Измеряется в амперах: Что измеряют в амперах: амперы

Содержание

Что измеряют в амперах: амперы

Из школьного курса физики известно, что ампер – это одна из основных единиц измерения при изучении физики электрических явлений. В амперах меряют силу тока.

Суть ампера

Определение

Единица измерения силы взаимодействия электронов названа в честь ученого из Франции А. Ампера. Он проводил опыты, направленные на изучение воздействия магнита на проводник и выявил взаимозависимость между его длиной, количеством частиц, которое перемещается по нему в промежуток времени, направлением магнитного воздействия и углом между вектором воздействия и движением частиц по проводнику.

В 1948 году было принято решение Международной организации по мерам и весам о том, что такой показатель измеряется в амперах. Физическое значение данного параметра состоит в следующем:

  • Элементарные частицы постоянно текут по бесконечно тонким и длинным проводникам в одном направлении;
  • Цепь находится в вакууме, и потенциалы расположены параллельно друг к другу с расстоянием в один метр;
  • Сила притяжения или отталкивания между ними составляет 2*10-7 Ньютона.

На практике такие условия даже в лаборатории воспроизвести невозможно, поэтому для установления эталона и тарирования измерительных приборов специалисты мерили уровень взаимодействия, возникающий между двумя катушками с большим количеством проводов минимального сечения.

С 1992 года ситуация изменилась, и описываемое физическое явление стали определять на основании закона Ома. Теперь под одним ампером (обозначение 1А) понимается сила тока, при которой за 1 секунду по проводнику перемещается количество электронов, равное одному кулону.

Определение ампера

Что такое сила тока

Как известно, все материальные вещества состоят из молекул, которые, в свою очередь, состоят из атомов. Атом состоит из ядра и вращающихся вокруг него электронов. Когда происходит химическая реакция между двумя разными веществами, электроны из одних атомов переходят в другие. Это объясняется тем, что одни атомы обладают избыточным количеством электронов, а у других – их недостаточно. Перемещение электронов из одного вещества при контакте с другим веществом и является электрическим током. Если не оказывать внешнего воздействия, такой переток элементарных частиц будет происходить до тех пор, пока заряды у атомов, из которых состоят контактирующие вещества, не выровняются.

Однако, одного перемещения частиц недостаточно. Необходимо, чтобы их движение было в определенном направлении. Только в таком случае можно говорить об электричестве и его параметрах. Для этого между полюсами или окончаниями должна существовать разница потенциалов (на одном конце расположено вещество с избытком электронов, а на другом – с недостатком). Если такая разница не меняется в течение времени, ток называется постоянным (ярким примером является батарейка). Если же в процессе движения частиц потенциалы меняются местами, то он будет называться переменным.

Сила тока

Закон Ома

Количеством перемещаемых по проводнику частиц можно управлять. Это эмпирическим (опытным) путем установил немецкий физик Георг Ом. После ряда опытов он выявил, что чем выше разница потенциалов между полюсами (другими словами, напряжение), тем выше скорость движения элементарных частиц. Поэтому бытует мнение, что высокое напряжение способно убить человека.

С точки зрения науки, это совершенно не так. Во-первых, убивает не напряжение (это всего лишь разница потенциалов между полюсами), а электроны, перемещаемые по проводнику за единицу времени. Проходящие через человека частицы, в силу свойств электричества, выделяют тепло, что и приводит к ожогам либо химическим изменениям внутренних органов. Поэтому при работе с электрическими цепями в соответствии с требованиями охраны труда требуется надевать резиновые перчатки и сапоги (резина не проводит электричества, а, значит, поражения не будет).

Закон Ома для участка цепи

Вместе с тем, встречались случаи, когда человек даже после контакта с электричеством оставался живой и невредимый. Это объясняется сопротивлением. Скорость движения и количество перемещаемых частиц уменьшается по мере увеличения сопротивления, которым обладает каждое вещество. Таким образом, при необходимости уменьшить данные параметры можно просто увеличить сопротивление.

Сила тока в быту

Основное ее назначение в быту – передача энергии. Электроны, взаимодействуя с различными веществами, меняют их свойства. Например, вольфрам начинает излучать свечение (так устроена обыкновенная лампочка), а другим химическим элементам, у которых высокие значения сопротивления, электричество отдает тепло (так устроена электроплитка). В некоторых случаях происходит отделение веществ друг от друга (при производстве алюминия).

Очень важно при монтаже электрических цепей в квартире или на предприятии избегать контакта полюсов. Если это произойдет, наступит «короткое замыкание», в результате которого резко увеличится сила тока в проводнике. Это приведет к его резкому нагреву и, возможно, даже пожару.

Электричество в быту

Итак, ответ на вопрос, что такое амперы, может быть следующим: это отражение скорости движения электронов по проводнику за единицу времени. Чем она больше, тем выше опасность поражения, но тем большее количество энергии передается.

Видео

Оцените статью:

обозначение и определение силы тока, как расписать единицу измерения математическим способом

Традиционный символ I происходит от французского словосочетания intensité du courant, что на русском языке означает «сила тока». Эта фраза часто используется в старых текстах. В современной практике её зачастую укорачивают до слова «ток». Обозначение I было впервые использовано самим Андре-Мари Ампером, в честь которого названы единица электрического тока и разработанный им закон.

Великий учёный

Имя André-Marie Ampère увековечено среди имён других 72 учёных на первом этаже Эйфелевой башни. Его вклад в науку заложил фундамент для понимания явлений электромагнетизма. Хоть Андре-Мари был не первым человеком, обнаружившим связь между электричеством и магнетизмом, он впервые попытался теоретически объяснить и продемонстрировать, как в математических выражениях расписывается связь между этими явлениями. Ампер с помощью устройства собственного изобретения смог измерить ток, а не просто зафиксировать его присутствие.

Учёный родился в Лионе в 1775 году и был современником Французской революции. Будучи сыном коммерсанта и чиновника, он с ранних лет проявлял страсть к математике, а став подростком, читал сложные трактаты Эйлера и Лагранжа. Получил должность профессора математики Парижской политехнической школы в 1809 году, а в 1814 г. был избран членом Академии наук. Хоть Андре-Мари преподавал математику, его интересы распространялись на многие области, в том числе на химию и физику.

Наиболее значимый документ Ампера по теории электричества был опубликован в 1826 году. Теоретические основы, представленные в этом труде, стали фундаментом для дальнейших открытий в области электричества и магнетизма. Получив известность и признание в высокоуважаемых академиях и научных организациях мира, Ампер избегал публичности и чувствовал себя счастливым только в скромной лаборатории в Париже.

Несмотря на достижения и место в обществе, судьба учёного сложилась довольна трагично. В 1793 году его отца гильотинировали за политические убеждения. Это событие стало причиной глубокой депрессии Андре-Мари и едва не свело его с ума. Первая жена рано ушла из жизни после продолжительной болезни, второй брак был неудачным и несчастливым. Сам Ампер умер в 1836 году от воспаления лёгких в Марселе и был похоронен на кладбище Монмартр в Париже.

Электрический ток

Электричеством называют форму энергии, основанной на наличии электрических зарядов в веществе. Вся материя состоит из атомов, а атомы содержат заряженные частицы. Каждый протон в атомном ядре содержит одну единицу положительного электрического заряда, а каждый электрон, вращающийся вокруг ядра, несёт в себе единицу отрицательного. Электрические явления возникают, когда электроны покидают атомы: потеря одного или нескольких из них превращает атом в положительно заряженный ион. Все явления, происходящие с зарядами, могут быть отнесены к двум основным категориям:

  • статическое электричество;
  • электрический ток.

Первый термин описывает поведение зарядов в состоянии покоя. Подобные явления хорошо иллюстрируют наэлектризованные волосы — они будут отталкиваться друг от друга, поскольку обладают одним зарядом.

Электрический ток имеет отношение к поведению зарядов в движении. Чтобы они перемещались непрерывно, им нужно обеспечить беспрепятственный маршрут. Путь для зарядов называют электрической цепью. Простейшая электрическая цепь, как правило, состоит из следующих элементов:

  • источника;
  • нагрузки;
  • соединяющих проводников.

Электрическим током называют любое движение носителей электрических зарядов: субатомных частиц (электронов или протонов), ионов (атомов, потерявших или набравших электроны) или квазичастиц (дырок в полупроводниках, которые можно рассматривать в качестве положительно заряженных носителей).

Ток в проводнике представляет собой движение электронов в одном направлении (постоянный) или с периодической сменой направления движения (переменный). В газах и жидкостях он состоит из потока положительных ионов в одном направлении вместе с потоком отрицательных в обратном. Существуют и другие его виды, например, пучки протонов, позитронов или других заряженных мюонов в ускорителях частиц.

В отношении общепринятого направления тока существует некоторое противоречие, основа которого была заложена более двух веков назад. Поскольку в те времена электроны ещё не были обнаружены, учёные предположили, что перемещаемые частицы несли положительный заряд. Традиция обозначать направление тока как направление движения положительных частиц не забыта и сейчас, хоть в проводниках носителями заряда являются электроны.

Единица и определение

Важнейшей характеристикой для описанных явлений является количественное измерение потока заряженных частиц. Этот показатель называют силой тока, его единица измерения — ампер (обозначается A). В численном выражении 1 ампер равен единичному заряду (1 кулону), проходящему через точку в цепи за единицу времени (1 секунду). Таким образом, A можно рассматривать как скорость потока I=Q/T, имеющую такой же смысл для заряда, как и скорость для физических тел. Широко применяются следующие кратные единицы:

  • 10 −6А — микроампер мкА;
  • 10 −3А — миллиампер мА;
  • 10 3А — килоампер кА.

