Расчет потребляемой электрической мощности дома
Информация о материале
59793
Основным показателем, рассчитываемым в проекте электрики частного дома, является общая потребляемая мощность. Заказав проект электрики, владелец частного дома обязательно получит цифру потребляемой мощности, которая будет в нем указана. Но часто бывает полезно понять ориентировочную потребляемую мощность еще до заказа проекта, на этапе покупки «киловатт». Предварительный расчет поможет Вам определиться с величиной покупаемой мощности (если есть различные предложения), а также осмысленно подойти к своим потребностям в части энергопотребления. Иногда бывает выгоднее отказаться от некоторых энергопотребителей, чем платить за лишние киловатты.
Основой расчета общей потребляемой мощности частного дома, выполняемого в ходе проектирования электрики, являются нагрузки оконечных потребителей электроэнергии. Именно данные о примерном потреблении электричества элементами освещения, силовым оборудованием и бытовыми приборами, используемыми в Вашем доме, и дадут возможность проведения самостоятельной «прикидки» требуемых киловатт.
Для самостоятельного расчета требуемой электрической мощности на Ваш дом, приводим таблицу «Ведомость потребителей электроэнергии (ориентировочная)» (Таблица №1). Данные, приведенные в таблице, основаны на нашем опыте проектирования систем электроснабжения и освещения частных домов. Являясь ориентировочными, приведенные значения потребляемой мощности достаточно точно отражают их реальные значения, поскольку взяты из технических паспортов на соответствующее оборудование.
Таблица 1. Ведомость потребителей электроэнергии (ориентировочная)
Наименование оборудования | Рн, кВт (за ед.) | Uн, В сети |
Лампа накаливания | 0,04…0,10 | 220 |
Лампа люминесцентная | 0,04 | 220 |
Лампа светодиоднаяийпрлиныителиельнойнергии | 0,02 | 220 |
Лампа галогенная | 0,04 | 220 |
Розеточное место | 0,1 | 220 |
Холодильник | 0,5 | 220 |
Электроплита | 4 | 220 |
Кухонная вытяжка | 0,3 | 220 |
Посудомоечная машина | 1,5 | 220 |
Измельчитель отходов | 0,4 | 220 |
Электроподжиг плиты | 0,1 | 220 |
Аэрогриль | 1,2 | 220 |
Чайник | 2,3 | 220 |
Кофемашина | 2,0 | 220 |
Стиральная машина | 1,5 | 220 |
Духовой шкаф | 1,2 | 220 |
Посудомоечная машина | 1,2 | 220 |
СВЧ-печь | 1,3 | 220 |
Гидромассажная ванна | 0,6 | 220 |
Сауна | 6,0 | 380 |
Котел электрический | 6-24 | 380 |
Котел газовый | 0,2 | 220 |
Насосное оборудование котельной | 0,8 | 220 |
Система химводоподготовки | 0,2 | 220 |
Привод ворот | 0,4 | 220 |
Телевизор «Плазма» | 0,4 | 220 |
Освещение улицы | 1,0 | 220 |
Компьютерное место | 0,9 | 220 |
Электрический теплый пол | 0,1-1,2 | 220 |
Септик | 0,3-1,0 | 220 |
Канализационно-напорная станция | 0,3-2,5 | 220-380 |
Кондиционер | 1,5 | 220 |
Вентиляционная установка | 0,3-7,4 | 220-380 |
Сауна | 3,8-14 | 220-380 |
Электрокамин | 0,3 | 220 |
Проводы рольставен | 0,3 | 220 |
Электрические полотенцесушители | 0,3-1,2 | 220 |
Парогенератор | 2,0-7,0 | 380 |
Скважный насос | 0,8-5,0 | 220-380 |
Кроме данных, приведенных в таблице 1, для расчета также понадобится коэффициент спроса, значение которого четко определено нормативными документами и приведено в таблице №2.
Таблица 2. Коэффициенты спроса (по нормативам)
┌────────────────────┬─────┬─────┬──────┬─────┬─────┬─────┬─────────────┐
│Заявленная мощность,│до 14│ 20 │ 30 │ 40 │ 50 │ 60 │ 70 и более │
│ кВт │ │ │ │ │ │ │ │
├────────────────────┼─────┼─────┼──────┼─────┼─────┼─────┼─────────────┤
│Коэффициент спроса │ 0,8 │0,65 │ 0,6 │0,55 │ 0,5 │0,48 │ 0,45 │
└────────────────────┴─────┴─────┴──────┴─────┴─────┴─────┴─────────────┘
Пример: если сумма потребителей у вас получилась 32,8 кВт, то по таблице №1 коэффициент спроса будет равен 0,6. Умножив 32,8 кВт на 0,6, получим ориентировочное значение потребляемой мощности (на дом) 19,68 кВт.
Полученную оценку потребляемой мощности Вашего дома Вы можете использовать в дальнейшем для корректировки значения приобретаемой мощности, либо своих потребностей, если выделенная мощность меньше полученного значения.
Расчет примерной мощности электроприборов
Содержание
Простой способ расчёта мощности электроприборов
Мощность каждого электроприбора указана в техпаспорте и дублируется на прикрепленной к нему бирке или табличке. Самый простой способ расчёта — просуммировать мощности всех подключаемых к стабилизатору или ИБП потребителей.
Поправка: сейчас мы рассмотрели оборудование без электродвигателей. Оно обладает только активной составляющей мощности. К этой категории относятся электроплиты, кипятильники, лампы накаливания и др.
Холодильники, стиральные машины, дрели и прочее оборудование с электродвигателями обладает также реактивной составляющей мощности.
Для таких электроприборов необходимо вычислить полную мощность (измеряется в Вольт-Амперах (ВА)), которая, в отличие от описанного выше, не будет равна активной мощности. Соотношение между полной и активной мощностью выражается формулой:
- Pполная = Pактивная / cos (ф).
Сos(φ) указывается в документации и на бирке электроприбора (встречается обозначение PF – Power Factor). При отсутствии данных допустимо принять cos(φ) в пределах 0,7-0,8.
Например, если P активная мощность электродрели составляет 700 Вт, то P полная рассчитывается как 700 / 0,7 = 1000 ВА.
Вывод: для точного расчета суммарной мощности нагрузки нужно сложить полную мощность всех выбранных приборов (в Вольт-Амперах). Для электроприборов без двигателей полная мощность будет равна активной.
Рекомендуется подбирать стабилизатор с мощностью, превышающей полученное суммированием значение на 20-30%, что обеспечит следующие преимущества:
- избавит оборудование от перегрузки;
- позволит подключать дополнительных потребителей.
Пусковые токи электроприборов с реактивной нагрузкой
Не следует забывать, что при запуске оборудования, содержащего электродвигатель (насос, компрессор), его «пусковой ток» в 3-5 раз превышает номинальное значение. Соответственно, в этот момент происходит пропорциональный пусковому току «скачок» нагрузки в 3-5 раз.
При выборе стабилизатора или ИБП следует обязательно учитывать пусковые токи защищаемого оборудования и подбирать аппарат по максимальному, пусковому значению мощности.
Например, если для электродрели с активной мощностью в 700 Вт купить стабилизатор на 1 кВт, то в момент запуска он будет отключаться по причине перегруза. В данном случае необходимо изделие минимум с трехкратным превышением по мощности:
- 700 Вт × 3 = 2,1 кВт.
Узнать больше про ИБП с двойным преобразованием.
Расчет мощности зарядной станции
Чтобы рассчитать зарядную мощность, вам необходимо знать количество фаз, напряжение (V вольты), силу тока (A амперы) и разъем питания Вашей зарядной станции. В трехфазном соединении также играет роль способ подключения зарядной станции к сети. В зависимости от схемы подключения напряжение составляет 230 или 380 вольт. Имея данную информацию вы можете произвести расчеты по формулам:
Мощность заряда (Однофазный переменный ток):
Мощность заряда (3,7 кВт) = фазы (1) * Напряжение (230 В) * сила тока (16 А)
Мощность заряда (Трехфазный переменный ток):
Мощность заряда (22 кВт) = фазы (3) * напряжение (230 В) * сила тока (32 А)
Пример:
Чтобы зарядная мощность составляла 22 кВт, ваша электрическая станция должна поддерживать трехфазную зарядку с напряжением 32 Ампер. Самое слабое звено в цепи определяет общую зарядную мощность станции. Однако все типы разъемов поддерживают максимальную мощность, об этом в нашей статье «Type 1 или Type 2».
Время зарядки электромобилей
Чтобы вычислить время зарядки, достаточно разделить емкость аккумулятора на зарядную мощность. На примере электромобиля Тесла – делим 85 кВтч на 22 кВт и получаем время зарядки, равное 3,9 часа. Однако состояние батареи может ограничивать зарядную мощность, когда заряжается, в связи с чем зарядная мощность не может быть постоянной. И поэтому при расчетах мы добавляем как минимум полчаса.
Время Зарядки = емкость аккумулятора / Мощность зарядки
Пример: 3,9 ч = 85 кВтч / 22 кВт
Запас хода
Для расчета дальности пробега просто разделите емкость батареи на потребление энергии и умножьте ее на 100. Но при этом мы получим лишь примерные значения, так как реальная дальность зависит, кроме прочего, от стиля вождения, дорожного покрытия и использования электрических потребителей, таких как печка или кондиционер. Но вся доступная мощность зачастую не используется, чтобы защитить аккумулятор.
Дальность = емкость батареи / потребление энергии (на 100 км) * 100
Пример: 469 км = 85 кВтч / (18,1 кВтч / 100 км) * 100
Способ расчета показателя силы тока при выборе нужного сечения проводов
Наша компания предоставляет услуги по разработке электропроекта в квартирах. Мы подготовили для Вас эту статью с полезной информацией. Надеемся, что Вам она пригодится.
В течение реализации электропроекта, чтобы вычислить возможную потерю напряжения, необходимо обязательно знать такие величины, как нагрузка и длина всех отдельных участков в сети. Только после этого можно будет непосредственно начинать проектирование расположения электрической сети. С имеющимися показателями составляется расчетная схема. Она различна для 3-фазных сетей и 1-фазных.
В первом случае вычисленная нагрузка сети делится на три части, которые распределяются одинаково по 3-м фазам. Однако на практике не всегда получается распределить нагрузку равномерно. Точнее всего это можно сделать с сетями, в которых работают 3-фазные двигатели. Если же в них применяются 1-фазные потребители, то сделать это намного сложнее. Такие сети с 3-фазными двигателями устанавливаются в городских системах снабжения электричеством потребителей. В них обычно действуют 1-фазные приемники электричества, поэтому в расчете нагрузки, поделенной на три равные части, всегда есть небольшие отклонения. Но во время проектирования устанавливаются равные части показателя нагрузки. Такой подход позволяет упростить процесс проектирования. Обычно делается расчетная схема только на одну линейную часть сети, т.е. на одну фазу. Показатели к остальным фазам берутся, как равносильные. В схеме обозначаются дополнительно места монтирования плавких предохранителей и аппаратов защиты сети от возможных сбоев и аварийных ситуаций.
Кроме всего этого во время проектирования электрической сети нужно обязательно учитывать особенность плана здания и разреза его помещений. Это необходимо потому, что в некоторых помещениях ранее уже была установлена электропроводка. На ней обычно указываются электротоки и мощность подключаемых приборов, в число которых входят розетки, осветительные приборы и т.п.
Способ расчета силы тока во время составления проекта базируется на уже существующем плане жилого населенного пункта или производственного предприятия. На нем обозначаются все точки включения разных групп электроприемников. Это могут быть отдельные дома, или просто знания производственного предприятия. При отсутствии такого плана невозможно сделать точный проект проектирования электросети. От этого в последующем зависит качество проведения электромонтажных работ.
На схеме длина отдельного участка электросети помечается согласно выбранному масштабу плана в целом. Если же чертежа нет, то тогда длины отдельных участков сети помечаются в реальном размере. Только в таком случае можно составить проект электросети без погрешностей.
Когда записывается расчетная схема электросети, соблюдать масштабирование, при нанесении на нее участков сети, не обязательно. Главное, чтобы верно были нанесены участки соединения отрезков электросети.
Рисунок A
На рисунке А показан пример схемы электрической линии наружного монтажа. По ней доставляется ток в населенный пункт силой в 380/220В. На ней начерчены участки сети, которые измеряются в метрах. Они располагаются, как слева, так и сверху. Показана и нагрузка с помощью стрелок вправо и вниз. На них указаны расчетные мощности. Их измеряют в киловаттах. На приведенном примере схемы главной, магистральной линией является отрезок АБВ. От него идут ответвления. Это отрезки ВЕ, БД, ВГ.
