Как вычислить силу тока зная мощность и напряжение: Расчёт величины тока по мощности и напряжению

Содержание

Как определить силу тока. Как узнать, вычислить какой ток в схеме, цепи.

 

 

 

Тема: по какой формуле можно найти силу тока, как правильно измерить ток.

 

Известно, что электрический ток заряженных частиц лежит в основе работы всей электротехники. Знание его величины дает понимание о режиме работы той или иной цепи, схемы. Если для специалиста электрика, электронщика не составит особого труда определить силу тока, то для новичка это может оказаться проблемой. В этой теме давайте с вами рассмотрим, какими именно способами можно узнать, вычислить, найти электрический ток используя как непосредственные измерения так и формулы.

 

Основными электрическими величинами являются напряжение, ток, сопротивление, мощность. Пожалуй главной формулой электрика является формула закона Ома. Она имеет вид I=U/R (ток равен напряжение деленное на сопротивление). Данную формулу приходится использовать повсеместно. Из нее можно вывести две другие: R=U/I и U=I*R. Зная любые две величины всегда можно вычислить третью. Напомню, что при использовании формул нужно пользоваться основными единицами измерения. Для тока это амперы, для напряжения это вольты и для сопротивления это омы.

 

К примеру, вам нужно быстро определить силу тока, которую потребляем электрочайник. Напряжение нам известно, это 220 вольт. Берем в руки мультиметр, электронный тестер, меряем сопротивление в омах. Далее мы просто напряжение перемножаем на это сопротивление. В итоге мы получаем искомую силу тока в амперах. Хочу уточнить, что данная форума работает только для цепей с активной нагрузкой (обычные нагреватели, лампы накаливания, светодиоды и т.д.). Для реактивной нагрузки формула имеет иной вид, где уже используется такие величины как индуктивность, емкость, частота.

 

 

 

 

Силу тока можно определить и по другой формуле, которая в себе содержит напряжение и мощность. Она имеет вид: I=P/U (сила тока равна электрическая мощность деленная на напряжение). То есть, 1 ампер равен 1 ватт деленный на 1 вольт. Две других формулы, выходящие из этой, имеют такой вид: P=U*I и U=P/I. Если вам известны любые две величины из тока, напряжения и мощности, всегда можно вычислить третью.

 

Помимо формул силу тока можно определить и практическим путем, через обычное измерение тестером, мультиметром. Для новичков сообщаю, что силу тока нужно измерять в разрыв электрической цепи. То есть, к примеру, у нас схема, прибор, с него выходит кабель с двумя проводами питания. Берем измеритель, выставляем на нем нужный диапазон измерения. Далее, один щуп измерителя мы прикладываем к одному из проводов питания устройства, а другой щуп измерителя к одному из контактов самого электропитания. Ну, и оставшийся провод, идущий от устройства мы также подсоединяем ко второму контакту питания. После включения самого устройства на измерителе появится величина тока, которую он потребляет при своей работе.

 

При измерении силы тока нужно помнить, что имеет значение какой вид тока течет по цепи (переменный или постоянный). Допустим, на большинство электротехники подается переменное напряжение, следовательно и измерять на входе ток нужно переменного типа. Внутри устройств обычно стоят блоки питания, которые снижают сетевое напряжение до меньших величин и делают его постоянным. Значит ту часть электрической цепи, что стоит после выпрямляющего диодного моста (делающая из переменного тока постоянный) уже нужно измерять как постоянный ток. Если вы попытаетесь измерить силу тока не своего типа, то и показания вы получите неверные.

 

Напряжение измеряют по другому. Измерительные щупы уже прикладываются не в разрыв цепи, как это делается у тока, а параллельно контактам питания. И в этом случае тип напряжения имеет значение (переменное или постоянное). Так что будьте внимательны, когда выставляете тип тока (напряжения) и их предел на тестере.

 

P.S. Именно сила тока в электротехнике делает всю работу, что мы воспринимаем как свет, тепло, звук, движение и т. д. Для облегчения понимания, что такое ток, а что такое напряжение можно привести аналогию с обычной водой. Так вот давление в воды в водопроводе будет соответствовать примерно электрическому напряжению, а движение самой воды это будет ток.

 

Известна мощность и напряжение как найти ток

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

На данной странице калькулятор поможет рассчитать мощность электрического тока онлайн. Для расчета задайте напряжение, силу тока или сопротивление.

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.

Через напряжение и силу тока

Формула для нахождения мощности электрического тока через напряжение и силу тока:

Через напряжение и сопротивление

Формула для нахождения мощности электрического тока через напряжение и сопротивление:

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U 2 /R

Также можно выполнить расчет, зная ток и сопротивление:

P=I 2 *R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost. html.

Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:

S=UI

Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.

P=UIcosФ

Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.

Q=UIsinФ

Или выразить из этого выражения:

И отсюда вычислить искомую величину.

Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:

А зная Uлинейное:

1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.

Тогда по аналогии чтобы найти P активную:

Определить реактивную мощность можно:

На этом теоретические сведения заканчиваются и мы перейдём к практике.

Пример расчёта полной мощности для электродвигателя

Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.

Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:

Тогда найти активную электрическую мощность можно по формуле:

P=Pна валу/n=160000/0,94=170213 Вт

Теперь можно найти S:

Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

И выделяется на каждом по:

Или через общее сопротивление, тогда:

Все расчёты совпали, значит найденные значения верны.

Заключение

Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Также читают:

Как высчитать ток зная мощность и напряжение

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Формулы для расчета тока в трехфазной сети

Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.

Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей. При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание. Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.

Для чего нужен расчет тока

Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.

Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.

Расчет тока для однофазной сети

Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.

Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:

Электрические приборы и оборудование

Потребляемая мощность (кВт)

Работа и мощность тока — урок. Физика, 8 класс.

При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.

При прохождении заряда \(q\) по участку цепи электрическое поле будет совершать работу: \(A=qU\), где \(U\) — напряжение электрического поля, \(А\) — работа, совершаемая силами электрического поля по перемещению заряда \(q\) из одной точки в другую.

Для выражения любой из этих величин можно использовать приведённые ниже рисунки.

Электрический заряд, прошедший по участку цепи, можно определить, измерив силу тока и время его прохождения: q=I⋅t.

Используя это соотношение и подставляя его в формулу A=U⋅q, получим формулу для нахождения работы электрического тока: A=U⋅I⋅t.

Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.

Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.

 

 

\([A]=1\) Дж;

\([U]=1\) В;

\([I]=1\) А;

\([t]=1\) с.

Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.

 

Например:

 

I = 1,2 АU = 5 Вt = 1,5 мин = 90 сА = U⋅I⋅t = 5⋅1,2⋅90 = 540 Дж 

 

Обрати внимание!

Работа чаще всего выражается в килоджоулях или мегаджоулях.

\(1\) кДж = 1000 Дж или \(1\) Дж = \(0,001\) кДж;
\(1\) МДж = 1000000 Дж или \(1\) Дж = \(0,000001\) МДж.

