Какими буквами обозначается фаза и ноль: Страница не найдена

Содержание

Маркировка проводов и кабелей: обозначение жил, изоляции, оболочки

Провод — одна неизолированная или одна либо более изолированных жил, поверх которых в зависимости от условий прокладки и эксплуатации может быть неметаллическая оболочка, обмотка и (или) оплетка волокнистыми материалами или проволокой. Кабель — одна или более изолированных жил (проводников), заключенных, как правило, в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может быть броня и защитные покровы.

Буквенная и цифровая маркировка жил и изоляции кабелей

Неизолированные провода обозначаются первыми буквами металла проводника:

  • М — медный,
  • А — алюминиевый,
  • AT — алюминий тянутый,
  • С — стальной,
  • АС — сталеалюминиевый.

Изолированные провода и кабели с медными жилами не имеют специальных обозначений металла жилы; провода и кабели с алюминиевой жилой имеют букву А в начале маркировки.

Аналогично бумажная изоляция для кабелей не обозначается, в то время как другие виды изоляции проводов и кабелей обозначаются соответствующими буквами:

  • Р — резиновая,
  • В — поливинилхлоридная,
  • Н — найритовая (негорючая резина),
  • Э — эмалевая.

Маркировка кабельных оболочек

Материалы оболочек кабелей маркируются соответствующей первой буквой:

  • С — свинцовая,
  • А — алюминиевая,
  • В — поливинилхлоридная,
  • Н — найритовая,
  • Р — резиновая.

В значительном большинстве буква Г, входящая в обозначение проводов, указывает, что они гибкие (многопроволочная жила), а в обозначении кабелей — что оболочка или защитная броня голые (отсутствует слой пряжи для защиты от коррозии при прокладке в земле или воде) или что кабель гибкий.

Бронированные кабели с ленточной броней имеют в маркировке букву Б, с проволочной броней — П или К.

В марке изолированных проводов первая буква обозначает материал провода (при медных жилах обозначение отсутствует), вторая буква — П обозначает провод, третья — материал изоляции.

В обозначении могут быть также буквы, характеризующие другие элементы конструкции:

  • О — оплетка,
  • Т — для прокладки в трубах,
  • П — плоский,
  • Ф — металлическая фальцованная оболочка,
  • С — для скрытой прокладки или для сельского хозяйства.

Провода и кабели различаются количеством жил (в основном от 1 до 4), сечением и номинальным напряжением.

Ещё одно интересное видео о маркировке в электрике смотрите ниже:

Стандартными являются следующие сечения жил: 0,35; 0,5; 0,75; 1; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 625; 800; 1000 мм2.

Цветовая маркировка кабелей

Провода изготовляют с изоляцией на напряжение 380, 660 и 3000 В переменного тока.

Цветовая маркировка электрических проводов. Какого цвета и как обозначаются провода ноля, фазы и земли в электрике

Существует, по сути, не так много всяческих видов проводников и их подключений. В электроэнергетике различают питающие и защитные проводники. Некоторые слышали такие слова как «нулевой» и «фазный» провод. Однако тут и возникают вопросы. Как определить ноль и фазу в реальной сети?

Какие существуют проводники в розетке?

Можно разобраться с вопросом «что такое фаза и ноль», не углубляясь в дебри выяснения строения, преимуществ и негативных моментов в трехфазных или пятифазных цепях. Все разобрать можно фактически на пальцах, раскрыв самую обычную домашнюю розетку, которая поставлена в квартиру или частный дом лет десять — пятнадцать назад. Как видно, эта розетка подключается к двум проводкам. Как определить ноль и фазу?

Как работают провода в розетке и зачем они нужны?

Как видно, есть определенные различия между рабочими и нулевыми. Какое обозначение фазы и нуля? Голубоватая или синяя окраска — это цвет провода фаза, ноль же обозначается любыми другими цветами, за исключением, естественно, голубых цветов. Он может быть желтым, зеленым, черным и в полоску. По ток не идет. Если взяться за него и не касаться рабочего, то ничего не случится — на нем нет разницы потенциалов (в сущности, сеть не идеальна, и небольшое напряжение все-таки может быть, но измеряться оно будет в лучшем случае в милливольтах). А вот с фазным проводником так не пройдет. Прикосновение к нему может повлечь за собой электрический удар, даже со смертельным исходом. Этот провод всегда находится под напряжением, к нему идет ток от генераторов и трансформаторов и станций. Необходимо всегда помнить о том, что касаться рабочего проводника ни в коем случае нельзя, так как напряжение даже в сотню вольт может быть смертельным. А в розетке составляет двести двадцать.

Как определить ноль и фазу в таком случае? В розетке, разработанной с учетом европейских стандартов, находится сразу три проводника. Первый — фазный, который находится под напряжением и окрашен в самые разные цвета (за исключением голубых оттенков). Второй — ноль, который абсолютно безопасен для прикосновения и окрашен в А вот третий провод называют нулевым защитным. Он обычно окрашен в желтые или зеленые цвета. Раположен он в розетках слева, в выключателях — снизу. Фазный провод находится справа и сверху соответственно. Учитывая такие окраски и особенности, легко определить, где фаза, а где ноль, а где защитный нулевой провод. Но для чего он?

Зачем нужен защитный проводник в евророзетках?

Если фазный предназначен для подвода тока к розетке, нулевой — для отведения к источнику, то зачем европейские стандарты регламентируют еще один провод? Если оборудование, которое подключено, работает исправно, и вся проводка находится в работоспособном состоянии, то защитный нулевой не будет принимать участие, он бездействует. Но если вдруг где-то произойдет или же перенапряжение, или замыкание на какие-то части приборов, то ток попадает в места, находящиеся обычно без его влияние, то есть не соединенные ни с фазой, ни с нулем. Человек просто сможет ощутить электрический удар на себе. В самой худшей ситуации можно даже погибнуть от этого, так как сердечная мышца может остановиться. Именно тут и нужен защитный нулевой провод. Он «забирает» ток короткого замыкания и направляет его в землю или к источнику. Такие тонкости зависят от конструкции проводки и характеристик помещения. Поэтому можно спокойно прикасаться к оборудованию — не будет никакого электрического удара. Все дело в том, что ток всегда протекает по пути наименьшего сопротивления. У тела человека величина этого параметра составляет более одного килоОма. У защитного проводника сопротивление не превышает нескольких десятых долей одного Ома.