Вычисление расчетных мощностей электросети
Вычисление расчетных мощностей электросети (нагрузок) достаточно сложная работа. Она выполняется, как при создании проекта «с нуля», так и во время реконструкции объекта и его сетей. Каждый из подключенных приборов (люстра, телевизор, холодильник и т.д.) берут от сети определенное номинальное число мощности при заданном номинальном значении напряжения на зажимах. Данная мощность берется за расчетную величину для конкретного приемника электричества. Потом осуществляется определение значения расчетной мощности для электродвигателя сети. Данная работа намного сложнее, чем предыдущая. Полученный верный результат зависит от крутящегося момента. Он связан с двигателем подключаемых механизмов, в число которых входят вентилятор, станок и транспортер. Вычисленная номинальная мощность помечается на корпусе двигателя. Данный показатель отличается от фактически существующей мощности. Получается, что, например, нагрузка токарного станка число не константное. Оно меняется от толщины стружки, которая снимается с детали, а также от размера объекта обработки.
Вычисление расчетной мощности двигателя является трудной задачей еще и потому, что в ходе работы следует принимать во внимание количество возможно подсоединенных приемников электричества. А это играет важную роль в ходе проведения электромонтажных работ.
Примером тому выступает высчитывание нагрузки для электросети, которая предназначена для обеспечения энергией мастерской. Там функционируют тридцать электрических двигателей. Часть из них всегда работают без остановки. К ним относят двигатели вентиляторов. А вот двигатели станков работают в режиме с определенными перерывами. Часть из них вообще функционируют с неполной нагрузкой. Поэтому расчетная мощность сети в этой ситуации признается за переменную величину. Всегда берется данное значение с запасом, т.е. максимальный показатель. После определяется максимальный средний показатель за промежуток времени, равный тридцати минутам.
Формула расчета мощности электрических приемников, определяемой в кВт.
Р = Кс х Ру
Кc – коэффициент, показывающий величину спроса при максимально возможной нагрузке. Данный показатель рассчитывается при максимальном числе приемников. Если определяется коэффициент двигателя, то необходимо обязательно рассчитывать нагрузку приемников каждого в отдельности.
Py – мощность определенной группы электрических приемников, которая узнается путем сложения номинальной мощности всех приемников. Рассчитывается в кВт.
Вычисление показателя расчетного тока электрической линии, как для одного приемника, так и для группы.
Когда предстоит задача отобрать диаметр сечения электрического прибора, тогда нужно обязательно выяснить и размер расчетного тока. Определяется два показателя. Один базируется на показателе плотности, а другой на условиях нагревания.
Формула вычисления расчетного тока 3-х фазного электрического приемника.
Где Р – нагрузка приемника, рассчитываемая в кВт.
Un- величина номинального напряжения приемника в комплекте с зажимами. Определяется, как величина линейного, межфазного напряжения в сети
Cos ? — константная величина мощности приемника.
Выше представленная формула используется для расчета мощности тока из группы однофазных или 3-х фазных приемников. Ко всему этому прилагается условие того, все имеющиеся приемники подсоединяются в одинаковых размерах к каждой отдельной фазе из трех возможных. Есть же специальная формула расчета мощности для 1-фазного приемника или нескольких, образующих группу, подсоединенных только к одной фазе 3-фазной сети.
Uнф – значение номинального напряжения каждого отдельного приемника, которое равно показателю фазного напряжения сети. В этом месте и осуществляется подсоединение приемников. Вычисляется значение в ваттах.
Cos ? — константная величина мощности приемника. Для лампочек света и нагревательных приборов данное значение равно единице. Это делает процесс расчета быстрее и проще.
Вычисление тока по существующей расчетной схеме электросети
Для примера берем электросеть небольшого жилого поселка. Она изображена на рисунке А. На нем расчетная нагрузка каждого отдельного дома, которая присоединяется к общей линии электросети, изображается с помощью стрелок. В конце стрелки написано значение, высчитанное в киловаттах. Чтобы создать проект проведения электричества в жилой поселок и отобрать необходимый диаметр сечения проводов, нужно вычислить нагрузку на все имеющиеся участки.
Расчет производится на базе первого закона Кирхгофа. Он говорит, что для любой точки электросети общая сумма поступающих токов может быть равна суммарному значению всех выходящих токов. Этот закон используется только для расчета нагрузок, выраженных в киловаттах.
Пример
Требуется найти наилучший, с точки зрения оптимальности, вариант распределения нагрузки по разным участкам электрической линии. Так на участке, длина которого равна восьмидесяти метров, в самой завершающей точке Г, где происходит вход его в общую сеть, нагрузка равна девяти киловаттам. На ответвлении в сорок метров нагрузка уже рассчитывается путем сложения нагрузок от домов, примыкающих к конечной точке ответвления ВГ. Т.е. 9+6=15 кВт. Чуть далее, на расстоянии в пятьдесят метров, нагрузка в точке В уже равна сумме трех показателей, а именно 15+4+5=24 кВт.
Таким же способом происходит расчет и всех оставшихся участков электросети. Чтобы сделать работу проще и быстрее, все вышеперечисленные значения указываются в строго определенном порядке. На рисунке А величины длины участков электролинии отмечаются в порядке слева и сверху, а нагрузка – справа и снизу. И наконец, любое проектирование электросети обязательно должно учитывать токи в электроустановочных зданиях, где происходит утечка.
Задание
Например, в ситуации с мастерской, 4-хпроводная электролиния, характеризуемая напряжением в 380/220В, осуществляет питание 30 электрических двигателей. Получается, что сумма мощностей равна сорока восьми киловаттам. Т.е. Py1 = 48 кВт. Сумма мощностей лампочек для света равна двум киловаттам. Ру2 = 2 кВт. Константное значение на спрос для осветительной и силовой нагрузки равно соответственно Кс2=0,9 и Кс1=0,35. Среднее константное значение мощности для всей в целом установки равно cos ф=0,75. Вопрос: вычислить расчетный ток электролинии.
Решение
Сначала производим расчет нагрузки электрических двигателей.
P1 = 0,35 х 48 =16,8 кВт
Далее рассчитываем расчетную нагрузку для осветительных приборов.
Р2=0,9 х 2=1,8 кВт.
Теперь считаем конечную сумму мощностей.
Р= 16,8 + 1,8= 18,6 кВт.
Итого, расчетный ток вычисляем по формуле
Вычислив приблизительное значение расчетного тока, можно проверить правильность создания проекта прокладывания электросети и проведения монтажных работ.
Как рассчитать мощность электрического тока?
Особенности расчета мощности по току и напряжению
Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.
Что такое мощность и как ее измерить?
Мощность – это мера того, сколько работы можно выполнить за определенный промежуток времени. Работа обычно определяется как поднятие груза против силы тяжести. Чем больше масса, и/или чем выше она поднимается, тем больше работы должно быть выполнено. Мощность – это мера того, насколько быстро выполняется стандартный объем работы.
Для американских автомобилей мощность двигателя оценивается в единицах, называемых «лошадиные силы», которые изначально были придуманы производителями паровых двигателей для количественной оценки работоспособности своих машин с точки зрения самого распространенного в их время источника энергии: лошадей. Одна лошадиная сила определяется в британских единицах как 550 фут·фунтов работы в секунду. Мощность двигателя автомобиля не будет указывать на высоту холма, на которую он может подняться, или какую массу он может тащить, но она указывает, насколько быстро он может подняться на определенный холм или протащить определенную массу.
Мощность механического двигателя зависит как от скорости двигателя, так и от его крутящего момента на выходном валу. Скорость выходного вала двигателя измеряется в оборотах в минуту или об/мин (RPM). Крутящий момент – это величина вращательной силы, создаваемой двигателем, и обычно измеряется в ньютон-метрах (или в фунт-футах). Ни скорость, ни крутящий момент сами по себе не являются мерой мощности двигателя.
Дизельный тракторный двигатель мощностью 100 лошадиных сил вращает вал относительно медленно, но обеспечивает большой крутящий момент. Двигатель мотоцикла мощностью 100 лошадиных сил вращает вал очень быстро, но обеспечивает относительно небольшой крутящий момент. Оба будут производить 100 лошадиных сил, но с разной скоростью и разным крутящим моментом. Уравнение для мощности на валу простое:
\[\text{Лошадиная сила} = \frac{2 \pi ST}{33 000}\]
где
- S – скорость вращения вала в об/мин;
- T – крутящий момент в фунт-футах.
Обратите внимание на то, что в правой части уравнения есть только две переменных, S и T. Все остальные члены в этой части постоянны: 2, π и 33 000 – константы (они не меняют своего значения). Мощность в лошадиных силах меняется только при изменении скорости и крутящего момента, больше ничего. Мы можем переписать уравнение, чтобы показать эту взаимосвязь:
Лошадинная сила ∝ ST
∝ – означает «пропорциональна»
Поскольку единица «лошадиных сил» не совпадает в точности со скоростью в оборотах в минуту, умноженной на крутящий момент в фунт-футах, мы не можем сказать, что мощность равна ST. Однако они пропорциональны друг другу. По мере изменения математического произведения ST значение мощности изменится в той же пропорции.
Как узнать силу тока, зная мощность и напряжения
Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.
Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.
Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.
Принцип действия
Когда заряд движется по проводнику, то электромагнитное полевыполняет над ним работу. Данная величина характеризуется напряжением.
Заряды направляются в сторону снижения потенциалов, однако для поддержания указанного процесса необходим некоторый источник энергии. Напряжение по своему показателю соответствует работе поля, которое необходимо для перемещения единичного заряда Кулона на рассматриваемом участке. При перемещении заряда возникают явления, при которых электроэнергия может приходить в другие виды энергии.
Для доставки электроэнергии от электростанции до конечного потребителя необходимо выполнить определенную работу. Для создания требуемого напряжения, то есть возможности выполнения работы электротока по перемещению заряда, применяется трансформатор. Данное устройство производит увеличение показателя напряжения.
Полученный ток под высоким напряжением, иногда достилающим 10 тысяч Вольт, движется по высоковольтным проводам. При достижении места назначения, он попадает на трансформатор, который уменьшает напряжение до промышленных или бытовых показателей. Далее ток направляется на производства, в квартиры и дома.
Единицы измерения мощности тока
Основной единицей измерения мощности тока (как и мощности вообще) в системе СИ является: [P]=Вт=Дж/с.
В СГС: [P]=эрг/с.
1 Вт=107 эрг/( с).
Выражение (4) применяют в системе СИ для того, чтобы дать определение единицы напряжения. Так, единицей напряжения (U) является вольт (В), который равен: 1 В= (1 Вт)/(1 А).
Вольтом называют электрическое напряжение, которое порождает в электроцепи постоянный ток силы 1 А при мощности 1 Вт.
Как рассчитать ампераж
Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.
По какой формуле вычисляется мощность электрического тока
Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.
Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.
Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.
При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.
Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.
Видео о законах электротехники
Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Потеря энергии в переменной цепи обусловлена наличием реактивного сопротивления, которое подразделяют на индуктивное и емкостное. В процессе работы оборудования часть энергии передается формируемым электрическим или магнитным полям.
Это приводит к уменьшению полезной работы, потере электроэнергии и превышению силовых нагрузок устройств.
Расчет электрических цепей онлайн и основная формула расчета
Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.
Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:
Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:
Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.
Подбор номинала автоматического выключателя
Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.
При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.
Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.
У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.
Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.
Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.
Преобразование тока
Поскольку электрическая мощность выражается произведением напряжения на силу тока, то из закона сохранения энергии следует: если при передаче одной и той же мощности напряжение повысить, сила тока пропорционально уменьшится, и наоборот.
Преобразованием напряжения переменного тока занимается специальное устройство — трансформатор. В самом простом виде он состоит из двух обмоток, надетых на магнитопровод.
Магнитное поле, возбуждаемое в первичной обмотке, наводит ЭДС во вторичной (закон электромагнитной индукции) и величина ее соотносится с напряжением на выводах первичной обмотки так же, как число витков в обмотках.
Если, к примеру, первичная обмотка содержит 300 витков, и на нее подается переменное напряжение с действующим значением 220 В, то в цепи вторичной обмотки со 150-ю витками возникнет ЭДС в 110 В, то есть в 2 раза меньшая. Поскольку мощность останется практически постоянной (потерями на нагрев и перемагничивание сердечника пренебрегаем), то сила тока в цепи вторичной катушки окажется, наоборот, вдвое выше тока в первичной катушке.
Потому вторичные обмотки понижающих трансформаторов наматывают проводом большего сечения, чем первичные. С повышающим трансформатором все происходит с точностью до наоборот. Снижение силы тока за счет увеличения напряжения применяется при передаче электроэнергии на значительные расстояния.
Сгенерированный электростанцией ток напряжением 10-20 кВ преобразуют находящейся тут же подстанцией, поднимая напряжение до сотен кВ.
