к самовозгоранию электропроводки и короткому замыканию.
Как Вы понимаете, и тот и другой итог неутешительный, поэтому перед монтажом электропроводки в доме и квартире необходимо правильно рассчитать сечение кабеля в зависимости от мощности, силы тока и длины линии. Сейчас мы подробно рассмотрим каждую из методик.
Расчет по мощности электроприборов
У каждого кабеля есть номинальная мощность, которую он способен выдержать при работе электроприборов. Если мощность всех приборов в доме будет превышать расчетный показатель проводника, то в скором времени аварии не избежать.
Чтобы самостоятельно рассчитать мощность электроприборов в доме, необходимо на лист бумаги выписать характеристики каждого прибора отдельно (плиты, телевизора, светильников, пылесоса и т. д.). После этого все значения суммируются, и готовое число используется для выбора оптимального диаметра.
Формула расчета имеет вид:
Pобщ = (P1+P2+P3+…+Pn)*0.8,
Где: P1..Pn–мощность каждого прибора, кВт
Обращаем Ваше внимание на то, что получившееся число необходимо умножить на поправочный коэффициент – 0,8. Этот коэффициент обозначает, что из всех электроприборов одновременно работать будет только 80%. Такой расчет более логичный, потому что, к примеру, пылесосом либо феном Вы точно не будете пользоваться в течение длительного времени без перерыва.
Таблицы выбора сечения кабеля по мощности:
Для проводника с алюминиевыми жилами Для проводника с медными жилами
Как вы видите, для каждого определенного вида кабеля табличные значения имеют свои данные. Все что Вам нужно, это найти ближайшее значение мощности и посмотреть соответствующее сечение жил.
Чтобы Вы наглядно поняли, как правильно рассчитать кабель по мощности, приведем простой пример:
Мы подсчитали, что суммарная мощность всех электроприборов в квартире составляет 13 кВт. Данное значение необходимо умножить на коэффициент 0,8, что в результате даст 10,4 кВт действительной нагрузки. Далее в таблице ищем подходящее значение в колонке. Нас устраивает цифра «10,1» при однофазной сети (напряжение 220В) и «10,5», если сеть трехфазная. Итого, выбор сечения останавливаем на 6-милимметровом проводнике при однофазной сети либо 1,5-милимметровом при трехфазной сети. Как вы видите, все довольно просто и даже электрик-новичок справиться с таким заданием самостоятельно!
Расчет по токовой нагрузке
Расчет сечения кабеля по току более точный, поэтому лучше всего пользоваться им. Суть аналогична, но только в данном случае необходимо определить токовую нагрузку на электропроводку. Для начала по формулам считаем силу тока по каждому из приборов.
Средняя мощность бытовых электроприборов Пример отображения мощности электроприбора (в данном случае ЖК телевизор)
Если в доме однофазная сеть, для расчета необходимо воспользоваться следующей формулой:Для трехфазной сети формула будет иметь вид:Где, P – мощность электроприбора, кВт
cos Фи- коэффициент мощности
Далее все токи суммируются и по табличным значениям необходимо выбрать сечение кабеля по току.
Обращаем Ваше внимание на то, что от условий прокладки проводника будут зависеть значения табличных величин. При монтаже открытой электропроводки токовые нагрузки и мощность будут значительно большими, чем при прокладке проводки в трубе.
Следует отметить, что полученное при расчете суммарное значение токов рекомендуется умножить в полтора раза, для запаса. Вдруг со временем Вы решите приобрести более мощные приборы?
Таблица выбора сечения кабеля по току:
Расчет по длине
Ну и последний способ рассчитать сечения кабеля – по длине. Суть следующих вычислений заключается в том, что каждый проводник имеет свое сопротивление, которое с увеличением протяженности линии способствует потерям тока (чем больше расстояние, тем больше и потери). В том случае, если величина потерь превысит отметку в 5%, необходимо выбрать проводник с жилами покрупнее.
Для вычислений используется следующая методика:
- Нужно рассчитать суммарную мощность электроприборов и силу тока (выше мы предоставили соответствующие формулы).
- Выполняется расчет сопротивления электропроводки. Формула имеет следующий вид: удельное сопротивление проводника (p) * длину (в метрах). Получившееся значение необходимо разделить на выбранное поперечное сечение кабеля.
R=(p*L)/S, где p — табличная величина
Обращаем Ваше внимание на то, что длина прохождения тока должна умножаться в два раза, т.к. ток изначально идет по одной жиле, а потом возвращается назад по другой.
- Рассчитываются потери напряжения: сила тока умножается на рассчитанное сопротивление.
- Определяется величина потерь: потери напряжения делятся на напряжение в сети и умножаются на 100%.
- Итоговое число анализируется. Если значение меньше 5%, оставляем выбранное сечение жилы. В противном случае подбираем более «толстый» проводник.
Таблица удельных сопротивлений:
Если Вы протягиваете линию на довольно протяженное расстояние, обязательно производите расчет с учетом потерь по длине, иначе будет высокая вероятность неправильного выбора сечения кабеля.
Видео примеры расчетов
Наглядные видео примеры всегда позволяют лучше усвоить информацию, поэтому предоставляем их к Вашему вниманию:
Видео инструкция: как самому рассчитать сечение жил
Видео инструкция: как правильно выбрать диаметр кабеля?
Похожие материалы:
samelectrik.ru
как рассчитать по току и мощности
Вы планируете заняться модернизацией электросети или дополнительно протянуть силовую линию на кухню для подключения новой электроплиты? Здесь пригодятся минимальные знания о сечении проводника и влиянии этого параметра на мощность и силу тока. Согласитесь, что неправильный расчёт сечения кабеля приводит к перегреву и короткому замыканию или к неоправданным расходам.
Очень важно провести вычисления на стадии проектирования, так как выход из строя скрытой проводки и последующая замена сопряжена со значительными издержками. Мы поможем вам разобраться с тонкостями проведения расчетов, чтобы избежать проблем при дальнейшей эксплуатации электросетей.
Чтобы не нагружать вас сложными расчетами, мы подобрали понятные формулы и варианты вычислений, привели информацию в доступном виде, снабдив формулы пояснениями. Также в статью добавили тематические фото и видеоматериалы, позволяющие наглядно понять суть рассматриваемого вопроса.
Содержание статьи:
Расчет сечения по мощности потребителей
Основное назначение проводников – доставка электрической энергии к потребителям в необходимом количестве. Поскольку в обычных условиях эксплуатации сверхпроводники не доступны, приходится принимать в расчет сопротивление материала проводника.
Расчет необходимого сечения проводников и кабелей в зависимости от общей мощности потребителей основан на продолжительном опыте эксплуатации.
Галерея изображений
Фото из
Различные виды кабеля для устройства проводки
Разная толщина у проводников для бытовой эксплуатации
Число жил в различных марках кабеля
Варианты многожильного кабеля
Общий ход вычислений начнем с того, что сначала проводим расчеты, используя формулу:
P = (P1+P2+..PN)*K*J,
Где:
- P – мощность всех потребителей, подключенных к рассчитываемой ветке в Ваттах.
- P1, P2, PN – мощность первого потребителя, второго, n-го соответственно, в Ваттах.
