Как посчитать амперы зная мощность: Как высчитать амперы зная мощность и напряжение: формула

2=P/R, а значит, I=sqrt(P/R), где I — сила тока, P — мощность, R — сопротивление.

При известных напряжении и мощности вычисления проводите так:P=UI, следовательно, I=P/U, где I — сила тока, P — мощность, U — напряжение.

После того, как вычисления окончены, переведите результат из системы СИ в те единицы, в которых его требуется выразить по условиям задачи (чаще всего это миллиамперы или микроамперы).

В случае, если вычисления осуществляются в отчете к лабораторной работе, результат их при необходимости проверьте на реальной лабораторной установке, ведь напряжение и силу тока несложно изменить, соответственно, вольтметром и амперметром. Если при этом используются высокие напряжения, измерения производите с осторожностью. Сопротивление измеряйте омметром при отключенном питании установки. Что же касается выделяемой на нагрузке тепловой мощности, то ее измерить не так-то просто, поскольку требуется калориметр.

Если вы обучаетесь в старших классах или в высшем учебном заведении, преподаватель может потребовать от вас при оформлении решения задачи рассчитать погрешность измерения и вычисления общепринятым способом.

Содержание

Расчет параметров для генератора — статьи компании БоромирТрэйд


Расчет параметров для генератора


Выбирая бензиновый генератор 220 Вольт, вам придется рассчитать мощность, которая потребуется для стабильной работы самого оборудования и всех подключаемых к нему приборов.


Большинство представленных на рынке агрегатов относятся к классу бытовых. Оборудование отличается невысокой стоимостью и подходит для нечастного использования.


Но в погоне за объемом продаж производители бытовых бензогенераторов часто завышают технические параметры оборудования. Под прицел попадает мощность. Чтобы не ошибиться с выбором этого параметра, необходимо знать, на сколько Ампер установлен автомат защитного подключения. Зная это значение, вы легко рассчитаете реальную мощность агрегата.


Формула расчета:

  • Сила тока установленного автомата защитного подключения (Амперы) х Напряжение выдаваемого тока (Вольты) = Номинальная мощность генератора (Ватты).


Пример:

  • Сила тока защитного автомата 14 А. Напряжение выдаваемого тока 220 В. Необходимо 14А х 220В = 3080 Ватт. Номинальная мощность генератора равна 3,08 кВт.


Перед покупкой бензогенератора обязательно уточните у продавца силу тока установленного защитного автомата.

Расчет дизельгенератора


Выбирая дизельные генераторы на 380 Вольт, помните, что полная мощность, которую потребляет оборудование, – это кВА. Активная мощность, которую агрегат затрачивает на совершение полезной работы, – это кВт.


Для нахождения суммарной мощности всех энергопотребителей складывают полные мощности оборудования, а не активные.


Расчет можно произвести по номиналу ввода.


Пример:

  • В доме / помещении установлен трехфазный вводный автомат на 35 А. Мощность рассчитывается по формуле (3 х 20А х 380В = 22800 = 22,8 кВА). Плюс должны учитываться типы нагрузок в доме.


Максимально точно подобрать номинальную мощность генератора можно путем замера потребляемого тока в электросети при максимальной нагрузке.


Если вы затрудняетесь с выбором номинальной мощности оборудования, обратитесь за помощью к опытным специалистам. Консультанты «БоромирТрэйд» помогут правильно рассчитать мощность, подберут оборудование с учетом ваших требований и бюджета.

как грамотно перевести одну единицу измерения в другую и наоборот

У владельцев частных домов, квартир, дач или небольших хозяйственных помещений, подключенных к электричеству, часто возникает потребность перевести амперы в ватты или решить обратную задачу. Для выполнения переводов единиц, определяющих характеристики тока, применяют известные формулы, которые основаны на законе Ома.

Мы расскажем о том, как правильно выполнить перевод физических единиц. Кроме того, в представленной нами статье приведены способы определения рабочей мощности и пусковых токов домашней техники. Разобраны нюансы вычисления сечения компонентов электропроводки.

Содержание статьи:

Определение мощности подключенных приборов

Чтобы вычислить значение максимально возможной мощности на участке цепи, необходимо суммировать показатели всех подключенных приборов. Но не все так просто: многие из этих устройств представляют собой сложные электродинамические системы, поэтому нужно правильно определить их параметры.

Активная и полная составляющая мощности

Активная (или потребляемая) мощность устройства (P) определяет безвозвратную потерю электроэнергии при его работе. Именно этот показатель посчитает электросчетчик, а, следовательно, он влияет на объем потраченных ресурсов (денег) при функционировании прибора.

Активную компоненту в ваттах указывают для всех потребителей электроэнергии. Однако есть еще один показатель – коэффициент мощности (cos(f)), который можно найти в технической документации, а также на специальных табличках или этикетках с основными параметрами.

Через нее можно рассчитать полную мощность (S) устройства по следующей формуле:

S = P / cos(f)

Физический смысл этих величин можно описать так: ток с полной мощностью идет от источника (трансформатора) до электроприбора, который преобразует его активную составляющую, а оставшуюся (реактивную) возвращает обратно в сеть. Таким образом, нагрузку на компоненты цепи (проводку и автоматы) необходимо рассчитывать именно с учетом полной мощности.

Провести расчет полной мощности можно по данным, которые присутствуют в техническом паспорте устройства или на шильдике электродвигателя

Для большинства бытовых приборов коэффициент равен единице, следовательно, активная и полная мощности совпадают. Но при наличии у электропотребителя конденсаторов (емкостей) или катушки индуктивности возникает реактивная компонента.

Обратить внимание нужно на следующие типы оборудования:

  • холодильники;
  • стиральные машины;
  • кондиционеры;
  • насосы;
  • индукционные печи и плиты;
  • люминесцентные светильники;
  • телевизоры;
  • компьютеры и другая техника с электронной начинкой.

Также часто к или хозяйственных объектов подключают станки с электродвигателями, аппараты дуговой сварки и другое оборудование, у которого полная мощность значительно выше потребляемой. Поэтому нужно внимательно ознакомиться с техническими характеристиками приборов перед их включением в сеть.

Пусковые токи компрессоров и двигателей

Если бытовая техника оснащена электродвигателем, компрессором, нитью накаливания или трансформатором на входе в блок питания, то при начале ее работы на короткое время возникают пусковые токи (Iп). Их значение может в несколько раз превышать номинальные показатели (Iн), указанные в паспорте устройства.

Эти величины связаны следующей формулой:

Iп = k * Iн

Здесь k – коэффициент кратности пускового тока.

Документация по электродвигателям содержит все данные, необходимые для расчета стартового тока, в том числе и коэффициент кратности (последний столбец)

Показатель кратности превышает значение “2” у следующих распространенных бытовых приборов:

  • ;
  • холодильник и морозильник;
  • ;
  • стиральная машина;
  • ;
  • микроволновая печь;
  • неоновое освещение;
  • некоторые виды электроинструмента (дрель, перфоратор, компрессор).

Расчет общей мощности при присутствии в цепи таких устройств необходимо проводить с учетом их стартовых токов. Так как время повышенного электропотребления невелико, а синхронное включение маловероятно, то достаточно взять один, наиболее мощный по стартовым токам прибор.

Сила тока и параметры электропроводки

Для определения необходимого сечения жил электропроводки и выполняют перевод суммарного количества ватт в амперы и получают значение максимального длительного тока.

Соотнесение сечения жил и максимально допустимой для проводки силы тока выполняют с использованием таблиц, которые предоставляют производители кабельной продукции. В зависимости от компании-изготовителя, основные показатели могут немного отличаться, но при этом всегда должны соответствовать действующему ГОСТ 31996-2012.

Пример таблицы соответствия сечения токопроводящих жил и максимально допустимого длительного тока в зависимости от способа прокладки проводки

Иногда выбирают проводку не с минимально допустимым сечением, а с немного большим. Это оправдано, так как запас пропускной способности позволяет подключить новые электроприборы без дорогостоящего демонтажа старых и укладки новых кабелей.

Параметры устанавливаемых подбирают так, чтобы он гарантированно срабатывал на отключение, если сила тока превысит значение, определенное как максимально допустимое для проложенной проводки.

Номинальный ток автомата (In) вычисляют по допустимому для кабеля току (Ip) по следующей формуле:

In <= Ip / 1.45

Обычно выбирают автомат с максимальным среди разрешенных значением номинала, чтобы минимизировать вероятность отключения при сильной, но еще допустимой загрузке цепи.

Взаимосвязь основных электрических величин

Мощность и силу тока можно связать через напряжение (U) или сопротивление цепи (R). Однако на практике применить формулу P = I2 * R сложно, так как затруднительно точно рассчитать сопротивление на реальном участке.

Одно- и трехфазное подключение

Большинство разводок электросети для бытового использования являются однофазными.

В этом случае пересчет полной мощности (S) и силы переменного тока (I) с использованием известного напряжения происходит по следующим формулам, вытекающим из классического закона Ома:

S = U * I

I = S / U

Сейчас получила распространение практика подведения трехфазной сети к жилым, бытовым и мелким промышленным объектам. Это оправдано с позиции минимизации затрат на кабели и трансформаторы, которые несет компания поставляющая электроэнергию.

При подведении трехфазной сети устанавливают вводной трехполюсный автомат (слева вверху), трехфазный счетчик (справа вверху) а для каждой выделенной цепи – обыкновенные однополюсные устройства (слева внизу)

Сечение жил проводки и номинальную мощность при использовании трехфазных потребителей определяют также по силе тока, которую вычисляют так:

Il = S / (1. 73 * Ul)

Здесь индекс “l” означает линейный характер величин.

При планировании и последующем проведении лучше выделять трехфазных потребителей в отдельные цепи. Приборы, работающие от стандартных 220 В, стараются более-менее равномерно раскидать по фазам, так, чтобы не было значительного перекоса в мощности.

Иногда допускают смешанное подключение устройств, работающих как от одной, так и от трех фаз. Эта ситуация не самая простая, поэтому ее лучше рассмотреть на конкретном примере.

Пусть в цепь включена трехфазная индукционная печь с активной мощностью 7.0 кВт и коэффициентом мощности 0.9. К фазе “A” подключена микроволновая печь 0.8 кВт с коэффициентом “2” кратности пускового тока, а к фазе “Б” – электрический чайник 2.2 кВт. Необходимо рассчитать параметры электросети для этого участка.

Схема подключения приборов к сети. При такой конфигурации всегда ставят трехфазный автоматический выключатель. Использовать для защиты несколько однофазных автоматов запрещено

Определим полную мощность всех устройств:

Si = Pi / cos(f) = 7000 / 0. 9 = 7800 В*А;

Sm = Pm * 2 = 800 * 2 = 1600 В*А;

Sс = Pc = 2200 В*А.