Определение назначения проводников

Как определить ноль и фазу? Любой человек так или иначе сталкивался с этими понятиями. Особенно, когда необходимо починить розетку или заняться монтажом проводки. Поэтому необходимо точно понимать, где какой проводник. Но как определить ноль и фазу? Необходимо помнить, что все манипуляции подобного рода с электричеством опасны. Поэтому в случае неуверенности в своих действиях лучше обратитесь к специалисту. Если уже и подходить к розетке и проводам в ней, то необходимо для начала полностью обесточить всю квартиру. Как минимум, это может сохранить здоровье и жизнь. Как уже говорилось ранее, обычно обозначение фазы и нуля делают с помощью окраски. При правильной маркировке отличить их не составит никакого труда. Черный (либо коричневый) — цвет провода фаза, ноль обычно имеет голубоватый или синеватый оттенок. Если же установлена розетка европейского стандарта, то третий (защитный нулевой) выполнен зеленым или желтым цветом. Что делать, если проводка одноцветная? Как правило, в таком случае на концах проводов обычно находятся специальные изоляционные трубочки, имеющие необходимую цветовую маркировку. Их называют «кембрики».

Определение проводников с помощью специальной отвертки

Как определить ноль и фазу? Для этого удобнее всего купить специальную индикаторную отвертку. Рукоятка такого прибора изготавливается из полупрозрачного или прозрачного пластика. Внутри встроен диод — светящаяся лампочка. Верхняя часть у такой отвертки металлическая. Как определить ноль и фазу этим методом?

Порядок выполнения работ при измерении с помощью индикаторной отвертки:

  • обесточиваем квартиру;
  • зачищаем слегка концы проводов;
  • разводим их в стороны, для того чтобы случайно не вызвать короткое замыкание путем соприкосновения фазы и нуля;
  • включаем рубильник и подаем ток в квартиру;
  • берем отвертку за ручку, которая имеет диэлектрическое покрытие;
  • кладем палец (большой или указательный) на контакт, который расположен на тыльной части розетки;
  • прикасаемся рабочим концом индикатора к одному оголенному проводнику;
  • внимательно наблюдаем за реакцией отвертки;
  • если диод загорелся, то можно с уверенностью констатировать, что ;
  • методом исключения понимаем, что оставшийся проводник — это ноль.

Индикаторная отвертка реагирует на наличие напряжения. Естественно, что в нулевом проводе его нет. Однако имеется существенный недостаток такого метода. С помощью индикаторной отвертки нельзя понять, как определить: фаза, ноль, земля — где что в случае с европейской розеткой.

Метод определения фазы и нуля с помощью вольтметра

Если провода не окрашены в соответствующие цвета, и под рукой нет индикаторной отвертки, то можно пойти другим путем. Нам необходим вольтметр (мультиметр, тестер). Необходимо выставить его на необходимый диапазон — свыше двух сотен вольт переменного тока. Как тестером определить фазу? Берем один проводник, который отходит от прибора (обозначенный V). Прикрепляем его на предварительно обесточенный проводник (любой). Затем подаем ток (включаем рубильник). И просто фиксируем, что показывает дисплей прибора. После всего вышеуказанного снова выключаем питание и перебрасываем зажим тестера уже на другой проводник. Если на дисплее ничего нет, то это означает, что перед нами находится либо ноль, либо заземляющий защитный нулевой провод. Однако можно использовать и другой метод, который отвечает на вопрос: «Как определить ноль и фазу, а также заземление». Для этого снова обесточиваем квартиру, фиксируем зажим V на одном их проводов. Второй также бросаем на любой из трех проводников. Включается напряжение. Если стрелка не двигается, то вы выбрали нулевой и защитный. Соответственно, напряжение снова необходимо выключить и поменять положение клемы V (закинуть ее на другой неиспользуемый ранее проводник). Снова включаем ток и делаем соответствующие замеры. Затем проводим ту же самую операцию, но снова меняем проводник. Теперь необходимо сверить результаты. Если первая цифра оказалась больше, то значит что мы измеряли напряжением между фазным проводником (на котором висела клема V) и нулевым. Соответственно, второй провод будет является защитным заземляющим. Этот метод основан на измерении разности потенциалов.

Экзотические способы определения фазы и нуля в проводке

Существуют и «народные методы», которые не подразумевают наличие каких-либо специальных приспособлений. Использовать их можно разве что в самых крайних случаях, так как они сопряжены с повышенной опасностью для здоровья и жизни. Например, метод картошки. Для этого на предварительно обесточенные проводники надевают свежесрезанный кусок картошки. Необходимо не допустить прикосновение проводов друг к другу, чтобы не было короткого замыкания между ними. Затем буквально на пару секунд подают напряжение и смотрят на картошку. Если один участок возле провода посинел, значит к нему подведена фаза.

Практически каждый, кто имел дело с электрической проводкой, замечал, что провода в изоляции могут иметь различную окраску. Но мало кто знает, что это действие облегчает работы при монтаже электропроводки, и даже существуют специальные правила устройства электроустановок, следуя которым можно существенно снизить риск трагических последствий при работе с электричеством. Так в чем же суть цветовых обозначений и что они обозначают, — ответы на эти вопросы будут приведены ниже.


Основная задача маркировки изоляции проводов

В первую очередь провода обозначают определенными цветами для обеспечения безопасности при проведении работ. В назначении цвета для каждого провода применяются стандарты ПУЭ (правила устройства электроустановок) и международные евростандарты. Каждый электромонтер может без особых усилий отличить, какое напряжение несет
(или нет) каждый провод, а также определить, где находится фаза, ноль и заземление.