В населенных пунктах напряжение снова понижают местными трансформаторными подстанциями, уже до 220 В, и в таком виде электроэнергия поступает в распределительную сеть.
Наибольшей величины этот параметр достигает на ЛЭП «Экибастуз — Кокчетав» — 1,15 МВ (мегавольт). При этом многократно падает сила тока, а поскольку работа тока в проводнике, состоящая в его нагреве, выражается формулой W = I2 * R (R — сопротивление проводника), то и потери значительно сокращаются.
Как работает схема трехфазного электроснабжения
Принцип работы трехфазной схемы электроснабжения заключается в одновременном задействовании четырех питающих кабелей, один из которых нулевой. Ток одинаковой частоты вырабатывается одним генератором и сдвинут по отношению друг к другу по времени на фазовый угол равный 120 градусам.
Как определить максимальную мощность тока
Полезная мощность обладает наибольшим значением в случае, когда нагрузочное сопротивление — R равняется сопротивлению внутри источника — r.
R = r.
Pmax=E2 /4r
Где: E — электродвижущая сила (ЭДС) источника.
Можно рассчитать максимальную токовую нагрузку, которую будет использовать электрическое устройство, исходя из номинальной нагрузки и входного напряжения переменного тока. Номинальная энергонагрузка будет указана в технических характеристиках устройства, руководстве или на маркировке.
Так, например, если номинальное энергопотребление электрического устройства (P) составляет 12 Вт, максимальное потребление тока при различных напряжениях U= 120 В переменной сети будет:
I = 12/120 = 0,100 А или 100 мА
В переменной сети 220 В:
I = 12 / 220= 0,055A или 55 мА
Мощность электрического тока
Для того, чтобы это показать что к чему, мы возьмем две лампы на 12 Вольт, но разной мощности. На блоке питания выставляю также 12 Вольт и собираю все это дело по схеме, которая мелькала в начале статьи
Мой блок питания может выдать в нагрузку 150 Ватт, не парясь. Беру лампочку от мопеда и цепляю ее к блоку питания
Смотрим потребление тока. 0,71 Ампер
Высчитываем сопротивление раскаленной нити лампочки из закона Ома I=U/R, отсюда R=U/I=12/0,71=16,9 Ом.
Беру галогенную лампу от фары авто и также цепляю ее к блоку питания
Смотрим потребление. 4,42 Ампера
Аналогично высчитываем сопротивление нити лампы. R=U/I=12/4,42=2,7 Ом.
А теперь давайте посчитаем, какая лампочка больше всех Ватт “отбирает” у источника питания. Вспоминаем школьную формулу P=UI. Итак, для маленькой лампочки мощность составит P=12×0,71=8,52 Ватта. А для большой лампочки мощность будет Р=12х4,42=53 Ватта. Ого! У нас получилось, что лампочка, которая обладала меньшим сопротивлением, на самом деле очень даже прожорливая.
Итак, если кто не помнит, что такое мощность, могу напомнить. Мощность – это отношение какой-то полезной работы к времени, в течение которого эта работа совершалась. Например, надо вскопать яму определенных размеров. Вы с лопатой, а ваш друг – на экскаваторе:
Кто быстрее справится с задачей за одинаковый промежуток времени? Разумеется экскаватор. В этом случае, можно сказать, что его мощность намного больше, чем мощность человека с лопатой.
А теперь представьте, что нам надо полностью под ноль сточить эту железяку:
Подумайте вот над таким вопросом… У нас есть в запасе 5 мин и нам надо сточить железяку по-максимому. В каком случае железяка сточится быстрее всего: если прижимать ее к абразивному кругу со всей дури, прижимать слегка, либо прижимать в полсилы? Не забывайте, что у нас абразивный круг подцеплен к валу, который крутит поток воды в трубе. И да, труба у нас небольшого диаметра.
Кто ответил, что если прижимать в полсилы, то оказался прав. Железяка в этом случае сточится быстрее. Если прижимать ее со всей дури, то можно вообще остановить круг. Еще раз, что у нас такое мощность? Полезная работа, совершаемая за какой-то промежуток времени. А в нашем опыте полезная работа это и есть стачивание железяки по максималке. Также не забывайте и тот момент, что если мы будем слегка прижимать железяку, то мы будем ее стачивать пол дня. Поэтому, золотая середина – это давить железяку в полсилы.
Ну вот мы и снова переходим к электронике 😉
Поток воды – сила тока, давление в трубе – напряжение, давление железяки на круг – сопротивление. И что в результате мы получили? А то, что лампочка с меньшим сопротивлением обладает большей мощностью, чем лампочка с большим сопротивлением. Не трудно догадаться, если просто посмотреть на фото, но вживую эффект лучше
Но обязательно ли то, что чем меньше сопротивление, тем больше мощности выделяется на нагрузке? Конечно же нет. Во всем нужен расчет, как и в прошлом опыте, где мы стачивали железяку за определенное время.
И еще один фактор, конечно, тоже надо учитывать. Это давление в трубе. Прикиньте, точим-точим мы железяку, и вдруг давление в трубе стало повышаться. Может быть переполнилась башня, или кто-то открыл краник на полную катушку. Что станет с наждаком? Его обороты ускорятся, так как сила потока воды в трубе увеличится, а следовательно, мы еще быстрее сточим нашу железку.
От чего зависит мощность тока
Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.
Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.
Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.
Задачи
Решение:
Запишем выражение для мощности:
И для сопротивления:
Теперь выразим из этих двух формул удельное сопротивление проводника:
Сравнив это значения с табличными значениями удельного сопротивления, узнаем, что проводник изготовлен из олова.
Как узнать напряжение зная силу тока?
Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:
Расчет напряжения онлайн:
Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:
Определение величины онлайн:
Мощность тока через конденсатор
Пусть на конденсатор подано переменное напряжение
. Как мы знаем, ток через конденсатор опережает по фазе напряжение на
:
Для мгновенной мощности получаем:
График зависимости мгновенной мощности от времени.
Мощность переменного тока через конденсатор.
Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.
Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний.
Напряжение на конденсаторе и сила тока через него.
Рассмотрим последовательно все четыре четверти периода.
1. Первая четверть,
. Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.
Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.
2. Вторая четверть,
. Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.
Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).
3. Третья четверть,
. Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.
Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.
4. Четвёртая четверть,
. Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.
Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.
Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.
Прибор для измерения
Мощность тока измеряют ваттметром, существует три разновидности таких приборов:
- низкочастотные;
- радиочастотные;
- оптические.
Низкочастотные применяются для измерения W постоянного тока и переменного промышленной частоты (50 Гц), они делятся на две разновидности:
- однофазные;
- трехфазные.
Для измерения реактивной мощности применяют другой прибор — варметр.
По принципу действия ваттметры делятся на:
- аналоговые;
- цифровые.
Почти все цифровые ваттметры включают в себя варметр, то есть могут измерять W активную и реактивную. Аналоговые приборы (Д8002, Ц301, Д5071 и др.) определяют мощность тока посредством двух катушек: одна подключена последовательно с нагрузкой, другая — параллельно.
Протекающий в катушках ток инициирует возникновение магнитных полей. А те, взаимодействуя друг с другом, создают вращающий момент, воздействующий на стрелку.
Цифровой ваттметр
Величина момента зависит от:
- силы тока;
- напряжения;
- cosϕ (при изменении активной мощности) или sinϕ (реактивной).
Цифровые ваттметры (MI 2010А, ЩВ02, СР3010 и пр.) оснащены парой датчиков включенных:
- по току — последовательно с нагрузкой;
- по напряжению — параллельно.
Контроллер по показаниям с датчиков делает вычисления и выводит их на табло.
Похожие темы:
Обычно электрический токсравнивают с течением жидкости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.
В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В условиях свободного падения эта энергия растрачивается бесполезно для человека. Если же направить падающий поток воды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.
Работа, производимая потоком воды в течение определенного промежутка времени, например, в течение одной секунды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.
Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше работы, чем больше разность потенциалов и чем большее количество электричества ежесекундно проходит через поперечное сечение цепи.
Мощность электрического токаэто количество работы, совершаемой за одну секунду времени, или скорость совершения работы.
Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (напряжению) и силе тока в цепи.
Для измерения мощности электрического тока принята единица, называемая ватт(Вт).
Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.
Для вычисления мощности постоянного тока в ваттах нужно силу тока в амперах умножить на напряжение в вольтах.
Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы
P = I*U. (1)
Воспользуемся этой формулой для решения числового примера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА
Определим мощность электрического тока, поглощаемую нитью лампы:
Р= 0,075 А*4 В = 0,3 Вт.
Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.
В этом случае мы воспользуемся знакомым нам соотношением из закона Ома:
U=IR
и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.
Тогда формула (1) примет вид:
P = I*U =I*IR
или
Р = I2*R. (2)
Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:
P= I2*R = (0,5)2*5 =0,25*5 = 1,25 Вт.
Наконец, мощность электрического тока может быть вычислена и в том случае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:
Р = I*U=U2/R (3)
Например, при 2,5 В падения напряжения на реостате сопротивлением в 5 Ом поглощаемая реостатом мощность будет равна:
Р = U2/R=(2,5)2/5=1,25 Вт
Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.
Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.
P = A/t
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Как рассчитать мощность зная силу тока и напряжения?
Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.
Расчет цепи онлайн:
Теги
МощностьОбучениеРассеиваемая мощностьСхемотехникаЭлектрический токЭлектрическое напряжениеЭлектричество
На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.
В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.
Формула расчета сечения провода и как определяется сечение провода
Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:
Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»
Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:
Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:
Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.
Рекомендуем ознакомиться:
Тест по теме
Оценка доклада
Средняя оценка: 4 . Всего получено оценок: 15.
Не понравилось? — Напиши в комментариях, чего не хватает.
Похожие материалы:
Содержание:
Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие.
Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это различные понятия, хотя и находящиеся в определенной зависимости между собой.
Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с).
Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.
Мощность некоторых электрических приборов
При оснащении современной квартиры часто приходится решать задачи по согласованию нагрузок в отдельных линиях. Необходимо правильно встраивать защитный автомат, чтобы предотвратить аварийные ситуации. Начинают с уточнения параметров проводки. Далее проверяют группы подсоединенной бытовой техники. Типичные параметры потребляемой мощности (Вт):
- персональный компьютер – 170-1 250;
- ноутбук – 40-280;
- ЖКИ телевизор – 120-265;
- утюг – 450-1850;
- кондиционер – 1 200 – 2 500.
Какой автомат подойдет, определяют с учетом всех значимых факторов. Особое внимание уделяют нагрузкам с высокими значениями реактивной составляющей мощности.
Формулы для расчётов цепи постоянного тока
Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:
P=UI
Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:
P=U 2 /R
Также можно выполнить расчет, зная ток и сопротивление:
P=I 2 *R
Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.
Пример расчёта полной мощности для электродвигателя
Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.
Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:
Тогда найти активную электрическую мощность можно по формуле:
P=Pна валу/n=160000/0,94=170213 Вт
Теперь можно найти S:
Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.
Расчет для параллельного и последовательного подключения
При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.
Здесь Iобщий равен:
На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:
И выделяется по:
Pна резисторе=UI=6*0,6=3,6 Ватта
Тогда при параллельном подключении в такой схеме:
Сначала ищем I в каждой ветви:
И выделяется на каждом по:
Или через общее сопротивление, тогда:
Все расчёты совпали, значит найденные значения верны.
Формула мощности по току и напряжению схемы
Пожаловалась бабушка соседка снизу: подарили мне дети моющий пылесос. Он прекрасно работает, но откуда-то идет запах гари.
Пошел смотреть. Проводка у нас старая: лапша из алюминия 2,5 квадрата. А пылесос потребляет 2,5 kW. Прикинул, как работает формула расчета мощности по току и напряжению для этого случая.
Разделил 2500 ватт на 220 вольт. Получил чуть больше 11 ампер. Наши провода держат нагрузку 22 А. Имеем практически двойной резерв по току. Другие потребители при уборке отключены.
Стали проверять и нюхать: запах около квартирного щитка. Открыл, осмотрел: шина сборки ноля в саже, на одной перемычке горелая изоляция. Винт крепления ослаблен. Вот и причина начала возгорания. Исправил.
На этом примере я показываю, что всегда надо оценивать мощность потребления электроприборов и возможности проводки с защитными устройствами. Об этом рассказываю ниже.
Содержание статьи
Что такое мощность в электричестве: просто о сложном
Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.
Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.
Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.
Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:
- включенными в сеть приборами;
- конструкцией проводов и кабелей;
- настройкой защитных устройств.
Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.
Как рассчитать электрическую мощность в быту
Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.
Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.
Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.
Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.
При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:
- силу тока I;
- приложенное напряжение U;
- сопротивление участка цепи R.
Как измерить электрическую мощность дома
Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.
Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.
В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.
Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.
Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.
Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:
- действующее напряжение;
- силу тока;
- угол сдвига фаз между векторами тока и напряжения.
Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.
Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.
Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.
Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.
Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.
Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.
Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.
Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?
Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.
Формулы расчета мощности для однофазной и трехфазной схемы питания
В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.
Поэтому рассматриваем вначале наиболее простой вопрос.
Графики и формулы под однофазное напряжение
Как работает резистор
На чисто резистивном сопротивлении синусоиды тока и напряжения совпадают по углу, направлены на каждом полупериоде одинаково.Поэтому их произведение, выражающее мощность, всегда положительно.
Его значение в произвольный момент времени t называют мгновенным, обозначая строчной буквой p.
Среднее значение мощности в течение одного периода называют активной составляющей. Ее график для переменного тока имеет фигуру симметричного всплеска с максимальным значением Pm в середине каждого полупериода Т/2.
Если взять половину его величины Pm/2 и провести прямую линию в течении одного периода Т, то получим прямоугольник с ординатой P.
Его площадь равна двум площадям графиков активной составляющих одного любого полупериода. Если посмотреть на картинку внимательнее, то можно представить, что верхняя часть всплеска отрезана,перевернута и заполнила свободное пространство внизу.
Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока вычисляется по одной формуле, не меняет своего знака.
График мгновенных значений активной мощности переменного тока на резистивном сопротивлении имеет вид повторяющихся положительных волн. Но за один период им совершается такая же работа, как и в цепях постоянного тока и напряжения.
На резисторе не создается реактивных потерь.
Как работает индуктивность
Катушка с обмоткой своими витками запасает энергию магнитного поля. Благодаря процессу ее накопления индуктивное сопротивление отодвигает вперед на 90 градусов вектор тока относительно приложенного напряжения на комплексной плоскости.
Перемножая их мгновенные величины получаем значения мощности, которое за один период меняет знаки (направление) в каждом полупериоде.
Частота изменения мощности на индуктивности в два раза выше,чем у ее составляющих: синусоид тока и напряжения. Она состоит из двух частей:
- активной, обозначаемой индексом PL;
- реактивной QL.
Реактивная часть на индуктивности создается за счет постоянного обмена энергией между катушкой и приложенным источником. На ее величину влияет значение индуктивного сопротивления XL.
Как работает конденсатор
Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.
График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.
Реактивная составляющая, выделяемая на конденсаторе, зависит от величины емкостного сопротивления XC.
Как работает реальная схема со всеми видами сопротивлений
В чистом виде приведенные выше графики и выражения встречаются не так часто. На самом деле передача электроэнергии и ее работа на переменном токе связаны с комплексным преодолением сил электрического сопротивления резисторов, конденсаторов и индуктивностей.
Причем, какая-то из этих составляющих будет преобладать. Для таких случаев преобразования электрической энергии в мгновенную мощность могут иметь один из следующих видов.
На верхней картинке показан случай, когда вектор тока отстает от приложенного напряжения, а на нижней — опережает.
В обоих случаях величина активной составляющей уменьшается от значения полной на значение, выражаемое как cosφ. Поэтому его принято называть коэффициентом мощности.
Косинус фи (cosφ) используется при анализе треугольника мощностей и сопротивлений, характеризует потери энергии.
Как работает схема трехфазного электроснабжения
На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение от электроснабжающей организации, вырабатываемое промышленными генераторами.
Его же, за отдельную плату, при желании может подключить владелец частного дома, что многие и делают. При этом рабочая схема и диаграмма напряжений выглядит следующим образом.
В старой системе заземления TN-C она выполняется четырехпроводным подключением, а у новой TN-S — пятипроводным с добавлением защитного РЕ проводника. Его на этой схеме я не показываю для упрощения.
Каждую из фаз при работе необходимо стараться нагружать одинаково равными по величине токами. Тогда в домашней проводке будет создаваться наиболее благоприятный оптимальный режим без опасных перекосов энергии.
В этом случае формула расчета мощности по току и напряжению для трехфазной схемы может быть представлена простой суммой аналогичных формул для составляющих однофазных цепей.
А поскольку они все идентичные, то их просто утраивают.
Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:
Р = Рa+Рв+Рc
Если пометить фазное выражение буквой ф. например Pф, томожно записать:
P = 3Pф = 3Uф×Iф×cosφ
Аналогично будет вычисляться реактивная составляющая
Q = Qa+Qв+Qc
Или
Q = 3Qф = 3Uф×Iф×sinφ
Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.
S = √(P2+Q2)
Как учитывается трехфазная полная мощность
В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.
С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.
Старые аналоговые приборы показаны на этой картинке.
Для того, чтобы не путаться в записях вычислений введены разные наименования единиц. Они обозначаются:
- ВА — (русское), VA (международное) вольтампер для полной величины мощности;
- Вт —(русское), var (международное) ватт —активной;
- вар (русское), var (международное) — реактивной.
Аналоговые приборы измеряют только активную или реактивную составляющую, а полную величину необходимо вычислять по формулам.
Многие современные цифровые приборы способны осуществлять эту функцию автоматически.
Видеоурок Павла Виктор дополняет мой материал. Рекомендую посмотреть.
Калькулятор мощности для своих
Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.
А в заключение напоминаю, что для ваших вопросов создан раздел комментариев. Задавайте их, я отвечу.
Мощность постоянного тока
Мощность постоянного тока P – это величина, которая показывает какую работу совершил постоянный ток по перемещению электрического заряда за единицу времени. Измеряется электрическая мощность, как и механическая – в ваттах.
Для того чтобы понять что такое электрическая мощность представим себе электрическое поле, в котором находится свободная частица.
Под действием напряженности E электрического поля, частица перемещается из точки a в точку b.
При перемещении частицы из точки a в точку b электрическое поле совершает работу А. Эта работа зависит от напряженности, заряда и расстояния между a и b.
Так как работа зависит еще и от величины заряда, то энергетической характеристикой электрического поля служит напряжение, которое является отношением работы A по перемещению заряда к величине самого заряда Q.
Если заряд равен единичному (Q=1), то получается, что напряжение это есть работа по перемещению единичного заряда из точки a в точку b.
Мощность определяется как отношение работы к промежутку времени , за который была совершена эта работа.
Выходит, что мощность, затрачиваемая на единичный заряд равна
А на некоторое количество зарядов Q
Если присмотреться ко второму множителю, то можно рассмотреть в нем электрический ток, который выражен как скорость изменения заряда. Таким образом, получаем всем известную формулу
Для того чтобы узнать, какое количество энергии выделилось источником постоянного тока, нужно воспользоваться законом Джоуля –Ленца.
Пример
Узнать какое количество энергии получит резистор от источника за 10 секунд, если его сопротивление равно 100 Ом, а ЭДС источника равно 12 В. Сопротивление источника принять равным нулю.
Найдем силу тока по закону Ома
Посчитаем мощность
Такое количество энергии получает резистор за секунду, а за десять секунд он получит в десять раз больше
Рекомендуем прочесть статью о балансе мощностей и о мгновенной мощности.
резисторов последовательно и параллельно
Цели обучения
К концу этого раздела вы сможете:
- Нарисуйте цепь с резисторами, включенными параллельно и последовательно.
- Рассчитайте падение напряжения тока на резисторе, используя закон Ома.
- Contrast Способ расчета общего сопротивления для резисторов, включенных последовательно и параллельно.
- Объясните, почему полное сопротивление параллельной цепи меньше наименьшего сопротивления любого из резисторов в этой цепи.
- Вычислить общее сопротивление цепи, которая содержит смесь резисторов, соединенных последовательно и параллельно.
Большинство схем имеет более одного компонента, называемого резистором , который ограничивает поток заряда в цепи. Мера этого предела расхода заряда называется сопротивлением . Самыми простыми комбинациями резисторов являются последовательное и параллельное соединение, показанное на рисунке 1. Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.
Рис. 1. (a) Последовательное соединение резисторов. (б) Параллельное соединение резисторов.
Когда резисторы в серии ? Резисторы включены последовательно всякий раз, когда поток заряда, называемый током , должен проходить через устройства последовательно. Например, если ток течет через человека, держащего отвертку, в землю, тогда R 1 на Рисунке 1 (а) может быть сопротивлением вала отвертки, R 2 сопротивлением ее ручки , R 3 сопротивления тела человека и R 4 сопротивления его обуви. На рисунке 2 показаны резисторы, последовательно подключенные к источнику напряжения . Кажется разумным, что полное сопротивление является суммой отдельных сопротивлений, учитывая, что ток должен проходить через каждый резистор последовательно. (Этот факт был бы преимуществом для человека, желающего избежать поражения электрическим током, который мог бы уменьшить ток, надев обувь с высоким сопротивлением на резиновой подошве. Это могло бы стать недостатком, если бы одно из сопротивлений было неисправным шнуром с высоким сопротивлением. прибор, уменьшающий рабочий ток.)
Рис. 2. Три резистора, подключенных последовательно к батарее (слева), и эквивалентное одиночное или последовательное сопротивление (справа).
Чтобы убедиться, что последовательно включенные сопротивления действительно складываются, давайте рассмотрим потерю электроэнергии, называемую падением напряжения , в каждом резисторе на рисунке 2. Согласно закону Ома, падение напряжения, В, , на резистор, когда через него протекает ток, рассчитывается по формуле V = IR , где I равно току в амперах (A), а R — сопротивление в омах (Ω). Другой способ представить это: В, — это напряжение, необходимое для протекания тока I через сопротивление R . Таким образом, падение напряжения на R 1 составляет В 1 = IR 1 , что на R 2 составляет В 2 = IR 2 и что для R 3 это V 3 = IR 3 .Сумма этих напряжений равна выходному напряжению источника; то есть
В = В 1 + В 2 + В 3 .
Это уравнение основано на сохранении энергии и сохранении заряда. Электрическая потенциальная энергия может быть описана уравнением PE = qV , где q — электрический заряд, а V — напряжение. Таким образом, энергия, отдаваемая источником, составляет кв.кв. , а энергия, рассеиваемая резисторами, равна
.
qV 1 + qV 2 + qV 3 .
Установление связей: законы сохранения
Вывод выражений для последовательного и параллельного сопротивления основан на законах сохранения энергии и сохранения заряда, которые гласят, что общий заряд и полная энергия постоянны в любом процессе. Эти два закона непосредственно участвуют во всех электрических явлениях и будут многократно использоваться для объяснения как конкретных эффектов, так и общего поведения электричества.
Эти энергии должны быть равны, потому что в цепи нет другого источника и другого назначения для энергии.Таким образом, qV = qV 1 + qV 2 + qV 3 . Плата q аннулируется, давая V = V 1 + V 2 + V 3 , как указано. (Обратите внимание, что одинаковое количество заряда проходит через батарею и каждый резистор за заданный промежуток времени, поскольку нет емкости для хранения заряда, нет места для утечки заряда и заряд сохраняется. ) Теперь подстановка значений для отдельных напряжений дает
В = IR 1 + IR 2 + IR 3 = I ( R 1 + R 2 + R 3 ).
Обратите внимание, что для эквивалентного сопротивления одной серии R с , мы имеем
В = ИК с .
Это означает, что полное или эквивалентное последовательное сопротивление R с трех резисторов составляет R с = R 1 + R 2 + R 3 .Эта логика действительна в общем для любого количества резисторов, включенных последовательно; таким образом, полное сопротивление R с последовательного соединения составляет
R с = R 1 + R 2 + R 3 +…,
, как предлагается. Поскольку весь ток должен проходить через каждый резистор, он испытывает сопротивление каждого, а последовательно соединенные сопротивления просто складываются.
Пример 1. Расчет сопротивления, тока, падения напряжения и рассеиваемой мощности: анализ последовательной цепи
Предположим, что выходное напряжение батареи на рисунке 2 равно 12.0 В, а сопротивления равны R 1 = 1,00 Ом, R 2 = 6,00 Ом и R 3 = 13,0 Ом. а) Каково полное сопротивление? (б) Найдите ток. (c) Рассчитайте падение напряжения на каждом резисторе и покажите, как они складываются, чтобы равняться выходному напряжению источника. (d) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.
Стратегия и решение для (а)
Общее сопротивление — это просто сумма отдельных сопротивлений, определяемая следующим уравнением:
[латекс] \ begin {array} {lll} {R} _ {\ text {s}} & = & {R} _ {1} + {R} _ {2} + {R} _ {3} \ \ & = & 1. 00 \ text {} \ Omega + 6.00 \ text {} \ Omega + 13.0 \ text {} \ Omega \\ & = & 20.0 \ text {} \ Omega \ end {array} \\ [/ latex].