Определим силу тока каждого прибора:

Ii = Si / (1.73 * Ul) = 7800 / (1.73 * 380) = 11.9 A;

Im = Sm / Uf = 1600 / 220 = 7.2 A;

Ic = Sc / Uf = 2200 / 220 = 10 A.

Определим силу тока по фазам:

IА = Ii + Im = 11.9 + 7.2 = 19.1 A;

IБ = Ii + Ic = 11.9 + 10 = 21.9 A;

IС = Ii = 11.9 A.

Ток максимальной силы при всех включенных электроприборах протекает по фазе “Б” и будет равен 21.9 A. Достаточная комбинация для беспроблемного обеспечения функционирования всех устройств в этой цепи – сечение медных жил 4,0 мм2 и автоматический выключатель на 20 или 25 A.

Типовое напряжение бытовых сетей

Так как мощность и сила тока связаны через напряжение, то необходимо точно определить эту величину. До введения с октября 2015 года ГОСТ 29322-2014 значение для обыкновенной сети было равно 220 В, а трехфазной – 380 В.

По новому документу эти показатели приведены в соответствие с европейскими требованиями – 230 / 400 В, но большинство систем бытового электроснабжения все еще функционирует по старым параметрам.

Получить реальное значение напряжение можно с использованием вольтметра. Если цифры значительно меньше эталонных, то необходимо подключить входной стабилизатор

Отклонение 5% реального значения от эталонного допустимо на любой срок, а 10% – не более чем на один час. При понижении напряжения некоторые потребители, такие как электрочайник, или микроволновая печь, теряют в мощности.

Но если устройство снабжено интегрированным стабилизатором (например, газовый котел) или имеет отдельный импульсный блок питания, то потребляемая мощность останется постоянной.

В этом случае, учитывая, что I = S / U, падение напряжение приведет к увеличению силы тока. Поэтому не рекомендуют подбирать сечение жил кабеля “впритык” к максимальным расчетным значениям, а желательно иметь запас в 15-20%.

Полезное видео по теме

Измерение силы тока мультиметром и последующее вычисление мощности:

Электронное устройство для определения напряжения, силы тока и автоматического вычисления мощности:

Определить силу тока, зная напряжение сети и суммарную мощность приборов на участке цепи, достаточно просто. Сложность заключается в измерении или подсчете исходных параметров.

Если возникают сомнения в правильности найденного решения, то лучше обратиться к электрикам, так как ошибки в расчетах могут привести к серьезным проблемам.

Хотите поделиться собственным опытом в переводе амперов в ватты? В вашем арсенале есть оригинальный метод, который может пригодиться посетителям сайта? Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фото и задавайте вопросы по теме статьи.

Как посчитать амперы зная мощность. Соотношение ватт и ампер

В большинстве электроприборов техническая информация о работе от электрической сети представлена ​​в ваттах и ​​киловаттах. Однако электросчетчики, розетки и автоматические выключатели имеют маркировку «Ампер». В связи с этим у человека, не знакомого с деталями работы электрических сетей и оборудования, могут возникнуть трудности с пониманием того, соответствует ли фактическая нагрузка проекту и, как следствие, в выборе подходящего предохранитель.

Вт в амперах или наоборот

Ампер — это единица измерения силы тока, а ватт — это мощность (тепловая, механическая или электрическая). В связи с тем, что работа электроприборов тесно связана как с понятиями, так и величинами, они выражаются в определенных отношениях друг к другу. Однако это не означает, что вы можете напрямую преобразовывать ватты в амперы или наоборот. Однозначный прямой коэффициент, на который можно умножить или разделить существующее число, нет. Некоторые электрики-любители этого не понимают и нерешительны, поэтому посмотрите и поймете дальше , господа. При этом одни показатели принято выражать через другие. Чтобы понять, как это происходит, давайте посмотрим, как связаны друг с другом мощность и сила тока в различных электрических сетях.

Как перевести

Основная формула, отражающая зависимость индексов электрического тока друг от друга, выглядит следующим образом: P = U * I, где U обозначает напряжение в вольтах, I — ток в амперах, а P — мощность в ваттах.Всем известно соотношение школьной физики, о котором иногда забывают. Собственно, зная эту взаимосвязь, вы можете проводить все дальнейшие операции самостоятельно, но есть некоторые тонкости, о которых мы поговорим ниже.

Степенное выражение

Теоретически, чтобы получить конкретное значение, необходимо только преобразовать формулу. Например, чтобы найти напряжение: U = P / I. Например, в России бытовая электроэнергия ниже 220 В. При мощности, равной, скажем, 220 Вт, ток будет 1 А (220/220).Однако этот расчет верен только для сети с постоянным напряжением .

Если мы переводим амперы в ватты в сети с переменным напряжением, мы должны использовать их фактическое эффективное значение. Чаще всего указывается как номинал. Если известно только значение амплитуды, его следует уменьшить до 1,41 (округленное число, но для домашних расчетов этого достаточно, квадратный корень из двух). А затем по формуле рассчитать мощность.

Выражение тока

Часто при выборе подходящей розетки, вилки, автоматического выключателя, счетчика и другого подобного оборудования возникает необходимость определить силу тока в сети.Для этого формула преобразуется в следующий вид: I = P / U. Учитывая, что мощность часто указывается в киловаттах, это число следует преобразовать в ватты, умножив на 1000.

Если напряжение указано в киловольтах, его не всегда можно преобразовать в вольты умножением. Это связано с тем, что этот показатель часто округляется. Например, значение 0,4 кВ используется как в России, так и в Европе, но обозначает фактическое напряжение в 380 В и 400 В соответственно. Это означает, что европейские нагрузки будут продолжать работать в российских сетях с пониженным напряжением, но обратное не гарантируется.

Инструкция по переводу ампер на ватты (киловатты)

Кажется, на первый взгляд перевод ампер в ватты кажется несложной задачей, начинаешь изучать предмет и понимаешь, что не все так просто. Но вам стоит начать это делать, так как вы поймете, что все снова становится просто и понятно.

Для проведения этой несложной операции необходимо (это конечно в идеале, так сказать из учебника):

  • тестер;
  • электротехнический справочник;
  • токовые клещи;
  • Калькулятор

  • .

Порядок действий (стоит помнить, что механизм для переменного и постоянного тока отличается, в нашем случае речь идет об электрике в доме, где используется переменный ток):

  1. Проверить тестером напряжение исправной сети.
  2. В сети переменного тока измерить ток с помощью токоизмерительных клещей (есть токовые клещи и для постоянного тока).
  3. Для сетей с однофазным переменным напряжением умножьте значение U на ток и коэффициент мощности.Результатом работы является потребляемая мощность устройства в ваттах.
  4. С трехфазным переменным напряжением. Необходимо умножить коэффициент мощности на произведение величины тока и напряжения каждой фазы. Сумма полученных значений и будет равна мощности электроустановки. При симметричном распределении фазной нагрузки активная мощность рассчитывается путем умножения фазного напряжения и тока на коэффициент мощности, увеличенный в три раза.

Исходя из силы тока, протекающего по проводке, необходимо подбирать кабель с учетом сечения.Слишком тонкие провода будут нагреваться при перегрузке, что в лучшем случае может привести к их выходу из строя, а в худшем — к возникновению пожара. Медные провода выдерживают гораздо более высокую нагрузку по сравнению с алюминиевыми, но это не повод возлагать на них максимальную нагрузку.

Как правильно рассчитать мощность ИБП , если указать вольт-ампер (ВА). Вольт-ампер или ВА — это единица измерения общей электрической мощности. Полная электрическая мощность — это геометрическая сумма активной и реактивной мощности.Что такое активная и реактивная мощность, вы можете подробно узнать из статьи ниже, в которой это объясняется на инженерном языке. На практике используется коэффициент 0,6-0,8 (чаще всего 0,6).

Пример:

Мощность ИБП в вольтах = 1000 ВА

Мощность ИБП в ваттах 1000 * 0,6 = 600 Вт

Значение коэффициента зависит от типа источника бесперебойного питания и производителя.Современные ИБП, благодаря новым технологиям, могут дать коэффициент 0,9.

Вольт-ампер или ВА — единица измерения общей электрической мощности. Полная электрическая мощность — это геометрическая сумма активной и реактивной мощности. Что такое активная и реактивная мощность? Активная мощность — характеризует скорость необратимого преобразования электрической мощности в другие виды энергии (например, световую или тепловую). К активным типам потребителей относятся все типы электрических ламп и нагревательных элементов.Реактивная мощность — характеризуется скоростью передачи электроэнергии от источника тока к потребителю и обратно. К реактивным типам потребителей можно отнести все типы электродвигателей.

Суммарная мощность будет S2 = A2 + R2, именно эта мощность и указывается как характеристика дизельной электростанции. Как перевести эти загадочные вольт-амперы в обычные киловатты? Для дизельных электростанций малой и средней мощности существует определенный поправочный коэффициент, равный 0.8.

Пример: возьмем дизельную электростанцию ​​J 88K / Nexys, ее мощность в кВА в основном режиме использования составляет 80 кВА, в режиме ожидания — 88 кВА (про основную и резервную мощность вы можете прочитать в словаре). Соответственно мощность в киловаттах по рэ

В вольт-амперах (ВА) измеряется полная мощность.

В ваттах — активно.

В ВАРАх — реактивная.

Связь между ними через фазовый сдвиг между током и напряжением.Поэтому переводить невозможно — это разные значения. Если нагрузка активна, то полная мощность равна активной. Если нагрузка чисто реактивная (например, конденсатор с малыми потерями), то активная мощность будет равна нулю, а полная мощность полностью не равна нулю. Если на источник бесперебойного питания записано 650 ВА, это означает, что можно использовать полную потребляемую мощность.

Школьную программу по физике большинство из нас помнит, как правило, образно.Многие священные термины и магические единицы с годами наш мозг забыл, потому что в этой информации нет необходимости. но физические формулы в нашей повседневной жизни, хотя и очень редко, но очень полезны даже на бытовом уровне, например, в моменты размышлений о том, как преобразовать ватты в амперы и для чего они нужны. Попробуем вместе найти ответы на эти вопросы.

Что такое ватты и амперы?

Термин ватт часто вспоминают, когда собираетесь в отделы с бытовой техникой или даже при покупке обычных лампочек.Этот термин используется для измерения единиц мощности, а не только тех, которые относятся к электрическому току. Ампер, в свою очередь, термин чисто электрический и представляет собой единицу измерения силы электрического тока.

Зачем переводить ватты в амперы?

Все это нужно делать, в первую очередь, для того, чтобы выяснить, можно ли подключить мощную бытовую технику к той или иной розетке, потому что бытовые приборы в своем описании используют термин мощность-ватт, а линии электропередач спроектированы и построены на определенный ток — амперы.

Как перевести ватты в амперы — инструкция.

Требуемая формула выглядит следующим образом:

Здесь используются следующие показатели:

  • P — мощность (Вт),
  • I — ток (А),
  • U — напряжение сети (В — вольт).