Конечно, если в пример взять подключение к сети одноклавишного выключателя, определить назначение каждого провода без цветовой маркировки не составит особого труда. Но если рассмотреть подключение распределительного щитка, то здесь уже без специальных обозначений не обойтись. Ведь в случае неправильного соединения токоведущих частей может произойти короткое замыкание, проводка начнет нагреваться (и, как следствие, произойдет возгорание), а в худшем случае произойдет поражение электрическим током человека
, проводящего монтаж, или людей, находящихся вблизи.

В современной редакции ПУЭ предлагается вести не только цветовое обозначение, но и буквенное, что значительно облегчает работы в электроустановках.

Понятие фазы и ноля в электрике

Прежде чем приступить к рассмотрению цветовой маркировки
, необходимо сначала разобраться с понятиями фазы и ноля в электропроводках.

Буквенные обозначения применяются на схемах в электрике
.

Для правильного проведения электромонтажных работ необходимо безукоризненно следовать правилам соединения токоведущих частей, соответственно, все провода цепи должны заметно различаться между собой. Становится резонным вопрос о том, каким цветом обозначаются фаза и ноль в электричестве. Ниже приведены описания каждого случая в отдельности
.

Цвета проводов фаза, ноль, земля

Как уже говорилось ранее, расцветка проводов в электрике на заводах-изготовителях проводится согласно ПУЭ.

Обозначение заземляющего провода

Провод заземления
обычно обозначают желтым, зеленым и желто-зелеными цветами. Производители могут наносить полосы желто-зеленого цвета — как в продольном, так и в поперечном направлении. Кроме того, рекомендуется наносить буквенную маркировку. Однако нанесенная буквенная маркировка не исключает цветовой маркировки. Обозначение цветом, согласно ПУЭ, является обязательным. На примере распределительного щитка, этот провод подключают к шине заземления, корпусу или металлической дверце.

Нулевой провод

Говоря о нуле, не следует его путать с заземлением. Обозначается синим или бело-голубым цветом. Но в некоторых случаях провод заземления совмещается с нулем. Тогда его окрашивают в зелено-желтый цвет, а на концах обязательно имеется синяя оплетка. Как в однофазной, так и в трехфазной цепи используется всего один нулевой провод. Это происходит вследствие того, что в трехфазной цепи максимальный сдвиг одной фазы может быть равным 120°, что позволяет пользоваться одним нулевым проводом.

Обозначение фазного провода

В зависимости от типа проводки электрическая цепь с переменным током может быть как однофазной, так и иметь три фазы. Рассмотрим оба этих случая отдельно.

  • Однофазная проводка

Используется в сетях с напряжением 220 W. Чаще всего фазный провод окрашивается в черный, коричневый или белый цвет, однако можно встретить и другую маркировку провода: коричневый, серый, фиолетовый, розовый, оранжевый или бирюзовый. Также принято буквенно обозначать L. Это необходимо не только на схемах, но и в условиях плохой освещенности или если провода были покрыты пылью.

В связи с тем, что именно фаза представляет наибольшую опасность при проведении работ, именно эти части имеют наиболее яркую окраску для быстрой идентификации и впоследствии проведения более аккуратных действий с ними.

  • Трехфазная проводка

Используется в сетях с напряжением 380 W. Ранее все провода и шины в трехфазной сети окрашивались в желтый, зеленый и красный цвета (Ж-З-К), которыми соответственно обозначали фазы A, B, C. Эти обозначения представляли трудности в связи со схожестью желто-зеленой маркировки проводов заземления. Поэтому, согласно ПУЭ, с 1 января 2011 года введены новые нормативы, где фазы имеют обозначение L 1, L 2 и L 3, при этом каждая имеет коричневый, черный и серый цвета (К-Ч-С).

На примере трехжильного провода. Цвета проводов трехжильного кабеля: синий, коричневый и желто-зеленый. Коричневый — это фаза, синий — ноль, а желто-зеленым обозначают заземление.

Это были приведены варианты расцветки в сетях с переменным током.

Расцветка проводов в сетях постоянного напряжения

В сетях с постоянным током применяется иная цветовая и буквенная маркировки проводов и шин. Принципиальным отличием здесь считается отсутствие ноля и фазы в привычном понимании. В этой проводке используется положительный проводник, обозначаемый красным цветом и знаком «+», и отрицательный проводник синего цвета со знаком «-«, а также нулевая шина голубого цвета, которая обозначается латинской буквой M .

Не все люди, проводящие работы по монтажу электрических сетей, следуют установленным правилам маркировки. Поэтому, прежде чем приступать к монтажу, следует сначала проверить наличие тока в проводах при помощи мультиметра или обычной отвертки-индикатора. В дальнейшем обозначить провода необходимым цветом при помощи цветной изоленты или специальных термообжимов. Также есть специальные приборы, позволяющие наносить буквенную маркировку.

Практичность и безопасность монтажа электропроводки во многом достигается за счет цветовой маркировки проводов
. Каждая жила покрывается защитной оболочкой определенного цвета. При монтаже в электрощите, распределительных коробках, или при подключении розеток и выключателей такая цветовая систематизация позволяет безошибочно и быстро выполнить все работы.

Для более четкого понимания маркировки, перейдем от общих фраз к более детальному анализу, рассмотрим конкретные примеры и выделим главные правила безопасной работы с электропроводкой.

Первым делом, стоит ознакомится с видами электрических цепей:

  • Цепь переменного тока однофазной сети 220 В применяется в домах и квартирах.
  • Трехфазная сеть 380 В переменного тока применяется как на производстве, так и в частных домах (при необходимости).
  • Сеть постоянного тока находит свое применение в промышленности, транспорте, высоковольтных электрических подстанциях.

В каждом из рассмотренных случаев используется единый стандарт соединения электрических проводов.

Маркировка проводов в однофазной сети 220 В

Рассматривая данный тип сети, можно выделить две вариации. Первая состоит из двух жил, вторая – из трех. Как можно понять, основное отличие между ними – в наличии или отсутствии проводника заземления (PE).