Стратегия и решение для (b)
Ток определяется по закону Ома: В = IR . Ввод значения приложенного напряжения и общего сопротивления дает ток для цепи:
[латекс] I = \ frac {V} {{R} _ {\ text {s}}} = \ frac {12.0 \ text {V}} {20.0 \ text {} \ Omega} = 0.60 \ text {A }\\[/латекс].
Стратегия и решение для (c)
Напряжение — или падение IR — на резисторе определяется законом Ома.Ввод значения тока и значения первого сопротивления дает
.
В 1 = IR 1 = (0,600 A) (1,0 Ом) = 0,600 В.
Аналогично
В 2 = IR 2 = (0,600 A) (6,0 Ом) = 3,60 В
и
V3 = IR 3 = (0,600 A) (13,0 Ом) = 7,80 В.
Обсуждение для (c)
Три капли IR добавляют к 12. 0 В, прогноз:
В 1 + В 2 + В 3 = (0,600 + 3,60 + 7,80) В = 12,0 В.
Стратегия и решение для (d)
Самый простой способ рассчитать мощность в ваттах (Вт), рассеиваемую резистором в цепи постоянного тока, — это использовать закон Джоуля , P = IV , где P — электрическая мощность. В этом случае через каждый резистор протекает одинаковый полный ток.Подставляя закон Ома V = IR в закон Джоуля, мы получаем мощность, рассеиваемую первым резистором, как
P 1 = I 2 R 1 = (0,600 A) 2 (1,00 Ом) = 0,360 Вт
Аналогично
P 2 = I 2 R 2 = (0,600 A) 2 (6,00 Ом) = 2,16 Вт
и
P 3 = I 2 R 3 = (0.{2}} {R} \\ [/ latex], где В, — это падение напряжения на резисторе (а не полное напряжение источника). Получатся те же значения.
Стратегия и решение для (e)
Самый простой способ рассчитать выходную мощность источника — использовать P = IV , где В, — напряжение источника. Это дает
P = (0,600 A) (12,0 В) = 7,20 Вт.
Обсуждение для (e)
Обратите внимание, что по совпадению общая мощность, рассеиваемая резисторами, также равна 7.20 Вт, столько же, сколько мощность, выдаваемая источником. То есть
P 1 + P 2 + P 3 = (0,360 + 2,16 + 4,68) W = 7,20 Вт.
Мощность — это энергия в единицу времени (ватты), поэтому для сохранения энергии требуется, чтобы выходная мощность источника была равна общей мощности, рассеиваемой резисторами.
Основные характеристики резисторов серии
- Последовательные сопротивления добавить: R с = R 1 + R 2 + R 3 +….
- Одинаковый ток протекает последовательно через каждый резистор.
- Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его.
На рисунке 3 показаны резисторы , включенные параллельно , подключенные к источнику напряжения. Резисторы включены параллельно, когда каждый резистор подключен непосредственно к источнику напряжения с помощью соединительных проводов с незначительным сопротивлением. Таким образом, к каждому резистору приложено полное напряжение источника. Каждый резистор потребляет такой же ток, как если бы он один был подключен к источнику напряжения (при условии, что источник напряжения не перегружен).Например, автомобильные фары, радио и т. Д. Подключены параллельно, так что они используют полное напряжение источника и могут работать полностью независимо. То же самое и в вашем доме, или в любом другом здании. (См. Рисунок 3 (b).)
Рис. 3. (a) Три резистора, подключенных параллельно батарее, и эквивалентное одиночное или параллельное сопротивление. (б) Электроснабжение в доме. (Источник: Dmitry G, Wikimedia Commons)
Чтобы найти выражение для эквивалентного параллельного сопротивления R p , давайте рассмотрим протекающие токи и их связь с сопротивлением.Поскольку каждый резистор в цепи имеет полное напряжение, токи, протекающие через отдельные резисторы, равны [латекс] {I} _ {1} = \ frac {V} {{R} _ {1}} \\ [/ latex] , [латекс] {I} _ {2} = \ frac {V} {{R} _ {2}} \\ [/ latex] и [латекс] {I} _ {3} = \ frac {V} {{R} _ {3}} \\ [/ латекс]. Сохранение заряда подразумевает, что полный ток I , производимый источником, является суммой этих токов:
I = I 1 + I 2 + I 3 .
Подстановка выражений для отдельных токов дает
[латекс] I = \ frac {V} {{R} _ {1}} + \ frac {V} {{R} _ {2}} + \ frac {V} {{R} _ {3}} = V \ left (\ frac {1} {{R} _ {1}} + \ frac {1} {{R} _ {2}} + \ frac {1} {{R} _ {3}} \ справа) \\ [/ латекс].
Обратите внимание, что закон Ома для эквивалентного одиночного сопротивления дает
[латекс] I = \ frac {V} {{R} _ {p}} = V \ left (\ frac {1} {{R} _ {p}} \ right) \\ [/ latex].
Члены в круглых скобках в последних двух уравнениях должны быть равны. Обобщая для любого количества резисторов, общее сопротивление R p параллельного соединения связано с отдельными сопротивлениями на
[латекс] \ frac {1} {{R} _ {p}} = \ frac {1} {{R} _ {1}} + \ frac {1} {{R} _ {2}} + \ гидроразрыв {1} {{R} _ {\ text {.} 3}} + \ text {.} \ Text {…} \\ [/ latex]
Это соотношение приводит к общему сопротивлению R p , которое меньше наименьшего из отдельных сопротивлений. (Это видно в следующем примере.) При параллельном подключении резисторов от источника течет больше тока, чем протекает по любому из них по отдельности, поэтому общее сопротивление ниже.
Пример 2. Расчет сопротивления, тока, рассеиваемой мощности и выходной мощности: анализ параллельной цепи
Пусть выходное напряжение батареи и сопротивления в параллельном соединении на Рисунке 3 будут такими же, как и в ранее рассмотренном последовательном соединении: В = 12. 0 В, R 1 = 1,00 Ом, R 2 = 6,00 Ом и R 3 = 13,0 Ом. а) Каково полное сопротивление? (б) Найдите полный ток. (c) Рассчитайте токи в каждом резисторе и покажите, как они складываются, чтобы равняться общему выходному току источника. (d) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.
Стратегия и решение для (а)
Общее сопротивление для параллельной комбинации резисторов находится с помощью следующего уравнения.Ввод известных значений дает
[латекс] \ frac {1} {{R} _ {p}} = \ frac {1} {{R} _ {1}} + \ frac {1} {{R} _ {2}} + \ frac {1} {{R} _ {3}} = \ frac {1} {1 \ text {.} \ text {00} \ text {} \ Omega} + \ frac {1} {6 \ text {. } \ text {00} \ text {} \ Omega} + \ frac {1} {\ text {13} \ text {.} 0 \ text {} \ Omega} \\ [/ latex].
Таким образом,
[латекс] \ frac {1} {{R} _ {p}} = \ frac {1.00} {\ text {} \ Omega} + \ frac {0 \ text {.} \ Text {1667}} {\ текст {} \ Omega} + \ frac {0 \ text {.} \ text {07692}} {\ text {} \ Omega} = \ frac {1 \ text {.} \ text {2436}} {\ text { } \ Omega} \\ [/ латекс].
(Обратите внимание, что в этих расчетах каждый промежуточный ответ отображается с дополнительной цифрой.) Мы должны перевернуть это, чтобы найти полное сопротивление R p . Это дает
[латекс] {R} _ {\ text {p}} = \ frac {1} {1 \ text {.} \ Text {2436}} \ text {} \ Omega = 0 \ text {.} \ Text { 8041} \ text {} \ Omega \\ [/ latex].
Общее сопротивление с правильным количеством значащих цифр составляет R p = 0,804 Ом
Обсуждение для (а)
R p , как и предполагалось, меньше наименьшего индивидуального сопротивления.
Стратегия и решение для (b)
Полный ток можно найти из закона Ома, заменив полное сопротивление R p . Это дает
[латекс] I = \ frac {V} {{R} _ {\ text {p}}} = \ frac {\ text {12.0 V}} {0.8041 \ text {} \ Omega} = \ text {14} \ text {.} \ text {92 A} \\ [/ latex].
Обсуждение для (б)
Ток I для каждого устройства намного больше, чем для тех же устройств, подключенных последовательно (см. Предыдущий пример).Схема с параллельным соединением имеет меньшее общее сопротивление, чем резисторы, включенные последовательно.
Стратегия и решение для (c)
Отдельные токи легко вычислить по закону Ома, поскольку каждый резистор получает полное напряжение. Таким образом,
[латекс] {I} _ {1} = \ frac {V} {{R} _ {1}} = \ frac {12.0 \ text {V}} {1.00 \ text {} \ Omega} = 12.0 \ text {A} \\ [/ латекс].
Аналогично
[латекс] {I} _ {2} = \ frac {V} {{R} _ {2}} = \ frac {12.0 \ text {V}} {6.00 \ text {} \ Omega} = 2 \ text {.} \ text {00} \ text {A} \\ [/ latex]
и
[латекс] {I} _ {3} = \ frac {V} {{R} _ {3}} = \ frac {\ text {12} \ text {.} 0 \ text {V}} {\ text {13} \ text {.} \ Text {0} \ text {} \ Omega} = 0 \ text {.} \ Text {92} \ text {A} \\ [/ latex].
Обсуждение для (c)
Общий ток складывается из отдельных токов:
I 1 + I 2 + I 3 = 14,92 A.
Это соответствует сохранению заряда.{2}} {13.0 \ text {} \ Omega} = 11.1 \ text {W} \\ [/ latex].
Обсуждение для (d)
Мощность, рассеиваемая каждым резистором при параллельном подключении, значительно выше, чем при последовательном подключении к тому же источнику напряжения.
Стратегия и решение для (e)
Общую мощность также можно рассчитать несколькими способами. Выбрав P = IV и введя полный ток, получим
P = IV = (14,92 A) (12,0 В) = 179 Вт.
Обсуждение для (e)
Общая мощность, рассеиваемая резисторами, также составляет 179 Вт:
P 1 + P 2 + P 3 = 144 Вт + 24,0 Вт + 11,1 Вт = 179 Вт
Это соответствует закону сохранения энергии.
Общее обсуждение
Обратите внимание, что как токи, так и мощность при параллельном подключении больше, чем для тех же устройств, подключенных последовательно.
Основные характеристики резисторов, подключенных параллельно
- Параллельное сопротивление определяется из [latex] \ frac {1} {{R} _ {\ text {p}}} = \ frac {1} {{R} _ {1}} + \ frac {1} { {R} _ {2}} + \ frac {1} {{R} _ {3}} + \ text {…} \\ [/ latex], и оно меньше любого отдельного сопротивления в комбинации.
- Каждый резистор, включенный параллельно, имеет одинаковое полное напряжение источника. (В системах распределения электроэнергии чаще всего используются параллельные соединения для питания бесчисленных устройств, обслуживаемых одним и тем же напряжением, и для того, чтобы они могли работать независимо.)
- Параллельные резисторы не получают суммарный ток каждый; они делят это.
Сочетания последовательного и параллельного
Более сложные соединения резисторов иногда представляют собой просто комбинации последовательного и параллельного. Они обычно встречаются, особенно если учитывать сопротивление провода. В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно. Комбинации последовательного и параллельного подключения можно свести к одному эквивалентному сопротивлению, используя технику, показанную на рисунке 4.Различные части идентифицируются как последовательные или параллельные, уменьшаются до их эквивалентов и далее уменьшаются до тех пор, пока не останется единственное сопротивление. Процесс занимает больше времени, чем труден.
Рис. 4. Эта комбинация из семи резисторов имеет как последовательные, так и параллельные части. Каждое из них идентифицируется и приводится к эквивалентному сопротивлению, а затем уменьшается до тех пор, пока не будет достигнуто единичное эквивалентное сопротивление.
Самая простая комбинация последовательного и параллельного сопротивления, показанная на рисунке 4, также является наиболее поучительной, поскольку она используется во многих приложениях.Например, R 1 может быть сопротивлением проводов от автомобильного аккумулятора к его электрическим устройствам, которые подключены параллельно. R 2 и R 3 могли быть стартером и светом салона. Ранее мы предполагали, что сопротивление провода незначительно, но, когда это не так, оно имеет важные последствия, как показывает следующий пример.
Пример 3. Расчет сопротивления,
IR Падение, ток и рассеиваемая мощность: объединение последовательных и параллельных цепей
На рис. 5 показаны резисторы из двух предыдущих примеров, подключенные другим способом — сочетание последовательного и параллельного.Можно считать R 1 сопротивлением проводов, ведущих к R 2 и R 3 . (а) Найдите полное сопротивление. (b) Что такое падение IR в R 1 ? (c) Найдите текущие значения от I 2 до R 2 . (d) Какую мощность рассеивает R 2 ?
Рис. 5. Эти три резистора подключены к источнику напряжения, так что R 2 и R 3 параллельны друг другу, и эта комбинация включена последовательно с R 1 .