На практике работу электрического тока измеряют специальными приборами — счётчиками электрической энергии. Их можно увидеть как в каждом частном доме, так в каждом подъезде многоквартирного дома.

 

Механическая мощность численно равна работе, совершённой телом в единицу времени: N = Аt.  Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока, A=U⋅I⋅t, разделить на время.

Мощность электрического тока обозначают буквой \(Р\):

P=At=U⋅I⋅tt=U⋅I. Таким образом:

Мощность электрического тока равна произведению напряжения на силу тока: P=U⋅I.

Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённые ниже рисунки.

 

 

За единицу мощности принят ватт: \(1\) Вт = \(1\) Дж/с.

 

Из формулы P=U⋅I следует, что

\(1\) ватт = \(1\) вольт ∙ \(1\) ампер, или \(1\) Вт = \(1\) В ∙ А.

 

Обрати внимание!

Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
\(1\) гВт = \(100\) Вт или \(1\) Вт = \(0,01\) гВт;
\(1\) кВт = \(1000\) Вт или \(1\) Вт = \(0,001\) кВт;
\(1\) МВт = \(1 000 000\) Вт или \(1\) Вт = \(0,000001\) МВт.

Пример:

Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.

 

 

Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:

 

I=1,2АU=5ВP =U⋅I=5⋅1,2=6Вт.

 

Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.

В зависимости от сферы применения у них различаются пределы измерения.

 

Аналоговый ваттметр

Аналоговый ваттметр

Аналоговый ваттметр

Цифровой ваттметр

 

Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.

 

 

 

Сила тока в лампочке мощностью \(25\) ватт будет составлять \(0,1\) А. Лампочка мощностью \(100\) ватт потребляет ток в четыре раза больше — \(0,4\) А. Напряжение в этом эксперименте неизменно и равно \(220\) В. Легко можно заметить, что лампочка в \(100\) ватт светится гораздо ярче, чем \(25\)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в \(4\) раза больше, потребляет в \(4\) раза больше тока. Значит: 

 

Обрати внимание!

Мощность прямо пропорциональна силе тока.

Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение \(110\) В и \(220\) В.

  

 

Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:

 

Обрати внимание!

Мощность зависит от напряжения.

Рассчитаем мощность лампочки в каждом случае:

 

I=0,2АU=110ВP=U⋅I=110⋅0,2=22ВтI=0,4АU=220ВP=U⋅I=220⋅0,4=88Вт.

 

Можно сделать вывод о том, что при увеличении напряжения в \(2\) раза мощность увеличивается в \(4\) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).

 

 

В таблице дана мощность, потребляемая различными приборами и устройствами:

 

Название

Рисунок

Мощность

 Калькулятор

\(0,001\) Вт

 Лампы дневного света

\(15 — 80\) Вт

 Лампы накаливания

\(25 — 5000\) Вт

 Компьютер

\(200 — 450\) Вт

 Электрический чайник

\(650 — 3100\) Вт

 Пылесос

\(1500 — 3000\) Вт

 Стиральная машина

\(2000 — 4000\) Вт

 Трамвай

\(150 000 — 240000\) Вт

РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ОНЛАЙН — ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЯ, ТОКА, МОЩНОСТИ И СЕЧЕНИЯ ПРОВОДНИКА

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Онлайн расчет:

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

I=P/U=2000/220В = 9А

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.


Рекомендуем ознакомиться:

 — БЛОК ПИТАНИЯ ДЛЯ СВЕТОДИОДНЫХ ЛЕНТ

 — ЗАЩИТНОЕ ЗАНУЛЕНИЕ

 — СВЕТОДИОДНЫЕ СВЕТИЛЬНИКИ — ЛУЧШЕ НЕ ПРИДУМАЕШЬ!

 — АЛМАЗНАЯ РЕЗКА БЕТОНА И ЖБ КОНСТРУКЦИЙ

 Автор — Антон Писарев


физические формулы, использующие мощность и напряжение

При выборе какого-либо электрического оборудования одним из важных параметров, на который обращается внимание, является мощность изделия. Этот параметр неразрывно связан с силой тока и напряжением. Чтобы рассчитать силу тока, напряжение или мощность в электрической цепи, используются несложные формулы. Но чтобы осмысленно проводить такие вычисления, желательно понимать физическую природу возникновения этих величин.

Физическое понятие величин

Любая электрическая цепь характеризуется рядом параметров. Наиболее важными из них являются сила тока, напряжение, мощность и сопротивление. Эти характеристики связаны между собой и зависят друг от друга. Явление, объединяющее их, называется электричеством.

Это понятие было введено ещё в 1600 году английским физиком Уильямом Гилбертом, изучающим магнитные и электрические явления. Исследуя магнетизм в природе, учёный установил, что некоторые тела при трении начинают обладать силой притяжения по отношению к другим предметам, в частности, к янтарю. Поэтому он и назвал открытое явление ēlectricus, что в переводе с латинского обозначает «янтарный».

Продолжая его исследования, немецкий физик Отто фон Герике в 1663 году изобрёл электрическую машину, которая представляла собой металлический стержень с одетым на него серным шаром. В результате он выяснил, что материалы могут не только притягивать вещества, но и отталкивать. Но только через восемьдесят лет американец Бенджамин Франклин создал теорию электричества, введя такие термины, как отрицательный и положительный заряд.

Дальнейшее развитие электричество получило после опытов Шарля Кулона и открытия им закона взаимодействия зарядов. Заключался он в следующем: сила влияния двух точечных зарядов друг на друга в вакууме прямо пропорциональна их произведению и обратно пропорциональна расстоянию между ними в квадрате. После этого благодаря экспериментам таких учёных, как Джоуль, Ленц, Ом, Ампер, Фарадей, Максвелл были введены понятия ток, напряжение и электромагнетизм.

Так, в 1897 году англичанин Джозеф Томсон установил, что носителями зарядов являются электроны. Ранее, в 1880 году, электротехник из России Дмитрий Лачинов сформулировал необходимые условия для передачи электричества на расстояния.

После этих открытий были выработаны фундаментальные определения электричества. Сегодня под ним понимаются свойства материалов образовывать вокруг себя электрическое поле, оказывающее воздействие на располагающиеся рядом другие заряженные частицы. Заряды условно принято разделять на положительные и отрицательные. При их перемещении возникает магнитное поле, при этом одинакового знака заряды притягиваются, а разного — отталкиваются.

Сила тока

Ток — это упорядоченное движение носителей заряда, происходящее под влиянием электрического поля. В качестве положительно заряженных частиц выступают электроны, а отрицательных — дырки. Математически это явление описывается с помощью формулы I = Q*T, где I — ток проводимости (А), Q — заряд частицы (Кл), T — время ©.