Двухпроводная проводка
относится к устаревшему типу и встречается все реже. Такое проектирование разрешено ГОСТом и подходит для помещений с невысокими требованиями к безопасности. Используемая в старых домах двухжильная проводка TN-C имела совмещенную нейтраль и землю (PEN). С учетом современных требований, такая схема считается не безопасной.

Как и какими цветами маркируются жилы в двухпроводной однофазной проводке? Рассмотрим несколько вариантов:

(L)
(N)
Если использовать цельный провод с коричневой и синей жилой, то первая должна идти на фазу, а вторая на нулевой рабочий проводник. Данный порядок не стоит изменять. Единственное исключение — в качестве маркировки фазного проводника можно использовать черный, красный, серый, фиолетовый, розовый, белый, оранжевый, бирюзовый цвет. Для подстраховки, соответствующие жилы с обоих концов рекомендуется пометить бирками с подписью L (фаза) и N (ноль).
(L)
(PEN)
Данная схема в качестве фазного проводника (L) имеет традиционную коричневую жилу. Как и в предыдущем случае, коричневое покрытие может быть заменено на один из допустимых цветов. Трехцветный (желтый, зеленый, синий) проводник (PEN) используется одновременно как нулевой рабочий (N) и нулевой защитный (PE). Несмотря на объединение N и PE, фактически, у конечного потребителя заземление отсутствует.

Начиная с седьмой редакции ПУЭ (правила устройства электроустановок), электропроводка в квартире или доме должна осуществляться трехжильным кабелем с медными жилами (трехпроводная схема
).

Рассмотрим, какие проводники входят в трехпроводную схему, и как они маркируются:

Фаза L
(от английского Live
— живой) — рабочий провод под высоким напряжением.
Основной цвет жилы – коричневый (возможно, коричневая полоса на белом фоне)
Допустимый цвет жилы: черный, красный, серый, фиолетовый, розовый, белый, оранжевый, бирюзовый цвет.
Нейтраль (рабочий ноль) N
(от английского Neutral
) – вспомогательная жила без напряжения, по которой в рабочем состоянии протекает нагрузочный ток.
Основной цвет жилы – синий, голубой (возможно, голубая полоса на белом фоне)
Земля (защитный ноль)
PE
(от английского Protective Earth
-защитная земля) – отдельная ненагруженная жила для заземления. При нормальных условиях по защитному нулю ток не протекает.
Основной цвет жилы – желтые и зеленые полосы (возможно, зеленая полоса на желтом фоне).

Маркировка проводов в трехфазной сети 380 В

Как и в однофазном варианте, трехфазная сеть может быть с заземлением или без него. Исходя из этого, выделяют трехфазную сеть с четырьмя и пятью жилами. Четырех проводная система 380 В включает три фазных (L) и одну жилу рабочего зануления (N). В пяти проводной системе добавляется жила защитного зануления (PE).

Цветовая маркировка жил в трехфазной сети следующая:

  • Фаза A (L1) – провод в коричневой оболочке.
  • Фаза B (L2) – провод в черной оболочке.
  • Фаза C (L3) – провод в серой оболочке.
  • Рабочее зануление (N) – провод в синей (голубой) оболочке.
  • Защитное зануление (PE) – провод в желто-зеленой оболочке.

Фазные жилы в определенных случаях могут иметь другие цвета. Во избежание путаницы, применение синего и желто-зеленого цвета для их маркировки недопустимо.

Маркировка проводов в сети постоянного тока

Сеть постоянного тока включает в себя только положительную (+) и отрицательную (-) шину. По нормативам провода (шины) с положительным зарядом окрашиваются в красный цвет. Провода (шины) с отрицательным зарядом окрашиваются в синий цвет. Средний проводник, если таковой имеется, имеет голубой цвет.

В случае, когда двухпроводная электрическая сеть постоянного тока выполнена путем ответвления от трехпроводной сети, положительный провод двухпроводной сети маркируется так же, как и положительная жила трехпроводной цепи, с которой он соединен.

Как определить L, N, PE

Если возникают сомнения по поводу цветовой маркировки проводов в конкретной цепи, необходимо обезопасить электромонтажные работы и провести предварительное определением фазы, нейтрали и земли. Следующие приемы помогут безошибочно проверить
L
,
N
и
PE
:

  • Самый простой вариант, когда имеется двухпроводная однофазная сеть. В этом случае потребуется лишь индикаторная отвертка. При контакте с фазной жилой лампочка в индикаторе должна загореться. Определив L, в цепи остается лишь провод рабочего зануления, при контакте с которым индикатор в отвертке не светится.
  • Более сложная ситуация – когда в кабеле проводки три жилы. Если фазу, как и в предыдущем случае, можно определить с помощью индикаторной отвертки, то для поиска рабочего и защитного зануления потребуется мультиметр (тестер). После того, как фазная жила (L) найдена, на ACV (может обозначаться V~ измерение переменного напряжения) на отметке выше 220 В, фазный щуп красного цвета фиксируется на фазной жиле, а черным щупом определяется ноль и земля. При контакте с рабочим занулением (N) прибор будет отображать напряжение в пределах 220 Вольт. При касании щупом защитного зануления (PE) – показания будут ниже 220 Вольт.

Если приобретенный кабель имеет жилы не соответствующего нормам цвета, или проводка уже проложена и имеет неверную маркировку, нужно провести дополнительную идентификацию.

Дополнительная маркировка проводов

В процессе электромонтажа концы жил помечаются при помощи термоусадочных трубок или цветной изоляционной ленты. Дополнительно, на провод или прикрепленную к проводу бирку можно нанести буквенное обозначение жил:

  • L – фаза.
  • N – нейтраль (рабочее зануление).
  • PE – земля (защитное зануление).