По напряжению отметим, что в бытовой электросети напряжение в наиболее распространенных однофазных линиях равно 220 В.

Как и в любой другой формуле, зная два из трех показателей, последний третий показатель («неизвестно» «) очень легко.Исходя из поставленного в начале вопроса, нам нужно найти ток (ампер), зная мощность (ватты). Следовательно, приведенная выше формула преобразуется в следующий вид: I = P / U .

Небольшой пример — проблема того, как ватты преобразуются в усилители и почему.

Есть кухня. На кухне есть группа розеток. Вся эта группа розеток отключается автоматом в электрощите, на котором есть обозначение 16А.К розеткам на кухне подключена следующая техника: микроволновая печь (1000 Вт), электрочайник (2000 Вт), духовка (1500 Вт). Вопрос в том, выживет ли линия, если все эти устройства будут включены одновременно?

Имея автомат отключения на 16А, надо исходить из того, что предельным значением для нас будут эти данные, сила тока в этом участке цепи не должна превышать 16А. Сначала добавляем мощность, в сумме получаем 4500 Вт. Далее по нашей формуле получаем ток (ампер): 4500/220 = 20.45 А. Соответственно, если включить электрочайник, микроволновку и духовку на полную мощность, то автомат защиты на 16А просто «выбьет».

Отсюда вывод: очень полезно иногда подумать, как преобразовать ватты в амперы, а потом применить расчеты на практике, особенно при ремонте, например, чтобы поставить закладку (как в нашем примере) дополнительную электрическую линию, позволяющую Нагрузка должна быть разбавлена ​​разными проводами или для смещения линии, используя другие провода, рассчитанные на больший ток.

Видео.

Что такое ватт по сравнению с вольт-ампером в блоке питания постоянного тока?

Чтобы выбрать правильный источник питания для ваших приложений, первое, что вы должны сделать, — это выяснить, какая выходная мощность вам нужна. Для источника постоянного тока это относительно просто. Сначала вы определяете максимальное выходное напряжение, которое вам нужно, а затем максимальный выходной ток, который вам нужен. Выходная мощность (в ваттах) равна выходному напряжению, умноженному на выходной ток:

P (Вт) = V на выходе X I на выходе

В некоторых приложениях, конечно, может не потребоваться максимальный выходной ток и максимальное выходное напряжение или наоборот.Однако на всякий случай, если вы выберете источник питания, который может обеспечить максимальное напряжение и максимальный ток, которые вам понадобятся, вы можете быть уверены, что источник питания не будет недостаточным для вашего приложения.

Мощность

постоянного тока, рассчитанная по приведенной выше формуле, иногда называется реальной мощностью или реальной мощностью. Мы называем это реальной мощностью, потому что это количество энергии, фактически доступное для выполнения некоторой работы. Это может включать в себя запуск двигателей постоянного тока или питание тестируемого электронного блока.

Видимо, не совсем так

Для источника питания переменного тока этот расчет не так прост. Причина этого в том, что для некоторых, если не для большинства, нагрузок переменного тока напряжение и ток не совпадают по фазе друг с другом. Если нагрузка емкостная, ток будет опережать напряжение. Если нагрузка индуктивная, напряжение опережает ток.

Реактивные нагрузки усложняют работу источника питания, потому что им требуется источник питания для подачи энергии в течение части цикла переменного тока, а затем для возврата части этой мощности.В конечном итоге источник питания должен обеспечивать больший ток, чем рассчитанный по уравнению для расчета мощности постоянного тока.

Поскольку эта мощность не выполняет никакой реальной работы, она называется полной мощностью или виртуальной мощностью . Чтобы отличить полную мощность от реальной, мы используем единицу измерения вольт-ампер, или вар, вместо ватт. Сокращение для вольт-ампер — ВА. Уравнение, используемое для расчета полной мощности:

.

P (ВА) = В действующее значение x I действующее значение

, где Vrms — среднеквадратичное значение переменного напряжения, а Irms — среднеквадратичное значение переменного тока.

Отношение реальной мощности к полной мощности называется коэффициентом мощности (PF):

PF = активная мощность (Вт) / полная мощность (ВА)

Если известен сдвиг фаз между напряжением и током, можно рассчитать коэффициент мощности по формуле:

PF = cos ø

где ø — фазовый угол между напряжением и током.

Коэффициент мощности всегда находится в диапазоне от 0 до 1, и чем больше фазовый угол, тем меньше коэффициент мощности.Чем меньше коэффициент мощности, тем больше кажущаяся мощность, а это означает, что вам понадобится источник с большей выходной мощностью для питания высокореактивной нагрузки, чем для питания нагрузки с очень низким реактивным сопротивлением.

Для получения дополнительной информации по этой теме и источникам питания переменного, постоянного и переменного / постоянного тока программируемого питания AMETEK обращайтесь в компанию AMETEK Programmable Power. Вы можете отправить электронное письмо на адрес [email protected] или по телефону 800-733-5427.

Как подобрать двигатели по нагрузке, мощности, мощности двигателя

Рэнди Барнетт

Проведите гибкий токовый пробник Fluke iFlex ™ вокруг одного проводника.Или вы можете центрировать губки токоизмерительных клещей вокруг одного проводника.

Это заблуждение среди тех, кто выбирает и устанавливает двигатели. Правильный выбор двигателей для данной нагрузки приводит к более эффективному управлению нагрузками, экономии энергии и экономии долларов. Двигатели обычно наиболее эффективны при нагрузке от 90% до 95%. Тот факт, что на заводской табличке двигателя написано «25 л.с.», не означает, что двигатель выдает двадцать пять лошадиных сил во время работы. Двигатель может производить немного меньше в зависимости от требований к нагрузке.Если двигатель постоянно работает с этими пониженными требованиями к мощности, деньги тратятся зря, и вам следует подумать о замене его двигателем правильного размера.

Кроме того, сечение проводов и предохранителей или прерывателя цепи, питающих этот двигатель, основывается на номинальном токе полной нагрузки двигателя, предполагаемой частоте его срабатывания и других факторах. Установка проводов и прерывателей большего диаметра, чем необходимо, — напрасная трата. Также важно понимать, что даже при низких требованиях к мощности двигатель по-прежнему потребляет относительно большой ток.Например, двигатель, работающий без нагрузки, по-прежнему потребляет около 50% своего номинального тока.

При замене двигателя подберите двигатель к заданию

При замене двигателей важно согласовать двигатель с заданием. В дополнение к выбору правильного напряжения, фазы (трехфазной или однофазной), буквенного обозначения конструкции и буквенного кода не забудьте выбрать правильную номинальную мощность в лошадиных силах. Если двигатель был заменен ранее или работает с насосом, вентилятором или другим оборудованием, размер которого не был определен производителем оригинального оборудования как часть всей системы, возможно, вы выбрали двигатель неправильного размера.Измерение базовых значений напряжения и тока для оценки собственных требований к мощности предоставит вам более эффективную систему.

Такая информация важна при проведении энергетического исследования. Если нагрузка двигателя изменяется на 90% или менее от полной нагрузки в течение длительного времени, применение может быть подходящим для привода с регулируемой скоростью и, таким образом, значительной экономии. Например, если требования к мощности двигателя в лошадиных силах могут быть уменьшены с помощью привода с регулируемой скоростью, чтобы снизить скорость двигателя до 90% от полной номинальной скорости двигателя, то потребление энергии снижается до 73% от того, что требуется для работы на полной скорости.Еще одна причина узнать требования к нагрузке вашего оборудования!

В некоторых случаях двигатель может быть перегружен, потребляя ток, превышающий его номинальный. Будь то плохие подшипники, смещенный вал или другие проблемы, связанные с обслуживанием, или просто чрезмерная нагрузка на двигатель, однозначно имеет место один вредный эффект: чрезмерное нагревание обмоток. Тепло ухудшает изоляцию и является основной причиной отказа двигателя. Хотя правильно рассчитанные и установленные перегрузки вызывают отключение двигателя, как правило, от 115% до 125% от значения тока полной нагрузки, указанного на паспортной табличке, выделяемое за это время тепло обязательно сокращает срок службы двигателя.

Определение фактической мощности двигателя

Значения рабочего тока и напряжения двигателя должны измеряться и регистрироваться на регулярной основе в рамках программы профилактического обслуживания. Используйте эту формулу для оценки мощности двигателя: Мощность (л.с.) = Напряжение x Средняя мощность x% КПД x коэффициент мощности x 1,73 / 746. (Подробности см. На диаграмме ниже.)


Используйте эту формулу для оценки мощности двигателя

Мощность (л.с.) = Напряжение x Сила тока x% EFF x коэффициент мощности x 1,73 / 746

Где:

Напряжение — это среднее значение трех измеренных напряжений: (AB + AC + BC) / 3

Сила тока — средний измеренный ток трех фаз: (A + B + C) / 3

% EFF — КПД двигателя на паспортная табличка двигателя

Коэффициент мощности — это отношение истинной мощности (кВт) к полной мощности (кВА).При отсутствии инструментов для измерения коэффициента мощности практическое правило заключается в оценке коэффициента мощности на уровне 0,85

1,73 — константа, используемая при расчете трехфазной мощности

746 — константа для преобразования ватт в лошадиные силы (746 ватт = 1 л.

Мощность в лошадиных силах (л.с.) = напряжение x сила тока x% КПД x коэффициент мощности x 1.73/746

= 472 В x 20 А x 0,90 x 0,85 x 1,73 / 746 = 17 л.с.


Самый быстрый метод точной оценки мощности двигателя — использовать цифровые клещи для измерения тока и напряжения на двигателе, а затем выполнить простой расчет. Используйте эту формулу для оценки мощности двигателя. Мощность (л.с.) = напряжение x сила тока x% КПД x коэффициент мощности x 1,73 / 746. Обязательно соблюдайте правила безопасной работы, соответствующие конкретному применению. Благодаря наличию цифровых мультиметров с удаленным дисплеем, таких как токоизмерительные клещи для измерения истинного среднеквадратичного значения с удаленным дисплеем Fluke 381, рабочие могут уменьшить свое воздействие смертельного напряжения и зону опасности дугового разряда.

Для получения точных показаний важно использовать токоизмерительные клещи с истинным среднеквадратичным значением. В то время как токи двигателя обычно можно считывать непосредственно с лицевой стороны привода с регулируемой скоростью, питающего связанный двигатель, для другого оборудования потребуется использовать измеритель, обеспечивающий точные показания при наличии гармоник и синусоидальных искажений.