То есть электрическим током называется количество зарядов, прошедших через поперечное сечение вещества. Но эта формулировка верна только для тока постоянной величины, в то время как для изменяемого во времени она будет выглядеть I (T) = dQ/dT.

Плотность движения носителей заряда в материале, то есть количество электричества, проходящего за условно принятое время, называется силой тока. Согласно Международной системе (СИ) его единицей измерения является ампер. Один ампер равен перемещению электрического заряда, равного одному кулону, через поперечное сечение за одну секунду.

Носители заряда могут двигаться как упорядоченно, так и хаотично. При их движении возникает электрическое поле, обозначаемое латинской буквой E. Значение, определяющееся отношением тока к поперечному сечению проводника, называется плотностью тока. За единицу её измерения принимается А/мм2.

По своему виду ток различают на следующие типы:

  1. Переноса. Характеризуется движением зарядов, осуществляемым в свободном пространстве. Этот тип характерен для газоразрядных приборов.
  2. Смещения. Возникает в диэлектриках и определяется упорядоченным перемещением связанных заряженных частиц.
  3. Полный. Определяется суммарным значением тока: проводимости, переноса и смещения.
  4. Постоянный. Это такой вид, который может изменять величину, но не изменяет направление движения, то есть свой знак.
  5. Переменный. Такого вида ток может изменяться как по величине, так и по направлению (знаку).

Переменный вид разделяется по форме и может быть синусоидальным и несинусоидальным. Для расчёта силы тока синусоидальной формы используется формула Is = Ia*sin ωt, где Ia — максимальное значение тока (A), ω — угловая скорость, равная 2πf (Гц).

Физические тела, в которых возможно протекание тока, называют проводниками, а в тех, где возникают препятствия его прохождению — диэлектриками. Промежуточное состояние между ними занимают полупроводники.

Разность потенциалов

Напряжением принято называть физическую величину, характеризующую электрическое поле. Она показывает, какую работу понадобится совершить полю для того, чтобы переместить единичный заряд из одной точки в другую. При этом принимается, что этот перенос не влияет на распределение зарядов в источнике поля. Согласно Международной системе единиц напряжение измеряется в вольтах.

Работа по переносу складывается из двух величин — электрических и сторонних. Если сторонние силы не действуют, то напряжение на участке цепи равно разности потенциалов и вычисляется по формуле U = φ1-φ2. При этом потенциал определяется отношением напряжённости электрического поля к заряду. Для его расчёта используют формулу φ = W/q.

Другими словами, это характеристика поля в определённой точке, не зависящей от величины заряда, находящегося в нём. То есть напряжение в общем случае определяется работой электростатического поля, возникающего при движении заряда вдоль его силовых линий. Математически его можно рассчитать по формуле U = A/q, где А — совершаемая работа по перемещению (Дж), q — энергия заряда (Кл).

Применительно к сети переменного тока для напряжения используются следующие понятия:

  1. Мгновенное. Это значение физической величины, измеренное в конкретный момент времени: U = U (t). Для синусоидального сигнала мгновенное напряжение находится с помощью выражения U (t) = Ua sin (ὤt + φ).
  2. Амплитудное. Характеризуется наибольшей величиной мгновенного значения без учёта знака: Ua = max (U (t)).
  3. Среднее. Определяется за полный период сигнала по формуле Us = 1/T ʃ U (t)*dt. Для синусоидальной формы это значение равно нулю.

Проводя расчёт напряжения, редко используется понятие электрического потенциала. Связано это с тем, что условно принято за одну из точек потенциала принимать землю.

Это значение берётся равным нулю, а все остальные потенциалы считаются относительно неё. Говоря, что напряжение в определённой точке составляет 300 вольт, имеется в виду разность потенциалов между этой точкой и землёй, равная этому значению.

Электрическая мощность

Электрическая мощность характеризует скорость передачи электрической энергии или её преобразование. Единицей её измерения является ватт. Для того чтобы посчитать мощность на определённом участке цепи, необходимо перемножить значение напряжения и силы тока на этом участке. Исходя из определения электрического напряжения, можно сказать, что заряд при движении совершает работу, численно равную ей на участке цепи. Если же умножить работу на количество зарядов, то можно найти общее значение работы, которую совершили заряды на этом участке.

Исходя из физического определения, что мощность — это работа за единицу времени, получается выражение P = A/Δt, где A — работа, совершаемая зарядом при перемещении от начальной точки к конечной (Дж), Δt — время, затраченное на полное перемещение заряда ©.

Для всех зарядов в цепи мощность можно найти благодаря формуле P = (U/ Δt) * Q, где Q — общее число зарядов.

Так как ток представляет собой заряд, протекающий в единицу времени (I = Q/ Δt), то получается, что мощность равна произведению тока на напряжение, то есть P = U*I (Вт).

В цепи с постоянным током его сила и напряжение всегда имеют постоянное значение в определённой точке, поэтому для любого момента времени мощность можно вычислить по формуле P = I*U = I2*R = U2/R, где R — сопротивление прохождению тока в электрической цепи (Ом). Если же в этой сети находится источник электродвижущей силы, то мощность находится как P = I*E+ I2*r, где Е — электродвижущая сила или ЭДС (В), r — внутреннее сопротивление источника ЭДС (Ом).

Для цепи, в которой её параметры изменяются по какому-то циклу, мощность в определённой точке интегрируется по времени. При этом существуют следующие виды мощности:

  1. Активная. Для её нахождения используется расчёт, учитывающий угол сдвига фаз φ. Находится согласно формуле P = U*I*cos φ.
  2. Реактивная. Характеризуется нагрузками, создаваемыми электрическими устройствами в виде колебаний энергии электромагнитного поля. Её вычисление осуществляется по формуле P = U*I*sin φ.
  3. Полная. Определяется произведением действующих значений тока и напряжения, связана с другими видами мощности выражением S= √(P 2 +Q 2).

Закон Ома для цепи

Проводя расчёты мощности по напряжению и току на практике, часто используют закон Ома. Он устанавливает связь между током, сопротивлением и напряжением. Этот закон был открыт путём проведения Симоном Омом ряда экспериментов и сформулирован им в 1826 году. Он выяснил, что величина тока на участке цепи прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению этого участка.

Закон Ома можно записать в следующем виде: I = U/R, где I — значение силы тока (А), U — разность потенциалов (В), R — сопротивление цепи прохождению тока (Ом).

Для полной же цепи эту формулу можно записать так: I = E/(R+ r0), где E — ЭДС источника питания (В), r0 — внутреннее сопротивление источника напряжения (Ом).

Таким образом, для участка цепи будет справедливо выражение P = U2/R = I2R, а для полной цепи — P = (E/(R+ R0))2*R. Именно эти две формулы и используются чаще всего для расчётов электрических сетей или мощности необходимого оборудования.

Различные компоненты электрической сети в определённый момент времени потребляют разную величину тока. Поэтому очень важно правильно рассчитать, какое количество энергии подводится в тот или иной момент в определённое место цепи, чтобы не допустить перегрузок на линии и возникновения аварийных ситуаций.