Эволюция эталона

В знак признания фундаментальных работ великого физика André-Marie Ampère название ампер было принято в качестве электрической единицы измерения на международной конвенции в 1881 году. По международному определению 1883 года 1ампером являлся ток, способный при прохождении раствора нитрата серебра выделить 0,001118000 грамм серебра за секунду. Более поздние замеры показали, что принятый эквивалент составлял 0,99985 A, поэтому способы расписать ампер через явления электролиза со временем перестали удовлетворять из-за растущих требований к точности.

С 1948 года A (amper) был определён в Международной системе единиц как неизменяющийся ток, протекающий в двух параллельных проводниках бесконечной длины и ничтожно малого сечения, помещённых на расстоянии одного метра друг от друга в вакууме, и производящий между ними силу взаимодействия, равную 2х10 -7 ньютонов на метр длины. Это определение базируется на явлении электромагнетизма, связывая метр, килограмм и электрические единицы магнитной постоянной (1.25663706х10 -6 м кг с -2 А -2).

Реализация такого эталона основана на работе сложных электромеханических устройств. Их точность ограничивается десятимиллионными долями, что недостаточно для современных нужд. Эта проблема классического определения ампера привела к новой практической реализации. В соответствии с ней все электрические единицы рассматриваются как производные от электрических квантовых стандартов на основе эффекта Джозефсона и квантового эффекта Холла. Подобная привязка позволяет воспроизводить единицу с точностью до миллиардных долей.

Будущее величины в СИ

В 2005 году Международный комитет мер и весов начал первые приготовления к переопределению единиц СИ с целью привязки их к естественным константам. В соответствии с таким взглядом на эталоны ампер будет определяться подсчётом одиночных частиц с элементарным зарядом e. На основании решения 2014 года пересмотр вступает в силу в 2018 году.

Элегантная реализация нового определения A теоретически возможна с помощью одноэлектронных насосов, производящих электрический ток через синхронизированный контролируемый транспорт одиночных электронов. Некоторые международные исследования в этом направлении уже близки к достижению такой амбициозной цели.

Воздействие на человека

В большинстве случаев электрический ток представляет собой поток электронов. Поскольку ампер является мерой количества заряда, проходящего в секунду, нетрудно будет посчитать количество электронов в перемещённом заряде: 1 Кл = 6,24151·10 18. То есть один ампер равен потоку 6340 квадриллионов частиц в секунду. Это колоссальная цифра, но вряд ли она иллюстративна для сравнительного понимания, когда показатель чего-либо измеряют в амперах. В этом помогут следующие повседневные примеры:

  • 160х10 -19 — один электрон в секунду;
  • 0,7х10 -3 — слуховой аппарат;
  • 5х10 -3 — пучок в кинескопе телевизора;
  • 150х10 -3 — портативный ЖК телевизор;
  • 0,2 — электрический угорь;
  • 0,3 — лампа накаливания;
  • 10 — тостер, чайник;
  • 100 — стартер автомобиля;
  • 30х10 3 — удар молнии;
  • 180х10 3 — дуговая печь для ферросплавов;
  • 5х10 6 — дуга между Юпитером и Ио.

Порог смертельно опасного воздействия на человеческий организм начинается с 18 мА. Ток, превышающий это значение и проходящий через грудную клетку, способен стимулировать мышцы груди таким образом, что их спазмы могут вызвать полную остановку дыхания. Другой опасный эффект при подобном воздействии связан с фибрилляцией желудочков сердца. Основные факторы летальности:

  1. Сила тока. Так как сопротивление между точками входа и выхода — постоянная величина, по закону Ома высокое напряжение делает вероятным высокий ампераж.
  2. Маршрут протекания. Наиболее опасны для сердечной мышцы направления рука-рука и передняя-задняя части грудной клетки.
  3. Индивидуальная чувствительность к воздействию электричества и особенности организма (сопротивление кожи и её влажность, возраст и пол, заболевания, наличие медицинских имплантов).
  4. Продолжительность воздействия.

Большое влияние на тяжесть поражения током оказывает также неспособность отпустить источник. При условии, что пальцы человека держат в руках один из контактов под напряжением, многие взрослые люди не могут отпустить источник при протекающем постоянном токе менее 6 мА. При 22 мА это будет не под силу всем людям. 10 мА для человека, находящегося в воде, достаточно, чтобы вызвать полную потерю контроля над мышцами.

Практические измерения

Подсчёт количества электронов в проводнике с секундомером в руке практически неосуществим, поэтому ток измеряют специальными приборами (амперметрами) или косвенными расчётами. Амперметры устроены таким образом, что они реагируют на магнитное поле, создаваемое измеряемым током. Существуют различные типы подобных измерительных приборов, но все они основаны на одном принципе. Общие правила измерений силы тока можно свести к следующему перечню:

  1. Амперметр всегда включается последовательно к нагрузке, при измерениях ток должен протекать через прибор. Подключение прибора параллельно может привести к протеканию в нём слишком больших токов, что способно вызвать его выход из строя.
  2. Для высокой точности измерений внутреннее сопротивление прибора должно быть настолько низким, насколько это возможно, чтобы не влиять на параметры цепи.
  3. Следует позаботиться о виде тока (AC или DC). В случае с постоянным обязательно обратить внимание на полярность.
  4. Диапазон измерений должен быть настолько большим, насколько это возможно без вреда для точности. Важно, чтобы неизмеряемое значение не оказалась за пределами шкалы.

Возможны случаи, когда контур невозможно разомкнуть для замеров или нужное место в цепи труднодоступно. В таких ситуациях измерение можно выполнить косвенно. Определив падение напряжения на резисторе, можно с помощью закона Ома определить ток. Косвенные измерения удобно производить мультиметром — прибором, объединяющим функции омметра, вольтметра и амперметра.

В ситуациях, когда ток слишком высок для того, чтобы измерить его стандартным прибором, используют шунтирование. Самый дешёвый и простой способ — параллельное присоединение к участку резистора с омметром. Применение для измерений трансформатора тока добавляет важное преимущество, заключающееся в создании гальванической развязки между измерительным прибором и схемой, в которой измеряется ток. Но в этом случае анализ возможен только для переменного тока.

Измерения тока на реальных схемах выполняются в большинстве случаев для двух целей. Основная задача замеров — контроль за питанием. Вторая функция анализа токов заключается в определении неисправностей или превышения допустимого ампеража.

Очень важен выбор правильной технологии снятия показаний, чтобы компоненты контрольного оборудования способны были должным образом работать в пиковых и аварийных режимах. Современное развитие цифровой и компьютерной техники значительно расширило возможности точного измерения и исследования токов косвенными методами, а полупроводниковые технологии недалёкого будущего обещают дозировать электричество с точностью до единичного заряда.

ампер — это… Что такое ампер?

  • АМПЕР — (от собственного имени ученого). Единица силы электрического тока = 1/10 сантим., грм., секун. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АМПЕР единица силы электрического тока. Полный словарь иностранных слов …   Словарь иностранных слов русского языка

  • ампер — (неправильно ампер), род. мн. ампер и устаревающее амперов …   Словарь трудностей произношения и ударения в современном русском языке

  • АМПЕР — единица измерения электрического тока (силы тока). Сокращённое русское обозначение а, международное А. Весьма малые токи (например, в радиолампах) измеряются в тысячных долях а миллиамперах (ма или mА), а особо малые токи в миллионных долях а… …   Краткая энциклопедия домашнего хозяйства

  • АМПЕР — 1) Единица силы электрического тока в СИ, обозначается А. 1А = 3 .109 в единицах СГСЭ=0,1 в единицах СГСМ; названа по имени А. Ампера.2) Единица магнитодвижущей силы в СИ (старое наименование ампер виток). 1 А = 0,4 p гильберта = 14p.3.109 ед.… …   Большой Энциклопедический словарь

  • АМПЕР — • АМПЕР (Ampere) Андре Мари (1775 1836), французский физик и математик. Преподавал химию и физику в Бурге, а позднее математику в Политехнической школе в Париже. Был основателем электродинамики (в настоящее время теория ЭЛЕКТРОМАГНЕТИЗМА) и… …   Научно-технический энциклопедический словарь

  • АМПЕР — АМПЕР, ампера, род. мн. ампер, муж. (физ.). Единица измерения силы электрического тока. (По имени франц. физика Ampère.) Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • АМПЕР — АМПЕР, а, род. мн. амперов и при счёте преимущ. ампер, муж. Единица силы электрического тока. | прил. амперный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Ампер — Жан Жак (Jean Jacques Ampere, 1800 1864) французский писатель, сын знаменитого физика. А. первый из историков литературы, признавший романтизм. Основные труды его: Histoire Litteraire de la France avant le XII e s., 3 т., 1840; Histoire de la… …   Литературная энциклопедия

  • АМПЕР — (А), единица СИ силы электрич. тока. 1) А. равен силе неизменяющегося тока, к рый при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади сечения, расположенным в вакууме на расстоянии 1 м один от …   Физическая энциклопедия

  • АМПЕР — (Ampere) Андре Мари (1775 1836), французский физик. Один из основателей электродинамики, выявивший тесную связь электрических и магнитных явлений. Открыл Ампера закон …   Современная энциклопедия

  • Как измерить силу тока мультиметром

    Сила тока наряду с напряжением и сопротивлением является очень важным понятием в электричестве. Она измеряется в амперах и определяется количеством электрической энергии, проходящей через проводник за определенную единицу времени. Определяют ее величину с помощью измерительных приборов, в домашних условиях это проще всего сделать при помощи мультиметра, или тестера, имеющегося в распоряжении многих хозяев современных квартир. Контроль силы тока очень важен для работы механизмов, зависящих от электропитания, поскольку превышение ею максимально допустимого значения приводит к поломке приборов и возникновению аварийных ситуаций. Тема этой статьи – как измерить силу тока мультиметром.