Измерение нагрузок, отличных от двигателей

Вам также необходимо записать рабочие значения нагрузок, отличных от двигателей. Поскольку мощность в лошадиных силах не определяется для других нагрузок, кроме двигателей, просто используйте процедуру, описанную во врезке «Используйте эту формулу для оценки мощности двигателя», чтобы измерить и записать текущее значение нагрузки.Примерами таких нагрузок могут быть герметичные мотор-компрессоры хладагента, используемые в оборудовании HVAC, осветительные нагрузки и нагревательные элементы. Номинальный ток нагрузки герметичных компрессоров хладагента и номинальные значения тока на других типах оборудования необходимо сравнивать с измеренными значениями, когда вы имеете дело с отключением выключателя или перегревом оборудования. Чтобы определить размер прерывателя и проводов, необходимых для питания вашей нагрузки, см. Национальный электрический кодекс® (NEC®), инструкции производителя, чертежи и любые местные нормативные требования.Хотя NEC имеет особые правила для различных типов оборудования, такого как двигатели и оборудование HVAC, обычно проводники и автоматические выключатели рассчитаны на 125% от продолжительной нагрузки плюс 100% от непостоянной нагрузки.

Зонд iFlex ™ окружает единственный проводник в этом шкафу привода для установки кондиционирования воздуха (AHU). Токоизмерительные клещи Fluke 381 используются для записи показаний силы тока с целью выявления предполагаемой проблемы привода. Те же клещи используются для оценки мощности двигателя.

«Непрерывная нагрузка» — это нагрузка, при которой ожидается, что максимальный ток будет продолжаться в течение трех часов или более. Один важный момент: при выборе размеров проводов и выключателей для двигателей используйте соответствующую таблицу в NEC для силы тока полной нагрузки двигателя, а не ранее измеренное значение или информацию с паспортной таблички двигателя. Ранее измеренное значение помогает определить размер нагрузки. Размеры проводов и прерывателей для питания двигателя основаны на кодовых таблицах, в которых указаны значения тока полной нагрузки для конкретных фаз, напряжения и мощности двигателей.Номинальные параметры и измеренные значения производителя используются для нагрузок, отличных от двигателя.

Например, трехфазный двигатель насоса охлажденной воды мощностью 25 лошадиных сил должен проработать при полной нагрузке три часа или более. В таблицах NEC указано, что ток полной нагрузки трехфазного двигателя мощностью 460 В и мощностью 25 лошадиных сил составляет 34 ампера. Следовательно, проводники, питающие двигатель, должны иметь размер 34 x 1,25 = 43 А (125% от 34 ампер). Таблицы допустимой нагрузки в NEC используются для определения фактического сечения проводника в зависимости от типа изоляции, температуры окружающей среды и других условий.Максимальный размер автоматического выключателя или предохранителя для двигателя основан на другой таблице NEC, Таблица 430.52. Максимальное значение этого устройства защиты от перегрузки по току может находиться в диапазоне от 175% до 250% от тока полной нагрузки. Всегда консультируйтесь с Национальными правилами установки электрооборудования или у квалифицированного электрика, чтобы узнать точные размеры проводки двигателя, предохранителей и автоматических выключателей, а также требования к защите двигателей от перегрузки. То же самое касается герметичных мотор-компрессоров хладагента и другого электрического оборудования.

Цель: правильно подобранная и безопасная установка, работающая с максимальной эффективностью.

Вы должны определить мощность двигателя в полевых условиях, чтобы убедиться, что используется двигатель подходящего размера. Если двигатель слишком большой, подумайте о замене двигателя или установке частотно-регулируемого привода. Регулярное измерение и запись значений тока и напряжения также является важной частью программы качественного профилактического обслуживания. Подбирайте проводку и автоматические выключатели для любого типа нагрузки в соответствии с Национальными электротехническими нормами.Помните, что цель — правильно рассчитанная и безопасная установка, работающая с максимальной эффективностью.

KVAR (реактивная мощность): Расчет KVAR, формула и блок коэффициента мощности KVAR Работа

Если вы хотите сэкономить на расходах на потребление энергии, то вы, вероятно, слышали об устройстве KVAR или устройствах для экономии энергии KVAR . Это устройства, которые помогают жилым домам и коммерческим предприятиям экономить на счетах за электроэнергию, особенно при использовании систем переменного тока.

Есть три термина, которые можно использовать для обозначения переменного тока. Первый — это киловатт, который представляет реальную мощность. Это измерение, используемое для регистрации мощности в счетчиках электроэнергии рядом с вашим домом. Вторая — это реактивная мощность, которая измеряется в кВАр или реактивных киловольт-амперах. В контексте передачи и распределения электроэнергии реактивная мощность в киловольтах-амперах используется для обозначения единицы измерения реактивной мощности. Однако вы не платите за это, поэтому KVAR не отображается на ваших счетчиках коммунальных услуг.Третий член — полная мощность, обозначаемая как кВА. Чтобы лучше понять эти концепции, вам нужно упомянуть коэффициент мощности, который представляет собой соотношение между полной и активной мощностью. Полная мощность, в свою очередь, состоит из двух типов мощности: активной и реактивной. Чем ниже компонент реактивной мощности, тем выше коэффициент мощности, что приводит к большей экономии для вас.

Как производится расчет KVAR?

Есть несколько способов выполнить расчет KVAR, если вам нужно рассчитать реактивную мощность данной нагрузки.Если вы хотите применить практический подход, используйте вольтметр вместе с амперметром или амперметром. Произведение показаний даст вам полную мощность нагрузки в вольт-амперах. Полученное значение также поможет вам определить истинную мощность в ваттах для данной нагрузки. Учитывая эти числа, поиск векторной разницы не должен представлять никаких проблем. Определив реактивную мощность, вы сможете найти подходящие конденсаторы, необходимые для снижения полной мощности компонентов в ваших системах.Таким образом можно снизить коэффициент мощности, если вы хотите сэкономить на расходах. Например, если вы установите конденсаторы мощностью 30 кВАр, они снизят реактивную мощность, обеспечиваемую энергокомпанией, до 30 кВАр. С другой стороны, полная мощность, поставляемая коммунальным предприятием, упадет примерно до 85,4 кВА.

Что такое формула реактивной мощности / кВАр?

Реактивная мощность — это неиспользованная мощность, генерируемая реактивными компонентами в цепи или системе переменного тока, и измеряется в кВАр. Что касается коэффициента мощности, то чем больше реактивная мощность, тем выше полная мощность или кВА.В жилых домах количество потребляемой электроэнергии довольно мало. Вот почему компании не взимают плату за жилую недвижимость. Низкое энергопотребление не вызывает опасений у электроэнергетических компаний. Однако коммерческие и промышленные электрические компании потребляют это в огромных количествах, поэтому электроэнергетические компании взимают с них надбавку. Для формулы KVAR это выглядит следующим образом: Q = X * I * I. В формуле реактивной мощности X означает реактивное сопротивление цепи, а I — ток, протекающий по цепи.Вам нужно понять формулу, чтобы узнать больше об использовании реактивной мощности.

Как работает блок коэффициента мощности KVAR?

Прежде чем вы поймете, как работает коэффициент мощности KVAR, вам необходимо четко определить, что такое коэффициент мощности. По сути, это мера того, насколько эффективно использование входящей мощности в вашей электрической системе. Отношение рабочей мощности к полной или полной мощности. Это формула коэффициента мощности. Чтобы понять, что такое KVAR для коррекции коэффициента мощности, помните, что коэффициент мощности — это соотношение между реальной и полной мощностью.Это означает, что чем выше процент KVAR в вашей нагрузке, тем ниже отношение кВт к кВА. Результат дает плохой коэффициент мощности. Используйте это наблюдение при выполнении формулы расчета коэффициента мощности KVAR.

Как установить регулятор энергии KVAR?

Если вы хотите сэкономить и планируете установить контроллер энергии KVAR в вашей системе, то придерживайтесь основ. Внимательно следуйте инструкциям. Убедитесь, что вы выключили питание, прежде чем приступить к установке энергосберегающего устройства KVAR.Если у вас нет инструментов, опыта и знаний — не говоря уже о времени и навыках — для выполнения этой задачи, тогда вам повезет — и вы добьетесь большего успеха, когда наймете профессионала. Найдите кого-нибудь с опытом и знаниями, чтобы добавить энергосберегающий блок в вашу существующую систему. После этого вам нужно только подождать, пока экономия средств не начнет влиять на ваши счета.

Что такое кВА и как его рассчитать?

В то время как KVAR означает реактивный киловольт-ампер, kVA означает киловольт-ампер.По большей части его обычно называют киловатт или кВт, что является общим термином. Это единица измерения, используемая для оценки большинства (если не всех) электрических предметов, имеющихся у вас дома.

Термин относится к количеству энергии, которая используется для работы и преобразуется в выходную мощность, поэтому, когда вы говорите о кВт, вы говорите о фактической мощности. Чтобы рассчитать фактическую мощность или потребляемую мощность устройства, вам необходимо определить полную мощность. Это можно рассчитать по следующей формуле: Ампер x Вольт = Вольт-Ампер.Определив кажущуюся мощность, вы сможете определить реальную мощность. Например, это будет означать, что амперы x вольт x коэффициент мощности = ватты. Это расчет KVA.

Чтобы формула кВА дала желаемые результаты, вам также необходимо определить коэффициент мощности. Коэффициент мощности важен, если вы хотите узнать реальную потребляемую мощность устройства в вашем доме, например, вашего переменного тока. Когда вы закончите, вы получите точный расчет энергопотребления вашей системы.Эта информация поможет вам управлять счетами за коммунальные услуги в вашем доме или учреждении.

В чем разница между кВА и кВАр?

Электроэнергия, которую нам поставляют электрические компании, называется полной мощностью. Это фактическая мощность, измеренная в кВА и выраженная в виде напряжения и тока, которая затем разбивается на два типа мощности: активная мощность (кВт) и реактивная мощность (кВАр). Если вы хотите уточнить разницу между кВА и кВАр, кВА обозначает активную или фактическую мощность, а кВАр обозначает реактивную или индуктивную мощность.

Когда вы видите энергию, которая создает движение, свет, тепло и звук, все они питаются активной мощностью. Реактивная мощность — это мощность, которая создает магнитные поля, приводящие в движение вращающееся оборудование, и зависит от коэффициента мощности. Формула коэффициента мощности следующая: активная мощность x 100 / полная мощность.

Если вы ищете способ сэкономить на расходах на потребление энергии, подумайте об установке конденсаторов. Использование правильных конденсаторов снизит составляющую реактивной мощности энергосистемы, что приведет к падению составляющей полной мощности.Результат? В результате вы получите более высокий коэффициент мощности.

Получение помощи

Понимание этих концепций может помочь вам повысить энергоэффективность на вашем предприятии. Если вы устали платить больше, чем нужно, по счетам за электроэнергию, поищите специалистов, которые проведут оценку энергопотребления дома. Узнайте, что вы можете сделать, чтобы снизить уровень потребления энергии. С помощью команды опытных и проверенных электриков, которые выполнят эту работу за вас, вы сможете найти способ сэкономить на расходах и обеспечить лучшие финансовые показатели вашего предприятия.