Этим и занимаются разработчики схем, упрощая их до состояния, когда можно рассчитать необходимую мощность, используя закон Ома.

Практический расчёт

Например, пусть понадобится узнать, на какой ток необходимо приобрести устанавливаемый на участок цепи автоматический выключатель. При этом известно, что в линию, на которой он будет установлен, одновременно будут включаться холодильник с максимальной мощностью потребления энергии один киловатт, бойлер (два киловатта) и люстра, потребляющая 90 ватт. В месте установки используется однофазная сеть, рассчитанная на рабочее напряжение 220 вольт.

На первом этапе расчёта понадобится суммировать всю мощность подключаемых к линии электроприборов. Так, P общ. = 1000 + 2000 + 90 +220 = 3310 Вт. Используя формулу P = I*U, находится необходимое значение тока: I = P/U = 3310/220 = 15,04 А.

Из стандартного ряда выключателей наиболее близкое значение имеет автомат на 16 А. Поскольку необходимо покупать устройство защиты с небольшим запасом, то для рассматриваемого примера подойдёт выключатель, рассчитанный на 20 ампер.

Благодаря таким вычислениям можно рассчитать любой параметр электрической цепи, но это при учёте достаточного количества вводных данных.

Как рассчитать силу тока, рассчитать мощность, ампераж

1 Особенности конструкции

Основа конструкции любого предохранителя – заменяемый патрон с плавким элементом, который устанавливают на опорных изоляторах. Для механического и электрического соединения используют специальные контакты, выполненные из различных материалов.

Патрон представляет собой цилиндр из специального фарфора, устойчивого к кратковременному воздействию высоких температур. На торцах цилиндра устанавливают металлические колпачки, соединенные между собой плавкой вставкой, изготовленной из электротехнической меди или нихрома в зависимости от типа модели.

Внутреннее пространство корпуса патрона заполняют кварцевым песком высокой степени очистки, размер фракций и химический состав которого строго регламентированы нормативными документами. Его функция заключается в гашении электрической дуги, возникающей при срабатывании предохранителя.

Конструкция аппарата может включать в себя ударное устройство и указатель срабатывания, который выполняет функцию индикатора.

2 Применение

Высоковольтные предохранители используют на предприятиях энергетики, металлургии, машиностроения, горнодобывающих производствах, объектах атомных электростанций, в железнодорожном транспорте и жилищно-коммунальных хозяйствах. Подобные коммутационные аппараты устанавливают:

  • на комплектных трансформаторных подстанциях;
  • непосредственно на строительных конструкциях;
  • в главные распределительные щиты;
  • сборные камеры одностороннего обслуживания;
  • конденсаторные установки.

3 Основные характеристики

К основным характеристикам предохранителей в электроустановках выше 1000 В относят:

  • номинальную силу тока;
  • номинальный ток отключения;
  • номинальный ток основания;
  • номинальное напряжение;
  • габаритные размеры;
  • климатическое исполнение.

Для упрощения идентификации изделия производители наносят на корпус маркировку, выполненную методом тампопечати.

На маркетплейсе Getenergo можно купить предохранители, изготовленные известными производителями электротехнической продукции. Удачного выбора!

Как рассчитать максимальный входной переменный ток

Как рассчитать максимальный входной переменный ток.
Ан-21

Знание максимального входного тока источника питания может быть полезно при выборе требований к электроснабжению, выборе автоматического выключателя, выбора входного кабеля переменного тока и разъема и даже при выборе изолирующего трансформатора для плавающих приложений. Вычислить максимальный входной ток довольно просто, зная несколько основных параметров и некоторую простую математику.

Номинальная мощность блока питания высокого напряжения
Все блоки питания Spellman имеют заявленную максимальную номинальную мощность в ваттах.Это первый параметр, который нам понадобится, и его можно найти в паспорте продукта. У большинства блоков питания Spellman максимальная мощность указана прямо в номере модели. Как и в этом примере, SL30P300 / 115 представляет собой блок 30 кВ с положительной полярностью, который может обеспечить максимум 300 Вт; работает от входной линии 115Vac.

КПД источника питания
КПД источника питания — это отношение входной мощности к выходной мощности. Эффективность обычно указывается в процентах или в виде десятичной дроби меньше 1, например 80% или 0.8. Чтобы вычислить входную мощность, мы берем заявленную максимальную выходную мощность и делим ее на КПД:

300 Вт / 0,8 = 375 Вт

Коэффициент мощности
Коэффициент мощности — это отношение реальной мощности к используемой полной мощности. . Обычно она выражается десятичным числом меньше 1. Реальная мощность выражается в ваттах, а полная мощность выражается в ВА (вольт-амперах). Однофазные импульсные источники питания без коррекции обычно имеют довольно низкий коэффициент мощности, например 0.65. Трехфазные импульсные источники питания без коррекции имеют более высокий коэффициент мощности, например 0,85. Блоки со схемой активной коррекции коэффициента мощности могут иметь очень хороший коэффициент мощности, например 0,98. В нашем примере выше источник питания представляет собой неисправный блок, питаемый от однофазной линии, поэтому:

375 Вт / 0,65 = 577 ВА

Напряжение входной линии
Нам необходимо знать входное напряжение переменного тока, от которого устройство предназначено для питания . В приведенном выше примере входное напряжение переменного тока составляет 115 В переменного тока. Это номинальное напряжение, в действительности входное напряжение указано как ± 10%.Нам нужно вычесть 10%, чтобы учесть худший случай, состояние низкой линии:

115Vac — 10% = 103,5Vac

Максимальный входной переменный ток
Если мы возьмем 577 VA и разделим его на 103,5Vac, получим:

577 ВА / 103,5 В переменного тока = 5,57 ампер

Если наше входное напряжение переменного тока однофазное, то у нас есть ответ — 5,57 ампер.

Трехфазное входное напряжение
Блоки с трехфазным входным напряжением питаются от трех фаз, поэтому они имеют лучший коэффициент мощности, чем однофазные блоки.Также за счет наличия трех фаз, питающих агрегат, фазные токи будут меньше. Чтобы получить входной ток на каждую фазу, мы разделим наш расчет входного тока на √3 (1,73).