    Виды мультиметров

    На современном рынке электроприборов представлено две разновидности тестеров:

    • Аналоговые.
    • Цифровые.

    Основными элементами аналоговых приборов являются шкала с нанесенными на ней делениями, по которой определяются показатели электрических величин, и стрелка-указатель. Такие мультиметры пользуются высоким спросом у новичков благодаря своей низкой стоимости и простоте в использовании.

    Но, наряду с этими положительными сторонами, аналоговые тестеры имеют и ряд недостатков, основным из которых является высокая погрешность измерений. Ее можно несколько уменьшить за счет настроечного резистора, конструктивно входящего в состав прибора. Тем не менее, при необходимости замерить электрические параметры с высокой точностью, лучше воспользоваться цифровым прибором.

    Цифровые мультиметры

    Единственным внешним отличием цифрового аппарата от аналогового является экран, на котором в виде цифр отражаются измеряемые параметры. Старые модели оборудованы светодиодным дисплеем, приборы нового типа – жидкокристаллическим.

    Они отличаются высокой точностью измерений и простотой в эксплуатации, поскольку не нуждаются в подгонке градуировки.

    Недостатком этих устройств можно назвать цену, которая в разы превосходит стоимость аналоговых тестеров.

    Особенности конструкции

    Независимо от количества гнезд в мультиметре, любой из этих приборов имеет два типа выходов, которые обозначаются разными цветами. Общий выход (масса) окрашен в черный цвет и имеет обозначение либо «com», либо «–». Выход, предназначенный для измерений (потенциальный), имеет красный цвет. Для любого из измеряемых параметров электроцепи может быть свое гнездо.

    Не стоит опасаться перепутать его с другими, поскольку каждое из этих гнезд обозначено соответствующей единицей.

    Еще одним внешним элементом прибора является рукоятка для установки предела измерений, которая может вращаться по кругу. На цифровых мультиметрах этих пределов больше, чем на аналоговых, кроме того, в них могут быть включены дополнительные опции, например, звуковой сигнал и другие. Поскольку мы говорим о том, как с помощью тестера произвести измерение силы тока, речь пойдет о шкале с амперами.

    Каждый мультиметр имеет свой максимальный предел по току, и при выборе электросети для тестирования, проверяемую силу тока в ней следует сопоставить с пределом, на который рассчитан прибор. Так, если сила тока, проходящего внутри электроцепи составляет 180 А, не рекомендуется проводить измерения при помощи мультиметра, рассчитанного на 20 А, поскольку единственным полученным результатом будет сгорание прибора сразу же после начала тестирования. Максимальный предел всегда указывается в паспорте мультиметра или на корпусе устройства.

    Порядок подготовки прибора к измерениям

    Переключатель мультиметра нужно перевести в сектор A (DA для постоянного тока или CA для переменного), который соответствует измерению тока, выбрав при этом нужный предел. Некоторые современные тестеры для электроцепей постоянного тока имеют одну позицию, а для переменного – другую. Чтобы не ошибиться, нужно ориентироваться по литерам, имеющимся на лицевой панели.

    Они одинаковы в любом приборе, надо просто понимать, какую величину каждый из них обозначает.

    Все мультиметры комплектуются двумя кабелями, на конце каждого из которых имеется щуп и разъем. Вторые концы проводов вставляются в гнезда прибора, которые соответствуют текущему измерению, в нашем случае – силы тока.

    Порядок измерений

    Мультиметр для измерения величины силы тока включается в разрыв электроцепи. В этом состоит основное отличие от процедуры измерения напряжения, при которой тестер подключается к цепочке параллельно. Показатель величины тока, который проходит через прибор, отображается стрелкой на шкале (если речь идет об аналоговом аппарате) или высвечивается на жидкокристаллическом (светодиодном) дисплее.

    Разорвать тестируемую цепь для включения в нее прибора можно по-разному. Например, отсоединив один из выводов радиоэлемента при помощи паяльника.

    Иногда приходится перекусывать провод кусачками или пассатижами.

    При определении величины тока батарейки или аккумулятора такой проблемы не существует, поскольку просто собирается цепь, одним из элементов которой является мультиметр.

    Что необходимо учитывать при измерении

    Важным условием при определении силы тока является включение в цепочку ограничительного сопротивления – резистора или обычной электролампочки. Этот элемент защитит прибор от поломки (сгорания) под воздействием потока электронов.

    Если сила тока на индикаторе не отображается, это говорит о неверно выбранном пределе, который нужно снизить на одну позицию. Если результата нет снова – еще на одну, продолжая до тех пор, пока на экране или шкале не отобразится какое-то значение.

    Производить замер нужно быстро – щуп не должен контактировать с кабелем более одной-двух секунд. Особенно это касается элементов питания малой мощности. Если, измеряя силу тока батареек, держать щуп на проводе длительное время, итогом станет их разряд – частичный или полный.

    Техника безопасности

    Как видим, процедура измерения силы тока при помощи мультиметра никакой сложности не представляет. Важно только следовать инструкции и не забывать о строгом соблюдении мер безопасности:

    • Перед проведением замеров обесточьте электросеть.
    • Проверьте изоляцию кабелей – при продолжительной эксплуатации ее целостность иногда нарушается, и вероятность поражения электротоком значительно возрастает.
    • Работайте исключительно в резиновых перчатках.
    • Не проводите измерения при высокой влажности воздуха. Дело в том, что влага обладает высокой электрической проводимостью и риск поражения также возрастает.
    • Человек, пострадавший от удара током, нуждается в медицинской помощи. Если есть возможность, любые работы с электричеством, в том числе и измерения, лучше проводить вдвоем. В нештатной ситуации присутствие напарника может оказаться настоящим спасением.

    Закончив измерения, разрезанные кабели нужно вновь соединить, предварительно снова обесточив цепь.

    Подробно и наглядно про измерения проводимые с помощью мультиметра на видео:

    Заключение

    В этой статье мы разобрались, как проверить силу тока с помощью мультиметра. Прочитав изложенный материал, любой взрослый человек сможет справиться с этой задачей, благо мультиметр – прибор совсем несложный, но в то же время очень нужный для решения не только профессиональных, но и бытовых задач, связанных с электричеством.

    Ампер это единица измерения силы тока

    Ампе́р (русское обозначение: А; международное: A) — единица измерения силы электрического тока в Международной системе единиц (СИ), одна из семи основных единиц СИ. В амперах измеряется также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование — ампер-виток) [1] . Кроме того, ампер является единицей силы тока и относится к числу основных единиц в системе единиц МКСА.

    Содержание

    Определение [ править | править код ]

    16 ноября 2018 года на XXVI Генеральной конференции мер и весов было принято определение ампера, основанное на использовании численного значения элементарного электрического заряда. Формулировка, вступившая в силу 20 мая 2019 года, гласит [2] :

    Ампер, символ А, есть единица электрического тока в СИ. Она определена путём фиксации численного значения элементарного заряда равным 1,602 176 634⋅10 −19 , когда он выражен единицей Кл, которая равна А·с, где секунда определена через Δ ν C s <displaystyle Delta
    u _<mathrm >> [3] .

    История [ править | править код ]

    Происхождение [ править | править код ]

    Единица измерения, принятая на 1-м Международном конгрессе электриков [4] (1881 г. , Париж), названа в честь французского физика Андре Ампера. Она была первоначально определена как одна десятая единицы тока системы СГСМ (эта единица, известная в настоящее время как абампер или био, определяла ток, создающий силу в 2 дины на сантиметр длины между двумя тонкими проводниками на расстоянии в 1 см ).

    Международный ампер [ править | править код ]

    В 1893 году было принято определение единицы измерения силы тока как тока, необходимого для электрохимического осаждения 1,118 миллиграммов серебра в секунду из раствора нитрата серебра. Предполагалось, что величина единицы при этом не изменится, однако оказалось, что она изменилась на 0,015%. Эта единица стала известна как международный ампер.

    Определение 1948 года [ править | править код ]

    Ампер — сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2⋅10 −7 ньютона . <-7>> Н/А² точно. Это утверждение становится понятным, если учесть, что сила взаимодействия двух расположенных на расстоянии d <displaystyle d> друг от друга бесконечных параллельных проводников, по которым текут токи I 1 <displaystyle I_<1>> и I 2 <displaystyle I_<2>> , приходящаяся на единицу длины, выражается соотношением:

    F = μ 0 4 π 2 I 1 I 2 d . <displaystyle F=<frac <mu _<0>><4pi >><frac <2I_<1>I_<2>>>.>

    Магнитодвижущая сила 1 ампер (ампер-виток) — это такая магнитодвижущая сила, которую создаёт замкнутый контур, по которому протекает ток, равный 1 амперу .

    Определение 2018 года [ править | править код ]

    В 2018 году было принято и на следующий год вступило в силу нынешнее определение ампера. Величина ампера не изменилась при смене определения. Однако изменения определения привело к тому, что указанное выше выражение для магнитной постоянной перестало быть точным, а стало выполняться лишь численно (но с огромной точностью).

    Кратные и дольные единицы [ править | править код ]

    В соответствии с полным официальным описанием СИ, содержащемся в действующей редакции Брошюры СИ (фр. Brochure SI , англ. The SI Brochure ), опубликованной Международным бюро мер и весов (МБМВ), десятичные кратные и дольные единицы ампера образуются с помощью стандартных приставок СИ [5] . «Положение о единицах величин, допускаемых к применению в Российской Федерации», принятое Правительством Российской Федерации, предусматривает использование в России тех же приставок [7] .