Чтобы выбрать подходящего поставщика услуг, убедитесь, что вы делаете свою домашнюю работу. Ознакомьтесь с отзывами о фирме. Много жалоб или положительных отзывов? Что в большинстве отзывов говорится о качестве услуг фирмы? Учитывайте это при поиске поставщика электрических услуг. Также изучите предысторию компании. Как долго это было в бизнесе? Достаточно ли опыта, чтобы заработать прочную репутацию в отрасли? Предоставляет ли фирма качественные результаты?

Эти соображения имеют значение.Чем больше вы будете знать, тем легче вам будет выбрать фирму, которая будет удовлетворять ваши потребности в энергии. Если вы хотите сэкономить на расходах, начните искать подходящую фирму, которая поможет вам снизить потребление энергии и счета за коммунальные услуги.

Затраты на электроэнергию для центров обработки данных и требования

Электроэнергия является одним из основных факторов роста затрат для центров обработки данных и клиентов. Для питания и охлаждения всего центра обработки данных требуется невероятное количество электроэнергии. По данным Computerworld, «для питания всех действующих сегодня центров обработки данных требуется 34 электростанции, каждая из которых способна вырабатывать 500 мегаватт электроэнергии.«Важно знать, как рассчитывать и прогнозировать использование электроэнергии и затраты. Очень важно знать, как повысить эффективность.

В этой статье мы сосредоточимся на основах электричества, включая блоки питания, определения и уравнения. Мы исследуем методы расчета энергопотребления серверов, стоек и шкафов. Мы смотрим на разницу между измеренной и неизмеренной мощностью, а также на то, как географическое положение влияет на стоимость электроэнергии в киловатт-часах. Включено несколько примеров, которые помогут вам проводить расчеты.Обязательно прокомментируйте в конце этой статьи любые советы или рекомендации, которые вы используете для расчета энергопотребления и затрат на размещение центра обработки данных.

Блоки питания, определения и уравнения

Вам необходимо знать основную терминологию, прежде чем научиться рассчитывать энергопотребление и затраты. Важно знать ватты (Вт), киловатты (кВт) и киловатт-часы (кВтч). Также важно понимать, как в уравнении учитываются вольты (В) и амперы (А).

Ватт (Вт)

Первый член — ватт (Вт).Ватт — это единица измерения мощности в Международной системе единиц (СИ), которая используется для выражения скорости преобразования или передачи энергии во времени. Ватты можно увидеть на этикетках бытовой техники и электроники — от холодильников до телевизоров и ноутбуков. Ватты (Вт) равны вольтам (В), умноженным на амперы (А). Обычно это выражается как (W = V x A).

Киловатт (кВт)

Стандартной единицей измерения мощности центра обработки данных является киловатт (кВт).Киловатт равен 1000 ватт.

Киловатт-час (кВтч)

Киловатт-час (кВтч, кВтч, кВтч) является стандартом для использования энергии в центре обработки данных и выставления счетов. Киловатт-час представляет собой мощность в киловаттах, а время — в часах.

Киловатт-час равен 1000 ватт-часам. Киловатт-часы используются коммунальными предприятиями, а также центрами обработки данных в качестве расчетной единицы за энергию, поставляемую потребителю. Большинство центров обработки данных не повышают цены на электроэнергию для клиентов.

кВтч Цены на электроэнергию в США

Цены на электроэнергию в киловатт-часах для каждого штата и региона можно найти на ежемесячной основе, посетив Управление энергетической информации США. ОВОС — отличный источник информации для сравнения цен на электроэнергию в двух или более населенных пунктах. Это может быть полезно при определении географического местоположения для размещения ваших серверов, коммутаторов и ИТ-оборудования.

Сводка по блокам питания:

Ватт (Вт) = Вольт (В) x Ампер (А)
1 Киловатт (кВт) = 1000 Вт (Вт)
1 киловатт-час (кВтч) = 1000 Вт-час

Расчет требований к мощности сервера

Теперь, когда вы понимаете терминологию и уравнения, как рассчитать энергопотребление сервера? Как правило, отдельный сервер использует примерно 0.5 — 2,0 ампера и 200-450 ватт в час.

Используйте ваттметр или вольтметр

Для получения более точных результатов проверьте использование ватт на одном сервере со всеми ядрами, полностью загруженными с помощью ваттметра или амперметра.

Прочтите производственные спецификации

Вы можете определить требования к питанию, изучив производственные характеристики вашего сервера в Интернете. Например, сервер HP ProLiant DL380 G7 имеет несколько конфигураций питания с максимальной номинальной мощностью 460 Вт, 750 Вт и 1200 Вт.Мощность частично определяется вольтами, включая: 100 В, 120 В, 208 В, 200 В, 220 В, 230 В и 240 В — чем выше напряжение, тем выше мощность.

Расчет мощности цепи

Если вы не уверены в своих характеристиках или не хотите тестировать свои серверы с помощью ваттметра, вы можете использовать ватт (Вт), равный вольтам (В), умноженным на амперы (А) из приведенного выше уравнения W = V x A). Например, 230 В, умноженное на 20 А, равняется 4600 Вт. В этом примере мощность 4600 Вт, скорее всего, потребует питания от половины стойки до полной стойки серверов.

Коэффициент мощности

Обязательно учитывайте коэффициент мощности. Коэффициент мощности должен составлять примерно 80% от максимальной мощности. Например, умножьте 0,80 на 4600 Вт, чтобы получить 3680 Вт. При расчете затрат используйте 3680 Вт вместо максимальных 4600 Вт. Это также называется продолжительной ничьей.

Расчет киловатт-часов (кВтч)

Теперь, когда вы вычислили ватт, пора рассчитать ежемесячное потребление киловатт-часов для ваших серверов. Обязательно укажите энергопотребление коммутаторов и соответствующего оборудования.

Первый шаг — найти среднее количество часов в месяц. Для этого просто возьмите 24 часа в сутки и умножьте на 30 дней в месяце. Ответ — 720 часов в месяц.

Далее вы захотите решить для киловатт. Для этого вам нужно будет разделить свои ватты на 1000. Например, возьмите 3680 Вт и разделите на 1000, чтобы получить 3,68 кВт.

Чтобы получить киловатты в час, просто возьмите киловатты и умножьте их на часы в течение определенного периода времени. Например, возьмите 3.68 кВт и умножьте на 720 часов в месяц, чтобы получить 2649,60 кВтч. 2649,60 кВтч — это количество энергии, которое ваши серверы и соответствующее оборудование используют в месяц.

Сводка расчетов:

Ватт (Вт) = Вольт (В) x Ампер (A)
Коэффициент мощности (PF) x Ватт (Вт)
Ежемесячные часы = 24 часа x 30 дней
Киловатт x час = Киловатт-час (кВт · ч) )

Вы сделали всю тяжелую работу по определению требований к питанию сервера. Все, что осталось, — это цена за киловатт-час и расчет общих затрат на электроэнергию.Существует две основные модели ценообразования на электроэнергию центра обработки данных — без учета и без учета.

Измеренная мощность

Самая распространенная модель ценообразования называется измеренной мощностью. В этой модели с вас взимается плата за электроэнергию, которую вы используете, аналогично тому, как коммунальная компания взимает плату с бытового потребителя. Измеряемая мощность — это сквозные затраты от коммунальной компании до центра обработки данных и потребителя. Наценки на электроэнергию из центра обработки данных редко бывают. Однако некоторым центрам обработки данных может потребоваться минимум 40-50% от общей установленной мощности в месяц.Также может быть ежегодное увеличение, взимаемое центром обработки данных, чтобы учесть увеличение, взимаемое коммунальной компанией.

Географическое положение

Обязательно принимайте во внимание стоимость электроэнергии за кВтч в разных географических регионах, поскольку это может существенно увеличить затраты на электроэнергию. См. Пример ниже, показывающий, как разница в цене за киловатт-час может повлиять на ежемесячные затраты на электроэнергию.

Примеры измеренной мощности:

Калифорния: 2 649,60 кВтч x.1763 / кВтч = 467,12 доллара США / месяц
Нью-Йорк: 2649,60 кВтч x 0,1583 / кВтч = 419,43 доллара США / месяц
Техас: 2649,60 кВтч x 0,0813 / кВтч = 215,41 доллара США / месяц

Неизмеренная мощность

В дополнение к измеренной мощности, неизмеренная мощность — это модель ценообразования, при которой центр обработки данных или поставщик услуг колокации взимает фиксированную плату за схему (и). Например, провайдер может предложить мощность 32 А или 7360 Вт, включенную в комплексное предложение, с пространством, мощностью, полосой пропускания, IP и удаленными руками.

Сводка

Не секрет, что мощность является одним из наиболее важных факторов при выборе площадки для центра обработки данных.Знание того, как рассчитать мощность, может помочь вам спрогнозировать затраты и принять важные решения о том, где разместить ИТ-инфраструктуру. Это также может быть полезно при определении обновлений сервера или целесообразности виртуализации.

Измерение и анализ мощности электродвигателя

Билл Гэтеридж, менеджер по продукции, Power Measuring Instruments, Yokogawa Corporation of America

Часть 1: Основные измерения электрической мощности

Электродвигатели — это электромеханические машины, преобразующие электрическую энергию в механическую.Несмотря на различия в размере и типе, все электродвигатели работают примерно одинаково: электрический ток, протекающий через катушку с проволокой в ​​магнитном поле, создает силу, которая вращает катушку, создавая крутящий момент.

Понимание выработки электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим, поэтому давайте начнем с обзора основных измерений электрической и механической мощности.

Что такое мощность? В самом простом виде мощность — это работа, выполняемая в течение определенного периода времени.В двигателе мощность передается на нагрузку путем преобразования электрической энергии в соответствии со следующими законами науки.

В электрических системах напряжение — это сила, необходимая для перемещения электронов. Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение. Умножив напряжение на соответствующий ток, можно определить мощность.

P = V * I, где мощность (P) в ваттах, напряжение (V) в вольтах, а ток (I) в амперах

Ватт (Вт) — единица мощности, определяемая как один джоуль в секунду.Для источника постоянного тока расчет — это просто напряжение, умноженное на ток: W = V x A. Однако определение мощности в ваттах для источника переменного тока должно включать коэффициент мощности (PF), поэтому W = V x A x PF для переменного тока. системы.

Коэффициент мощности представляет собой безразмерное отношение в диапазоне от -1 до 1 и представляет собой количество реальной мощности, выполняемой при работе с нагрузкой. При коэффициенте мощности меньше единицы, что почти всегда имеет место, будут потери в реальной мощности. Это связано с тем, что напряжение и ток в цепи переменного тока имеют синусоидальную природу, а амплитуда тока и напряжения в цепи переменного тока постоянно смещается и обычно не идеально совмещена.