Получив результат по окончанию вычислений по вышеприведенной формуле, настал черед обратиться к табличным данным.
Теперь предстоит выбор необходимого сечения по таблице 1.
Таблица 1. Сечение жил проводов всегда необходимо выбирать в ближайшую большую сторону (+)
Этап #1 — расчет реактивной и активной мощности
Мощности потребителей указаны в документах на оборудование. Обычно в паспортах оборудования указана активная мощность вместе с реактивной мощностью.
Устройства с активным видом нагрузки превращают всю полученную электрическую энергию, с учетом КПД, в полезную работу: механическую, тепловую или в другой ее вид.
К устройствам с активной нагрузкой относятся лампы накаливания, обогреватели, электроплиты. Для таких устройств расчет мощности по току и напряжению имеет вид:
P = U * I,
Где:
- P – мощность в Вт;
- U – напряжение в В;
- I – сила тока в А.
Устройства с реактивным видом нагрузки способны накапливать энергию поступающую от источника, а затем возвращать. Происходит такой обмен за счет смещения синусоиды силы тока и синусоиды напряжения.
При нулевом смещении фаз мощность P=U*I всегда имеет положительное значение. Такой график фаз силы тока и напряжения имеют устройства с активным видом нагрузки (I, i — сила тока, U, u — напряжение, π — число пи, равное 3,14)
К устройствам с реактивной мощностью относятся электродвигатели, электронные приборы всех масштабов и назначений, трансформаторы.
Когда есть смещение фаз между синусоидой силы тока и синусоидой напряжения, мощность P=U*I может быть отрицательной (I, i — сила тока, U, u — напряжение, π — число пи, равное 3,14). Устройство с реактивной мощностью возвращает накопленную энергию обратно источнику
Электрические сети построены таким образом, что могут производить передачу электрической энергии в одну сторону от источника к нагрузке.
Поэтому возвращенная энергия потребителя с реактивной нагрузкой является паразитной и тратится на нагрев проводников и других компонентов.
Реактивная мощность имеет зависимость от угла смещения фаз между синусоидами напряжения и тока. Угол смещения фаз выражают через cosφ. Для нахождения полной мощности применяют формулу:
P = Pр / cosφ,
Где Pр – реактивная мощность в Вт.
Обычно в паспортных данных на устройство указана реактивная мощность и cosφ.
Пример: в паспорте на перфоратор указана реактивная мощность 1200Вт и cosφ = 0,7. Следовательно, общая потребляемая мощность будет равна:
P = 1200/0,7 = 1714Вт
Если cosφ найти не удалось, для подавляющего большинства электроприборов бытового назначения cosφ можно принять равным 0,7.
Этап #2 — поиск коэффициентов одновременности и запаса
K – безразмерный коэффициент одновременности, показывает сколько потребителей одновременно может быть включено в сеть. Редко случается, чтобы все устройства одновременно потребляли электроэнергию.
Маловероятна одновременная работа телевизора и музыкального центра. Из устоявшейся практики K можно принять равным 0,8. Если Вы планируете использовать все потребители одновременно, K следует принять равным 1.
J – безразмерный коэффициент запаса. Характеризует создание запаса по мощности для будущих потребителей.
Прогресс не стоит на месте, с каждым годом изобретаются все новые удивительные и полезные электрические приборы. Ожидается, что к 2050 году рост потребления электроэнергии составит 84%. Обычно J принимается равным от 1,5 до 2,0.
Этап #3 — выполнение расчета геометрическим методом
Во всех электротехнических расчетах принимается площадь поперечного сечения проводника – сечение жилы. Измеряется в мм2.
Часто бывает необходимо узнать, как грамотно рассчитать сечение провода по диаметру проволоки проводника. В этом случае есть простая геометрическая формула для монолитного провода круглого сечения:
S = π*R2 = π*D2/4, или наоборот
D = √(4*S / π)
Для проводников прямоугольного сечения:
S = h * m,
Где:
- S – площадь жилы в мм2;
- R – радиус жилы в мм;
- D – диаметр жилы в мм;
- h, m – ширина и высота соответственно в мм;
- π — число пи, равное 3,14.
Если Вы приобретаете многожильный провод, у которого один проводник состоит из множества свитых проволочек круглого сечения, то расчет ведут по формуле:
S = N*D2/1,27,
Где N – число проволочек в жиле.
Провода, имеющие свитые из нескольких проволочек жилы , в общем случае имеют лучшую проводимость, чем монолитные. Это обусловлено особенностями протекания тока по проводнику круглого сечения.
Электрический ток представляет собой движение одноименных зарядов по проводнику. Одноименные заряды отталкиваются, поэтому плотность распределения зарядов смещена к поверхности проводника.
Другим достоинством многожильных проводов является их гибкость и механическая стойкость. Монолитные провода дешевле и применяют их в основном для стационарного монтажа.
Этап #4 —рассчитываем сечение по мощности на практике
Задача: общая мощность потребителей на кухне составляет 5000Вт (имеется ввиду, что мощность всех реактивных потребителей пересчитана). Все потребители подключаются к однофазной сети 220В и имеют запитку от одной ветки.
Таблица 2. Если вы планируете в будущем подключение дополнительных потребителей, в таблице представлены необходимые мощности распространенных бытовых приборов (+)
Решение:
Коэффициент одновременности K примем равным 0,8. Кухня место постоянных инноваций, мало ли что, коэффициент запаса J=2,0. Общая расчетная мощность составит:
P = 5000*0,8*2 = 8000Вт = 8кВт
Используя значение расчетной мощности, ищем ближайшее значение в таблице 1.
Ближайшим подходящим значением сечения жилы для однофазной сети является медный проводник с сечением 4 мм2. Аналогичный размер провода с алюминиевой жилой 6мм2.
Для одножильной проводки минимальный диаметр составит 2,3мм и 2,8мм соответственно. В случае применения многожильного варианта сечение отдельных жил суммируется.
Галерея изображений
Фото из
Помещение с максимальным числом бытовой техники
Техническое оснащение ванных комнат и совмещенных санузлов
Подключение мощных энергопотребителей
Блок-розетка для маломощного оборудования
Варочная поверхность требует правильного подключения
Силовая электролиния для стиральной машины
Отдельные силовые ветки для холодильников
Мощные потребители энергии в санузлах и ванных
Расчет сечения по току
Расчеты необходимого сечения по току и мощности кабелей и проводов представят более точные результаты. Такие вычисления позволяют оценить общее влияние различных факторов на проводники, в числе которых тепловая нагрузка, марка проводов, тип прокладки, условия эксплуатации т.д.
Весь расчет проводится в ходе следующих этапов:
- выбор мощности всех потребителей;
- расчет токов, проходящих по проводнику;
- выбор подходящего поперечного сечения по таблицам.
Для этого варианта расчёта мощность потребителей по току с напряжением берется без учета поправочных коэффициентов. Они будут учтены при суммировании силы тока.
Этап #1 — расчет силы тока по формулам
Тем, кто подзабыл школьный курс физики, предлагаем основные формулы в форме графической схемы в качестве наглядной шпаргалки:
«Классическое колесо» наглядно демонстрирует взаимосвязь формул и взаимозависимость характеристик электрического тока (I — сила тока, P — мощность, U — напряжение, R — радиус жилы)
Выпишем зависимость силы тока I от мощности P и линейного напряжения U:
I = P/Uл,
Где:
- I — cила тока, принимается в амперах;
- P — мощность в ваттах;
- Uл — линейное напряжение в вольтах.