    КратныеДольные
    величинаназваниеобозначениевеличинаназваниеобозначение
    10 1 АдекаампердаАdaA10 −1 АдециампердАdA
    10 2 АгектоампергАhA10 −2 АсантиамперсАcA
    10 3 АкилоамперкАkA10 −3 АмиллиампермАmA
    10 6 АмегаамперМАMA10 −6 АмикроампермкАµA
    10 9 АгигаамперГАGA10 −9 АнаноампернАnA
    10 12 АтераамперТАTA10 −12 АпикоамперпАpA
    10 15 АпетаамперПАPA10 −15 АфемтоамперфАfA
    10 18 АэксаамперЭАEA10 −18 АаттоампераАaA
    10 21 АзеттаамперЗАZA10 −21 АзептоамперзАzA
    10 24 АиоттаамперИАYA10 −24 АиоктоампериАyA
    применять не рекомендуется

    Связь с другими единицами СИ [ править | править код ]

    Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение проходит заряд, равный 1 кулону [8] .

    Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

    Ампе́р (обозначение: А) — единица измерения силы электрического тока в системе СИ, а также единица магнитодвижущей силы и разности магнитных потенциалов (устаревшее наименование — ампер-виток).

    1 Ампер это сила тока, при которой через проводник проходит заряд 1 Кл за 1 сек .

    Одним Ампером называется сила постоянного тока, текущего в каждом из двух параллельных бесконечно длинных бесконечно малого кругового сечения проводников в вакууме на расстоянии 1 метр, и создающая силу взаимодействия между ними 2×10 −7 ньютонов на каждый метр длины проводника.

    Ампер назван в честь французского физика Андре Ампера.

    Сила тока – это такая физическая величина, которая показывает скорость прохождения заряда q через S поперечное сечение проводника за одну секунду t .

    Сила тока – пожалуй, одна из самых основополагающих характеристик электрического тока. Она обозначает заглавной буквой I латинского алфавита и равняется Δq разделить на Δt , где Δt – это время, в течение которого через сечение проводника протекает заряд Δq .

    Кратные и дольные единицы

    Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

    КратныеДольные
    величинаназваниеобозначениевеличинаназваниеобозначение
    10 1 АдекаампердаАdaA10 −1 АдециампердАdA
    10 2 АгектоампергАhA10 −2 АсантиамперсАcA
    10 3 АкилоамперкАkA10 −3 АмиллиампермАmA
    10 6 АмегаамперМАMA10 −6 АмикроампермкАµA
    10 9 АгигаамперГАGA10 −9 АнаноампернАnA
    10 12 АтераамперТАTA10 −12 АпикоамперпАpA
    10 15 АпетаамперПАPA10 −15 АфемтоамперфАfA
    10 18 АэксаамперЭАEA10 −18 АаттоампераАaA
    10 21 АзеттаамперЗАZA10 −21 АзептоамперзАzA
    10 24 АйоттаамперИАYA10 −24 АйоктоампериАyA
    применять не рекомендуется

    Физическое значение данного параметра состоит в следующем:

    • Элементарные частицы постоянно текут по бесконечно тонким и длинным проводникам в одном направлении;
    • Цепь находится в вакууме, и потенциалы расположены параллельно друг к другу с расстоянием в один метр;
    • Сила притяжения или отталкивания между ними составляет 2*10-7 Ньютона.

    На практике такие условия даже в лаборатории воспроизвести невозможно, поэтому для установления эталона и тарирования измерительных приборов специалисты мерили уровень взаимодействия, возникающий между двумя катушками с большим количеством проводов минимального сечения.

    Связь с другими единицами СИ

    Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение проходит заряд, равный 1 кулону.

    Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

    Сокращённое русское обозначение а , международное А . Весьма малые токи (например, в радиолампах) измеряются в тысячных долях а — миллиамперах ( ма или mА ), а особо малые токи — в миллионных долях а — микроамперах ( мка или μА ). Человек начинает ощущать проходящий через его тело ток, если он не ниже 0,5 ма . Ток в 50 ма опасен для жизни человека. Квартирный ввод рассчитывается на ток силой от 5 до 20 а ; ток ламп накаливания мощностью 60 вт при напряжении 127 в имеет около 0,5 а .

    Ампер-час — единица количества электричества, применяемая для измерения ёмкости аккумуляторов и гальванических элементов. Сокращённое русское обозначение а-ч , международное Аh . Один а-ч равен количеству электричества, проходящему через проводник в течение 1 часа при токе в 1 ампер . 1 а-ч = 3600 кулонам (основным единицам количества электричества).

    Упрощенно электрический ток можно рассматривать как течение воды по трубе, то есть протекание электрических зарядов по проводу можно сопоставить с протекание воды по трубе. Так вот, по сути, скорость этой «воды», а именно скорость зарядов в проводе, она и будет прямым образом связана с силой тока. И чем быстрее «вода» течет по «трубе», а именно чем быстрее вместе все носители заряда двигаются по поводу, тем сила тока будет больше.

    Как вы думаете, большая ли это сила тока в 1 ампер? Да, это большая сила тока, но на практике можно встретить различные силы тока: и миллиамперы, и микроамперы, и амперы, и килоамперы, и все они довольно разные.

    Традиционный символ I происходит от французского словосочетания intensité du courant, что на русском языке означает «сила тока». Эта фраза часто используется в старых текстах. В современной практике её зачастую укорачивают до слова «ток». Обозначение I было впервые использовано самим Андре-Мари Ампером, в честь которого названы единица электрического тока и разработанный им закон.

    Великий учёный

    Имя André-Marie Ampère увековечено среди имён других 72 учёных на первом этаже Эйфелевой башни. Его вклад в науку заложил фундамент для понимания явлений электромагнетизма. Хоть Андре-Мари был не первым человеком, обнаружившим связь между электричеством и магнетизмом, он впервые попытался теоретически объяснить и продемонстрировать, как в математических выражениях расписывается связь между этими явлениями. Ампер с помощью устройства собственного изобретения смог измерить ток, а не просто зафиксировать его присутствие.

    Учёный родился в Лионе в 1775 году и был современником Французской революции. Будучи сыном коммерсанта и чиновника, он с ранних лет проявлял страсть к математике, а став подростком, читал сложные трактаты Эйлера и Лагранжа. Получил должность профессора математики Парижской политехнической школы в 1809 году, а в 1814 г. был избран членом Академии наук. Хоть Андре-Мари преподавал математику, его интересы распространялись на многие области, в том числе на химию и физику.

    Наиболее значимый документ Ампера по теории электричества был опубликован в 1826 году. Теоретические основы, представленные в этом труде, стали фундаментом для дальнейших открытий в области электричества и магнетизма. Получив известность и признание в высокоуважаемых академиях и научных организациях мира, Ампер избегал публичности и чувствовал себя счастливым только в скромной лаборатории в Париже.

    Несмотря на достижения и место в обществе, судьба учёного сложилась довольна трагично. В 1793 году его отца гильотинировали за политические убеждения. Это событие стало причиной глубокой депрессии Андре-Мари и едва не свело его с ума. Первая жена рано ушла из жизни после продолжительной болезни, второй брак был неудачным и несчастливым. Сам Ампер умер в 1836 году от воспаления лёгких в Марселе и был похоронен на кладбище Монмартр в Париже.

    Электрический ток

    Электричеством называют форму энергии, основанной на наличии электрических зарядов в веществе. Вся материя состоит из атомов, а атомы содержат заряженные частицы. Каждый протон в атомном ядре содержит одну единицу положительного электрического заряда, а каждый электрон, вращающийся вокруг ядра, несёт в себе единицу отрицательного. Электрические явления возникают, когда электроны покидают атомы: потеря одного или нескольких из них превращает атом в положительно заряженный ион. Все явления, происходящие с зарядами, могут быть отнесены к двум основным категориям:

    • статическое электричество;
    • электрический ток.

    Первый термин описывает поведение зарядов в состоянии покоя. Подобные явления хорошо иллюстрируют наэлектризованные волосы — они будут отталкиваться друг от друга, поскольку обладают одним зарядом.

    Электрический ток имеет отношение к поведению зарядов в движении. Чтобы они перемещались непрерывно, им нужно обеспечить беспрепятственный маршрут. Путь для зарядов называют электрической цепью. Простейшая электрическая цепь, как правило, состоит из следующих элементов:

    • источника;
    • нагрузки;
    • соединяющих проводников.

    Электрическим током называют любое движение носителей электрических зарядов: субатомных частиц (электронов или протонов), ионов (атомов, потерявших или набравших электроны) или квазичастиц (дырок в полупроводниках, которые можно рассматривать в качестве положительно заряженных носителей).

    Ток в проводнике представляет собой движение электронов в одном направлении (постоянный) или с периодической сменой направления движения (переменный). В газах и жидкостях он состоит из потока положительных ионов в одном направлении вместе с потоком отрицательных в обратном. Существуют и другие его виды, например, пучки протонов, позитронов или других заряженных мюонов в ускорителях частиц.

    В отношении общепринятого направления тока существует некоторое противоречие, основа которого была заложена более двух веков назад. Поскольку в те времена электроны ещё не были обнаружены, учёные предположили, что перемещаемые частицы несли положительный заряд. Традиция обозначать направление тока как направление движения положительных частиц не забыта и сейчас, хоть в проводниках носителями заряда являются электроны.