Рассчитаем этот пример: STR10N6 / 208. Из таблицы данных STR мы узнаем, что максимальная мощность составляет 6000 Вт, КПД составляет 90%, а коэффициент мощности составляет 0,85. Несмотря на то, что STR по проекту будет работать с напряжением до 180 В переменного тока, в этом примере он будет питаться от трехфазной сети 208 В переменного тока. Мы получаем максимальный входной ток на фазу следующим образом:

КПД источника питания
6000 Вт /.9 = 6666 Вт

Коэффициент мощности
6666 Вт / 0,85 = 7843 ВА

Напряжение входной линии
208 В переменного тока — 10% = 187 В переменного тока

Максимальный входной ток переменного тока
7843 ВА / 187 В переменного тока = 41,94 ампер (если он был однофазным)

Поправка для трехфазного входа
41,94 ампера / √3 (1,73) = 24,21 ампера на фазу

Итак, у нас есть два уравнения, одно для однофазных входов и одно для трехфазных входов:

Уравнение максимального входного тока одной фазы
Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение)

Уравнение трехфазного максимального входного тока
Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение) ( √3)

Эти расчеты входного тока предназначены для наихудшего случая: предполагая, что блок работает на максимальной мощности, работает при низком уровне напряжения в сети и принимает во внимание КПД и коэффициент мощности.

Щелкните здесь, чтобы загрузить pdf.

Расчет

л.с. в амперы

Вы не можете преобразовать ватты в амперы, поскольку ватты — это мощность (в конечном счете, лошадиные силы), а амперы — это ток (или расход, если хотите), если у вас нет добавленного элемента напряжения для завершения уравнения. У вас должно быть как минимум два из следующих трех: ампер, вольт и ватт, чтобы иметь возможность рассчитать недостающий.

Мощность электродвигателя в лошадиных силах: в этой статье объясняется, как рассчитать мощность электродвигателя, если нам известна его мощность или потребляемый ток в амперах.В статье дается простая формула для преобразования электрического тока в лошадиные силы и объясняется, какие данные на самом деле необходимы для точного расчета или оценки мощности. 17 декабря 2012 г. · Преобразование ватт в лошадиные силы составляет 745,7 Вт = 1 л.с. Чтобы помочь проектировщикам с иногда трудным преобразованием единиц измерения, Groschopp разработал калькулятор MOTORTEC STP, бесплатную загружаемую программу, которая обеспечивает быстрый и простой способ расчета скорости, крутящего момента или мощности.

Магазин электроники в Walmart.com. Покупайте лучший выбор электроники по низким ценам на каждый день. Копи деньги, живи лучше.

Допустим, на лицевой панели указано 8,3 ампер. Чтобы рассчитать ватт, умножьте 8,3 ампера на домашнее напряжение 120 вольт. Это равно 996 Вт. Теперь давайте посчитаем, сколько энергии микроволновая печь будет использовать за один день. Если вы используете микроволновую печь 2 часа в день, умножьте количество часов в день на ватты, чтобы получить ватт-часы в день. 6 сентября 2019 г. · В ходе этого испытания измерялся пусковой ток двигателя скважинного насоса.Мотор мощностью 3/4 л.с. и 240 В. Результаты одного измерения показаны на графике ниже. Он показывает максимальный пусковой ток около 18 ампер, который длится всего около 0,2 секунды. Нажмите на уменьшенное изображение выше, чтобы увеличить

(включая калькулятор). Формула сложных процентов с примерами. Камни в фунты и унции. Ватты в амперы. Если в ваш расчет включены дополнительные взносы, мои калькуляторы сбережений предполагают, что эти взносы вносятся в начале каждого периода.

Продукты питания Xantrex обеспечивают надежное и эффективное питание, идеально подходят для жилых автофургонов, морской среды, коммерческого транспорта и т. Д.Мы являемся мировыми лидерами в производстве передовых продуктов для энергетики. кВт в л.с. л.с. = Вт / 746 Электрические формулы — электрический расчет — расчет мощности — мощность в лошадиных силах — киловатты в лошадиные силы … Расчет нагрузки трехфазного двигателя — Как преобразовать кВт в амперы в трехфазной системе — л.с. в амперы — электрическая формула Привет, я …

Позвоните нам сейчас: 02 8203 1928 или 0414 873 296> Электронная почта: [электронная почта защищена]> Часы работы: 9:30 — 17:30 с понедельника по пятницу. AEST> Онлайн: 24/7

4 октября 2012 г. · Допустимый стандарт USB 2.0 0.Первоначально 5 ампер, но они изменили его, чтобы не отставать от более емких аккумуляторов, которые нужно было заряжать с помощью microUSB. Стандарт USB 3.0 допускает до 5 ампер. Вы, наверное, уже все это знаете, так как в Википедии уже есть эта информация. Калькулятор для оценки падения напряжения в электрической цепи на основе размера провода, расстояния и ожидаемого тока нагрузки. Рейтинг системы выбора кабелей частотно-регулируемого привода Southwire 60 ° C 75 ° C 90 ° C

Калькулятор срока службы батареи Этот калькулятор срока службы батареи рассчитывает, сколько времени хватит на батарею, исходя из номинальной емкости батареи и среднего тока, потребляемого от нее нагрузкой.Емкость аккумулятора обычно измеряется в ампер-часах (Ач) или миллиампер-часах (мАч), хотя иногда используются ватт-часы (Втч).

Формула для одной фазы для использования кВт = I x E x pf / 1000. Трехфазный кВт = I x E x 1,73 x пФ / 1000. pf = коэффициент мощности. Используйте .9 для pf, и ответ будет близким. Калькулятор падения напряжения от Джеральда Ньютона В этом калькуляторе используется K = 12,9 круговых мил-омов на фут для меди или K = 21,2 круговых мил-омов на фут для алюминия. Эти значения предполагают рабочую температуру проводника 75 ° C.Для других значений K в зависимости от температуры проводника используйте усовершенствованный калькулятор падения напряжения.

Electric Power — learn.sparkfun.com

Добавлено в избранное

Любимый

47

Расчетная мощность

Электроэнергия — это скорость передачи энергии. Он измеряется в джоулях в секунду (Дж / с) — ватт (Вт). Учитывая несколько известных нам основных терминов, связанных с электричеством, как мы можем рассчитать мощность в цепи? Итак, у нас есть очень стандартное измерение, включающее потенциальную энергию — вольты (В), — которые определяются в джоулях на единицу заряда (кулон) (Дж / Кл).Ток, еще один из наших любимых терминов, связанных с электричеством, измеряет поток заряда во времени в амперах (А) — кулонах в секунду (Кл / с). Соедините их вместе и что мы получим ?! Мощность!

Чтобы рассчитать мощность любого конкретного компонента в цепи, умножьте падение напряжения на нем на ток, протекающий через него.

Например,

Ниже представлена ​​простая (хотя и не полностью функциональная) схема: батарея 9 В, подключенная через 10 Ом; резистор.

Как рассчитать мощность на резисторе? Сначала мы должны найти ток, протекающий через него. Достаточно просто … Закон Ома!

Хорошо, 900 мА (0,9 А) проходит через резистор и 9 В. Какая же тогда мощность подается на резистор?

Резистор преобразует электрическую энергию в тепло. Таким образом, эта схема каждую секунду преобразует 8,1 джоулей электрической энергии в тепло.

Расчет мощности в резистивных цепях

Когда дело доходит до расчета мощности в чисто резистивной цепи, знать два из трех значений (напряжение, ток и / или сопротивление) — это все, что вам действительно нужно.