Линейное напряжение в общем случае зависит от источника электроснабжения, бывает одно- и трехфазным.
Взаимосвязь линейного и фазного напряжения:
- Uл = U*cosφ в случае однофазного напряжения.
- Uл = U*√3*cosφ в случае трехфазного напряжения.
Для бытовых электрических потребителей принимают cosφ=1, поэтому линейное напряжение можно переписать:
- Uл = 220В для однофазного напряжения.
- Uл = 380В для трехфазного напряжения.
Далее суммируем все потребляемые токи по формуле:
I = (I1+I2+…IN)*K*J,
Где:
- I – суммарная сила тока в амперах;
- I1..IN – сила тока каждого потребителя в амперах;
- K – коэффициент одновременности;
- J – коэффициент запаса.
Коэффициенты K и J имеют те же значения, что были применены при расчете полной мощности.
Может быть случай, когда в трехфазной сети через разные фазные проводники течет ток неравнозначной силы.
Такое происходит, когда к трехфазному кабелю подключены одновременно однофазные потребители и трехфазные. Например, запитан трехфазный станок и однофазное освещение.
Возникает естественный вопрос: как в таких случаях рассчитывают сечение многожильного провода? Ответ прост — вычисления производят по наиболее нагруженной жиле.
Этап #2 — выбор подходящего сечения по таблицам
В правилах эксплуатации электроустановок (ПЭУ) приведен ряд таблиц для выбора требуемого сечения жилы кабеля.
Проводимость проводника зависит от температуры. Для металлических проводников с повышением температуры повышается сопротивление.
При превышении определенного порога процесс становится автоподдерживающимся: чем выше сопротивление, тем выше температура, тем выше сопротивление и т.д. пока проводник не перегорает или вызывает короткое замыкание.
Следующие две таблицы (3 и 4) показывают сечение проводников в зависимости от токов и способа укладки.
Таблица 3. Первое, необходимо выбрать способ укладки проводов, от этого зависит, на сколько эффективно происходит охлаждение (+)
Кабель отличается от провода тем, что у кабеля все жилы, оснащенные собственной изоляцией, скручены в пучок и заключены в общую изоляционную оболочку.
Таблица 4. Открытый способ указан для всех значений сечения проводников, однако на практике сечения ниже 3мм2 открыто не прокладывают по соображениям механической прочности (+)
При использовании таблиц к допустимому длительному току применяются коэффициенты:
- 0,68 если 5-6 жил;
- 0,63 если 7-9 жил;
- 0,6 если 10-12 жил.
Понижающие коэффициенты применяются к значениям токов из столбца «открыто».
Нулевая и заземляющая жилы в количество жил не входят.
По нормативам ПЭУ выбор сечения нулевой жилы по допустимому длительному току, производится как не менее 50% от фазной жилы.
Следующие две таблицы (5 и 6) показывают зависимость допустимого длительного тока при прокладке его в земле.
Таблица 5. Зависимости допустимого длительного тока для медных кабелей при прокладке в воздухе или земле
Токовая нагрузка при прокладке открыто и при углублении в землю различаются. Их принимают равными, если прокладка в земле проводится с применением лотков.
Таблица 6. Зависимости допустимого длительного тока для алюминиевых кабелей при прокладке в воздухе или земле
Для устройства временных линий снабжения электроэнергией (переноски, если для частного пользования) применяется следующая таблица (7).
Таблица 7. Допустимый длительный ток при использовании переносных шланговых шнуров, переносных шланговых и шахтных кабелей, прожекторных кабелей, гибких переносных проводов. Применяется только медных проводников
Когда прокладка кабелей производится в грунте помимо теплоотводных свойств необходимо учитывать удельное сопротивление, что отражено в следующей таблице (8):
Таблица 8. Поправочный коэффициент в зависимости от типа и удельного сопротивления грунта на допустимый длительный ток, при расчете сечения кабелей (+)
Расчет и выбор медных жил до 6мм2 или алюминиевых до 10мм2 ведется как для длительного тока. В случае больших сечений возможно применить понижающий коэффициент:
0,875 * √Тпв
где Tпв — отношение продолжительности включения к продолжительности цикла.
Продолжительность включения берется из расчета не более 4 минут. При этом цикл не должен превышать 10 минут.
Этап #3 — расчет сечения проводника по току на примере
Задача: рассчитать необходимое сечение медного кабеля для подключения:
- трехфазного деревообрабатывающего станка мощностью 4000Вт;
- трехфазного сварочного аппарата мощностью 6000Вт;
- бытовой техники в доме общей мощностью 25000Вт;
Подключение будет произведено пятижильным кабелем (три жилы фазные, одна нулевая и одна заземление), проложенным в земле.
Изоляция кабельно-проводниковой продукции рассчитывается на конкретное значение рабочего напряжения. Следует учитывать, что указанное производителем рабочее напряжение его изделия должно быть выше напряжения в сети
Решение.
Шаг # 1. Рассчитываем линейное напряжение трехфазного подключения:
Uл = 220 * √3 = 380В
Шаг # 2. Бытовая техника, станок и сварочный аппарат имеют реактивную мощность, поэтому мощность техники и оборудования составит:
Pтех = 25000 / 0,7 = 35700Вт
Pобор = 10000 / 0,7 = 14300Вт
Шаг # 3. Ток, необходимый для подключения бытовой техники:
Iтех = 35700 / 220 = 162А
Шаг # 4. Ток, необходимый для подключения оборудования:
Iобор = 14300 / 380 = 38А
Шаг # 5. Необходимый ток для подключения бытовой техники посчитан из расчета одной фазы. По условию задачи имеется три фазы. Следовательно, ток можно распределить по фазам. Для простоты предположим равномерное распределение:
Iтех = 162 / 3 = 54А
Шаг # 6. Ток приходящийся на каждую фазу:
Iф = 38 + 54 = 92А
Шаг # 7. Оборудование и бытовая техника работать одновременно не будут, кроме этого заложим запас равный 1,5. После применения поправочных коэффициентов:
Iф = 92 * 1,5 * 0,8 = 110А
Шаг # 8. Хотя в составе кабеля имеется 5 жил, в расчет берется только три фазные жилы. По таблице 8 в столбце трехжильный кабель в земле находим, что току в 115А соответствует сечение жилы 16мм2.
Шаг # 9. По таблице 8 применяем поправочный коэффициент в зависимости от характеристики земли. Для нормального типа земли коэффициент равен 1.
Шаг # 10. Не обязательный, рассчитываем диаметр жилы:
D = √(4*16 / 3,14) = 4,5мм
Если бы расчет производился только по мощности, без учета особенностей прокладки кабеля, то сечение жилы составит 25 мм2. Расчет по силе тока сложнее, но иногда позволяет экономить значительные денежные средства, особенно когда речь идет о многожильных силовых кабелях.
Расчет падения напряжения
Любой проводник, кроме сверхпроводников, имеет сопротивление. Поэтому при достаточной длине кабеля или провода происходит падение напряжения.