    Единица и определение

    Важнейшей характеристикой для описанных явлений является количественное измерение потока заряженных частиц. Этот показатель называют силой тока, его единица измерения — ампер (обозначается A). В численном выражении 1 ампер равен единичному заряду (1 кулону), проходящему через точку в цепи за единицу времени (1 секунду). Таким образом, A можно рассматривать как скорость потока I=Q/T, имеющую такой же смысл для заряда, как и скорость для физических тел. Широко применяются следующие кратные единицы:

    • 10 −6 А — микроампер мкА;
    • 10 −3 А — миллиампер мА;
    • 10 3 А — килоампер кА.

    Эволюция эталона

    В знак признания фундаментальных работ великого физика André-Marie Ampère название ампер было принято в качестве электрической единицы измерения на международной конвенции в 1881 году. По международному определению 1883 года 1ампером являлся ток, способный при прохождении раствора нитрата серебра выделить 0,001118000 грамм серебра за секунду. Более поздние замеры показали, что принятый эквивалент составлял 0,99985 A, поэтому способы расписать ампер через явления электролиза со временем перестали удовлетворять из-за растущих требований к точности.

    С 1948 года A (amper) был определён в Международной системе единиц как неизменяющийся ток, протекающий в двух параллельных проводниках бесконечной длины и ничтожно малого сечения, помещённых на расстоянии одного метра друг от друга в вакууме, и производящий между ними силу взаимодействия, равную 2х10 -7 ньютонов на метр длины. Это определение базируется на явлении электромагнетизма, связывая метр, килограмм и электрические единицы магнитной постоянной (1.25663706х10 -6 м кг с -2 А -2) .

    Реализация такого эталона основана на работе сложных электромеханических устройств. Их точность ограничивается десятимиллионными долями, что недостаточно для современных нужд. Эта проблема классического определения ампера привела к новой практической реализации. В соответствии с ней все электрические единицы рассматриваются как производные от электрических квантовых стандартов на основе эффекта Джозефсона и квантового эффекта Холла. Подобная привязка позволяет воспроизводить единицу с точностью до миллиардных долей.

    Будущее величины в СИ

    В 2005 году Международный комитет мер и весов начал первые приготовления к переопределению единиц СИ с целью привязки их к естественным константам. В соответствии с таким взглядом на эталоны ампер будет определяться подсчётом одиночных частиц с элементарным зарядом e. На основании решения 2014 года пересмотр вступает в силу в 2018 году.

    Элегантная реализация нового определения A теоретически возможна с помощью одноэлектронных насосов, производящих электрический ток через синхронизированный контролируемый транспорт одиночных электронов. Некоторые международные исследования в этом направлении уже близки к достижению такой амбициозной цели.

    Воздействие на человека

    В большинстве случаев электрический ток представляет собой поток электронов. Поскольку ампер является мерой количества заряда, проходящего в секунду, нетрудно будет посчитать количество электронов в перемещённом заряде: 1 Кл = 6,24151·10 18 . То есть один ампер равен потоку 6340 квадриллионов частиц в секунду. Это колоссальная цифра, но вряд ли она иллюстративна для сравнительного понимания, когда показатель чего-либо измеряют в амперах. В этом помогут следующие повседневные примеры:

    • 160х10 -19 — один электрон в секунду;
    • 0,7х10 -3 — слуховой аппарат;
    • 5х10 -3 — пучок в кинескопе телевизора;
    • 150х10 -3 — портативный ЖК телевизор;
    • 0,2 — электрический угорь;
    • 0,3 — лампа накаливания;
    • 10 — тостер, чайник;
    • 100 — стартер автомобиля;
    • 30х10 3 — удар молнии;
    • 180х10 3 — дуговая печь для ферросплавов;
    • 5х10 6 — дуга между Юпитером и Ио.

    Порог смертельно опасного воздействия на человеческий организм начинается с 18 мА. Ток, превышающий это значение и проходящий через грудную клетку, способен стимулировать мышцы груди таким образом, что их спазмы могут вызвать полную остановку дыхания. Другой опасный эффект при подобном воздействии связан с фибрилляцией желудочков сердца. Основные факторы летальности:

    1. Сила тока. Так как сопротивление между точками входа и выхода — постоянная величина, по закону Ома высокое напряжение делает вероятным высокий ампераж.
    2. Маршрут протекания. Наиболее опасны для сердечной мышцы направления рука-рука и передняя-задняя части грудной клетки.
    3. Индивидуальная чувствительность к воздействию электричества и особенности организма (сопротивление кожи и её влажность, возраст и пол, заболевания, наличие медицинских имплантов).
    4. Продолжительность воздействия.

    Большое влияние на тяжесть поражения током оказывает также неспособность отпустить источник. При условии, что пальцы человека держат в руках один из контактов под напряжением, многие взрослые люди не могут отпустить источник при протекающем постоянном токе менее 6 мА. При 22 мА это будет не под силу всем людям. 10 мА для человека, находящегося в воде, достаточно, чтобы вызвать полную потерю контроля над мышцами.

    Практические измерения

    Подсчёт количества электронов в проводнике с секундомером в руке практически неосуществим, поэтому ток измеряют специальными приборами (амперметрами) или косвенными расчётами. Амперметры устроены таким образом, что они реагируют на магнитное поле, создаваемое измеряемым током. Существуют различные типы подобных измерительных приборов, но все они основаны на одном принципе. Общие правила измерений силы тока можно свести к следующему перечню:

    1. Амперметр всегда включается последовательно к нагрузке, при измерениях ток должен протекать через прибор. Подключение прибора параллельно может привести к протеканию в нём слишком больших токов, что способно вызвать его выход из строя.
    2. Для высокой точности измерений внутреннее сопротивление прибора должно быть настолько низким, насколько это возможно, чтобы не влиять на параметры цепи.
    3. Следует позаботиться о виде тока (AC или DC). В случае с постоянным обязательно обратить внимание на полярность.
    4. Диапазон измерений должен быть настолько большим, насколько это возможно без вреда для точности. Важно, чтобы неизмеряемое значение не оказалась за пределами шкалы.

    Возможны случаи, когда контур невозможно разомкнуть для замеров или нужное место в цепи труднодоступно. В таких ситуациях измерение можно выполнить косвенно. Определив падение напряжения на резисторе, можно с помощью закона Ома определить ток. Косвенные измерения удобно производить мультиметром — прибором, объединяющим функции омметра, вольтметра и амперметра.

    В ситуациях, когда ток слишком высок для того, чтобы измерить его стандартным прибором, используют шунтирование. Самый дешёвый и простой способ — параллельное присоединение к участку резистора с омметром. Применение для измерений трансформатора тока добавляет важное преимущество, заключающееся в создании гальванической развязки между измерительным прибором и схемой, в которой измеряется ток. Но в этом случае анализ возможен только для переменного тока.

    Измерения тока на реальных схемах выполняются в большинстве случаев для двух целей. Основная задача замеров — контроль за питанием. Вторая функция анализа токов заключается в определении неисправностей или превышения допустимого ампеража.

    Очень важен выбор правильной технологии снятия показаний, чтобы компоненты контрольного оборудования способны были должным образом работать в пиковых и аварийных режимах. Современное развитие цифровой и компьютерной техники значительно расширило возможности точного измерения и исследования токов косвенными методами, а полупроводниковые технологии недалёкого будущего обещают дозировать электричество с точностью до единичного заряда.

    Основные электрические величины и единицы их измерения

    Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

    ВеличинаЕдиница измерения в СИНазвание электрической величины
    qКл — кулонзаряд
    RОм – омсопротивление
    UВ – вольтнапряжение
    IА – амперСила тока (электрический ток)
    CФ – фарадЕмкость
    LГн — генриИндуктивность
    sigmaСм — сименсУдельная электрическая проводимость
    e08,85418781762039*10-12 Ф/мЭлектрическая постоянная
    φВ – вольтПотенциал точки электрического поля
    PВт – ваттМощность активная
    QВар – вольт-ампер-реактивныйМощность реактивная
    SВа – вольт-амперМощность полная
    fГц — герцЧастота

    Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

    Десятичный множительПроизношениеОбозначение (русское/международное)
    10-30куэктоq
    10-27ронтоr
    10-24иоктои/y
    10-21зептоз/z
    10-18аттоa
    10-15фемтоф/f
    10-12пикоп/p
    10-9нанон/n
    10-6микромк/μ
    10-3миллим/m
    10-2сантиc
    10-1децид/d
    101декада/da
    102гектог/h
    103килок/k
    106мегаM
    109гигаГ/G
    1012тераT
    1015петаП/P
    1018экзаЭ/E
    1021зетаЗ/Z
    1024йоттаИ/Y
    1027роннаR
    1030куэккаQ

    Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.

    Сила тока измеряется в амперах. 1А=1Кл/1c

    В практике встречаются

    1кА = 1000А

    1мА = 0,001А

    1мкА = 0,000001А

    Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).

    1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.

    1В=1Вт/1А.

    В практике встречаются

    1кВ = 1000В

    1мВ = 0,001В

    Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.

    1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.

    Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:

    R=ρlS – сопротивление такого проводника зависит от сечения S и длины l

    где ρ – удельное сопротивление материала проводника, табличная величина.

    Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.

    Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.

    I=U/R

    Электрической емкостью называется способность проводника накапливать электрический заряд.

    Емкость измеряется в фарадах (1Ф).

    1Ф = 1Кл/1В

    1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.

    В практике встречаются

    1пФ = 0,000000000001Ф

    1нФ = 0,000000001Ф

    Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.

    Индуктивность измеряется в генри.

    1Гн = (В*с)/А

    1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.

    В практике встречаются

    1мГн = 0, 001Гн

    Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.

    Электропроводность измеряется в сименсах.