Подставляя закон Ома (V = IR или I = V / R) в наше традиционное уравнение мощности, мы можем создать два новых уравнения. Первый, чисто по напряжению и сопротивлению:

Итак, в нашем предыдущем примере 9V 2 /10 & ohm; (V 2 / R) составляет 8,1 Вт, и нам никогда не нужно рассчитывать ток, протекающий через резистор.

Второе уравнение мощности можно составить исключительно с точки зрения тока и сопротивления:


Зачем нам нужна мощность, упавшая на резистор? Или любой другой компонент в этом отношении.Помните, что мощность — это передача энергии от одного типа к другому. Когда эта электрическая энергия, идущая от источника питания, попадает на резистор, энергия превращается в тепло. Возможно, больше тепла, чем может выдержать резистор. Это приводит нас к … номинальной мощности.


Расчет одно- и трехфазных параметров

Вы можете спросить: «Что такое константа?» Пример постоянной, с которой вы очень хорошо знакомы, — это число пи (π), которое получается делением длины окружности на ее диаметр.Независимо от длины окружности и диаметра соответствующего круга, их отношение всегда равно пи. Вы можете использовать константы, относящиеся к определенным одно- и трехфазным напряжениям, для расчета тока (I) и киловатт (кВт). Посмотрим, как это сделать.

Однофазные расчеты

Базовая электрическая теория говорит нам, что для однофазной системы

кВт = (В × I × PF) ÷ 1000.

Для простоты предположим, что коэффициент мощности (PF) равен единице.Таким образом, приведенное выше уравнение становится

.

кВт = (В × I) ÷ 1000.

Решая относительно I, уравнение принимает вид

I = 1000 кВт ÷ В (Уравнение 1)

Теперь, если мы посмотрим на часть этого уравнения «1000 ÷ V», вы увидите, что, вставив соответствующее однофазное напряжение для «V» и разделив его на «1000», вы получите конкретное число (или постоянная), которую можно использовать для умножения «кВт», чтобы получить ток, потребляемый этой нагрузкой при соответствующем напряжении.

Например, константа для расчета 120 В составляет 8,33 (1000 ÷ 120). Используя эту константу, уравнение 1 становится

I = 8,33 кВт .

Итак, если у вас нагрузка 10 кВт, вы можете рассчитать потребляемый ток как 83,3 А (10 × 8,33). Если у вас есть оборудование, потребляющее 80 А, вы можете рассчитать относительный размер необходимого источника питания, который составляет 10 кВт (80 ÷ 8,33).

Таблица 1. Константы, используемые в однофазных системах

Используя ту же процедуру, но вставив соответствующее однофазное напряжение, вы получите следующие однофазные константы, как показано в Таблица 1 .

Трехфазные расчеты

Для трехфазных систем мы используем следующее уравнение:

кВт = (В × I × PF × 1,732) ÷ 1000.

Опять же, принимая единицу PF и решая это уравнение относительно «I», вы получаете:

I = 1000 кВт ÷ 1,732 В.

Таблица 2. Константы, используемые в трехфазных системах

Теперь, если вы посмотрите на часть этого уравнения «1000 4 1,732 В», вы увидите это, вставив соответствующее трехфазное напряжение для «V» и умножив его на 1.732, вы можете затем разделить это количество на «1000», чтобы получить конкретное число (или константу), которое вы можете использовать для умножения «кВт», чтобы получить ток, потребляемый этой трехфазной нагрузкой при соответствующем трехфазном напряжении. Таблица 2 перечисляет каждую 3-фазную постоянную для соответствующего 3-фазного напряжения, полученного из вышеуказанного расчета.

Определение нагрузки источника питания

Советы по поиску и устранению неисправностей от нашей технической группы

Здесь, в Jameco, мы получаем множество звонков и писем от клиентов с просьбами дать советы по устранению неполадок, а также советы о том, как максимально повысить производительность их продуктов.В этой статье приведены советы по устранению наиболее распространенных вопросов, которые мы получаем. Если вы хотите, чтобы мы решили техническую проблему или нашли решение, которое, по вашему мнению, является достойным, отправьте сообщение по адресу: [электронная почта защищена].


Вопрос: В техническом описании моего блока питания что-то упоминается о применении полной и минимальной нагрузки. Что такое полная нагрузка, минимальная нагрузка и как узнать ее размер?

Каждый блок питания предназначен для работы в определенном диапазоне условий, и каждый из них имеет максимальные рабочие условия, в которых блок питания не должен превышать.

полная нагрузка блока питания относится к максимальным рабочим характеристикам блока питания. Если он выдает номинальный ток (такой же, как максимальный ток) при номинальном напряжении, то подключенная нагрузка является полной нагрузкой. Не существует заданного значения для полной нагрузки, потому что каждый блок питания рассчитан на разные характеристики.

Более важное значение, которое должно волновать многих, — это требование минимальной нагрузки . Это значение необходимо для правильной работы многих импульсных источников питания, а также многих нерегулируемых источников питания.

Когда не применяется надлежащая минимальная нагрузка, источник питания обычно мерцает и, кажется, быстро включается и выключается. Если оставить вывод без нагрузки, это может произойти. Это связано с тем, что для большинства импульсных и нерегулируемых источников питания выходы необходимо стабилизировать.

Используя закон Ома: V = IR, вы можете рассчитать минимальную нагрузку, зная номинальное напряжение и минимальный ток.

I = ток в амперах (A)
V = напряжение в вольтах (V)
R = сопротивление в омах (Ω)

Манипулирование этой формулой дает резистивную нагрузку R = V / I.Отсюда просто введите значения V и I, и это будет ваше минимальное значение сопротивления нагрузки.
Важно: помните о номинальной мощности вашего блока питания. Он должен соответствовать номинальной мощности минимальной резистивной нагрузки. Хорошим практическим правилом является использование нагрузки с номинальной мощностью, по крайней мере, в 1,5 раза большей, чем номинальная мощность источника питания.

Для импульсных и нерегулируемых источников питания :
1) Найдите номинальное напряжение и минимальный ток каждого выхода.
2) Используйте закон Ома: R = V / I для расчета каждой выходной нагрузки.

Пример: У вас есть Блок питания переменного / постоянного тока с тремя выходами, который имеет следующие характеристики:

+5 В при 0,6 А (канал 1)
+12 В при 0,2 А (Канал 2)
-12 В при 0,1 А (Канал 3)

Используя закон Ома, мы рассчитываем минимальную резистивную нагрузку для каждого канала:
Канал 1: R = V / I = 5 В / 0,6 A = 8,3 Ом
Канал 2: R = V / I = 12 В / 0,2 A = 60 Ом
Канал 3: R = V / I = 12 В / 0.1A = 120 Ом

Обратите внимание, что канал 3 рассчитан на -12 В, но это не учитывается как отрицательное значение в наших расчетах. Мы не можем применять отрицательную резистивную нагрузку.
Еще раз, номинальная мощность нагрузки должна быть не менее чем в 1,5 раза больше номинальной мощности источника питания. Используйте формулу для мощности: мощность = напряжение x ток или P = VI.