Нормы ПЭУ требуют, чтобы сечение жилы кабеля было таким при котором падение напряжения составляло не более 5%.
Таблица 9. Удельное сопротивление распространенных металлических проводников (+)
В первую очередь это касается низковольтных кабелей малого сечения. Расчет падения напряжения выглядит следующим образом:
R = 2*(ρ * L) / S,
Uпад = I * R,
U% = (Uпад / Uлин) * 100,
Где:
- 2 – коэффициент, обусловленный тем, что ток течет обязательно по двум жилам;
- R – сопротивление проводника, Ом;
- ρ — удельное сопротивление проводника, Ом*мм2/м;
- S – сечение проводника, мм2;
- Uпад – напряжение падения, В;
- U% — падение напряжения по отношению к Uлин,%.
Используя формулы, можно самостоятельно выполнить вне необходимые вычисления.
Пример расчета переноски
Задача: рассчитать падение напряжения для медного провода с поперечным сечением одной жилы 1,5мм2. Провод необходим для подключения однофазного электросварочного аппарата полной мощностью 7кВт. Длина провода 20м.
Желающим подключить бытовой сварочный аппарат к ветке электросети следует учесть ситу тока, на которую рассчитан применяемый кабель. Вполне возможно, что общая мощность работающих приборов может быть выше. Оптимальный вариант — подключение потребителей к отдельным веткам
Решение:
Шаг # 1. Рассчитываем сопротивление медного провода, используя таблицу 9:
R = 2*(0,0175 * 20) / 1,5 = 0,47Ом
Шаг # 2. Сила тока, протекающая по проводнику:
I = 7000 / 220 = 31.8А
Шаг # 3. Падение напряжения на проводе:
Uпад = 31,8 * 0,47 = 14,95В
Шаг # 4. Вычисляем процент падения напряжения:
U% = (14,95 / 220) * 100 = 6,8%
Вывод: для подключения сварочного аппарата необходим проводник с большим сечением.
Полезное видео по теме
Расчет сечения проводника по формулам:
Рекомендации специалистов по подбору кабельно-проводниковой продукции:
Рекомендации специалистов по подбору кабельно-проводниковой продукции:
Приведенные расчёты справедливы для медных и алюминиевых проводников промышленного назначения. Для других типов проводников предварительно рассчитывается полная теплоотдача.
На основе этих данных производится расчет максимального тока способного протекать по проводнику, не вызывая чрезмерного нагрева.
sovet-ingenera.com
Таблица подбора сечения кабеля
Кабели и провода играют основную роль в процессе передачи и распределения электрического тока. Являясь основными проводниками электричества к потребителям электрической энергии (холодильник, стиральная машина, чайник, телевизор и т.д.), кабели и провода для всей электрической сети должны быть подобраны в соответствии с потреблением и нагрузками всех электроприборов. Для бесперебойного прохождения электрического тока необходимо сделать точный расчет сечения кабеля как по силе тока, так и по мощности нагрузки.
Для подбора сечения кабеля и провода по мощности и силе тока можно воспользоваться следующими таблицами:
Сечение токопроводящей жилы, мм2 | Для кабеля с медными жилами | |||
Напряжение 220 В | Напряжение 380 В | |||
Ток А | Мощность кВт | Ток А | Мощность кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Сечение токопроводящей жилы, мм2 | Для кабеля с алюминиевыми жилами | |||
Напряжение 220 В | Напряжение 380 В | |||
Ток А | Мощность кВт | Ток А | Мощность кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132 |
Данные взяты из таблиц ПУЭ.
При разработке и проектировании электрической сети, необходимо правильно рассчитывать сечение кабеля по мощности и силе тока. Неправильные расчеты приведут к перегреву кабеля, что, в свою очередь, приведет к разрушению изоляции и, как следствие, к замыканию и возгоранию. Грамотный расчет позволит Вам избежать аварийной ситуации и больших затрат на ремонт электропроводки и замены электроприборов.
Материалы, близкие по теме:
electromontaj-st.ru
таблица и формула, фото и видео урок как рассчитать сечение кабеля по мощности и длине
Автор Aluarius На чтение 6 мин. Просмотров 2k. Опубликовано
Электрическая проводка – это важнейшая часть большой коммуникационной системы, которая снабжает дом электроэнергией. От ее качественной и долгой эксплуатации зависит качество работы освещения и бытовых электрических приборов, которых в последнее время становится в каждом доме все больше и больше. Поэтому все чаще встречаются на строительных порталах вопросы, которые касаются именно электропроводки. И один из таких вопросов, как правильно провести расчет сечения кабеля по мощности, а точнее сказать, по нагрузке.
Опытные электрики на глаз определяют приблизительно данный показатель. Инженеры пользуются специальными таблицами, которых в Интернете в свободном доступе большое количество. Но давайте рассуждать здраво. В каждом доме есть определенное количество бытовых приборов, у которых разная мощность. Это первое. Второе – количество комнат и служебных помещений может быть сильно отличаться в каждом доме. А это влияет на потребляемую мощность по освещению. К тому же у кого-то в доме висят многорожковые люстры, а кто-то обходится и точечными светильниками. Плюс разнообразие всевозможных ламп.
Таблица расчета сечения кабеля
Третье – это опять-таки мощность бытовых приборов, которую подсчитывают по фактическим показателям. То есть, практически пересчитывают по пальцам, какими приборами и с какой мощностью владельцы домов пользуются. И самое важное, что при подсчете общей мощности нет необходимости учитывать фактор, который влияет на то, как работают приборы и освещение: постоянно или периодически. Важно знать общую нагрузку на кабель.
Формула расчета
Итак, существует формула расчета сечения электрического кабеля или провода по мощности. Вот она:
I=P*K/U*cos φ – эта формула применяется для однофазных сетей с напряжением в 220 В.
В ней
- «Р» – это суммарная мощность всех бытовых приборов и освещения.
- «К» – это тот самый коэффициент одновременности, то есть, он выравнивает показатель мощности по временному показателю. Ведь не все время же мы пользуемся освещением или приборами. Это величина постоянная и равна 0,75.
- «U» – напряжение 220 В.
- cos φ – это также постоянная величина, равная единице.
Практически в этой формуле все величины, кроме общей мощности, постоянные. Поэтому в основе расчета лежат именно нагрузки, которые создают бытовые приборы и светильники. То есть, величина тока зависит от потребляемой мощности. Эти показатели обычно указываются в технической документации, которая поступает в комплекте с электрическим прибором. Нередко производители указывают ее на бирках. Вот только некоторые показатели мощности основных бытовых приборов, используемых чаще других.
- Освещение от 300 Вт до 1500 Вт. Как было сказано выше, все зависит от количества и вида ламп.
- Телевизор от 140 до 300 Вт. Это мощность современных моделей.
- Холодильник от 300 до 800.
- Утюг от 1000 до 200. Это один из самых энергопотребляемых агрегатов.
- К этой же категории относится электрочайник: 1000-2500 Вт.
- Добавим сюда же стиральную и посудомоечную машину – 2500 Вт.
- Микроволновая печь в среднем в пределах 1000 Вт.
- Компьютер от 300 до 600 Вт.