    1См = Ом-1

    Самое популярное


    Что является более фундаментальным, электрический ток или заряд?

    Ниже приведены некоторые утверждения, касающиеся электричества, которые часто встречаются в научной и технической литературе.

    Если нужна очень большая точность измерения, то ток (амперы) намного легче измерить, чем заряд (кулоны). Время (секунды) также легко измеряется. Поэтому, в физике принято считать, что ток и время являются измеряемыми величинами, а заряд это производная от них величина.

    К сожалению, эта концепция оказывает значительное влияние на процесс изучения и понимания одного из основных разделов физики. Часто, она преподносится в виде утверждения, что ток более «реальная» величина, чем заряд.

    Во многих школьных учебниках можно встретить такую формулировку: «количество электричества» измеряется в амперах, а не в кулонах. Там же утверждается, что ток это основа электричества и что ток течет по проводам.

    По проводам двигаются заряды, а не ток!

    Такая же ситуация наблюдается и в учебниках для учебных заведений более высокого уровня. Студенты знакомятся с понятиями «электрический ток» и «ампер» не имея при этом достаточно информации, что бы связать амперы с движением зарядов. Это происходит из-за того, что разделы, касающиеся зарядов и движения электронов в металлах, преподаются после изучения электрического тока.

    Данная концепция просматривается и в не научной литературе электротехнической тематики. Авторы обычно фокусируют внимание на токе и амперах, при этом электрические заряды и их движение в проводнике даже не рассматривается.

    Следствием такого подхода к изучению электричества является широко распространенное заблуждение, что заряд это какая-то абстрактная величина, а ток это материальная субстанция.
    Так же принято считать, что электрические заряды проявляют себя только в эффектах связанных со статическим электричеством (прилипание заряженных предметов, различные виды электрических разрядов и т.д.). В то время как электрический ток применяется практически во всех современных электротехнических устройствах.

    Я долго думал, откуда берутся эти ошибочные утверждения, и пришёл к выводу, что они имеют общий источник. Я полагаю, что за основу должен быть взят метод стандартизации физических величин. Общей нитью всех этих ошибочных рассуждений является утверждение о том, что амперы более фундаментальны, чем кулоны, где слово «фундаментальны» подразумевает популярность и не имеет никакого отношения к способу стандартизации физических величин.

    Используя термин «фундаментальные величины» мы подразумеваем, что базовые величины более фундаментальны, чем их производные. Например, килограммы более фундаментальны, чем кг/с, количество какой либо величины более фундаментально, чем ее изменение (производная), расстояние более фундаментально, чем скорость, джоули более фундаментальны, чем ватты. Поэтому, не имеет смысл давать студентам определение скорости, если они имеют слабое представление о расстоянии и времени.

    Однако, когда дело касается электротехники почему то многие авторы продолжают упорно доказывать, что ток (амперы) это фундаментальная величина, а заряд (кулоны) производная от тока. Они преподают электрический ток студентам, которые не имеют понятия об электрическом заряде. При этом указывают, что «электричество» измеряется в амперах, а заряд это просто абстрактная величина, тяжёлая для понимания и измеряемая в каких-то странных единицах (А·с).

    Моё мнение полностью противоположно. Кулоны это фундаментальные единицы, а амперы – просто удобное сокращение для «кулонов в секунду». Да, кулоны вычисляют после определения ампер. Но, тем не менее: электрический заряд это основа электричества, а электрический ток это просто величина потока заряда.

    Может показаться, что это противоречит утверждению, что «амперы это фундаментальная единица измерения, а кулоны вторичная». На самом деле этот постулат говорит о том, что ток в амперах может быть измерен непосредственно, а заряд определяется с помощью ампер и секунд. Он не говорит, что амперы более фундаментальны, а просто определяет какую величину легче измерить с высокой точностью.

    Заряд это более фундаментальная величина, чем ток. Кулоны это основная единица измерения «электричества», в то время как амперы это просто удобное сокращение для «кулонов в секунду».

    Я предлагаю, чтобы изучение электричества основывалось на понятиях «кулон» и «кулон в секунду». Термин «амперы» должен рассматриваться просто как сокращенная запись для «кулонов в секунду» и преподаваться на более поздних курсах.

    Что такое ампер? | Ватт в Ампер

    По межсетевому кабелю 13 декабря 2019 года в электричестве

    Что такое ампер в электричестве? Сначала ответим на вопрос: «Что такое ток?» Ток — это мера скорости, с которой электроны «текут» в цепи. Ампер — это основная единица измерения силы тока, которую часто сокращают до «Ампер». Это мера количества электрического заряда, который проходит через точку в цепи за единицу времени с 6,241 × 1018 электронов, или один кулон в секунду, составляющий один ампер.Ампер для электрического тока — одна из семи основных единиц СИ, которые включают:

    • Ампер для электрического тока
    • Секунду времени
    • Метр для длины
    • Килограмм для массы
    • Кельвин для температуры
    • Моль для количества вещества
    • Кандела для силы света

    Свяжитесь с нами Запрос предложения

    Что такое сила света?

    Измеренная в амперах, допустимая токовая нагрузка означает максимальную допустимую нагрузку по току проводника, например кабеля, без превышения его максимальной рабочей температуры.То, насколько хорошо устройство может рассеивать тепло, сильно влияет на его допустимую нагрузку. При выборе кабеля особенно важна допустимая нагрузка по току. Нагрев — это эффект сопротивления прохождению тока, а размер проводника, изоляционный материал и внешние факторы играют большую роль в пропускной способности по току и термостойкости.

    Обычно, чем больше проводник, тем меньше сопротивление току. Более крупный проводник также означает большую пропускную способность по току. Когда токонесущая способность проводника (или кабеля в этом примере) высока, термостойкость изоляционного материала также должна быть высокой, чтобы приспособиться.Изоляционный материал с температурным рейтингом 190 градусов F будет иметь более высокую пропускную способность по току, чем изоляционный материал, рассчитанный на 150 градусов F.

    Как рассчитать ватт в ампер

    Вы можете использовать закон Ватта для преобразования ватт в амперы. Эта формула утверждает, что I = P / E. I, или ток, измеренный в амперах, равен P (мощность, измеряемая в ваттах), деленная на E (напряжение, измеренное в вольтах). Если вы хотите найти силу тока 1200 Вт при 120 вольт, вы должны использовать следующую формулу:

    • ток = мощность / напряжение
    • ток = 1200 Вт / 120 В
    • ток = 10A

    Если вы знаете сопротивление схемы, вы можете преобразовать ватты в амперы по следующей формуле:

    • ампер = √ (Вт × Ом)

    Узнайте больше в компании Gateway Cable Company!

    Если вы когда-нибудь задавались вопросом: «Что такое ампер?», Мы надеемся, что приведенная выше информация дала ответ на ваш вопрос.Если вы хотите узнать больше об амперах и роли, которую они играют в электрическом оборудовании, или если вы хотите узнать больше об электроизоляционных материалах, таких как поликарбонат, или вы хотите приобрести кабели с высокой допустимой нагрузкой по току, Gateway Кабельная компания может помочь. Свяжитесь с нами или запросите расценки на любой из наших продуктов онлайн!

    Измерение тока и разности потенциалов — Электрический ток и разность потенциалов — KS3 Physics Revision

    Вы можете измерять ток и разность потенциалов в цепях.Это разные вещи и поэтому измеряются по-разному.

    Ток

    Ток — это мера того, сколько электрического заряда проходит через цепь. Чем больше заряда течет, тем больше ток.

    Ток измеряется в амперах. Обозначение ампера — A. Например, 20 A — это больший ток, чем 5 A. Слово «ампер» часто сокращается до «amp», поэтому люди говорят о том, сколько ампер протекает.

    Измерение тока

    Устройство, называемое амперметром, используется для измерения тока.У некоторых типов амперметров есть стрелка на циферблате, но у большинства есть цифровой дисплей. Чтобы измерить ток, протекающий через компонент в цепи, вы должны подключить амперметр последовательно с ним.

    Схема с амперметром, подключенным в двух разных местах, как последовательно с ячейкой, так и с лампой

    Когда два компонента подключены последовательно, вы можете проследить путь через оба компонента, не отрывая пальца и не возвращаясь по пути, который вы уже прошли взятый.

    Разница потенциалов

    Разница потенциалов — это мера разницы в энергии между двумя частями цепи.Чем больше разница в энергии, тем больше разность потенциалов.

    Разность потенциалов измеряется в вольтах. Символ для вольт — V. Например, 230 В — это большая разность потенциалов, чем 12 В. Вместо того чтобы говорить о разности потенциалов, люди часто говорят о напряжении, поэтому вы можете услышать или увидеть «напряжение» вместо «разности потенциалов».

    Измерение разности потенциалов

    Разность потенциалов измеряется с помощью устройства, называемого вольтметром. Как и амперметры, у некоторых типов есть указатель на циферблате, но у большинства есть цифровой дисплей.Однако, в отличие от амперметра, вы должны подключить вольтметр параллельно, чтобы измерить разность потенциалов на компоненте в цепи.

    Принципиальная схема, показывающая вольтметр параллельно с лампой.

    Когда два компонента соединены параллельно, вы не можете проследить цепь через оба компонента от одной стороны к другой, не поднимая пальца или не возвращаясь по уже пройденному пути.

    Ячейки

    Вы можете измерить разность потенциалов элемента или батареи.Если две или более ячеек указывают в одном направлении, чем больше ячеек, тем больше разность потенциалов.

    Каждая ячейка имеет разность потенциалов 1,5 В, поэтому три ячейки дают 4,5 В

    Контрольная точка

    Что такое базовая мера электричества?