Поскольку мощность равна напряжению, умноженному на ток (P = V * I), мощность является максимальной, когда напряжение и ток выстраиваются вместе, так что пики и нулевые точки на сигналах напряжения и тока возникают одновременно. Это типично для простой резистивной нагрузки. В этой ситуации две формы сигналов находятся «в фазе» друг с другом, а коэффициент мощности будет равен 1. Это редкий случай, поскольку почти все нагрузки не просто обладают идеальным сопротивлением.

Говорят, что два сигнала «не в фазе» или «сдвинуты по фазе», если два сигнала не коррелируют от точки к точке.Это может быть вызвано индуктивными или нелинейными нагрузками. В этой ситуации коэффициент мощности будет меньше 1, и реальная мощность будет меньше.

Из-за возможных колебаний тока и напряжения в цепях переменного тока мощность измеряется несколькими способами.

Реальная или истинная мощность — это фактическая мощность, используемая в цепи, и измеряется в ваттах. В цифровых анализаторах мощности используются методы оцифровки сигналов входящего напряжения и тока для расчета истинной мощности в соответствии с методом, показанным на Рисунке 1.

В этом примере мгновенное напряжение умножается на мгновенный ток (I), а затем интегрируется за определенный период времени (t). Истинный расчет мощности будет работать с любым типом сигнала независимо от коэффициента мощности (рисунок 2).

Гармоники создают дополнительную сложность. Несмотря на то, что электрическая сеть номинально работает на частоте 60 Гц, существует много других частот или гармоник, которые потенциально могут существовать в цепи, а также может присутствовать составляющая постоянного или постоянного тока.Общая мощность рассчитывается путем рассмотрения и суммирования всего содержимого, включая гармоники.

Методы расчета, показанные на Рисунке 2, используются для обеспечения истинного измерения мощности и истинных измерений среднеквадратичного значения для любого типа сигнала, включая все гармоники, вплоть до полосы пропускания прибора.

Измерение мощности

Далее мы посмотрим, как на самом деле измерить мощность в данной цепи. Ваттметр — это прибор, который использует напряжение и ток для определения мощности в ваттах.Теория Блонделя утверждает, что общая мощность измеряется минимум на один ваттметр меньше, чем количество проводов. Например, однофазная двухпроводная схема будет использовать один ваттметр с одним измерением напряжения и одним измерением тока.

Однофазная трехпроводная двухфазная система часто встречается в проводке общего корпуса. Эти системы требуют двух ваттметров для измерения мощности.

В большинстве промышленных двигателей используются трехфазные трехпроводные схемы, которые измеряются двумя ваттметрами.Таким же образом потребуются три ваттметра для трехфазной четырехпроводной схемы, при этом четвертый провод является нейтралью.

На рисунке 3 показана трехфазная трехпроводная система с нагрузкой, подключенной с использованием метода измерения двух ваттметров. Измеряются два линейных напряжения и два связанных фазных тока (с помощью ваттметров Wa и Wc). Четыре измерения (линейный и фазный ток и напряжение) используются для достижения общего измерения.

Поскольку этот метод требует контроля только двух токов и двух напряжений вместо трех, установка и конфигурация проводки упрощаются.Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и низкая стоимость установки делают его подходящим для производственных испытаний, при которых требуется измерить только мощность или несколько других параметров.

Для инженерных и научно-исследовательских работ лучше всего подходит трехфазный трехпроводной метод с тремя ваттметрами, поскольку он предоставляет дополнительную информацию, которая может использоваться для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока.Измеряются все три напряжения (от a до b, от b до c, от c до a), и контролируются все три тока.

Рис. 4. При проектировании двигателей и приводов просмотр всех трех значений напряжения и тока является ключевым, поэтому лучшим выбором является метод трех ваттметров на рисунке выше.

Измерение коэффициента мощности

При определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Ø). Это определяется как коэффициент мощности «смещения» и подходит только для синусоидальных волн.Для всех других форм сигналов (несинусоидальных волн) коэффициент мощности определяется как активная мощность в ваттах, деленная на полную мощность в напряжении-амперах. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных.

Однако, если нагрузка несимметрична (фазные токи разные), это может привести к ошибке при вычислении коэффициента мощности, поскольку в расчете используются только два измерения ВА. Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, будет получен ошибочный результат.

Следовательно, лучше всего использовать метод трех ваттметров для несимметричных нагрузок, поскольку он обеспечивает правильный расчет коэффициента мощности как для сбалансированных, так и для несимметричных нагрузок.

Анализаторы мощности

от Yokogawa и некоторых других компаний используют описанный выше метод, который называется методом подключения 3V-3A (трех напряжений и трех токов). Это лучший метод для инженерных и проектных работ, поскольку он обеспечивает правильные измерения общего коэффициента мощности и ВА для симметричной или несимметричной трехпроводной системы.

Основные измерения механической мощности

В электродвигателе механическая мощность определяется как скорость, умноженная на крутящий момент. Механическая мощность обычно определяется как киловатты (кВт) или лошадиные силы (л.с.), причем один ватт равен одному джоулю в секунду или одному ньютон-метру в секунду.

Лошадиная сила — это работа, выполняемая за единицу времени. Один л.с. равен 33 000 фунт-футов в минуту. Преобразование л.с. в ватты достигается с использованием этого соотношения: 1 л.с. = 745,69987 Вт.Однако преобразование часто упрощается за счет использования 746 Вт на л.с. (Рисунок 9).

Для асинхронных двигателей переменного тока фактическая скорость вращения ротора — это скорость вращения вала (ротора), обычно измеряемая с помощью тахометра. Синхронная скорость — это скорость вращения магнитного поля статора, рассчитанная как 120-кратная частота сети, деленная на количество полюсов в двигателе. Синхронная скорость — это теоретическая максимальная скорость двигателя, но ротор всегда будет вращаться немного медленнее, чем синхронная скорость из-за потерь, и эта разница скоростей определяется как скольжение.

Скольжение — это разница в скорости ротора и синхронной скорости. Для определения процента скольжения используется простой процентный расчет синхронной скорости минус скорость ротора, деленная на синхронную скорость.

КПД можно выразить в простейшей форме как отношение выходной мощности к общей входной мощности или КПД = выходная мощность / входная мощность. Для двигателя с электрическим приводом выходная мощность является механической, в то время как входная мощность является электрической, поэтому уравнение эффективности выглядит следующим образом: эффективность = механическая мощность / электрическая входная мощность.

Часть 2: Выбор приборов для измерения и анализа мощности электродвигателя

Различные ассоциации разработали стандарты тестирования, которые определяют точность приборов, необходимых для соответствия их стандарту: IEEE 112 2004, NVLAP 160 и CSA C390. Все три включают стандарты для измерения входной мощности, напряжения и тока, датчиков крутящего момента, скорости двигателя и т. Д. Трансформаторы тока (CT) и трансформаторы напряжения (PT) являются одними из основных контрольно-измерительных приборов, используемых для выполнения этих измерений.

Соответствующие стандарты очень похожи, за некоторыми исключениями. Допустимые инструментальные ошибки для стандартов IEEE 112 2004 и NVLAP 150 идентичны; однако CSA C390 2006 имеет некоторые отличия в отношении температуры и показаний.

Например, требования к входной мощности для CSA C390 2006 составляют ± 0,5% от показания и должны включать ошибки CT и PT, тогда как для IEEE 112 2004 и NVLAP 150 требуется только ± 0,5% от полной шкалы.

Датчики тока

Датчики тока обычно требуются для тестирования, потому что сильный ток не может быть подан непосредственно в измерительное оборудование.Существует множество датчиков, подходящих для конкретных приложений. Накладные датчики могут использоваться с анализаторами мощности. Также можно использовать щупы для осциллографа, но при их использовании следует соблюдать осторожность, чтобы убедиться, что прибор не подвергается воздействию высоких токов.

Для трансформаторов тока подводящий провод может быть подключен через окно (трансформаторы тока обычно имеют форму пончика или продолговатую, с отверстием или внутренней частью, называемыми окном), или слаботочные соединения могут быть выполнены с клеммами в верхней части устройство.Шунты обычно используются для приложений постоянного тока, но не переменного тока или искаженных частот, хотя их можно использовать для синхронных двигателей с частотой до нескольких сотен Гц. Доступны специализированные трансформаторы тока, которые хорошо работают на высоких частотах, которые чаще встречаются в осветительных приборах, а не в двигателях и приводах.

Yokogawa вместе с LEM Instruments разработали уникальную систему трансформаторов тока, которая обеспечивает высокую точность в диапазоне от постоянного тока до кГц. Это трансформатор активного типа, использующий блок кондиционирования источника питания и обеспечивающий точность около 0.05 до 0,02% от показания. Этот тип системы трансформатора тока обеспечивает очень высокую точность измерений, особенно для частотно-регулируемых приводов, которая может изменяться от 0 Гц до рабочей скорости подключенного двигателя.

Трансформаторы напряжения просто преобразуют напряжение с одного уровня на другой. В измерительных приложениях иногда требуются понижающие трансформаторы для снижения напряжения, подаваемого на измерительный прибор, хотя многие приборы могут работать с относительно высокими напряжениями и не требуют понижающего трансформатора.

Измерительные трансформаторы обычно представляют собой комбинацию трансформатора тока и трансформатора напряжения и могут уменьшить количество требуемых преобразователей в некоторых измерительных приложениях.

Рекомендации и меры предосторожности при выборе

При принятии решения, какое устройство использовать, первым вопросом является частотный диапазон измеряемых параметров. Для синусоидальных волн постоянного тока можно использовать шунты постоянного тока, которые обеспечивают высокую точность и простую установку. Для приложений переменного и постоянного тока можно использовать эффект Холла или измерительный трансформатор активного типа.Технология эффекта Холла имеет более низкую точность, в то время как активный тип обеспечивает большую точность. Различные измерительные трансформаторы могут работать на высоких частотах 30 Гц и более, но их нельзя использовать для постоянного тока.

Следующее соображение — требуемый уровень точности. Для измерительного трансформатора это обычно указывается как точность передаточного числа витков. Фазовый сдвиг — еще один важный фактор, и он очень важен, потому что многие трансформаторы предназначены только для измерения тока и не имеют компенсации фазового сдвига.

Фазовый сдвиг в основном зависит от коэффициента мощности для измерения мощности и, таким образом, влияет на расчет мощности. Например, трансформатор тока, который имеет максимальный фазовый сдвиг 2 ° как часть своей спецификации, внесет ошибку косинуса (2 °) или ошибку 0,06%. Пользователь должен решить, приемлем ли этот процент ошибок для приложения.

Источником тока является трансформатор тока. Согласно закону Ома, напряжение (E) равно току через проводник (I), умноженному на сопротивление (R) проводника в омах.Открытие вторичной обмотки трансформатора тока эффективно увеличивает сопротивление до бесконечности. Это означает, что внутренний ток насыщает катушку, напряжение также стремится к бесконечности, и устройство повреждается или разрушается. Что еще хуже, трансформатор тока со случайно разомкнутой вторичной обмоткой может серьезно травмировать рабочих.