Можно было бы сюда добавить и другие приборы, к примеру, фен, музыкальный центр, пылесос, бойлер и так далее. То есть, для подсчета сечения электрического кабеля по мощности необходимо сначала определить, сколько приборов есть в доме. Складывая их мощность, устанавливается суммарная общая потребляемая мощность, которая и будет действовать на электрическую проводку.
Итак, все величины вставляются в формулу, по которой определяется сила тока. Давайте подсчитаем мощность всех вышеперечисленных приборов по минимальной ставке. И определим, какой кабель будет необходим. Общая мощность составляет – 6540 Вт или 6,54 кВт. Вставляем ее в формулу:
I=6540*0,75/220=22,3 А
Теперь для определения сечения кабеля потребуется таблица, в которой установлено соотношение двух величин.
Внимание! Величина электрического тока в таблицах обычно показана целыми цифрами. Поэтому стоит округлить наш полученный результат до большей величины. Это создаст определенный запас прочности. В нашем случае это будет 27 А по медным проводам, и 28 А по алюминиевым. Соответственно сечение кабеля будет 2,5 мм² по меди и 4 мм² по алюминию.
Теперь вы знаете, как рассчитать сечение кабеля.
Расчет сечения кабеля по помещениям
Вышеописанный расчет с формулой предназначается для вводного кабеля в дом. Но давайте рассмотрим внутреннюю разводку по комнатам и помещениям. Все дело в том, что с освещением все более или менее понятно. Бросаете под него во все комнаты кабель сечением 1,5 мм², и будьте уверены, что все вы сделали правильно. Ни перегрева, ни замыкания у вас не будет.
С розетками все не так просто. Есть в доме комнаты, где наличие бытовых приборов зашкаливает. Это кухня и ванная. В последней обычно часто работает стиральная машина и фен. Кстати, у него немаленькая мощность от 1000 до 2500 Вт. Так что нагрузку этот небольшой прибор создает приличную.
Так вот необходимо решить одну очень важную задачу – правильно распределить нагрузку по розеточным группам. К примеру, на кухне. Сначала рассчитывается сила тока по вышеописанной формуле, где в качестве потребляемой мощности складываются мощности всех присутствующих на кухне бытовых электрических приборов, плюс освещение. Производится выбор сечение кабеля, который будет заходить в эту комнату. А вот по розеткам растащить проводку под каждый бытовой прибор с меньшим сечением. Для холодильника отдельно, для кофеварки и чайника отдельно, для посудомоечной машины отдельно. И так по всем точкам.
Таблица расчета сечения кабеля по длине
Многие могут сказать, не много ли розеток для одного небольшого помещения? Есть альтернатива, запитать на блок розеток (двойную или тройную) кабель большего сечения. Придется провести еще один расчет. То есть, вариаций на схему разводки электрических контуров может быть много. Но во всех случаях придется использовать формулу и таблицы определения кабельного сечения. Хотя специалисты уверяют, что оптимальный вариант – это под каждый прибор свою розетку.
И еще один момент, касающийся длины кабеля и его потери напряжения. По законам физики, чем длиннее провод, тем больше у него потери напряжения. Поэтому электрики проводят расчет сечения провода по его длине. Правда, внутреннюю разводку такому расчету не подвергают. Слишком мизерны потери.
Какой кабель лучше: медный или алюминиевый
Не будем глубоко вникать в этот вопрос. Просто сделаем небольшой сравнительный анализ.
- Медный кабель более прочный и гибкий. При многократном изгибе он не ломается.
- Медь хоть и окисляется, но не так интенсивно, как алюминий. Поэтому контакты эксплуатируются дольше.
- Показатель проводимости медных жил почти в два раза больше, чем у медных. Отсюда и более высокая нагрузка, которую медный кабель выдерживает.
- Алюминиевый провод почти в четыре раза дешевле медного.
Для внутренней разводки электропроводки рекомендуется применять медный кабель
Существуют современные правила проведения электрической разводки. Так вот в них рекомендуется внутреннюю разводку проводить медными проводами, а внешнюю алюминиевыми.
Заключение по теме
Итак, подводя итог всему вышесказанному, необходимо сделать заключение, что расчет мощности приборов и сечения кабеля по нагрузке – ответственный процесс. Допущенная в расчетах ошибка может обойтись очень дорого. Так что внимательность и только внимательность.
Расчет сечения провода по току: важность и особенности
Расчет сечения провода по току является важным условием для качественного монтажа электропроводки в помещении любого типа. Это связано с угрозой перегрева при недостаточной площади сечения, что в свою очередь приводит к плавлению его изоляции, короткому замыканию и даже пожару.
В связи с тем, что, в большинстве случаев, провода электрического обеспечения сооружений являются скрытыми внутри кладки или отделочного слоя стены, позаботиться о соответствующем сечении, значит обеспечить себе уверенность в сохранности и жильцов, и имущества. Именно в данном случае и проводится расчет сечения по мощности проходящего тока.
Критерии выбора необходимого сечения провода
Существует три основных принципа, согласно которым проводится выбор площади сечения кабеля для сети электрического обеспечения помещения. К ним относятся:
- Достаточная площадь сечения для обеспечения прохождения тока без возникновения перегрева.
- Падение напряжения в кабеле выбранного сечения не должно превышать норму.
- Площадь сечения провода и качество его изоляционного покрытия должны максимально обеспечивать соблюдение механической прочности, а, следовательно, общей надежности проводки.
Что касается состояния перегрева, то нормальным считается достижение температуры, не превышающей 60°С. В целом, двумя основными критериями, которым должно соответствовать выбранное сечение провода, являются поддержание мощности и обеспечение безопасности.
Процесс определения необходимого сечения провода
В процессе проведения электропроводки в помещении используется простой и быстрый способ того, как определить сечение провода по току. Так как основным показателем функциональности является величина тока, которую он способен пропускать в течение продолжительного периода, прежде всего, необходимо определить уровень предельной нагрузки, который будет ложиться на данный элемент проводки.
Расчет мощности потребителей
Чтобы высчитать величину тока, которая ляжет на искомый кабель, нужно суммировать мощность всех приборов, которые будут получать питание через него. Стоит отметить, что чаще всего, при устройстве электропроводки, освещение и питание электроприборов разделяются на отдельные линии. Поэтому, перед тем, как пытаться определить сечение провода по току для помещения, важно уточнить включение в общий перечень приборов освещения.
Для примера используется вариант расчета только силового обеспечения электричеством. В случае участия в общей нагрузке освещения, мощность ламп также суммируется с мощностями приборов. Допустим, что в помещении (кухня квартиры) планируется использование холодильника мощностью 200 Вт, микроволновой печи с показателем в 1100 Вт, электрического чайника с мощностью 2200 Вт и электроплиты в 500 Вт показателя мощности. Тогда общая нагрузка, которая ляжет на кабель, обеспечивающий силовое питание, составит P=200+1100+2200+500=4000 Вт.
Расчет сечения провода
Дальнейшее изыскание того, какое сечение провода необходимо, подразумевает определение предельной величины тока. Здесь расчет пойдет в двух направлениях: для однофазной и трехфазной сети. Формула расчета для сети в 220В (однофазная) будет иметь вид I=(P*Kи)/U*cos φ. При этом:
- Р – вычисленная выше мощность всех приборов.