Если вы пытаетесь рассчитать минимальную нагрузку и знаете только номинальную мощность и напряжение вашего источника питания, вы можете использовать формулу P = V 2 / R, которая может стать R = V 2 /П.

Если по какой-либо причине у вас есть только номинальные значения тока и мощности вашего источника питания, вы можете использовать P = I 2 R, которое можно изменить на R = P / I 2 .

Как видите, расчет минимально необходимой нагрузки вашего блока питания — очень простой процесс. Просто найдите несколько оценок в таблице, и вы сможете мгновенно применить нагрузку правильного размера.

Примечание: Помните, что не следует прикладывать нагрузку, превышающую значение полной нагрузки в течение достаточного периода времени, поскольку это может привести к повреждению или перегреву вашего источника питания.

Для получения дополнительной информации о блоках питания и принадлежностях посетите центр ресурсов питания Jameco.

Трехфазный ток — простой расчет

Расчет тока в трехфазной системе был поднят в отзывах на нашем сайте, и это обсуждение, в которое я, кажется, время от времени участвую. Хотя некоторые коллеги предпочитают запоминать формулы или факторы, я предпочитаю решать проблему шаг за шагом, используя базовые принципы.Я подумал, что неплохо было бы написать, как я делаю эти расчеты. Надеюсь, это может оказаться полезным для кого-то еще.

Трехфазное питание и ток

Мощность, потребляемая цепью (одно- или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока является полной мощностью и измеряется в ВА (или кВА). Соотношение между кВА и кВт — это коэффициент мощности (pf):

что также может быть выражено как:

Однофазная система — с этим проще всего иметь дело.Учитывая кВт и коэффициент мощности, можно легко рассчитать кВА. Сила тока — это просто кВА, деленная на напряжение. В качестве примера рассмотрим нагрузку, потребляющую 23 кВт мощности при 230 В и коэффициенте мощности 0,86:

.

Примечание: вы можете выполнять эти уравнения в ВА, В и А или в кВА, кВ и кА в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

Трехфазная система — Основное различие между трехфазной системой и однофазной системой — это напряжение.В трехфазной системе линейное напряжение (V LL ) и фазное напряжение (V LN ) связаны соотношением:

или как вариант:

чтобы лучше понять это или получить больше информации, вы можете прочитать статью «Введение в трехфазную электрическую мощность»

.

Для меня самый простой способ решить трехфазные проблемы — это преобразовать их в однофазную. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную кВт.Мощность в кВт на обмотку (одна фаза) должна быть разделена на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), питающий данную кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную задачу в однофазную, возьмите общую мощность в кВт (или кВА) и разделите ее на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и линейном напряжении 400 В (В LL ):

линия к нейтрали (фаза) напряжение В LN = 400 / √3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу

Достаточно просто.Чтобы найти мощность при заданном токе, умножьте его на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в W. Для трехфазной системы умножьте на три, чтобы получить общую мощность.

Личная записка по методу

Как правило, я запоминаю методику (а не формулы) и переделываю ее каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или неуверен, правильно ли я их запоминаю. Мой совет — всегда старайтесь запоминать метод, а не просто запоминать формулы.Конечно, если у вас есть суперспособность запоминать формулы, вы всегда можете придерживаться этого подхода.

Использование формул

Вывод формулы — пример

Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В LL

Преобразование в однофазную проблему:
P1ph = P3

Полная мощность одной фазы S 1 фаза (ВА):
S1ph = P1phpf = P3 × pf

Фазный ток I (A) — это полная мощность одной фазы, деленная на напряжение между фазой и нейтралью (и дано В LN = В LL / √3):
I = S1phVLN = P3 × pf3VLL

Упрощение (и с 3 = √3 x √3):
I = P3 × pf × VLL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании проблемой, чтобы дать ответ.

Для получения того же результата можно использовать более традиционные формулы. Их можно легко получить из вышеприведенного, например:

I = W3 × pf × VLL, дюйм A

Несбалансированные трехфазные системы

Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаковый, и каждая фаза обеспечивает или потребляет одинаковое количество энергии. Это типично для систем передачи энергии, электродвигателей и аналогичного оборудования.

Часто, когда задействованы однофазные нагрузки, например, в жилых и коммерческих помещениях, система может быть несбалансированной, поскольку каждая фаза имеет разный ток и доставляет или потребляет разное количество энергии.

Сбалансированные напряжения

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации, немного подумав, можно распространить вышеупомянутый тип расчета на трехфазные системы с несимметричным током.Ключом к этому является то, что сумма мощности в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 A, фаза 2 = 70 A, фаза 3 = 82 A

линия к нейтрали (фаза) напряжение В LN = 400 / √3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18400 ВА = 18,4 кВА
Полная мощность фазы 2 = 70 x 230 = 16100 ВА = 16,1 кВА
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18.86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Аналогичным образом, учитывая мощность в каждой фазе, вы можете легко найти фазные токи. Если вам также известен коэффициент мощности, вы можете преобразовать его из кВА в кВт, как показано ранее.

Несбалансированные напряжения

Если напряжения становятся несимметричными или есть другие соображения (например, несбалансированный фазовый сдвиг), то необходимо вернуться к более традиционному анализу сети.Системные напряжения и токи можно найти, подробно изобразив схему и используя законы Кирхгофа и другие сетевые теоремы.

Сетевой анализ не является целью данной заметки. Если вас интересует введение, вы можете просмотреть наш пост: Теория сети — Введение и обзор

КПД и реактивная мощность

Другие факторы, которые следует учитывать при проведении расчетов, могут включать эффективность оборудования.Зная, что эффективность энергопотребляющего оборудования — это выходная мощность, деленная на входную, опять же, это легко подсчитать. Реактивная мощность не обсуждается в статье, а более подробную информацию можно найти в других заметках (просто воспользуйтесь поиском на сайте).

Сводка

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной мощности, любую трехфазную задачу можно упростить. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА — это просто ток, умноженный на напряжение, поэтому знание этого и напряжения может дать ток.При расчете тока используйте фазное напряжение, которое связано с линейным напряжением квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и / или прибегать к формулам.

расчетов мощности

расчетов мощности

Мощность

Расчет мощности

Power — это умение делать работу, будь то
поднимать лифты или шуметь.Когда вы пропускаете ток через
провод, вы передаете мощность от источника к точке использования.
Одно из главных преимуществ электричества — мы можем делать беспорядок.
бизнес по производству электроэнергии в Неваде и удобное использование
гостинная.