Стратегия и решение для (а)
Чтобы найти полное сопротивление, отметим, что R 2 и R 3 находятся параллельно, и их комбинация R p последовательно с R 1 . Таким образом, полное (эквивалентное) сопротивление этой комбинации составляет
.
R итого = R 1 + R p .
Сначала мы находим R p , используя уравнение для параллельных резисторов и вводя известные значения:
[латекс] \ frac {1} {{R} _ {\ text {p}}} = \ frac {1} {{R} _ {2}} + \ frac {1} {{R} _ {3 }} = \ frac {1} {6 \ text {.} \ text {00} \ text {} \ Omega} + \ frac {1} {\ text {13} \ text {.} 0 \ text {} \ Omega} = \ frac {0.2436} {\ text {} \ Омега} \\ [/ латекс].
Инвертирование дает
[латекс] {R} _ {\ text {p}} = \ frac {1} {0,2436} \ text {} \ Omega = 4.11 \ text {} \ Omega \\ [/ latex].
Таким образом, общее сопротивление равно
.
R до = R 1 + R p = 1,00 Ом + 4,11 Ом = 5,11 Ом.
Обсуждение для (а)
Общее сопротивление этой комбинации является промежуточным между значениями чистой серии и чистой параллели (20.0 Ом и 0,804 Ом соответственно), найденные для тех же резисторов в двух предыдущих примерах.
Стратегия и решение для (b)
Чтобы найти падение IR в R 1 , отметим, что полный ток I протекает через R 1 . Таким образом, его падение IR составляет
.
В 1 = ИК 1
Мы должны найти I , прежде чем сможем вычислить V 1 .Полный ток I находится с помощью закона Ома для схемы. То есть
[латекс] I = \ frac {V} {{R} _ {\ text {tot}}} = \ frac {\ text {12.0} \ text {V}} {5.11 \ text {} \ Omega} = 2.35 \ text {A} \\ [/ latex].
Вводя это в выражение выше, мы получаем
В 1 = IR 1 = (2,35 A) (1,00 Ом) = 2,35 В.
Обсуждение для (б)
Напряжение, приложенное к R 2 и R 3 , меньше полного напряжения на величину В 1 .Когда сопротивление провода велико, это может существенно повлиять на работу устройств, представленных R 2 и R 3 .
Стратегия и решение для (c)
Чтобы найти ток через R 2 , мы должны сначала найти приложенное к нему напряжение. Мы называем это напряжение В p , потому что оно приложено к параллельной комбинации резисторов. Напряжение, приложенное как к R 2 , так и к R 3 , уменьшается на величину В 1 , и поэтому оно составляет
В p = V — V 1 = 12.0 В — 2,35 В = 9,65 В.
Теперь ток I 2 через сопротивление R 2 находится по закону Ома:
[латекс] {I} _ {2} = \ frac {{V} _ {\ text {p}}} {{R} _ {2}} = \ frac {9.65 \ text {V}} {6.00 \ текст {} \ Omega} = 1,61 \ text {A} \\ [/ latex].
Обсуждение для (c)
Ток меньше 2,00 А, которые протекали через R 2 , когда он был подключен параллельно к батарее в предыдущем примере параллельной цепи.
Стратегия и решение для (d)
Мощность, рассеиваемая R 2 равна
P 2 = ( I 2 ) 2 R 2 = (1,61 A) 2 (6,00 Ом) = 15,5 Вт
Обсуждение для (d)
Мощность меньше 24,0 Вт, рассеиваемых этим резистором при параллельном подключении к источнику 12,0 В.
Одним из следствий этого последнего примера является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор.Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если потребляется большой ток, падение IR в проводах также может быть значительным.
Например, когда вы роетесь в холодильнике и включается мотор, свет холодильника на мгновение гаснет. Точно так же вы можете увидеть тусклый свет в салоне, когда вы запускаете двигатель вашего автомобиля (хотя это может быть связано с сопротивлением внутри самой батареи).
То, что происходит в этих сильноточных ситуациях, показано на рисунке 6. Устройство, обозначенное номером R 3 , имеет очень низкое сопротивление, поэтому при его включении протекает большой ток. Этот увеличенный ток вызывает большее падение IR в проводах, представленных R 1 , уменьшая напряжение на лампе (которое составляет R 2 ), которое затем заметно гаснет.
Рис. 6. Почему гаснет свет, когда включен большой прибор? Ответ заключается в том, что большой ток, потребляемый двигателем прибора, вызывает значительное падение напряжения в проводах и снижает напряжение на свету.
Проверьте свое понимание
Можно ли любую произвольную комбинацию резисторов разбить на последовательную и параллельную? Посмотрите, сможете ли вы нарисовать принципиальную схему резисторов, которые нельзя разбить на комбинации последовательно и параллельно.
Решение
Нет, есть много способов подключения резисторов, которые не являются комбинациями последовательного и параллельного, включая петли и переходы. В таких случаях правила Кирхгофа, которые будут включены в Правила Кирхгофа, позволят вам проанализировать схему.
Стратегии решения проблем для последовательных и параллельных резисторов
- Нарисуйте четкую принципиальную схему, обозначив все резисторы и источники напряжения. Этот шаг включает список известных проблем, поскольку они отмечены на вашей принципиальной схеме.
- Определите, что именно необходимо определить в проблеме (определите неизвестные). Письменный список полезен.
- Определите, подключены ли резисторы последовательно, параллельно или в комбинации последовательно и параллельно.Изучите принципиальную схему, чтобы сделать эту оценку. Резисторы включены последовательно, если через них должен последовательно проходить один и тот же ток.
- Используйте соответствующий список основных функций для последовательных или параллельных подключений, чтобы найти неизвестные. Есть один список для серий, а другой — для параллелей. Если ваша проблема представляет собой комбинацию последовательного и параллельного соединения, уменьшайте ее поэтапно, рассматривая отдельные группы последовательных или параллельных соединений, как это сделано в этом модуле и примерах. Особое примечание: при нахождении R необходимо соблюдать осторожность.
- Проверьте, являются ли ответы разумными и последовательными. Единицы и числовые результаты должны быть разумными. Общее последовательное сопротивление должно быть больше, а общее параллельное сопротивление, например, должно быть меньше. Мощность должна быть больше для одних и тех же устройств, подключенных параллельно, по сравнению с последовательными и т. Д.
Сводка раздела
Концептуальные вопросы
1. Переключатель имеет переменное сопротивление, близкое к нулю в замкнутом состоянии и очень большое в разомкнутом, и он включен последовательно с устройством, которым он управляет.Объясните влияние переключателя на рис. 7 на ток в разомкнутом и замкнутом состоянии.
Рис. 7. Переключатель обычно включается последовательно с источником сопротивления и напряжения. В идеале переключатель имеет почти нулевое сопротивление в замкнутом состоянии, но имеет чрезвычайно большое сопротивление в разомкнутом состоянии. (Обратите внимание, что на этой диаграмме скрипт E представляет напряжение (или электродвижущую силу) батареи.)
2. Какое напряжение на разомкнутом переключателе на Рисунке 7?
3. На разомкнутом переключателе есть напряжение, как на Рисунке 7.Почему же тогда мощность, рассеиваемая разомкнутым переключателем, мала?
4. Почему мощность, рассеиваемая замкнутым переключателем, как на Рисунке 7, мала?
5. Студент в физической лаборатории по ошибке подключил электрическую лампочку, батарею и выключатель, как показано на рисунке 8. Объясните, почему лампочка горит, когда выключатель разомкнут, и гаснет, когда он замкнут. (Не пытайтесь — батарея сильно разряжается!)
Рис. 8. Ошибка подключения. Включите этот переключатель параллельно устройству, обозначенному [латекс] R [/ латекс].(Обратите внимание, что на этой диаграмме скрипт E представляет напряжение (или электродвижущую силу) батареи.)
6. Зная, что сила электрического шока зависит от величины тока, протекающего через ваше тело, вы бы предпочли, чтобы он был включен последовательно или параллельно с сопротивлением, таким как нагревательный элемент тостера, если он шокирован им? Объяснять.
7. Были бы ваши фары тусклыми при запуске двигателя автомобиля, если бы провода в вашем автомобиле были сверхпроводниками? (Не пренебрегайте внутренним сопротивлением батареи.) Объяснять.
8. Некоторые гирлянды праздничных огней соединены последовательно для экономии затрат на проводку. В старой версии использовались лампочки, которые при перегорании прерывали электрическое соединение, как открытый выключатель. Если одна такая лампочка перегорит, что случится с остальными? Если такая цепочка работает от 120 В и имеет 40 одинаковых лампочек, каково нормальное рабочее напряжение каждой? В более новых версиях используются лампы, которые при перегорании замыкаются накоротко, как замкнутый выключатель. Если одна такая лампочка перегорит, что случится с остальными? Если такая цепочка работает от 120 В и в ней осталось 39 идентичных лампочек, каково тогда рабочее напряжение каждой?
9.Если две бытовые лампочки мощностью 60 Вт и 100 Вт подключить последовательно к бытовой электросети, какая из них будет ярче? Объяснять.
10. Предположим, вы проводите физическую лабораторию, в которой вас просят вставить резистор в цепь, но все прилагаемые резисторы имеют большее сопротивление, чем запрошенное значение. Как бы вы соединили доступные сопротивления, чтобы попытаться получить меньшее запрошенное значение?
11. Перед Второй мировой войной некоторые радиостанции получали питание через «шнур сопротивления», который имел значительное сопротивление.Такой резистивный шнур снижает напряжение до желаемого уровня для ламп радиоприемника и т.п., и это экономит расходы на трансформатор. Объясните, почему шнуры сопротивления нагреваются и тратят энергию при включенном радио.
12. У некоторых лампочек есть три уровня мощности (не включая ноль), полученные от нескольких нитей накала, которые индивидуально переключаются и соединяются параллельно. Какое минимальное количество нитей нити необходимо для трех режимов мощности?
Задачи и упражнения
Примечание. Можно считать, что данные, взятые из цифр, имеют точность до трех значащих цифр.
1. (а) Каково сопротивление десяти последовательно соединенных резисторов сопротивлением 275 Ом? (б) Параллельно?
2. (a) Каково сопротивление последовательно соединенных резисторов 1,00 × 10 2 Ом, 2,50 кОм и 4,00 кОм? (б) Параллельно?
3. Какое наибольшее и наименьшее сопротивление можно получить, соединив резисторы на 36,0 Ом, 50,0 Ом и 700 Ом?
4. Тостер на 1800 Вт, электрическая сковорода на 1400 Вт и лампа на 75 Вт подключены к одной розетке в цепи 15 А, 120 В.(Три устройства работают параллельно, если подключены к одной розетке.) а) Какой ток потребляет каждое устройство? (b) Перегорит ли эта комбинация предохранитель на 15 А?
5. Фара мощностью 30,0 Вт и стартер мощностью 2,40 кВт обычно подключаются параллельно в систему на 12,0 В. Какую мощность потребляли бы одна фара и стартер при последовательном подключении к батарее 12,0 В? (Не обращайте внимания на любое другое сопротивление в цепи и любое изменение сопротивления в двух устройствах.)
6.(a) Для батареи 48,0 В и резисторов 24,0 Ом и 96,0 Ом найдите для каждого из них ток и мощность при последовательном соединении. (b) Повторите, когда сопротивления включены параллельно.
7. Ссылаясь на пример комбинирования последовательных и параллельных цепей и рисунок 5, вычислите I 3 двумя следующими способами: (a) по известным значениям I и I 2 ; (б) используя закон Ома для R 3 . В обеих частях явно показано, как вы следуете шагам, описанным выше в стратегии решения проблем для последовательных и параллельных резисторов .
Рис. 5. Эти три резистора подключены к источнику напряжения, так что R 2 и R 3 параллельны друг другу, и эта комбинация включена последовательно с R 1 .
8. Ссылаясь на рисунок 5: (a) Вычислите P 3 и обратите внимание на его сравнение с P 3 , найденным в первых двух примерах задач в этом модуле. (b) Найдите полную мощность, отдаваемую источником, и сравните ее с суммой мощностей, рассеиваемых резисторами.
9. См. Рисунок 6 и обсуждение затемнения света при включении тяжелого прибора. (a) Учитывая, что источник напряжения составляет 120 В, сопротивление провода составляет 0,400 Ом, а номинальная мощность лампы составляет 75,0 Вт, какая мощность будет рассеиваться лампой, если при включении двигателя через провода пройдет в общей сложности 15,0 А? Предположите незначительное изменение сопротивления лампы. б) Какая мощность потребляет двигатель?