Никогда не размыкайте вторичную обмотку трансформатора тока. Пользователи могут получить серьезные травмы, а CT может быть поврежден или разрушен.

Совместимость приборов

Для определения совместимости прибора необходимо определить выходной уровень ТТ.Клеммные и другие трансформаторы тока обычно имеют выходную мощность, указанную в милливольтах на ампер, миллиампер на ампер или ампер. Типичный выходной ток измерительного ТТ может быть указан в диапазоне от 0 до 5 ампер.

Необходимо учитывать импеданс и нагрузку на ТТ, которые являются факторами, на которые влияет количество проводов, используемых для подключения ТТ к прибору. Эта проводка является сопротивлением или нагрузкой на прибор и, следовательно, может повлиять на измерения.

Пробники

при неправильном использовании могут создавать собственный набор проблем.Многие пробники осциллографа предназначены для работы с входным сопротивлением осциллографа, но диапазоны входного сопротивления анализатора мощности могут отличаться, и это необходимо учитывать.

Еще один аспект, который следует учитывать при определении совместимости прибора, — это физические требования к устройству. Размер необходимо учитывать вместе с типом трансформатора тока, например, зажимного или кольцевого типа, каждый из которых будет лучше работать в конкретной ситуации.

Пример системы с трехфазным двигателем

Теперь мы рассмотрим типичное трехфазное трехпроводное измерение мощности двигателя с использованием метода двух ваттметров.Теорема Блонделя утверждает, что количество требуемых измерительных элементов на единицу меньше количества токонесущих проводников. Это позволяет измерять мощность в трехфазной трехпроводной системе с использованием двух преобразователей при отсутствии нейтрали. Однако, когда есть нейтраль, используются три преобразователя, поскольку теперь имеется четыре проводника.

Трехфазное питание используется в основном в коммерческих и промышленных средах, особенно для питания двигателей и приводов, поскольку более экономично эксплуатировать большое оборудование с трехфазным питанием.Для расчета трехфазной мощности напряжение каждой фазы умножается на ток каждой фазы, который затем умножается на коэффициент мощности, и это значение умножается на квадратный корень из трех (квадратный корень из 3 равен равно 1,732).

Для измерения трехфазной мощности, потребляемой нагруженным двигателем, подключается анализатор мощности. На рисунке 1 показано типичное соединение с дисплеем, на котором показаны все три напряжения, все три тока, общая мощность и коэффициент мощности.

На рисунке 2 показано трехфазное трехпроводное измерение мощности, выполненное с использованием метода двух ваттметров.Перечислены все три тока и напряжения, а также общие ВА и ВАР. Эта конфигурация может отображать отдельные показания мощности фазы, но их не следует использовать напрямую, потому что для этого метода измерения только полная мощность является точным показанием.

В основном, при использовании метода двух ваттметров в трехпроводной трехфазной системе невозможно измерить мощность отдельной фазы или измерить какие-либо параметры фазы, включая коэффициенты мощности фазы. Однако можно измерить все параметры фазы.

Для трехфазного двигателя с трехпроводным соединением в треугольник можно измерять линейные напряжения и токи отдельных фаз. Поскольку нейтрали нет, измерять фазные напряжения невозможно. Эта ситуация приводит к некоторым показаниям, которые необходимо пояснить.

Глядя на отображение формы сигнала на Рисунке 3, можно увидеть линейные напряжения Vab, Vbc и Vac. Линейные напряжения, измеряемые прибором, в сбалансированной системе разнесены на 60 °. Токи представляют собой фазные токи, которые приборы видят под углом 120 °.

Другое представление этой системы изображено на векторной диаграмме Phasor, показанной на рисунке 4. Треугольник в верхней части этого рисунка показывает измерения линейного напряжения черным цветом, значения фазного напряжения — красным (но это теоретические потому что нейтрали нет), а фазные токи синим цветом.

В нижней части рисунка показаны разности фаз между напряжениями и токами. Опять же, обратите внимание, что линейные напряжения разнесены на 60 °, а фазные токи разнесены на 120 °.Еще одна деталь заключается в том, что если бы верхняя диаграмма представляла чисто резистивную нагрузку, то синие токи были бы синхронизированы с красными напряжениями. Однако при индуктивной нагрузке (например, в двигателе) синие векторы тока не совпадают по фазе с напряжениями.

Кроме того, для этого метода измерения на нижней диаграмме векторы тока всегда будут иметь дополнительный сдвиг на 30 ° от напряжений. Суть в том, что правильно настроенный анализатор мощности учтет все эти условия.

Что делать, если фазная мощность и фазовый коэффициент мощности должны быть точно измерены в трехфазной трехпроводной системе, а не просто приблизительно? На рисунке 5 показан метод, позволяющий измерять фазовые параметры трехфазного трехпроводного двигателя путем создания плавающей нейтрали.

Однако у этой техники есть ограничения. Он будет хорошо работать на входе асинхронного двигателя, синхронного двигателя или аналогичного двигателя без привода с регулируемой скоростью. Следует соблюдать осторожность при использовании этого метода в системе привода с регулируемой скоростью, поскольку высокочастотные искаженные формы сигналов и гармоники могут привести к несогласованным измерениям.

Более того, метод плавающей нейтрали работает только для оборудования с сигналами синусоидального типа. С помощью привода с широтно-импульсной модуляцией (ШИМ) можно включить линейный фильтр 500 Гц (фильтр нижних частот), который затем позволит отображать показания для основной частоты, но не для общей частоты.

Трехпроводные и четырехпроводные измерения мощности

Важно понимать, что мощность будет считываться одинаково независимо от того, измерена ли она трехфазным трехпроводным или трехфазным четырехпроводным методом.Однако при трехфазном четырехпроводном соединении измеряемые значения напряжения представляют собой фазные напряжения от линии к нейтрали.

Рисунок 6 — снимок экрана анализатора мощности, который показывает, насколько похожи показания мощности и коэффициента мощности для привода с ШИМ, работающего с двигателем, сравнивая трехфазный трехпроводной вход с фильтром 500 Гц с трехфазным четырехпроводным. вход с плавающей нейтралью.

В альтернативном решении используется функция измерения дельты, которая есть в анализаторах мощности Yokogawa.Функция измерения дельты использует мгновенные измерения линейного напряжения и фазного тока для получения истинного межфазного напряжения, даже если фазы не сбалансированы. Это возможно благодаря вычислению векторной амплитуды внутри процессора. Эта функция также обеспечивает измерения фазной мощности в трехпроводной цепи. Решение для измерения дельты также обеспечивает нейтральный ток.

Часть 3: Измерения электрической мощности для трехфазного двигателя переменного тока

Полное тестирование системы привода и двигателя на основе ШИМ (широтно-импульсной модуляции) представляет собой трехэтапный процесс.Шаг 1 — это точное измерение входной и выходной мощности привода с регулируемой скоростью ШИМ для определения эффективности привода и потерь мощности. Шаг 2 — это точное измерение входной мощности двигателя, а шаг 3 — точное измерение механической мощности двигателя.

Оптимальный метод — объединить все три шага с помощью одного анализатора мощности, чтобы исключить временной сдвиг. Это также обеспечивает отличные расчеты эффективности в едином программно-аппаратном решении.

Рисунок 7: Этот снимок экрана анализатора мощности показывает, как функцию измерения дельты можно использовать для получения истинных показаний и мощности фазы, даже если фазы не сбалансированы.

Некоторые анализаторы мощности имеют опцию двигателя, в которой сигналы скорости и момента могут быть интегрированы таким образом. Эти анализаторы мощности могут измерять электрическую мощность и механическую мощность и отправлять данные на ПК с запущенным программным обеспечением от оригинального производителя анализатора или заказным программным обеспечением от системного интегратора.

Измерения привода ШИМ для двигателей переменного тока

При использовании частотно-регулируемого привода с ШИМ для управления двигателем часто бывает необходимо измерить как входной, так и выходной сигнал частотно-регулируемого привода с помощью шестифазного анализатора мощности.Эта установка может не только измерять трехфазную мощность, она также может измерять постоянную или однофазную мощность. См. Рисунок 1.

В зависимости от анализатора режим настройки будет выполняться в нормальном или среднеквадратичном режиме. Конфигурация проводки должна соответствовать применению, например, трехфазный вход и трехфазный выход.

Любой линейный фильтр или фильтр нижних частот должны быть выключены, поскольку фильтрация затрудняет измерения. Однако фильтр пересечения нуля или частотный фильтр должен быть включен, потому что он будет фильтровать высокочастотный шум, чтобы можно было измерить основную частоту.Это измерение необходимо при отслеживании частоты привода.

На рис. 2 показан сигнал выходного напряжения ШИМ с сильно искаженным напряжением, срезанными высокими частотами и с большим количеством шумов на токовой стороне, что затрудняет измерение. Высокочастотное переключение сигнала напряжения создает сильно искаженную форму волны с высоким содержанием гармоник. Частота варьируется от 0 Гц до рабочей скорости.

Для такого зашумленного сигнала нужны специальные датчики тока для измерения.Для точных измерений мощности с ШИМ также необходимы анализаторы мощности с широкой полосой пропускания, способные измерять эти сложные сигналы.

На рисунке 3 показан пример содержания гармоник напряжения на выходе ШИМ. Присутствуют частоты биений, а содержание гармоник напряжения превышает 500 порядков (примерно 30 кГц). Большая часть гармоник приходится на нижние частоты на токовой стороне.

Проблемы измерения привода двигателя с ШИМ

Напряжение инвертора обычно измеряется одним из двух способов.Можно использовать истинное среднеквадратичное измерение, которое включает полное содержание гармоник. Однако, поскольку основная форма волны — это в первую очередь то, что способствует крутящему моменту двигателя, можно выполнить и использовать более простые измерения. Для большинства приложений требуется только измерение основной формы волны.

Существует два основных метода измерения основной амплитуды волны напряжения. Первый и самый простой — использовать фильтр нижних частот для удаления высоких частот. Если в анализаторе мощности есть этот фильтр, просто включите его.Правильная фильтрация даст среднеквадратичное значение напряжения основной частоты инвертора. Однако этот тип фильтрации не обеспечивает истинного измерения полной мощности, поэтому фильтрация — не самый требовательный метод.

Второй метод — это метод измерения выпрямленного среднего, который выдает среднеквадратичное значение напряжения основной волны без фильтрации с использованием определения среднего значения напряжения, масштабированного до среднеквадратичного напряжения. Алгоритм выпрямленного среднего среднего за цикл обеспечит эквивалент основного напряжения, который будет очень близок к среднеквадратичному значению основной волны.

С помощью этого метода можно измерить полную мощность, общий ток и напряжение основной гармоники.