- U – показатель напряжения сети (220В).
- Ки – величина коэффициента одновременности, составляющая для бытовых приборов 0,75.
- Сos φ – для бытовых приборов равен единице.
Если же речь идет о трехфазной сети, формула, вычисляющая величину максимального проведения тока, несколько изменится: I=P/√3*U*cos φ.
Исходя из данных рассматриваемого примера и применив формулу для однофазной сети, получим следующий расчет: I=(4000*0,75)/220*1=13,6 А. Получив показания по величине длительно предельной нагрузки, сечение провода определяется по таблице данных, согласно ГОСТ 31996—2012 «КАБЕЛИ СИЛОВЫЕ С ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ». Сама сводная таблица допустимой токовой мощности на провода медных или алюминиевых жил, согласно которой определяется площадь сечения кабеля, приведена ниже.
Медный тип проводов | Алюминиевый тип проводов | ||||||||
Сечение, мм2 | Одножильный | Многожильный | Сечение, мм2 | Одножильный | Многожильный | ||||
на воздухе | в земле | на воздухе | в земле | на воздухе | в земле | на воздухе | в земле | ||
1,5 | 22 | 30 | 21 | 27 | — | — | — | — | — |
2,5 | 30 | 39 | 27 | 36 | 2,5 | 22 | 30 | 21 | 28 |
4 | 39 | 50 | 36 | 47 | 4 | 30 | 39 | 29 | 37 |
6 | 50 | 62 | 46 | 59 | 6 | 37 | 48 | 37 | 44 |
10 | 68 | 83 | 63 | 79 | 10 | 50 | 63 | 50 | 59 |
16 | 89 | 107 | 84 | 102 | 16 | 68 | 82 | 67 | 77 |
25 | 121 | 137 | 112 | 133 | 25 | 92 | 106 | 87 | 102 |
35 | 147 | 163 | 137 | 158 | 35 | 113 | 127 | 106 | 123 |
50 | 179 | 194 | 167 | 187 | 50 | 139 | 150 | 126 | 143 |
70 | 226 | 237 | 211 | 231 | 70 | 176 | 184 | 161 | 178 |
95 | 280 | 285 | 261 | 279 | 95 | 217 | 221 | 197 | 214 |
120 | 326 | 324 | 302 | 317 | 120 | 253 | 252 | 229 | 244 |
150 | 373 | 364 | 346 | 358 | 150 | 290 | 283 | 261 | 274 |
185 | 431 | 412 | 397 | 405 | 185 | 336 | 321 | 302 | 312 |
Если данные, выведенные в результате расчетов, не совпадают с показателями таблицы, берется ближайшее большее значение. Так, в случае рассматриваемого примера, сечение медного одножильного или многожильного провода составит 1,5 мм2, а при использовании алюминиевого, площадь будет равна 2,5 мм2.
Медь или алюминий?
Как видно на основе примера, расчет и определение того, какую площадь должен иметь провод в зависимости от мощности нагрузки, достаточно прост. Дополнительные вопросы могут также возникнуть касательно материала изготовления. В чем состоят различия медных и алюминиевых кабелей для электрической проводки, и какой из них лучше выбрать?
Сравнительный анализ медного и алюминиевого типов проводов
Для человека, хоть раз сталкивавшегося с вопросами проведения линий электрической сети в помещении или на улице, не секрет, что провода и кабели, изготовленные из меди, пользуются большим уровнем спроса, чем алюминиевые. Это связано с несколькими основными критериями функциональности, в которых данные материалы расходятся.
К таким показателям относятся:
- Уровень прочности.
- Степень гибкости.
- Способность противостояния процессам коррозии.
- Уровень проводимости тока.
В том, что касается показателей прочности и гибкости, медь значительно опережает алюминий. Она является более гибкой, не переламывается в местах сгибов, что делает ее незаменимой при необходимости проведения сложных систем электропроводки. При этом, медные провода значительно меньше подвержены окислению, которое поражает алюминий достаточно быстро. Кроме того медные провода хорошо соединяются методом пайки.
Разница в уровнях проводимости тока видна даже в данных сводной таблицы по мощности для каждого типа проводов. Медный провод при значительно меньшем сечении способен обеспечить проведение большей силы тока, чем алюминиевый.
Единственным ощутимым недостатком материала является его высокая стоимость. По этой причине алюминий до сих пор удерживается на рынке – дешевизна и доступность данного сырья, в некоторых случаях, играет решающую роль. Однако, по соотношению показателей цена-качество, медь занимает лидирующее положение в качестве материала для проводов и кабелей линий электрических сетей.
myCableEngineering.com> Уравнение адиабаты
При расчете рейтингов неисправностей кабеля обычно предполагается, что продолжительность достаточно короткая, чтобы кабель не отводил тепло в окружающую среду. Принятие этого подхода упрощает расчет и дает возможность ошибиться.
Обычно используемым уравнением является так называемое адиабатическое уравнение. Для данной неисправности I , которая длится в течение времени t , минимальная требуемая площадь поперечного сечения кабеля определяется по формуле:
А = I2tk
где: A — номинальное сечение, мм 2
I — ток КЗ, А
t — длительность тока КЗ, с
К — коэффициент, зависящий от типа кабеля (см. Ниже )
В качестве альтернативы, учитывая поперечное сечение кабеля и ток короткого замыкания, максимальное время, допустимое для защитного устройства, можно найти по адресу:
т = k2A2I2
Коэффициент k зависит от изоляции кабеля, допустимого повышения температуры в условиях повреждения, удельного сопротивления проводника и теплоемкости.Типичные значения k :
Температура | Материал проводника | ||||
---|---|---|---|---|---|
Начальная ° C | Конечная ° C | Медь | Алюминий | Сталь | |
Термопласт 70 ° C (ПВХ) | 70 | 160/140 | 115/103 | 76/78 | 42/37 |
Термопласт 90 ° C (ПВХ) | 90 | 160/140 | 100/86 | 66/57 | 36/31 |
Термореактивная, 90 ° C (XLPE, EDR) | 90 | 250 | 143 | 94 | 52 |
Термореактивная, 60 ° C (резина) | 60 | 200 | 141 | 93 | 51 |
Термореактивная, 85 ° C (резина) | 85 | 220 | 134 | 89 | 48 |
Термореактивная, 185 ° C (силиконовая резина) | 180 | 350 | 132 | 87 | 47 |
* где два значения; нижнее значение применяется к проводнику CSA> 300 мм 2
* эти значения подходят для продолжительности до 5 секунд, источник: BS 7671, IEC 60364-5-54
Пример
Считайте максимальный ток короткого замыкания 13.6 кА, и защитное устройство срабатывает за 2,6 с. Минимальная безопасная площадь поперечного сечения медного термореактивного кабеля 90 ° C ( k = 143) составляет:
S = 136002 × 2,6143 = 154 мм2
Любой выбранный кабель большего размера выдержит отказ.
Вывод — адиабатическое уравнение и k
Термин адиабатический применяется к процессу, в котором отсутствует теплопередача. Что касается повреждений кабеля, мы предполагаем, что все тепло, генерируемое во время повреждения, содержится внутри кабеля (а не передается от него).Очевидно, это не совсем так, но это на всякий случай.