Рис. 6. Почему гаснет свет, когда включен большой прибор? Ответ заключается в том, что большой ток, потребляемый двигателем прибора, вызывает значительное падение напряжения в проводах и снижает напряжение на свету.
10. Линия электропередачи на 240 кВ, имеющая 5,00 × 10 2 , подвешена к заземленным металлическим опорам с помощью керамических изоляторов, каждый из которых имеет сопротивление 1,00 × 10 9 Ом (рис. 9 (а)). Какое сопротивление на землю у 100 изоляторов? (b) Рассчитайте мощность, рассеиваемую 100 из них. (c) Какая доля мощности, переносимой линией, составляет это? Ясно покажите, как вы следуете шагам, описанным выше в стратегии решения проблем для последовательных и параллельных резисторов .
Рис. 9. Высоковольтная (240 кВ) линия электропередачи 5,00 × 10 2 подвешена к заземленной металлической опоре электропередачи. Ряд керамических изоляторов обеспечивает сопротивление 1,00 × 10 9 Ом каждый.
11. Покажите, что если два резистора R 1 и R 2 объединены, и один из них намного больше другого ( R 1 >> R 2 ): (a ) Их последовательное сопротивление почти равно большему сопротивлению R 1 .(б) Их параллельное сопротивление почти равно меньшему сопротивлению R 2 .
12. Необоснованные результаты Два резистора, один из которых имеет сопротивление 145 Ом, подключены параллельно, чтобы получить общее сопротивление 150 Ом. а) Каково значение второго сопротивления? б) Что неразумного в этом результате? (c) Какие предположения необоснованны или непоследовательны?
13. Необоснованные результаты Два резистора, один из которых имеет сопротивление 900 кОм, соединены последовательно, чтобы получить общее сопротивление 0.500 МОм. а) Каково значение второго сопротивления? б) Что неразумного в этом результате? (c) Какие предположения необоснованны или непоследовательны?
Глоссарий
- серия:
- последовательность резисторов или других компонентов, включенных в цепь один за другим
- резистор:
- компонент, обеспечивающий сопротивление току, протекающему через электрическую цепь
- сопротивление:
- вызывает потерю электроэнергии в цепи
- Закон Ома:
- соотношение между током, напряжением и сопротивлением в электрической цепи: В = IR
- напряжение:
- электрическая потенциальная энергия на единицу заряда; электрическое давление, создаваемое источником питания, например аккумулятором
- падение напряжения:
- потеря электроэнергии при прохождении тока через резистор, провод или другой компонент
- ток:
- поток заряда через электрическую цепь мимо заданной точки измерения
- Закон Джоуля:
- взаимосвязь между потенциальной электрической мощностью, напряжением и сопротивлением в электрической цепи, определяемая следующим образом: [latex] {P} _ {e} = \ text {IV} [/ latex]
- параллельно:
- разводку резисторов или других компонентов в электрической цепи, так что каждый компонент получает одинаковое напряжение от источника питания; часто изображается на диаграмме в виде лестницы, где каждый компонент находится на ступеньке лестницы
Избранные решения проблем и упражнения
1.(а) 2,75 кОм (б) 27,5 Ом
3. (а) 786 Ом (б) 20,3 Ом
5. 29,6 Вт
7. (а) 0,74 А (б) 0,742 А
9. (а) 60,8 Вт (б) 3,18 кВт
11. (a) [латекс] \ begin {array} {} {R} _ {\ text {s}} = {R} _ {1} + {R} _ {2} \\ \ Rightarrow {R} _ {\ text {s}} \ приблизительно {R} _ {1} \ left ({R} _ {1} \ text {>>} {R} _ {2} \ right) \ end {array} \\ [/ латекс]
(b) [латекс] \ frac {1} {{R} _ {p}} = \ frac {1} {{R} _ {1}} + \ frac {1} {{R} _ {2} } = \ frac {{R} _ {1} + {R} _ {2}} {{R} _ {1} {R} _ {2}} \\ [/ latex],
так что
[латекс] \ begin {array} {} {R} _ {p} = \ frac {{R} _ {1} {R} _ {2}} {{R} _ {1} + {R} _ {2}} \ приблизительно \ frac {{R} _ {1} {R} _ {2}} {{R} _ {1}} = {R} _ {2} \ left ({R} _ {1 } \ text {>>} {R} _ {2} \ right) \ text {.} \ end {array} \\ [/ latex]
13. (a) –400 кОм (b) Сопротивление не может быть отрицательным. (c) Считается, что последовательное сопротивление меньше, чем у одного из резисторов, но должно быть больше, чем у любого из резисторов.
Как я могу рассчитать рабочий ток питания и рассеиваемую мощность? | Toshiba Electronic Devices & Storage Corporation
Рассеиваемая мощность должна быть рассчитана на основании следующих двух значений:
- Статический ток питания
- Динамический ток питания
Рассеиваемая мощность может быть получена умножением указанного выше тока на напряжение, приложенное к ИС.
Статическое рассеяние мощности: P S
В то время как логические ИС КМОП находятся в статическом состоянии (т. Е. Пока его входной сигнал остается неизменным), в нем протекает небольшой ток, за исключением крошечного тока утечки, который протекает через внутреннюю обратную цепь. смещенный pn переход (известный как статический ток питания, I CC ). Статическая рассеиваемая мощность равна I CC , умноженная на напряжение питания.
P S = V CC x I CC
V CC : напряжение, приложенное к логической микросхеме
I CC : Статический ток питания указан в техническом описании
.
Динамическое рассеяние мощности
Динамический ток питания — это ток, который протекает в логике CMOS, когда его вход переходит между высоким и низким.Этот ток протекает во время зарядки и разрядки емкости. Необходимо учитывать как паразитную емкость (внутреннюю эквивалентную емкость), так и емкость нагрузки. Динамическое рассеяние мощности достигается умножением этого тока на напряжение, подаваемое на P-канальный или N-канальный MOSFET. Здесь для простоты значение V CC , при котором протекает максимальный ток, используется для расчета мощности.
Динамическое рассеяние мощности из-за емкости нагрузки (C L ): P L
P L рассеивается, когда внешняя нагрузка заряжается и разряжается, как показано на правом рисунке.
Количество заряда (Q), накопленного на емкости нагрузки, рассчитывается следующим образом:
QL = C L x V CC
C L : Емкость нагрузки
Пусть частота выходного сигнала будет f OUT (= 1 / TOUT). 2 * Σ (C Ln * f OUTn )
Мощность
RMS vs.Средняя мощность
ВОПРОС:
Следует ли мне использовать единицы среднеквадратичного значения мощности (СКЗ) для определения или описания мощности переменного тока, связанной с моим сигналом, системой или устройством?
Ответ:
Это зависит от того, как вы определяете среднеквадратичную мощность.
Вы не хотите рассчитывать среднеквадратичное значение сигнала мощности переменного тока. Это приводит к физически бессмысленному результату.
Вы действительно используете среднеквадратические значения напряжения и / или тока для расчета средней мощности, что дает значимые результаты.
Обсуждение:
Сколько мощности рассеивается при подаче синусоидального напряжения 1 В (среднеквадратичное значение) на резистор 1 Ом?
Это хорошо понятно 1 , и здесь нет никаких противоречий.
Теперь давайте посмотрим, как это соотносится со значением, полученным при расчете среднеквадратичной мощности.
На рисунке 1 показан график синусоиды 1 В.Размах амплитуды составляет 1 В среднеквадратичное значение × 2 √2 = 2,828 В с изменением от +1,414 В до –1,414 В. 2
Рисунок 1. График синусоиды 1 В (среднеквадратичное значение).
Рисунок 2 представляет собой график мощности, рассеиваемой этой синусоидой 1 В (среднеквадратичное значение) на резисторе 1 Ом (P = V 2 / R), который показывает:
Рис. 2. График мощности, рассеиваемой синусоидой 1 В (среднеквадратичное значение) на резисторе 1 Ом.
- Кривая мгновенной мощности имеет смещение на 1 Вт и колеблется от 0 Вт до 2 Вт.
- Среднеквадратичное значение этого сигнала мощности равно 1.225 Вт.
- Одним из методов вычисления этого числа является уравнение 2 3 :
- Это можно проверить, используя более подробную формулу 4 в MATLAB ® или Excel.
- Среднее значение этого сигнала мощности составляет 1 Вт. Это очевидно при осмотре; осциллограмма колеблется симметрично выше и ниже 1 Вт. Это же значение получается при вычислении среднего числового значения точек данных осциллограммы.
- Среднее значение мощности соответствует мощности, рассчитанной с использованием среднеквадратичного значения напряжения.
Мощность, рассеиваемая синусоидальным током 1 В (среднеквадратичное значение) на резисторе 1 Ом, составляет 1 Вт, а не 1,225 Вт. Таким образом, именно средняя мощность дает правильное значение, и, следовательно, именно средняя мощность имеет физическое значение. Среднеквадратичная мощность (как определено здесь) не имеет очевидного полезного значения (не имеет очевидного физического / электрического значения), кроме как величина, которую можно рассчитать как упражнение.
Выполнение того же анализа с использованием синусоидального тока 1 А, действующего через резистор 1 Ом, является тривиальным упражнением.Результат тот же.
Источники питания для интегральных схем (ИС) обычно являются источниками постоянного тока, поэтому среднеквадратичная мощность не является проблемой для питания ИС. Для постоянного тока среднее и среднеквадратичное значение такие же, как и для постоянного тока. Важность использования средней мощности, в отличие от среднеквадратичной мощности, как определено в этом документе, относится к мощности, связанной с изменяющимися во времени напряжением и током, то есть шумом, радиочастотными сигналами и генераторами.
Используйте среднеквадратичное значение напряжения и / или среднеквадратичного значения тока для расчета средней мощности, что дает значимые значения мощности.
1 Мощность, рассеиваемая напряжением на резисторе, является фундаментальным соотношением, которое легко выводится из закона Ома (V = IR) и основных определений напряжения (энергия / единица заряда) и тока (единица заряда / времени). Напряжение × ток = энергия / время = мощность
2 Размах амплитуды синусоиды — это среднеквадратичное значение, умноженное на 2√2. Для синусоидального напряжения V p-p = V rms × 2√2, где V p-p — размах напряжения, а V rms — среднеквадратичное значение напряжения.Это хорошо известная связь, описанная в бесчисленных учебниках, а также здесь: en.wikipedia.org/wiki/Root_mean_square.
3 Это адаптировано из среднеквадратичного значения, рассчитанного из постоянного значения смещения постоянного тока плюс отдельное среднеквадратичное значение переменного тока, а также из примечания по применению «Сделайте более точные измерения среднеквадратичного значения переменного тока с помощью цифрового мультиметра» от Keysight.
4 Стандартное определение в учебнике — это один из примеров более подробной формулы.
Формулы мощности в однофазных и трехфазных цепях постоянного и переменного тока
Формулы и уравнения для электрической мощности в цепях постоянного и переменного тока 1-Φ и 3-Φ
Возвращаясь к основам, ниже приведены простые формулы электрической мощности для однофазных Цепи переменного тока, трехфазные цепи переменного тока и цепи постоянного тока.Вы можете легко найти электрическую мощность в ваттах , используя следующие формулы электрической мощности в электрических цепях .
Базовая формула мощности в цепях переменного и постоянного тока
Формула мощности в цепях постоянного тока
- P = V x I
- P = I 2 x R
- P = V 2 / R
Формулы мощности в однофазных цепях переменного тока
- P = V x I x Cos Ф
- P = I 2 x R x Cos Ф
- P = V 2 / R (Cos Ф)
Формулы мощности в трехфазных цепях переменного тока
- P = √3 x V L x I L x Cos Ф
- P = 3 x V Ph x I Ph x Cos Ф
- P = 3 x I 2 x R x Cos Ф
- P = 3 (V 2 / R) x Cos Ф
Где:
Формулы питания переменного тока в сложных схемах:
Комплексная мощность и полная мощность:
Когда в цепи есть индуктор или конденсатор, wer становится комплексной степенью «S» , что означает, что он состоит из двух частей: i.е. реальная и мнимая часть. Величина комплексной мощности называется полной мощностью | S |.
Где
- P — активная мощность
- Q — реактивная мощность
Активная или реальная мощность и реактивная мощность:
Действительная часть — Комплексная мощность «S» известна как активная или реальная мощность «P» , а мнимая часть известна как реактивная мощность «Q» .
- S = P + jQ
- P = V I cosθ
- Q = V I sinθ
Где
θ — фазовый угол между напряжением и током.
Коэффициент мощности:
Коэффициент мощности «PF» — это отношение активной мощности «P» к полной мощности «| S |» . Математически коэффициент мощности — это косинус угла θ между активной и полной мощностью.