    Все, что стоит измерить, связано с единицей измерения. В США мы используем дюймы и футы для измерения высоты объекта, фунты и унции для измерения веса объекта и градусы Фаренгейта для измерения температуры объекта.А как насчет электричества? Какие единицы измерения или используются, чтобы говорить об электричестве?

    Прежде чем мы поговорим о том, как измерить электричество, нам сначала нужно понять, что это такое. На базовом уровне электричество — это движение электронов. Ваш компьютер, ваш свет, ваш телевизор, ваш холодильник и т. Д. — все работают с использованием одного и того же основного источника энергии — движения электронов.

    Когда мы говорим о силе электричества, на самом деле мы говорим о заряде, создаваемом движущимися электронами.

    Основными единицами измерения электричества являются ток, напряжение и сопротивление.

    Ток (I)

    Ток, измеряемый в амперах, — это скорость протекания заряда — скорость движения электронов. Амперы, или амперы, являются основной единицей измерения электричества и измеряют, сколько электронов проходит через точку каждую секунду. Один ампер равен 6,25 х 1018 электронов в секунду.

    Напряжение (В)

    Напряжение, измеряемое в вольтах, — это разница зарядов между двумя точками.Проще говоря, это разница в концентрации электронов между двумя точками.

    Сопротивление (R)

    Сопротивление — это способность материала сопротивляться прохождению заряда (тока). Измеряется в омах.

    Аналогия с водопроводной трубой

    А теперь давайте применим эти идеи. Наиболее распространенная аналогия, используемая для понимания этих идей, — это вода в трубе. Когда вы думаете о том, как быстро вода может двигаться по трубе, необходимо учитывать три основных компонента: давление воды, скорость потока и размер трубы.Чтобы объединить эти две идеи, напряжение эквивалентно давлению воды, ток — это скорость потока, а сопротивление — это размер трубы.

    Итак, когда мы говорим об этих величинах, мы на самом деле описываем движение заряда и, следовательно, поведение электронов. Цепь — это замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.

    Закон Ома

    Закон Ома — это основное и очень важное уравнение, которое используется для определения взаимодействия тока, напряжения и сопротивления.В нем говорится, что ток равен напряжению, деленному на сопротивление, или I = V / R. Закон Ома можно использовать для точного описания проводимости большинства электропроводящих материалов. Если вам известны два значения, можно определить третье. Три варианта этого уравнения: I = V / R, V = IR, R = V / I

    Ватт

    Есть еще один термин, который вы, возможно, слышали применительно к электричеству: ватты. Ватты измеряют скорость использования или передачи энергии, а не только для электроники.Ватт — это основная единица измерения электрической, механической или тепловой мощности. Один ватт равен одному амперу при давлении в один вольт. (Ватт = Ампер x Вольт)

    Для более подробного изучения напряжения, тока, сопротивления и закона Ома прочтите этот пост.

    Закон Ома | LEARN.PARALLAX.COM

    На напряжение в В A3 влияют два свойства: ток и сопротивление, а закон Ома объясняет, как это работает. Закон Ома гласит, что напряжение (V) на резисторе равно току (I), проходящему через него, умноженному на его сопротивление (R).Итак, если вам известны два из этих значений, вы можете использовать уравнение закона Ома для вычисления третьего:

    В некоторых учебниках вместо этого вы увидите E = I × R. E обозначает электрический потенциал, что является другим способом сказать «вольт».

    Напряжение (В) измеряется в вольтах, которые обозначаются прописными буквами V. Ток (I) измеряется в амперах или усилители, обозначаемые аббревиатурой A. Сопротивление (R) измеряется в омах, которое обозначается греческой буквой омега (Ω).Уровни тока, которые вы, вероятно, увидите через эту схему, выражены в миллиамперах (мА). Строчная буква m означает, что это единицы измерения ампер. Аналогично, k в нижнем регистре в кОм означает, что измерение производится в тысячах Ом.

    Давайте воспользуемся законом Ома, чтобы вычислить V A3 на фототранзисторе, пропуская два разных количества тока через цепь:

    • 1,75 мА, что может произойти в результате довольно яркого света
    • 0.25 мА, что произошло бы при менее ярком свете

    Примеры ниже показывают условия и способы их устранения. Выполняя эти вычисления, помните, что милли (м) — это тысяч , а килограмм (k) — это тысяч с , когда вы подставляете числа в закон Ома.

    Пример 1: I = 1,75 мА и R = 2 кОм

    Пример 2: 1 = 0,25 мА и R = 2 кОм

    Ваша очередь — Закон Ома и регулировка резистора

    Скажем так окружающий свет в вашей комнате вдвое ярче, чем свет, полученный в результате V A3 = 3.5 В для яркого света и 0,5 В для тени. Другая ситуация, которая может вызвать более высокий ток, — это если окружающий свет является более сильным источником инфракрасного излучения. В любом случае фототранзистор может пропускать через цепь вдвое больший ток, что может привести к трудностям измерения.

    Вопрос: Что вы могли бы сделать, чтобы напряжение отклика схемы снизилось до 3,5 В для яркого света и 0,5 В для тусклого света?

    Ответ: Уменьшите номинал резистора вдвое; сделайте 1 кОм вместо 2 кОм.

    • Попробуйте повторить вычисления по закону Ома с R = 1 кОм, ярким током I = 3,5 мА и тусклым током I = 0,5 мА. Вернет ли он V A3 обратно к 3,5 В для яркого света и 0,5 В для тусклого света с удвоенным током? (Должен; если не для вас, проверьте свои расчеты.)

    Ом, Ампер, Вольт и что вам нужно знать | Компоненты квеста

    Ом, Ампер, Вольт и что вам нужно знать

    При работе с электроникой чрезвычайно важно понимать основы электричества.Только в этом случае вы сможете правильно подобрать размер компонентов и убедиться, что ваши продукты безопасны. Вот что вам нужно знать о том, как измеряется электрический ток.

    Измерение электроэнергии

    Электричество состоит из четырех компонентов. Каждый состоит из разных единиц. Знание того, что представляет собой каждый компонент и как он измеряется, позволяет вам производить все необходимые расчеты, чтобы обеспечить безопасность и совместимость между электрическими частями.

    • Напряжение (В) измеряется в вольтах (В).
    • Ток (I) измеряется в амперах (A).
    • Сопротивление (R) измеряется в омах (O).
    • Мощность (P) измеряется в ваттах (Вт)

    Вот основные правила, которые определяют, как эти измерения работают вместе:

    Мощность = Напряжение * Ток, или P = В * I

    Следовательно, вы всегда можете рассчитать напряжение, ток или мощность, если знаете два из трех значений:

    I = P / V и V = P / I

    Закон

    Ома объясняет взаимосвязь между напряжением, током и сопротивлением:

    В = I * R

    Другими словами, напряжение равно току, умноженному на сопротивление.Затем вы можете рассчитать напряжение, ток или сопротивление, если знаете значения двух из трех:

    R = V / I или I = V / R

    Определения

    Имея в виду эти уравнения, давайте посмотрим, что на самом деле представляет собой каждый компонент.

    Вольт: Если рассматривать электричество как эквивалент воды, протекающей по трубе, напряжение — это давление воды. Когда применяется «водяной насос» в виде батареи или источника питания, давление повышается, вызывая протекание «воды» или электрического тока.С увеличением напряжения увеличивается и сила тока.

    Бытовые розетки в США имеют стандартное выходное напряжение 120 В. Одноэлементный аккумулятор имеет напряжение от 1,2 до 1,6 В, в то время как линии электропередач высокого напряжения выдают невероятные 110 000 вольт.

    Ампер: Сокращение от ампер, ампер измеряет электрический ток. В примере с водопроводной трубой ток — это скорость потока воды. Больший ток или больше ампер указывает на то, что протекает большее количество электричества.

    Ом: Ом для измерения сопротивления в электрической системе. В водопроводе труба добавляет сопротивление, контролируя количество и направление потока воды. В электрической цепи сопротивление эффективно сужает трубу, уменьшая ток.

    Вт: Вт измеряют общую мощность системы или количество энергии, выделяемой в секунду. На него влияет как напряжение, так и сила тока.

    Различные электронные компоненты играют разные роли в управлении напряжением, сопротивлением, током и общей мощностью системы.Чем больше вы знаете об этих отдельных частях уравнения, тем лучше вы сможете определить, что именно нужно вашему проекту.

    Готовы начать работу?

    Здесь, в Quest Components, мы стремимся предоставить вам информацию, необходимую для того, чтобы ваш бизнес продолжал работать бесперебойно. Компания, сертифицированная по стандарту ISO 9001: 2015, со штаб-квартирой в промышленности, Калифорния, Quest Components специализируется на пассивных и активных компонентах уровня платы. Мы также предоставляем различные услуги OEM-производителям (производителям оригинального оборудования) и CEM (контрактным производителям электроники) по всему миру.Свяжитесь с Quest Components сегодня по телефону 626-333-5858, чтобы получить все необходимые электронные компоненты!

    Большой приклад. Быстрый ответ. Умные люди.

    Как использовать амперметр для измерения тока | Основные концепции и испытательное оборудование

    Детали и материалы

    • Аккумулятор 6 В
    • Лампа накаливания 6 В

    Предполагается, что с этого момента будут доступны основные компоненты конструкции схемы, такие как макетная плата, клеммная колодка и перемычки, оставив только компоненты и материалы, уникальные для проекта, перечисленные в разделе «Детали и материалы».