Из физики тепло Q , необходимое для подъема материала ΔT , определяется по формуле:
Q = см ΔT
где Q — добавленное тепло, Дж
c — удельная теплоемкость материала, Jg -1 .K -1
м — масса материала, г
ΔT — превышение температуры, К
Энергия, поступающая в кабель во время короткого замыкания, определяется по формуле:
Q = I2Rt
где R — сопротивление кабеля, Ом
Исходя из физических свойств кабеля, мы можем рассчитать м и R как:
m = ρcAl и R = ρrlA
где ρ c — плотность материала в г.мм -3
ρ r — удельное сопротивление жилы, Ом.мм
l — длина кабеля, мм
Комбинируя и заменяя, получаем:
I2Rt = см ΔT
I2tρrlA = cρcAlΔT
и перестановка для A дает:
S = I2tk, положив k = cρcΔTρr
Примечание: ΔT — максимально допустимое превышение температуры для кабеля:
ΔT = θf − θi
где θ f — конечная (максимальная) температура изоляции кабеля, ° C
θ i — начальная (рабочая) температура изоляции кабеля, ° C
Единицы: выражаются в г (граммах) и мм. 2 , а не в кг и м.Это широко используется разработчиками кабелей. При необходимости уравнения можно легко изменить в кг и м.
Расчет минимальных уровней тока короткого замыкания
Если защитное устройство в цепи предназначено только для защиты от короткого замыкания, важно, чтобы оно работало с уверенностью при минимально возможном уровне тока короткого замыкания, который может возникнуть в цепи.
Как правило, в цепях низкого напряжения одно защитное устройство защищает от всех уровней тока, от порога перегрузки до максимальной отключающей способности устройства по номинальному току короткого замыкания.Защитное устройство должно работать в течение максимального времени, чтобы гарантировать безопасность людей и цепи, при любом токе короткого замыкания или токе короткого замыкания, которые могут возникнуть. Чтобы проверить это поведение, необходимо вычислить минимальный ток короткого замыкания или ток короткого замыкания.
Кроме того, в некоторых случаях используются устройства защиты от перегрузки и отдельные устройства защиты от короткого замыкания.
Примеры таких устройств
Рисунок G43 — Рисунок G45 показывает некоторые общие устройства, в которых защита от перегрузки и короткого замыкания обеспечивается отдельными устройствами.
Рис. G43 — Цепь защищена предохранителями типа AM
Рис. G44 — Цепь защищена автоматическим выключателем без теплового реле перегрузки
Рис. G45 — Автоматический выключатель D обеспечивает защиту от короткого замыкания до нагрузки
включительно.
Как показано на Рисунок G43 и Рисунок G44, наиболее распространенные схемы, использующие отдельные устройства, управляют и защищают двигатели.
Рисунок G45 представляет собой частичное отступление от основных правил защиты и обычно используется в цепях шинопроводов (шинопроводов), рельсах освещения и т. Д.
Регулируемый привод
На рисунке G46 показаны функции, обеспечиваемые частотно-регулируемым приводом, и, при необходимости, некоторые дополнительные функции, обеспечиваемые такими устройствами, как автоматический выключатель, тепловое реле, УЗО.
Рис. G46 — Защита для приводов с регулируемой скоростью
Обеспечение защиты | Защита обычно обеспечивается частотно-регулируемым приводом | Дополнительная защита, если она не обеспечивается частотно-регулируемым приводом |
---|---|---|
Перегрузка кабеля | Да | CB / тепловое реле |
Перегрузка двигателя | Да | CB / тепловое реле |
Короткое замыкание на выходе | Да | |
Перегрузка привода с регулируемой скоростью | Да | |
Перенапряжение | Да | |
Пониженное напряжение | Да | |
Обрыв фазы | Да | |
Короткое замыкание на входе | Автоматический выключатель (отключение при коротком замыкании) | |
Внутренняя неисправность | Автоматический выключатель (отключение при коротком замыкании и перегрузке) | |
Замыкание на землю на выходе (косвенный контакт) | (самозащита) | УЗО ≥ 300 мА или выключатель в системе заземления TN |
Ошибка прямого контакта | УЗО ≤ 30 мА |
Обязательные условия
Защитное устройство должно соответствовать:
- уставка мгновенного отключения Im
мин для автоматического выключателя - сварочный ток Ia
мин для предохранителя
Следовательно, защитное устройство должно удовлетворять двум следующим условиям:
- Его отключающая способность должна быть больше, чем Isc, трехфазный ток короткого замыкания в точке установки
- Устранение минимального возможного тока короткого замыкания в цепи за время tc, совместимое с тепловыми ограничениями проводников цепи:
- tc≤k2S2Iscmin2 {\ displaystyle tc \ leq {\ frac {k ^ {2} S ^ {2}} {Isc_ {min} \, ^ {2}}}} (действительно для tc <5 секунд)
где S — площадь поперечного сечения кабеля, k — коэффициент, зависящий от кабеля материал проводника, изоляционный материал и начальная температура.
Пример: для медного сшитого полиэтилена, начальная температура 90 ° C, k = 143 (см. IEC60364-4-43 §434.3.2, таблица 43A и , рисунок G52).
Сравнение кривой характеристик срабатывания предохранителя или предохранителя защитных устройств с предельными кривыми тепловых ограничений для проводника показывает, что это условие выполняется, если:
- Isc (min)> Im (уровень уставки срабатывания автоматического выключателя с мгновенной или короткой выдержкой времени), (см. , рис. G47)
- Isc (мин)> Ia для защиты предохранителями.Значение тока Ia соответствует точке пересечения кривой предохранителя и кривой термостойкости кабеля (см. рис. G48 и рис. G49)
рис. G47 — защита автоматическим выключателем
Рис. G48 — Защита предохранителями типа AM
Рис. G49 — Защита предохранителями типа gG
Практический метод расчета Lmax
На практике это означает, что длина цепи после защитного устройства не должна превышать расчетную максимальную длину: Lmax = 0.8 U Sph3ρIm {\ displaystyle L_ {max} = {\ frac {0.8 \ U \ S_ {ph}} {2 \ rho I_ {m}}}}
Ограничивающее влияние импеданса длинных проводников цепи на величину токов короткого замыкания должно быть проверено, и длина цепи должна быть соответственно ограничена.
Для защиты людей (защита от короткого замыкания или косвенные контакты) методы расчета максимальной длины цепи представлены в главе F для системы TN и системы IT (вторая неисправность).
Два других случая рассматриваются ниже, для межфазных коротких замыканий и межфазных коротких замыканий.
1 — Расчет L
max для трехфазной трехпроводной схемы
Минимальный ток короткого замыкания возникает при коротком замыкании двух фазных проводов на удаленном конце цепи (см. Рис. G50).