Где
| S | = √ (P 2 + Q 2 )
Другие формулы, используемые для коэффициента мощности, следующие:
Cosθ = R / Z
Где:
- Cosθ = коэффициент мощности
- R = сопротивление
- Z = импеданс (сопротивление в цепях переменного тока i.е. X L , X C и R , известные как Индуктивное реактивное сопротивление , емкостное реактивное сопротивление и сопротивление соответственно).
Cosθ = кВт / кВА
Где
- Cosθ = коэффициент мощности
- кВт = фактическая мощность в ваттах
- кВА = полная мощность в вольт-амперах или ваттах
Для определения коэффициента мощности используются дополнительные формулы.
Реальная мощность однофазного и трехфазного тока
Где
- В действующее значение и I среднеквадратичное значение — среднеквадратичное значение напряжения и тока соответственно.
- В L-N & I L-N — это напряжение и ток между фазой и нейтралью соответственно.
- В L-L & I L-L — линейное напряжение и ток соответственно.
- Cosθ — коэффициент мощности PF.
Реактивная мощность однофазного и трехфазного тока:
Где
θ = — фазовый угол, т.е. разность фаз между напряжением и током.
В следующей таблице показаны различные формулы мощности для цепей переменного и постоянного тока.
Количество | Постоянный ток | Переменный ток (1-фазный) | Переменный ток (3 фазы) |
9289000
Мощность 4 |
|
|
|
Сопутствующие формулы Сообщения и уравнения:
микроконтроллер — Как рассчитать общий ток, мощность, потребление энергии устройством?
Исходя из ваших новых данных (5 секунд / 107 мА, 55 секунд / 17 мА), ваш период составляет 60 секунд.Теперь ваше среднее потребление в минуту составляет:
(1/12) * 107 мА + (11/12) * 17 мА = 24,5 мА
Как вы сказали ранее, устройство работает только 12 часов в день, это 50%, поэтому ваше окончательное среднее потребление составляет 12,25 мА.
С аккумулятором на 4000 мАч срок его службы составит:
Расчетный срок службы = (К) * Емкость аккумулятора / расход устройства
К * (4000 мАч / 12,25 мА)
~ K * 325 часов
с K = 0,7 время автономной работы составляет около 228 часов или менее 10 дней.
Для измерения энергопотребления и оценки срока службы батареи следует иметь в виду 3 вещи:
Как утверждает @ elliot-alderson, если вы измеряете каждую секунду, вы можете терять пики тока в вашем устройстве / микроконтроллере, например, если есть определенная активность с периодом в миллисекунды (выборка АЦП, связь и т. Д.).
Как упоминалось в @mcg, для расчета предполагаемого срока службы вам необходимо вычислить среднее потребление , это среднее потребление за период времени, равный повторяемому циклу в вашем приложении.То есть, если вы считываете свой АЦП каждую секунду, передаете через UART каждые 200 мс и мигаете светодиодом каждые 2 секунды, вы должны усреднить свое потребление в течение 2-секундного периода.
Иногда, если ваше устройство большую часть времени находится в спящем режиме, событие происходит каждые 15 секунд или минут, вы можете использовать потребление в спящем режиме.
в вашем случае ваш коэффициент активности составляет 50% (12 часов в день), так что это также следует учитывать.
Где вы измеряете ток на батарее, после регулятора, на 3.Самолет 3В. Помните, что для измерения мощности вам нужны как напряжение, так и сила тока. Таким образом, 300 мА при 5 В — это та же мощность, что и 500 мА при 3 В. Также проверьте эффективность преобразователей мощности (DC-DC, понижающий, повышающий), чтобы получить достоверную оценку.
Имея все это ясно, вы можете использовать этот инструмент для расчета срока службы батареи, который составляет (K — коэффициент безопасности, потому что вы можете не использовать полную емкость батареи, я использую 0,7 для своих проектов)
Расчетный срок службы = (К) * Емкость аккумулятора / расход устройства
https: // www.digikey.com/en/resources/conversion-calculators/conversion-calculator-battery-life
Как рассчитать допустимую токовую нагрузку на плоскость питания печатной платы | Блог
Захария Петерсон
| & nbsp Создано: 21 января 2021 г.
& nbsp | & nbsp
Обновлено: 22 января 2021 г.
Самолеты
являются неотъемлемой частью вашей печатной платы, но насколько они должны быть большими и какой ток может с комфортом переносить большой самолет? По правде говоря, разработчик может гибко регулировать свои ограничения, чтобы приспособиться к большим токам в плоскостях питания печатных плат, но размер плоскости питания ограничивает максимальную допустимую токовую нагрузку на плоскость питания печатной платы.Когда вам нужно обеспечить высокую надежность, стандарты IPC — хорошее место для начала определения размеров вашей силовой панели, чтобы ваша плата оставалась прохладной.
Общие сведения о допустимой токовой нагрузке на плоскость питания печатной платы
Плоскости питания и заземления
служат в вашей печатной плате для различных целей, помимо передачи тока к компонентам и от них. Они являются неотъемлемой частью целостности питания постоянного и переменного тока и часто требуют такого же внимания к деталям, как и остальная часть компоновки вашей печатной платы.
Поскольку все проводники имеют некоторое сопротивление постоянному току, они будут рассеивать некоторую мощность в виде тепла, когда по ним протекает некоторый ток.Как и у любого другого проводника, размер медной плоскости будет определять его сопротивление постоянному току, которое будет определять, сколько мощности рассеивается в виде тепла в плоскости питания. Точно так же, как при попытке определить минимальную ширину дорожек, существует минимальный размер плоскости мощности для заданного необходимого постоянного тока или максимальная пропускная способность плоскости питания печатной платы для данного размера плоскости.
Зачем нужны большие самолеты?
С точки зрения сопротивления постоянному току и рассеиваемой мощности есть две причины использовать более крупные плоскости питания:
- Более низкое сопротивление постоянному току: Физически большие плоскости питания можно сделать шире и иметь меньшее сопротивление постоянному току, чем узкая плоскость, поэтому они рассеивают меньше тепла.
- Большая теплопередача: Силовые панели в печатной плате могут отводить больше тепла от горячих компонентов по сравнению с голой подложкой.
Из соображений переменного тока и электромагнитных помех также желательны физически большие плоскости, поскольку они обеспечивают большую межпланетную емкость для развязки в высокоскоростных платах и обеспечивают некоторую изоляцию от электромагнитных помех. Однако, поскольку основная задача силовой панели PCB во многих энергосистемах заключается в передаче высокого тока по плате, первое, с чего нужно начать проектирование, — это определить максимальный ток, который ваш самолет может выдерживать, не перегреваясь.
Расчет токовой нагрузки силового блока
Лучшее место для начала расчета допустимой токовой нагрузки силовой панели — использовать стандарт IPC 2221. Для высоковольтных конструкций этот стандарт охватывает несколько аспектов надежности конструкции, но считается менее консервативным, чем соответствующий стандарт IPC 2152. Этот расчет покажет вам рост температуры, который вы можете ожидать для данного размера плоскости и тока, или его можно использовать для определения размера плоскости для данной температуры и тока.Большинство калькуляторов, которые вы найдете в Интернете, используют второй подход. Входные данные для этого расчета:
- Максимально допустимое превышение температуры от внешней температуры окружающей среды (обычно 10-20 ° C)
- Вес меди силового рубанка
- Требуемый ток (в амперах)
Сначала рассчитайте минимальную требуемую площадь, используя желаемые значения тока и превышения температуры:
Формула площади поперечного сечения силовой панели из IPC 2221.
Затем вычислите ширину поперечного сечения плоскости по площади, используя вес меди. Толщина медного рубанка 1 гр. / Кв. ft. вес составляет 0,35 мм, поэтому вы можете использовать его для расчета размаха вашего самолета. Лучшие инструменты проектирования помогут вам оценить свои результаты с помощью имитатора после макета, чтобы определить области, где сила тока и температура слишком высоки.
Если хотите, вы можете переключить его, чтобы получить предел тока для допустимого повышения температуры. Во-первых, вам нужно решить указанное выше уравнение для тока.Затем возьмите площадь поперечного сечения вашего самолета и указанное вами повышение температуры и вставьте их в решенное уравнение. Теперь у вас есть максимальный предел тока для вашего силового самолета.
Проектирование для более высоких температур или токов
Если вам нужен сильный отвод тепла от платы, например, в системе питания или автомобильной системе, можно использовать подложку с керамическим или металлическим сердечником. Эти подложки будут рассеивать больше тепла от платы, поэтому вы можете ожидать, что ваша система будет работать при более низкой постоянной температуре во время работы.Вы можете удалить охлаждающий вентилятор или радиатор из системы, в зависимости от того, где будет установлена плата.
Другой простой вариант — просто использовать несколько плоскостей питания на нескольких уровнях. В качестве примера из моего недавнего проекта мы сделали объединительную плату 6U, которая должна была передавать до 100 А от пары блоков питания с возможностью горячей замены на несколько дочерних плат на разных разъемах. Такая плата уже довольно велика, но плоские секции в одной области платы могут выдерживать только ~ 20 А без повышения температуры платы до неприемлемого уровня.Решение? Используйте несколько плоскостей питания на разных слоях! Параллельная работа плоскостей питания эквивалентна использованию более толстой меди и увеличит общую допустимую нагрузку на плоскость питания на печатной плате.
Аналогичный пример показан ниже, где две плоскости питания с разными напряжениями используются для передачи большого тока. Плоскость низкого напряжения / низкого тока отображается бордовым цветом, а плоскость высокого напряжения / высокого тока — зеленым. Если вы творчески подходите к проекту распределения мощности, вы можете разделить токи между разными плоскостями, чтобы температура в одной плоскости не становилась слишком высокой.
Параллельно подключенные плоскости могут нести разные напряжения и токи, которые ниже допустимой токовой нагрузки плоскости питания печатной платы.
После того, как вы определили допустимый ток плоскости питания, вы можете исследовать распределение постоянного тока в моделировании постоянного тока с помощью инструмента PDNA. В этих статьях Марк Харрис предоставляет два отличных руководства:
Если вы разрабатываете силовую электронику и хотите обеспечить надежность своей следующей системы, используйте полный набор инструментов проектирования и компоновки печатных плат в Altium Designer® для вашего следующего проекта.Обновленный редактор правил проектирования в последней версии Altium Designer позволяет определять стандарты IPC в качестве правил проектирования и помогает создавать технологичные макеты. Вы также можете использовать инструменты проектирования высокого напряжения и расширение PDN Analyzer, чтобы убедиться, что вы не превысили допустимый ток плоскости питания печатной платы при создании макета печатной платы.
Когда вы закончили разработку и хотите поделиться своим проектом, платформа Altium 365 ™ упрощает сотрудничество с другими дизайнерами.Мы лишь коснулись поверхности того, что можно делать с Altium Designer на Altium 365. Вы можете проверить страницу продукта, чтобы получить более подробное описание функций или один из веб-семинаров по запросу.
Калькулятор степенного треугольника
Треугольник мощности показывает соотношение между реактивной, активной и полной мощностью в цепи переменного тока.
Важные термины
- Реальная мощность (P) — Измеряется в ваттах, определяет мощность, потребляемую резистивной частью цепи.Также известная как истинная или активная мощность, выполняет реальную работу в электрической цепи.
- Реактивная мощность (Q) — Измеренная в ВАХ мощность, потребляемая в цепи переменного тока, которая не выполняет никакой полезной работы, вызванной индукторами и конденсаторами. Реактивная мощность противодействует действию реальной мощности, забирая мощность из цепи для использования в магнитных полях.
- Полная мощность (S) — произведение среднеквадратичного напряжения и действующего тока, протекающего в цепи, содержит активную мощность и реактивную мощность.
- Коэффициент мощности (q) — Отношение реальной мощности (P) к полной мощности (S), обычно выражаемое в виде десятичного или процентного значения. Коэффициент мощности определяет фазовый угол между сигналами тока и напряжения. Чем больше фазовый угол, тем больше реактивная мощность.
Важные формулы
- Реальная мощность (P) = VIcosq, Вт (Вт)
- Реактивная мощность (Q) = VIsinq, Реактивная мощность вольт-ампер (VAr)
- Полная мощность (S) = VI, Вольт-амперы (ВА)
- Коэффициент мощности (q) = P / S
- ВА = Вт / cosq
- ВА = VAR / sinq
- VAR = VA * sinq
- VAR = W * tanq
- Вт = ВА * cosq
- Вт = VAR / tanq
- Sin (q) = Противоположно / Гипотенуза = Q / S = VAr / VA
- Cos (q) = Соседний / Гипотенуза = P / S = Вт / ВА = коэффициент мощности, p.f.
- Желто-коричневый (q) = Напротив / Соседний = Q / P = VAr / W
Дополнительная литература
Комментарии
Войдите или зарегистрируйтесь, чтобы комментировать.