Измерение амплитуды основной волны с помощью гармонического анализа

Функцию гармонического анализа можно использовать для определения истинного основного напряжения с помощью быстрого преобразования Фурье (БПФ) для определения амплитуды каждой гармонической составляющей, включая основную волну. Это дает точное измерение среднеквадратичного напряжения основной волны. Новейшие анализаторы мощности могут выполнять одновременные измерения истинных среднеквадратичных значений и гармонических составляющих.

На рисунке 4 Urms2 (среднеквадратичное значение на выходе ШИМ) является очень большим числом, а F2 (среднее значение основной гармоники) несколько ниже. Значение Urms3 (фильтрация основного) дает аналогичный результат. Наконец, U2 (1) получается из анализа гармоник или вычислений FFT основной гармоники. F2, Urms3 и U2 (1) дают очень близкие результаты, но расчет U2 (1) FFT считается наиболее точным.

Инверторный ток обычно измеряется только в одном направлении, и это как истинный среднеквадратичный сигнал, потому что все гармонические токи способствуют повышению температуры в двигателе и ответственны за него, поэтому все они должны быть измерены.

Еще одно важное измерение связано с приводом В / Гц (Вольт-на-Герц). Привод с ШИМ должен поддерживать постоянное соотношение В / Гц по сравнению с рабочей скоростью двигателя. Анализатор мощности может рассчитывать В / Гц, используя среднеквадратичное значение или значение основного напряжения. Определенная пользователем математическая функция анализатора используется для построения уравнения для этого измерения.

Измерение напряжения шины постоянного тока

Напряжение на шине постоянного тока в ШИМ может быть измерено для проверки условий повышенного и пониженного напряжения.Это измерение может быть выполнено внутри привода на клеммах конденсаторной батареи. Однако более простой способ — использовать отображение формы сигнала анализатора мощности с измерением курсора.

При отображении формы сигнала с помощью курсорного измерения необходимо убедиться, что курсор не находится прямо над небольшими выступами на дисплее. Вместо этого курсор должен находиться поперек осциллограммы, чтобы выполнить точное измерение. На рисунке 5 показано измерение напряжения ШИМ с высокоскоростным переключением.Курсор устанавливается для чтения значения, например 302,81 В.

Измерение механической мощности

Механическая мощность измеряется как скорость двигателя, умноженная на крутящий момент двигателя. На рынке существует множество различных типов датчиков скорости и крутящего момента, которые работают с различными двигателями. Хотя анализаторы Yokogawa могут взаимодействовать с большинством датчиков скорости и крутящего момента, все же целесообразно подтверждать совместимость в каждом случае. Эти датчики могут использоваться для предоставления информации о механических измерениях для расчета измерений механической мощности в анализаторе мощности.

Многие датчики поставляются с интерфейсной электроникой для правильной обработки сигнала для работы с анализаторами мощности или другим оборудованием. Условный сигнал может быть аналоговым выходом или выходом последовательной связи, который идет на ПК и его прикладное системное программное обеспечение.

Одним из вариантов измерения механической мощности является использование как датчика, так и соответствующего измерительного прибора от данного производителя. Такой подход имеет преимущества, поскольку датчики будут точно согласованы с прибором.Будут доступны показатели крутящего момента, скорости и мощности, и, вероятно, будут варианты подключения к ПК вместе с соответствующим прикладным программным обеспечением.

Более интегрированный подход изображен на рисунке 6. В этой конфигурации выходные сигналы скорости и крутящего момента от измерительных приборов датчика подключаются непосредственно к входам скорости и крутящего момента анализатора мощности. Это дает большое преимущество, заключающееся в том, что измерения электрической и механической мощности могут оцениваться одновременно, а расчеты эффективности могут выполняться непрерывно.

КПД двигателя, привода и системы

КПД инвертора в простейшей форме рассчитывается как выходная мощность, деленная на входную мощность, и выражается в процентах. Один из методов, используемых для измерения входной и выходной мощности, заключается в простом подключении измерителей мощности на входе и выходе, при этом показания двух измерителей используются для расчета эффективности.

Более комплексным методом является использование анализатора мощности с несколькими входами для одновременного измерения входа и выхода, как показано на рисунке 1.Это приводит к более точному расчету эффективности, поскольку он использует один анализатор мощности для устранения потенциальных ошибок, вызванных измерениями временного сдвига.

С помощью внутренних математических вычислений, предоставляемых анализатором, можно настроить очень простое вычисление через меню для расчета потерь привода и эффективности привода.

Какой метод мне следует использовать?

IEEE 112 — это промышленный стандарт США для тестирования двигателей, в котором описаны несколько методов.На рисунке 7 показан дисплей анализатора мощности, поддерживающий «Метод A» стандарта IEEE 112, в котором вся механическая мощность делится на общую мощность, потребляемую двигателем. Стандарт определяет многие параметры, помимо измерений тока и напряжения двигателя, и предоставляет инструкции по проведению общепринятых испытаний многофазных и асинхронных двигателей и генераторов и составлению отчетов по ним. Кроме того, стандарт содержит 11 методов испытаний, чтобы определить, как проводить измерения эффективности двигателей.

Метод испытаний A — ввод-вывод, определенный в IEEE 112: КПД рассчитывается как отношение выходной мощности измерения к измеренной входной мощности после корректировки температуры и динамометра, если применимо.Испытания проводятся при номинальной нагрузке с помощью механического тормоза или динамометра. Этот рейтинг должен быть ограничен двигателями с номинальной полной нагрузкой не более 1 кВт.

Метод испытаний B — ввод-вывод с разделением потерь: В методе B выполняются измерения как входной, так и выходной мощности, но различные потери разделяются. Большинство этих потерь просто производят тепло, которое должно рассеиваться двигателем в сборе, и представляют собой энергию, недоступную для выполнения работы. Этот метод является признанным стандартом тестирования U.S. автомобилестроение для двигателей с полной нагрузкой от 1 до 300 кВт.

Хотя оба метода A и B работают, метод B требует большого количества приборов и обычно выполняется только производителями двигателей. Поскольку большинство производителей используют метод B, а большинство пользователей предпочитают метод A, расчеты эффективности между ними могут отличаться. Данные производителей двигателей и приводов могут использовать разные скорости двигателя, испытательные нагрузки или другие условия испытаний.

Заключение

При измерении мощности электродвигателя необходимо учитывать множество факторов, например, полный и истинный коэффициент мощности.Эти измерения включают сложные уравнения, поэтому большинство компаний используют анализаторы мощности для автоматического получения результатов.

После принятия решения об использовании анализатора мощности необходимо принять решение о частотном диапазоне и уровне точности. Совместимость приборов — еще один важный аспект безопасного получения точных показаний, особенно с трансформаторами тока, и это та область, где необходимо учитывать ввод / опции анализатора. При правильных входных сигналах датчиков измерения механической мощности также можно проводить с помощью анализатора мощности.Выбор правильных датчиков скорости и крутящего момента — это первый шаг в определении механической мощности.

Некоторые анализаторы мощности также позволяют выполнять измерения с широтно-импульсной модуляцией. Однако настройка анализатора для измерения ШИМ также требует знания о том, как токи и напряжения будут влиять на измерения мощности.

Прецизионный высокочастотный анализатор мощности — важный инструмент для измерения как механической, так и электрической мощности. Его функции анализа и показания могут помочь улучшить работу и даже продлить срок службы двигателя.Выбор подходящего анализатора и его правильная реализация требуют знаний; однако при правильном использовании данные анализатора мощности предоставят точные и очень ценные данные.

11.4: Практическая коррекция коэффициента мощности

Когда возникает необходимость исправить низкий коэффициент мощности в системе питания переменного тока, у вас, вероятно, не будет роскоши знать точную индуктивность нагрузки в генри, чтобы использовать ее для своих расчетов.

Возможно, вам повезло иметь прибор под названием измеритель коэффициента мощности , который покажет вам коэффициент мощности (число от 0 до 1) и полную мощность (которую можно вычислить, сняв показания вольтметра в вольт. и умножение на показание амперметра в амперах).В менее благоприятных обстоятельствах вам, возможно, придется использовать осциллограф для сравнения форм сигналов напряжения и тока, измерения фазового сдвига в градусов и вычисления коэффициента мощности по косинусу этого фазового сдвига.

Скорее всего, у вас будет доступ к ваттметру для измерения истинной мощности, показания которого вы можете сравнить с расчетом полной мощности (умножением общего напряжения на измерения полного тока). По значениям истинной и полной мощности вы можете определить реактивную мощность и коэффициент мощности.

Давайте рассмотрим пример задачи, чтобы увидеть, как это работает: (Рисунок ниже)

Ваттметр показывает истинную мощность; произведение показаний вольтметра и амперметра дает полную мощность.

Как рассчитать полную мощность в кВА

Во-первых, нам нужно рассчитать полную мощность в кВА. Мы можем сделать это, умножив напряжение нагрузки на ток нагрузки:

Как мы видим, 2,308 кВА — это намного больше, чем 1,5 кВт, что говорит нам о том, что коэффициент мощности в этой схеме довольно низкий (существенно меньше 1).Теперь рассчитаем коэффициент мощности этой нагрузки, разделив истинную мощность на полную:

Используя это значение для коэффициента мощности, мы можем нарисовать треугольник мощности и по нему определить реактивную мощность этой нагрузки: (рисунок ниже)

Реактивная мощность может быть рассчитана на основе истинной и полной мощности.

Как использовать теорему Пифагора для определения неизвестного количества треугольников

Чтобы определить неизвестную величину треугольника (реактивная мощность), мы используем теорему Пифагора «в обратном направлении», учитывая длину гипотенузы (полная мощность) и длина соседней стороны (истинная мощность):

Как скорректировать коэффициент мощности с помощью конденсатора

Если эта нагрузка представляет собой электродвигатель или любую другую промышленную нагрузку переменного тока, она будет иметь запаздывающий (индуктивный) коэффициент мощности, что означает, что нам придется исправить это с помощью конденсатора соответствующего размера , подключенного параллельно. .Теперь, когда мы знаем количество реактивной мощности (1,754 кВАр), мы можем рассчитать размер конденсатора, необходимый для противодействия ее воздействию:

Округляя этот ответ до 80 мкФ, мы можем поместить конденсатор такого размера в схему и вычислить результаты: (рисунок ниже)

Параллельный конденсатор корректирует запаздывающую (индуктивную) нагрузку.

Конденсатор 80 мкФ будет иметь емкостное реактивное сопротивление 33,157 Ом, что дает ток 7,238 ампер и соответствующую реактивную мощность 1.737 кВАр (для конденсатора только ). Поскольку ток конденсатора на 180 o не совпадает по фазе с индуктивным вкладом нагрузки в потребляемый ток, реактивная мощность конденсатора будет напрямую вычитаться из реактивной мощности нагрузки, в результате чего получится:

Эта поправка, конечно, не изменит количество истинной мощности, потребляемой нагрузкой, но приведет к существенному снижению полной мощности и общего тока, потребляемого от источника 240 В: (рисунок ниже)

Треугольник мощности до и после коррекции конденсатора.