Единицей мощности является ватт, названия после
Джеймс Ватт прославился паровым двигателем. Мощность, доступная в электрическом
схема

P = EI

P = мощность в ваттах

E = ЭДС в вольтах

I = ток в амперах.

Конечно, ток через провод
контролируется импедансом — обычно мы знаем импеданс и
напряжение и воспользуйтесь производной формулой

Важно отметить, что мощность
будет меняться как квадрат напряжения. Если мы контролируем
ток через известное сопротивление, эта формула имеет то же
моральный.

Рассеиваемая мощность

Многие электронные устройства выделяют тепло в качестве побочного
эффект от их основного использования.Например, резисторы и
трансформаторы нагреваются при прохождении через них тока. Жара не
хорош для чего угодно (как раз наоборот), но мы должны знать об этом
поэтому мы не пытаемся пропустить через что-то достаточно тока, чтобы его сжечь
вверх. Большинство устройств имеют максимальную номинальную мощность, превышающую этот рейтинг.
рискует уничтожить. Например, большинство резисторов рассчитаны на
четверть ватта. Итак, какое напряжение мы можем безопасно подать на 100 Ом?
резистор?

Передача мощности

В мире аудио вы все еще слышите много
поговорим о «согласовании импедансов».Что это значит? Любое устройство
с реальным выходом будет некоторое сопротивление между сигналом
схема питания и выходной разъем. Вот типичный вывод
строений:

Треугольники обозначают усилители.
или какой-нибудь другой источник тока. Всегда есть какая-то комбинация
резисторы, конденсаторы и / или трансформаторы для регулировки выхода
напряжение и защитить источник тока от коротких замыканий. Что бы ни
после того, как источник тока будет иметь импеданс — обычно это
все собраны вместе и названы «импедансом источника».

Вот что будет выглядеть любой ввод
нравится:

Даже если это не так
конструкция, что касается устройства-источника, следующее
гаджет по линии представит некоторое (надеюсь, фиксированное) сопротивление
через выход. Вы помните из очерка о законе Ома, что
когда мы соединим их вместе, у нас будет делитель напряжения. Если
сопротивление входа второго устройства достаточно низкое, чтобы загрузить
выход второго устройства, напряжение на подключении будет
ниже, чем ожидалось, и текущий спрос может превышать
источник готов к поставке.(Источник может быть даже
поврежден.)

Для предотвращения этого производители указывают
полное сопротивление нагрузки, для работы с которым предназначено их устройство. Это
называется «выходным сопротивлением». Это не то же самое, что сопротивление источника —
выходное сопротивление — это ожидаемое входное сопротивление нагрузки, и
будет работать с импедансом источника (как нижняя ветвь напряжения
делитель), чтобы установить правильные выходные уровни.

Раньше, если на устройстве указывалось
выходное сопротивление 600 Ом, нужно было подключить нагрузку 600 Ом,
ни больше ни меньше.Это потому, что до середины 60-х годов большинство
оборудование имело выходные трансформаторы, как на левой схеме выше.
(Они требовались для электрических цепей.) Вы помните из эссе о
сопротивление, которое индуктор, такой как вторичная катушка
трансформатор имеет постоянную времени, зависящую от соответствующего
импеданс — с некоторым импедансом он становится фильтром. 600 Ом было
входной импеданс промышленного стандарта для передачи плоского сигнала в
звуковой диапазон. (Есть еще такой стандарт для видео — 75 Ом, а
вам лучше следовать за ним.) Если вы хотели послать сигнал двум
устройств приходилось использовать специальный усилитель-распределитель, т.к.
просто подключив два входа по 600 Ом к одному выходу, вы получите 300 Ом.
нагрузка.

Было легко получить входное сопротивление 600 Ом.
потому что у большинства оборудования на входе тоже есть трансформатор. Тем не мение,
были части оборудования, у которых был более высокий выходной импеданс (сделанный для
рынок домашнего аудио, в основном), и если вы нагружаете их на 600 Ом,
они бы не работали.В современном оборудовании отсутствуют входные трансформаторы (они
либо дорогие, либо низкокачественные, либо и то, и другое) и использует ввод
схемы с более высоким импедансом, обычно 10 кОм или даже 50 кОм. В
Преимущество этого в том, что вы можете подключиться ко всему, и вы можете водить
несколько входов без усилителей распределения. Выходы по-прежнему
способен управлять 600 Ом (обычно), но подключать более высокий
сопротивление не вредит, поскольку требуется меньший ток. Если вам нужно
подключите высокоимпедансный вход к старомодному выходу на 600 Ом,
вы должны добавить «согласующий резистор» 600 Ом через
связь.Любая часть оборудования, где это действительно важно, будет
иметь встроенный такой резистор с переключателем оконечной нагрузки для подключения
это когда нужно.

Микрофоны

У микрофонов все еще есть старое отличие
высокий импеданс против низкого импеданса. Потому что хорошие микрофоны
в них еще есть трансформаторы (см. эссе о связях и
балансные кабели), а в дешевых — нет.Поскольку микрофон производит
очень маленький ток, вы не можете подключить микрофон с высоким Z к входу с низким Z
и ожидайте, что это сработает. Микрофон с низким Z будет работать на входе с высоким Z, но
частотная характеристика может быть искажена.

Усилители мощности и
Колонки

Импеданс действительно критичен, когда дело доходит до
подключение колонок. Усилители предназначены для обеспечения большого количества
мощность, но мы не можем позволить себе тратить ее зря, подключив более высокую
сопротивление, чем необходимо.Истинный импеданс динамика варьируется во всем
место с частотой (там катушки), но будет
«номинальный» рейтинг, который представляет собой самый низкий рейтинг для любого
протяженность времени. Обычно это 8 Ом, хотя сейчас вы видите много
Конструкции с сопротивлением 4 Ом на рынке аудиофилов.

Усилители

спроектированы так, чтобы максимально
безопасный ток до 2 Ом или около того, поэтому динамик на 8 Ом представляет собой
скромный запас прочности. Если вы подключите два динамика на 8 Ом параллельно,
вы подадите на усилитель 4 Ом, и звук станет громче с
некоторый риск.Риск чего? Что ж, на более дешевых усилителях вы сожжете предохранитель,
а на более лучших загорится свет, сообщающий вам текущий
сработала защита, и ваш звук будет ужасным — вероятно
сильно обрезан. Худшее, что может случиться, — это перегоревший усилитель.

[ПРЕДУПРЕЖДЕНИЕ] Обрезанный звук, даже при умеренном
громкость, может повредить ваши динамики — почему? Потому что у квадратных волн больше всего
их энергии в высоких парциальных. В типичном трехполосном динамике
НЧ-динамик, который обычно передает большую часть мощности, будет рассчитан на
сотни ватт, но твитер будет рассчитан только на 20-50
Вт.Наслаждайтесь 75 Вт высокочастотной энергии и прощайте
твитер.

При последовательном подключении двух динамиков вы
представьте нагрузку 16 Ом и получите половину тока.