Цветовая маркировка электрических проводов в разных странах

Страна (регион)
Цвет наружной изоляции проводника или жилы
Фазный проводник L1
Фазный проводник L2
Фазный проводник L3
Рабочее зануление N (нейтраль)
Защитное зануление PE (земля)
США
. Общепринятые цвета (120/208/240 В).
черныйкрасныйсинийсеребристыйзеленый
США
. Альтернативная цветовая маркировка (277/480 В).
коричневыйоранжевый или фиолетовыйжелтыйсерыйзеленый
Канада
. Обязательные цвета.
красныйчерныйсинийбелыйзеленый или без изоляции
Канада
. Трехфазные установки с изолированной нейтралью.
оранжевыйкоричневыйжелтыйбелыйзеленый
Индия и Пакистан. Великобритания
до 31 марта 2004 года. Гонконг
до апреля 2009 года. Малайзия, ЮАР и Сингапур
до февраля 2011 года.
красныйжелтый или белый (ЮАР)синийчерныйжелто-зеленый или зеленый
Европа и все страны, пользующиеся стандартом CENELEC
(IEC 60446) с апреля 2004 года. Великобритания
с 31 марта 2004 года. Гонконг
с июля 2007 года. Сингапур
с марта 2009 года.
коричневыйчерныйсерыйсинийжелто-зеленый
Европа
. Обозначение шин.
желтыйкоричневыйкрасный
СССР
. Обозначение шин.
желтыйзеленыйкрасныйсинийжелто-зеленый, встречается черный
Россия, Украина, Беларусь
. Обозначение шин.
желтыйзеленыйкрасныйголубойжелто-зеленый

Ознакомившись с основой цветовой маркировкой проводов, при проектировании проводки и иных электромонтажных работах не должно возникнуть трудностей. Четко соблюдайте все унифицированные правила. А в случаях малейшего сомнения, обязательно проверяйте кабель при помощи индикаторной отвертки и мультиметра.


Переход на привычное напряжение 220 В проводился еще в годы существования Советского Союза и закончился в конце 70-х, начале 80-х. Электрические сети того времени выполнялись по двухпроводной схеме, а изоляция проводов использовалась однотонная, преимущественно белого цвета. В дальнейшем, появилась бытовая техника повышенной мощности, требующая заземления.

Схема подключения постепенно изменялась на трёхпроводную. ГОСТ 7396.1–89 стандартизировал типы силовых вилок приблизив их европейским. После распада СССР были приняты новые стандарты, основанные на требованиях Международной электротехнической комиссии. В частности, для повышения безопасности при работе в электрических сетях и упрощения монтажа, вводилась цветовая градация проводов.

Нормативная база

Основным документом, описывающим требования к монтажу электросетей, является ГОСТ Р 50462–2009, в основе которого лежит стандарт МЭК 60446:2007. В нем изложены правила, которым должна соответствовать цветовая маркировка проводов. Касаются они производителей кабельной продукции, строительных и эксплуатирующих организаций, деятельность которых связана с монтажом электрических сетей.

Расширенные требования к монтажу содержатся в Правилах устройства электрических установок. В них приведен рекомендуемый порядок подключения, с отсылкой к ГОСТ-Р в пунктах касающихся цветовых градаций.

Необходимость разделения по цвету

Двухпроводная система подразумевает наличие в сети фазы и нуля. Вилка для таких розеток используется плоская. Оборудование устроено таким образом, что правильность подключения роли не играет. Не важно на какой контакт будет подана фаза, аппаратура разберется самостоятельно.

При трехпроводной системе, дополнительно предусмотрено наличие заземляющей жилы. В лучшем случае, неправильное подключение проводов, приведет к постоянному срабатыванию защитного автомата, в худшем — к повреждению оборудования и пожару. Использование цветной градации для жил, позволяет исключить ошибки при монтаже и избавляет от необходимости использования специальных приборов, предназначенных для измерения получаемого напряжения.

Трехпроводная система

Посмотрим на разрез трехжильного провода, который применяется для прокладки бытовых электросетей.

Цвет проводов указывает, где находятся фаза, ноль и земля. Дополнительно, на рисунке приведены типовые буквенные обозначения, применяемые в электрических схемах. Взяв в руки такой чертеж, можно визуально определить правильность выполненного подключения.

Давайте заглянем в ГОСТ и посмотрим, насколько приведенная на рисунке цветовая маркировка проводов соответствует требованиям. Пункт 5.1 общих положений содержит описание двенадцати цветов, которые должны использоваться для маркировки.

Девять цветов выделяется для обозначения фазных проводов, один для нулевого и два для заземления. Стандартом предусматривается выполнение заземляющего провода в комбинированном желто-зеленом исполнении. Разрешается продольное и поперечное нанесение полос, при это преимущественный цвет не должен занимать более 70 % площади оплетки. Отдельное использование желтого или зеленого цвета в защитном покрытии прямо запрещается пунктом 5. 2.1.

Указанная схема применяется при однофазном подключении, подходящем для большинства электрических приборов. Запутаться в ней, при правильно маркированном проводе, практически невозможно.

Пятипроводная система

Для трехфазного подключения используются пятижильные провода. Соответственно три провода выделяются под фазы, один под нейтральный или нулевой и один под защитный, заземляющий. Цветовая маркировка, как в любой сети переменного тока применяется аналогичная, в соответствии с требованиями ГОСТ.

В этом случае важным моментом будет правильное подключение фазных проводников. Как видно на рисунке, защитный провод выполнен в желто-зеленой оплетке, а нулевой — в синей. Для фаз использованы разрешенные оттенки.

С помощью пятижильных проводов можно выполнять подключение сети 380 В с правильно выполненным расключением.

Совмещенные провода

В целях удешевления производства и упрощения подключений применяются также провода двух или четырехжильные, в которых защитная жила совмещена с нейтральной. В документации они обозначаются аббревиатурой PEN. Как вы догадались, складывается она из буквенных обозначений нулевого (N) и заземляющего (PE) проводов.

ГОСТом предусмотрена для них специальная цветовая маркировка. По длине они окрашиваются в цвета заземляющей жилы, то есть в желто-зеленый. Концы должны быть в обязательном порядке окрашены в синий цвет, им же дополнительно обозначаются все места соединений.