    Дополнительная литература

    Уроки электрических цепей , том 1, глава 1: «Основные концепции электричества»

    Уроки электрических цепей , том 1, глава 8: «Схемы измерения постоянного тока»

    Цели обучения использованию амперметра

    • Как измерить ток мультиметром
    • Как проверить внутренний предохранитель мультиметра
    • Выбор подходящего диапазона расходомера

    Схема амперметра

    Амперметр Иллюстрация

    Инструкции по эксперименту

    Ток — это мера скорости потока электронов в цепи.Он измеряется в амперах, называемых просто «ампер» (А).

    Самый распространенный способ измерения тока в цепи — это разомкнуть цепь и вставить «амперметр» в цепь , серия (в линию), чтобы все электроны, проходящие по цепи, также прошли через измеритель. .

    Поскольку для измерения тока таким образом требуется, чтобы измеритель был частью цепи, это более сложный тип измерения, чем измерение напряжения или сопротивления.

    Некоторые цифровые измерители, такие как устройство, показанное на рисунке, имеют отдельное гнездо для вставки красного штекера измерительного провода при измерении тока.

    В других измерителях, как и в большинстве недорогих аналоговых измерителей, используются те же гнезда для измерения напряжения, сопротивления и тока.

    Подробную информацию об измерении тока см. В руководстве пользователя конкретной модели счетчика, которым вы владеете.

    Когда амперметр включен последовательно со схемой, в идеале он не падает, когда через него проходит ток.

    Другими словами, он действует очень похоже на кусок провода, с очень небольшим сопротивлением от одного измерительного щупа к другому.

    Следовательно, амперметр будет действовать как короткое замыкание, если он будет подключен параллельно (через выводы) к значительному источнику напряжения. Если это будет сделано, произойдет скачок тока, который может повредить счетчик:

    Использование предохранителя в цепи

    Амперметры обычно защищены от чрезмерного тока с помощью небольшого предохранителя , расположенного внутри корпуса счетчика.

    Если амперметр случайно подключен к источнику значительного напряжения, возникающий в результате скачок тока «сожжет» предохранитель и сделает измеритель неспособным измерять ток до тех пор, пока предохранитель не будет заменен.

    Будьте очень осторожны, чтобы избежать этого сценария! Вы можете проверить состояние предохранителя мультиметра, переключив его в режим сопротивления и измерив непрерывность через измерительные провода (и через предохранитель).

    На измерителе, в котором для измерения сопротивления и тока используются одни и те же гнезда измерительных проводов, просто оставьте штекеры измерительных проводов на месте и соедините два щупа вместе.

    В мультиметр, где используются разные гнезда, вот как вы вставляете штекеры тестовых проводов, чтобы проверить предохранитель:

    Создайте схему с одной батареей и одной лампой, используя перемычки для подключения батареи к лампе, и убедитесь, что лампа загорается, прежде чем подключать измеритель к ней последовательно.

    Затем разомкните цепь в любой точке и подключите щупы измерителя к двум точкам разрыва для измерения тока.

    Как обычно, если ваш измеритель измеряется вручную, начните с выбора самого высокого диапазона для тока, затем переместите селекторный переключатель в положение меньшего диапазона, пока на дисплее измерителя не будет получена самая сильная индикация без выхода за пределы диапазона.Если индикатор глюкометра показывает «назад» (движение влево на аналоговой стрелке или отрицательное значение на цифровом дисплее), поменяйте местами подключения измерительного щупа и попробуйте снова.

    Когда амперметр показывает нормальные показания (не «в обратном направлении»), электроны входят в черный измерительный провод и выходят из красного.

    Так вы определяете направление тока с помощью измерителя.

    Для 6-вольтового аккумулятора и фонарика ток в цепи будет в пределах тысячных ампер, или миллиампер .

    Цифровые измерители часто показывают маленькую букву «м» в правой части дисплея, чтобы указать этот метрический префикс.

    Попробуйте разорвать цепь в другом месте и вместо этого вставить туда измеритель. Что вы замечаете о величине измеренного тока? Как вы думаете, почему это так?

    Восстановите схему на макетной плате следующим образом:

    Подключение амперметра к схеме макетной платы: советы и хитрости

    Студенты часто путаются при подключении амперметра к макетной плате.

    Как можно подключить счетчик, чтобы улавливать весь ток цепи и не создавать короткого замыкания? Вот один простой метод, который гарантирует успех:

    • Определите, через какой провод или клемму компонента вы хотите измерить ток.
    • Вытяните этот провод или клемму из отверстия в макете. Оставьте его висеть в воздухе.
    • Вставьте запасной кусок провода в отверстие, из которого вы только что вытащили другой провод или клемму. Оставьте другой конец этого провода висеть в воздухе.
    • Подключите амперметр между двумя неподключенными концами провода (двумя, которые висели в воздухе). Теперь вы уверены, что измеряет ток через первоначально идентифицированный провод или клемму.

    Опять же, измерьте ток через разные провода в этой цепи, следуя той же процедуре подключения, которая описана выше.

    Что вы заметили в этих измерениях тока? Результаты в схеме макетной платы должны быть такими же, как результаты в схеме произвольной формы (без макета).

    Результаты эксперимента

    Построение той же цепи на клеммной колодке также должно дать аналогичные результаты:

    Текущее значение 24,70 мА (24,70 мА), показанное на иллюстрациях, является произвольной величиной, приемлемой для небольшой лампы накаливания.

    Если ток в вашей цепи имеет другое значение, это нормально, пока лампа работает при подключенном измерителе.

    Если лампа не загорается, когда счетчик подключен к цепи, и счетчик регистрирует гораздо большее значение, возможно, у вас короткое замыкание в счетчике.

    Если ваша лампа не загорается, когда счетчик подключен к цепи, и счетчик регистрирует нулевой ток, вы, вероятно, перегорели предохранитель внутри счетчика.

    Проверьте состояние предохранителя измерителя, как описано ранее в этом разделе, и при необходимости замените предохранитель.

    СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

    ампер | Лаборатория эталонов

    Единица измерения — ампер, А (wae-iahiko)

    Единица измерения электрического тока в системе СИ, ампер, названа в честь Андре-Мари Ампера, французского физика и математика, который был одним из основоположников классического электромагнетизма.

    Имя Ампера впервые было связано с единицей измерения тока в 1893 году, но именно в 1948 году 9-я ГКПМ официально приняла ампер, А, в качестве единицы измерения электрического тока. В то время это определялось силой между двумя бесконечно длинными параллельными проводниками, что было трудно реализовать с высокой точностью на практике.

    Два открытия, получивших Нобелевскую премию в 1962 и 1980 годах, предложили более надежный подход. Как и большинство других национальных метрологических институтов, MSL реализует единицы измерения напряжения и сопротивления отдельно, используя различные макроскопические квантовые явления для каждой единицы.Эффект Джозефсона связывает частоту с напряжением, чтобы можно было генерировать напряжения, которые можно измерить на уровне частей на миллиард. Что касается сопротивления, полупроводниковые устройства, разработанные для демонстрации квантового эффекта Холла , работают как резисторы, значения которых можно измерить на уровне долей на миллиард. В этих квантовых явлениях значения напряжения и сопротивления напрямую связаны с постоянной Планка h и зарядом электрона e. Ампер и все другие величины в электричестве в конечном итоге выводятся из этих реализаций напряжения и сопротивления.

    В 1990 году CIPM рекомендовал условные значения для постоянной Джозефсона, K J-90 = h /2 e , и постоянной фон Клитцинга R K-90 = h / e 2 . Принятие этих значений позволило обеспечить высокий уровень согласованности значений напряжения и сопротивления в международном масштабе, что ранее было невозможно. Эта рекомендация была принята в ожидании более широкого пересмотра SI. В мае 2019 года эта редакция была принята и позволила ввести новое определение ампера, выраженное только точными константами:

    «Ампер, символ A, является единицей измерения электрического тока в системе СИ.Он определяется путем принятия фиксированного числового значения элементарного заряда e равным 1,602 176 634 x 10 -19 при выражении в единицах C, которые равны A s, где второе значение определяется в единицах ΔV Cs. (частота цезия) ».

    В результате этого изменения произошли незначительные сдвиги в значениях констант Джозефсона и фон Клитцинга, но не изменилось то, как реализуются вольт, ом и ампер. Кроме того, магнитная постоянная µ 0 , также известная как проницаемость вакуума, больше не является точным числом.Напротив, это должно быть выведено из экспериментальных данных.

    Технические возможности

    Мы являемся ведущими экспертами в области электрических измерений в очень широком спектре деятельности. Мы можем посоветовать лучшие измерения для поддержки вашего принятия решений, а также выявить и контролировать источники ошибок в измерительных системах. Предлагается широкий спектр услуг по калибровке, в первую очередь для лабораторных эталонов переменного и постоянного тока и напряжения, сопротивления, емкости, индуктивности, мощности и энергии.Мы также предлагаем поддержку предприятиям, производящим измерения энергии в соответствии с Кодексом участия в электроэнергетике.

    Исследования

    Постоянное совершенствование измерительных возможностей поддерживается рядом исследовательских работ. Ведутся работы по переносу электронов в мезоскопических системах для метрологии и других приложений. Это предполагает внедрение новых технологий электрических измерений. Также проводятся исследования:

    • Независимые методы калибровки компараторов постоянного тока.
    • Создание шкал постоянного напряжения до 1000 В с помощью электронных приборов.
    • Определение характеристик ошибок трансформаторов тока на основе улучшенных схемотехнических моделей.
    • Джозефсоновские системы для отбора проб переменного тока.
    • Цифровые системы выборки для измерения мощности.
    • Улучшенные методы определения отношений сопротивлений.

    Перейдите на страницу услуг по электрической калибровке.

    Посмотреть короткий видеоролик об амперах можно здесь (внешняя ссылка)

    .