Рис. G50 — Определение L для трехфазной трехпроводной схемы
При использовании «традиционного метода» предполагается, что напряжение в точке защиты P составляет 80% от номинального напряжения во время короткого замыкания, так что 0,8 U = Isc Zd, где:
Zd = полное сопротивление контура короткого замыкания
Isc = ток короткого замыкания (ф / ф)
U = межфазное номинальное напряжение
Для кабелей ≤ 120 мм 2 реактивным сопротивлением можно пренебречь, так что Zd = ρ2LSph {\ displaystyle Zd = \ rho {\ frac {2L} {Sph}}} [1]
где:
ρ = удельное сопротивление материала проводника при средней температуре во время короткого замыкания,
Sph = c.s.a. фазного проводника в мм 2
L = длина в метрах
Условие защиты кабеля: Im ≤ Isc с Im = током отключения, что гарантирует мгновенное срабатывание выключателя.
Это приводит к Im≤0,8UZd {\ displaystyle Im \ leq {\ frac {0.8U} {Zd}}}, что дает L≤0,8 U Sph3ρIm {\ displaystyle L \ leq {\ frac {0.8 \ U \ S_ { ph}} {2 \ rho I_ {m}}}}
Для проводников аналогичной природы U и ρ являются постоянными (U = 400 В для межфазного замыкания, ρ = 0.023 Ом.мм² / м [2] для медных проводников), поэтому верхняя формула может быть записана как:
Lmax = k SphIm {\ displaystyle L_ {max} = {\ frac {k \ S_ {ph}} {I_ {m}}}}
с Lmax = максимальная длина цепи в метрах
Для промышленных автоматических выключателей (IEC 60947-2) значение Im дается с допуском ± 20%, поэтому Lmax следует рассчитывать для Im + 20% (наихудший случай).
Значения коэффициента k
представлены в следующей таблице для медных кабелей с учетом этих 20% и в зависимости от поперечного сечения для Sph> 120 мм² [1]
Поперечное сечение (мм 2 ) | ≤ 120 | 150 | 185 | 240 | 300 |
---|---|---|---|---|---|
к (на 400 В) | 5800 | 5040 | 4830 | 4640 | 4460 |
2 — Расчет L
max для 3-фазной 4-проводной цепи 230/400 В
Минимальный Isc возникает, когда короткое замыкание происходит между фазным проводом и нейтралью в конце цепи.
Требуется расчет, аналогичный приведенному выше в примере 1, но для однофазного замыкания (230 В).
- Если Sn (нейтральное сечение) = Sph
Lmax = k Sph / Im с k, рассчитанным для 230 В, как показано в таблице ниже
Поперечное сечение (мм 2 ) | ≤ 120 | 150 | 185 | 240 | 300 |
---|---|---|---|---|---|
k (для 230 В) | 3333 | 2898 | 2777 | 2668 | 2565 |
- Если Sn (сечение нейтрали)
2 )
Lmax = 6666SphIm11 + m {\ displaystyle L_ {max} = 6666 {\ frac {Sph} {Im}} {\ frac {1} {1 + m}}}
м = SphSn {\ displaystyle m = {\ frac {Sph} {Sn}}}
Значения в таблице для Lmax
На основе практического метода расчета, описанного в предыдущем параграфе, можно подготовить предварительно рассчитанные таблицы.
На практике таблицы Рис. F25 до Рис. F28, уже использованные в главе «Защита от поражения электрическим током и возгорание» для расчета замыканий на землю, также могут быть использованы здесь, но с применением поправочных коэффициентов в Рис. G51 ниже, чтобы получить значение Lmax, связанное с межфазным коротким замыканием или между фазой и нейтралью.
Примечание : для алюминиевых проводов полученную длину необходимо снова умножить на 0,62.
Рис.G51 — поправочный коэффициент, применяемый к длинам, полученным от Рис. F25 до Рис. F28, для получения Lmax с учетом межфазных коротких замыканий или межфазных коротких замыканий
Детали схемы | ||
---|---|---|
3-фазная 3-проводная цепь 400 В или 1-фазная 2-проводная цепь 400 В (без нейтрали) | 1,73 | |
1-фазный 2-проводный (фаза и нейтраль) цепь 230 В | 1 | |
3-фазная 4-проводная цепь 230/400 В или 2-фазная 3-проводная цепь 230/400 В (т.е.e с нейтралью) | Sph / S нейтральный = 1 | 1 |
Sph / S нейтраль = 2 | 0,67 |
Примеры
Пример 1
В трехфазной трехпроводной установке на 400 В защиту от короткого замыкания двигателя мощностью 22 кВт (50 А) обеспечивает магнитный выключатель типа GV4L, мгновенное отключение по току короткого замыкания установлено на 700 А (точность ± 20%), т.е. в худшем случае для отключения потребуется 700 x 1,2 = 840 А.
Кабель c.s.a. = 10 мм², а материал проводника — медь.
В Рис. F25 столбец Im = 700 A пересекает строку c.s.a. = 10 мм² при значении Lmax 48 м. Рис. G51 дает коэффициент 1,73 для применения к этому значению для 3-фазной 3-проводной цепи (без нейтрали). Автоматический выключатель защищает кабель от короткого замыкания, следовательно, при условии, что его длина не превышает 48 x 1,73 = 83 метра.
Пример 2
В цепи 3L + N 400 В защита обеспечивается автоматическим выключателем 220 А типа NSX250N с расцепителем micrologic 2 с мгновенной защитой от короткого замыкания, установленной на 3000 А (± 20%), т. Удельное сопротивление медных кабелей из EPR / XLPE при прохождении тока короткого замыкания, например, для максимальной температуры, которую они могут выдерживать = 90 ° C (см. Рисунок G37).
Более высокий уровень: сопротивление и площадь поперечного сечения — Расчет сопротивления — CCEA — Редакция GCSE Physics (Single Science) — CCEA
Второй эксперимент может быть проведен для экспериментального исследования того, как сопротивление металлического проводника при постоянной температуре зависит от площадь поперечного сечения.
Описанный выше эксперимент повторяется, но с шестью равными отрезками константановой проволоки разной толщины.
Запишите напряжение, силу тока и диаметр провода, d (поставляется производителем).2} {4} \)).
Постройте график зависимости сопротивления R в Ом по оси y от площади поперечного сечения A в мм2 по оси x.
Проведите линию наилучшего соответствия.
Из графика видно, что по мере увеличения площади поперечного сечения A сопротивление R уменьшается.
Более толстый провод имеет меньшее сопротивление, чем тонкий провод.
Более подробное исследование показывает, что сопротивление и площадь поперечного сечения обратно пропорциональны.
Если вы удвоите площадь поперечного сечения, вы вдвое уменьшите сопротивление провода.
Последний эксперимент может быть проведен для экспериментального исследования того, как сопротивление металлического проводника при постоянной температуре зависит от материала проводника.
Эксперимент повторяется снова, но с шестью проволоками из разных материалов одинаковой длины и толщины.
Запишите напряжение, ток и вычислите сопротивление.
Сравнение результатов в таблице показывает, что провода из разных материалов имеют разное сопротивление.
Ключевой момент
Сопротивление металлического проводника при постоянной температуре зависит от:
- Длина l.Сопротивление прямо пропорционально длине.
- Площадь поперечного сечения A. Сопротивление обратно пропорционально площади поперечного сечения.
- Материал проводника.
Сопротивление увеличивается как:
- длина провода увеличивается;
- толщина проволоки уменьшается.
Электрический ток течет, когда свободные электроны движутся в одном направлении через проводник, например металлический провод.
Движущиеся электроны могут сталкиваться с ионами металла.