Поскольку места, в которых выполняется подключение заранее определить невозможно, в этих точках провода PEN выделяют с помощью изолирующей ленты или кембриков синего цвета.

Нестандартные провода и маркировка

Приобретая новый провод, вы разумеется обратите внимание на цветовую маркировку жил и выберете тот вариант, где она нанесена правильно. Что делать в том случае, когда проводка уже выполнена, а цвета проводов не соответствуют требованиям ГОСТа? Выход в этом случае такой же, как и с проводами PEN. Придется выполнить ручную маркировку, после того, как вы определитесь с ролью, выполняемой подходящими к оборудованию жилами. Простым вариантом будет использование цветной изоленты соответствующих оттенков. Как минимум, стоит обозначить защитный и нейтральный провода.

При профессиональном монтаже возможно применение специальных кембриков, представляющих собой полые отрезки изоляционного материала. Делятся они на обычные и термоусадочные. Вторые не требуют подбора по диаметру, но не имеют возможности повторного использования.

Встречаются также специально изготовленные маркеры, с международным буквенно-цифровым обозначением. Их применяют на вводных и распределительных щитах, к примеру, в многоквартирных домах или административных зданиях.

Цифровые метки, совместно с цветом провода, позволяют определить к какому потребителю подается питание.

Дополнительные требования

Поскольку линии, как и разводка, могут выполнятся с применением различной кабельной продукции, существует ряд правил по их взаимному подключению. Подключение трехпроводного кабеля к пятипроводному должно выполняться с соблюдением цветовой маркировки от ведущего к ведомому. Соответственно заземляющий и нейтральный цвета должны совпадать.

Фазное подключение, в данном случае выполняется с использованием объединяющей шины. С одной стороны, к ней присоединяются три жилы, с другой стороны — одна, которая и будет фазой в новом ответвлении.

При монтаже бытовых электросетей, по требованиям безопасности, запрещается использовать проводку с алюминиевыми, а также многопроводными жилами. Должен использоваться только кабель с цельной медной жилой.

Трехпроводная система постоянного тока

В системах постоянного тока, также используется трехпроводная система, но назначение проводов другое. Разделение выполняется на плюсовой, минусовой и защитный. Согласно ГОСТ в таких сетях применяется следующая цветовая маркировка:

  • Плюсовой — коричневый;
  • Минусовой — серый;
  • Нулевой — синий.

Поскольку отдельно провода под системы постоянного тока выпускать нерационально, указанная цветовая градация применяется в основном для окраски токопроводящих шин.

В заключение

Как видите, цвета проводов в электрике не прихоть производителя, а мера, направленная на обеспечение требований безопасности. При соблюдении правил монтажа обслуживать такие сети намного проще, а разобраться в подключении может не только специалист электрик, но и мы с вами.

Видео по теме

Те, кто хоть раз в жизни имели дело с электропроводами, не могли не обращать внимания, что кабели всегда имеют разный цвет изоляции. Придумано это не для красоты и яркой окраски. Именно благодаря цветовой гамме в одежде провода легче распознавать фазы, заземление и нулевой провод. Все они имеют свойственную им окраску, что во много раз делает удобной и безопасной работу с электропроводкой. Самое главное для мастера – это знать, какой провод каким цветом должен обозначаться.

Цветовая маркировка проводов

При работе с электропроводкой максимальную опасность представляют провода, к которым подключена фаза. Соприкосновение с фазой может привести к летальному исходу, поэтому для этих электропроводов выбраны самые яркие, например, красный, предупреждающие цвета.

Кроме того, если провода маркированы разными цветами, то при ремонте той или иной детали можно быстрее определить какие именно из пучка проводов необходимо проверить в первую очередь, и которые из них наиболее опасны.

Чаще всего для фазных проводов используется следующая расцветка:

  • Красные;
  • Черный;
  • Коричневый;
  • Оранжевые;
  • Сиреневые,
  • Розовые;
  • Фиолетовые;
  • Белый;
  • Серые.

Именно в эти цвета могут быть окрашены фазные провода. Вы сможете проще разобраться с ними, если исключите нулевой провод и землю. Для удобства, на схеме изображение фазного провода принято обозначать латинской литерой L. При наличии не одной фазы, а нескольких, к букве должно быть добавлено численное обозначение, которое выглядит так: L1, L2 и L3, для трехфазных в 380 В сетях. В некоторых исполнениях первая фаза (масса), может быть обозначена буквой A, вторая – B, а уже третья – C.

Какого цвета провод заземления

В соответствии с современными стандартами, проводник заземления должен иметь желто-зеленый цвет. С виду он похож на желтую изоляцию, на которой имеются две продольные ярко-зеленые полосы. Но встречается иногда и окраска из поперечных зелено-желтых полос.

Иногда, в кабеле могут иметься только ярко-зеленые или желтые проводники. В данном случае «земля» будет обозначаться именно таким цветом. Соответствующими цветами она же будет отображаться и на схемах. Чаще всего инженеры рисуют из ярко зелеными, но иногда можно заметить и желтые проводники. Обозначают на схемах или приборах «землю» латинскими (на английском) буквами PE. Соответственно этому маркируются и контакты, куда «земляной» провод нужно подключать.

Иногда специалисты называют заземляющий провод «нулевым и защитным», но не стоит путать. Если вы увидите такое обозначение, то знайте, что это именно земляной провод, а защитным его называют потому, что он что снижает риск удара током.

Ноль или нейтральный провод имеет следующий цвет маркировки:

  • Синий;
  • Голубой;
  • Синий с белой полоской.

Никакие цвета в электрике для маркировки нулевого провода не используются. Таким вы его найдете в любом, будь то трехжильном, пятижильном, а может и с еще большим количеством проводников. Синим и его оттенками обычно рисуют «ноль» на различных схемах. Профессионалы называют его рабочим нулем, потому, что (чего нельзя сказать о заземлении), участвует в электропроводке с питанием. Некоторые, при прочтении схемы называют его минус, в то время как фазу все считают «плюс».

Как проверить подключение проводов по цветам

Цвета проводов в электричестве придуманы для того, чтобы ускорить идентификацию проводников. Однако, полагаться лишь только на цвет опасною, ведь какой-либо новичок, или безответственный работник из ЖЗК-а, мог подключить их неправильно. В связи с этим, перед тем, как приступить к работам, необходимо удостовериться правильности их маркировки или подключения.

Для того, чтобы выполнить проверку проводов на полярность, берем индикаторную отвертку или мультиметр. Стоит заметить, что с отверткой на много проще работать: когда вы прикасаетесь к фазе загорается вмонтированный в корпус светодиод.

Если кабель двухжильный, тогда проблем практически нет- вы исключили фазу, значит второй проводник, который остался, это ноль. Однако часто встречаются и трехжильные провода. Здесь уже для определения вам понадобиться тестер, или мультиметр. При их помощи так же не сложно определить, какой проводов фазный (плюсовой), а какой – нулевой.

Делается это следующим образом:

  • На приборе выставляется переключатель таким образом, чтобы выбрать шакалу более 220 В.
  • Затем нужно взять в руки два щупа, и держа их за пластиковые ручки, очень аккуратно дотрагиваемся стержнем одного из щупов к найденному проводу-фазе, а второй прислоняем к предполагаемому нулю.
  • После этого на экране должно будет высветиться 220 В, или то напряжение, которое есть по факту в сети. Сегодня оно может быть ниже.

Если на дисплее появилось значение 220 В или что-то в этом пределе, то другой провод – это ноль, а оставшийся – предположительно «земля». В случае, если значение, появившееся на дисплее меньше, стоит продолжить проверку. Одним щупом опять прикасаемся к фазе, другим к предполагаемому заземлению. Если показания прибора будут ниже, чем в случае с первым измерением, то перед вами «земля». По стандартам она должна быть зеленого или желтого цвета. Если вдруг показания получились выше, это означает, что где-то напутали, и перед вами «нулевой» провод. Выходом из этой ситуации будет либо искать, где именно подключили провода неправильно, или оставив все как есть, запомнив, что провода перепутаны.

Обозначения проводов в электрических схемах: особенности подключения

Начиная любые электромонтажные работы на линиях, где уже проложена сеть, необходимо убедиться в правильности подключения проводов. Делается это с помощью специальных тестирующих приборов.

Необходимо запомнить, что при проверке соединения «фаза-ноль» показания индикаторного мультиметра всегда будут выше, чем в случае прозвонки пары «фаза-земля».

Провода в электрических цепях по нормам имеют цветную маркировку. Данный факт позволяет электрику в короткий промежуток времени найти ноль, заземление и фазу. В случае, если эти провода подсоединить неправильно между собой, то возникнет короткое замыкание. Иногда такая оплошность приводит к тому, что человек получает удар электрическим током. Поэтому, нельзя пренебрегать правилам (ПУЭ) подключения, и необходимо знать, что специальная цветовая маркировка проводов предназначена для обеспечения безопасности при работе с электропроводкой. Кроме того, данное систематизирование значительно сокращает время работы электрика, так, как он имеет возможность быстро найти нужные ему контакты.

Особенности работы с электропроводами разного цвета:

  • Если вам нужно установить новую, или заменить старую розетку, то определять фазу вовсе необязательно. Вилке вовсе неважно, с какой стороны вы ее подключите.
  • В случае, когда вы подключаете выключатель от люстры, то нужно знать, что нему необходимо подавать конкретно фазу, а к лампочкам только ноль.
  • Если цвет контактов и фазы и нуля совершенно одинаковый, то значение проводников определяется с помощью индикаторной отвертки, где рукоятка изготовлена из прозрачного пластика с диодом внутри.
  • Перед тем, как определить проводник, электрическую цепь в доме или другом помещение нужно обесточить, а проводки на концах зачистить и развести в стороны. Если этого не сделать, то они могут нечаянно соприкоснуться и получится короткое замыкание.

Использование цветной маркировки в электрике намного облегчило жизнь людей. Кроме того, благодаря цветовым обозначениям, на высокий уровень поднялась безопасность при работе с проводами, которые находятся под напряжением.

Обозначения и цвета проводов в электрике (видео)

Рейтинг 4.50
(1
Голос)

Рекомендуем также

Обозначение выводов и группы соединений двухобмоточных трансформаторов

Согласно ГОСТ 11677—85 начала обмоток двухобмоточного однофазного трансформатора обозначают буквами Л и а, концы — X и х. в трехфазных двухобмоточных трансформаторах начала и концы обмоток обозначают соответственно буквами А,

B, С; а, B, с и X, К, z; х, у, г. Прописные буквы относятся к обмоткам высшего напряжения, а строчные — к обмоткам низшего напряжения. Зажимы нейтрали при соединении в звезду обозначают Оно. Понятия начала и конца обмотки условны.
Расположение выводов на крышке двухобмоточных трансформаторов показано на рис. 1.

в трехфазных трансформаторах применяют следующие схемы соединений: Y/Y. Д/Д’ a/z, у/л. a/Y. Y/z<Y-соединение звездой, д — треугольником, z — зигзаг-звездой; в числителе указаны соединения обмотки высшего напряжения, в знаменателе — низшего напряжения) *.
Эти схемы образуют 12 различных групп соединений со сдвигом фаз линейных ЭДС первичной и вторичной обмоток от О до 330° через 30°. Этот сдвиг фаз принято характеризовать положением стрелок часов, причем вектор ЭДС обмотки высшего напряжения совмещают с большой (минутной) стрелкой часов и всегда устанавливают на цифре 12, а вектор ЭДС обмотки низшего напряжения соответствует малой (часовой) стрелке; положение последней зависит от сдвига фаз ЭДС обеих обмоток. Например, сдвиг фаз 0° соответствует 12 ч (обе стрелки совпадают), и такое соединение называют группой 0; сдвигу фаз 180° соответствует группа 6.

* В литературе (см. ГОСТ 3484—77) можно встретить обозначения: Д — соединение треугольником; У — соединение звездой.

Рис.  1.  Расположение  выводов  на крышке двухобмоточных трансформаторов:  а — трехфазных мощностью 5—6300 кВ«А с высшим напряжением до 35 кВ; б — однофазных всех номинальных мощностей и напряжений

Рис. 2, Схемы основных групп соединений обмоток трехфазных трансформаторов и обозначения зажимов

Рис. 3. Сводные данные групп соединений обмоток трехфазных трансформаторов

Схемы Y/Y» А/A. A/Z могут образовывать четные группы 2,4,6,8,10,0; схемы Y/A, А /Y» Y/z ~~ нечетные группы I, 3,59 7,9,11. Группы 0 и 6 являются основными четными группами, а группы 11 и 5 — основными нечетными группами.

На рис. 2 даны схемы основных групп соединений трансформаторов; обмотки, находящиеся на одном стержне, изображены одна под другой; стрелками показаны направления ЭДС. Остальные группы являются производными; они образуются путем круговой перемаркировки зажимов без изменения самих
внутренних соединений (рис. 3). Из группы 0 образуются группы 4 и 8, из группы 6 — группы 10 и 2, из групп 11 и 5 — соответственно группы 3, 7 и 9, 1.

В СССР были стандартизованы (ГОСТ 11677—85) группы Y/Y»0′ Y/Y/A’ll с выводом в случае надобности нейтрали звезды.

Схемы и группы соединения обмоток трансформаторов | Теорія

Согласно ГОСТ 11677—75 начала и концы первичных и вторичных обмоток трансформаторов обозначают в определенном порядке. Начала обмоток однофазных трансформаторов обозначают буквами А, а, концы — X, х. Большие буквы относятся к обмоткам высшего, а малые — к обмоткам низшего напряжений. Если в трансформаторе помимо первичной и вторичной есть еще и третья обмотка с промежуточным напряжением, то ее начало обозначают Аm, а конец Хm.

В трехфазных трансформаторах начала и концы обмоток обозначают: А, В, С; X, Y, Z — высшее напряжение; Аm, Вm, Сm; Хm, Ym, Zm — среднее напряжение; а, b, с; х, у, z — низшее напряжение. В трехфазных трансформаторах с соединением фаз в звезду кроме начала обмоток иногда выводят и нейтраль, т. е. общую точку соединения концов всех обмоток. Ее обозначают О, Оm и о. На рисунке 1, а, б показаны схемы соединения обмоток в звезду и треугольник так, как их изображают для трехфазных трансформаторов.

а — в звезду; б — в треугольник

Рисунок 1 — Схемы соединения обмоток трансформатора

Схему соединения в звезду принято обозначать знаком Y, а в треугольник — Δ. Если наружу выводят нейтраль обмоток, то такое соединение обозначают знаком Yн. Если у трансформатора обмотка высшего напряжения соединена в звезду, а низшего — в треугольник, то такое сочетание обмоток обозначают Y/Δ или Yн/Δ.

В числителе этой «дроби» всегда ставят обозначение обмотки высшего напряжения, а в знаменателе — низшего. При наличии третьей обмотки, соединенной, например, также в звезду, обозначение будет таким: Yн/Y/Δ. Обозначение третьей обмотки ставят между обозначениями обмоток высшего и низшего напряжений.

Понятия начала и конца обмотки условны, так как при протекании переменного тока любой конец обмотки можно назвать началом. Однако при практическом осуществлении обмоток и, особенно при их взаимных соединениях использовать эти понятия совершенно необходимо.

Допустим, что мы имеем два витка, один из которых (1) принадлежит первичной обмотке, а второй (2)—вторичной (рисунок 2, а). Оба витка сцеплены с одним и тем же магнитным потоком Ф0. Направления наводимых в витках эдс (в данный момент времени) показаны стрелками. Условимся называть левые зажимы началами, а правые — концами витков и обозначим их соответственно А и а, X и х. При таком обозначении зажимов мы должны считать, что эдс E1 и Е2 в витках совпадают по фазе, так как в любой момент времени они направлены одинаково: или от начала (А и а) к концу (X и х), или от конца (X и х) к началу (А и а).

а — эдс E1 и Е2 совпадают по фазе; б — эдс E1 и Е2 сдвинуты по фазе на 180°; 1 — виток первичной обмотки; 2 — виток вторичной обмотки

Рисунок 2 — Угловое смещение векторов электродвижущих сил в зависимости от обозначения концов обмотки

Допустим теперь, что мы изменили во вторичной обмотке обозначения начала и конца витка (рисунок 2, б). Никакого изменения физического процесса наведения эдс не произойдет, но по отношению к концам витка направление эдс изменится на противоположное, т. е. она будет направлена не от начала к концу, а наоборот — от конца (х) к началу (а). Поскольку в витке 1 ничего не изменилось, мы должны считать, что эдс E1 и Е2 сдвинуты по фазе на 180°. Таким образом, простое изменение обозначений концов равносильно угловому смещению вектора эдс в обмотке на 180°.

Однако направление эдс может измениться и в том случае, когда начала и концы первичной и вторичной обмоток располагаются одинаково. Дело в том, что обмотки трансформатора могут выполняться правыми и левыми. Обмотку называют правой, если ее витки при намотке располагают по часовой стрелке, т. е. укладывают по правой винтовой линии (рисунок 3, верхняя обмотка). Обмотку называют левой, если ее витки при намотке располагают против часовой стрелки, т. е. укладывают по левой винтовой линии (рисунок 3, нижняя обмотка).

Рисунок 3 — Угловое смещение векторов ЭДС в зависимости от направления намотки обмоток

Как видно из рисунка, обе обмотки имеют одинаковое обозначение концов. Благодаря тому, что обмотки пронизываются одним и тем же потоком, в каждом витке направление эдс будет одинаковым. Однако из-за разной намотки направление суммарной эдс всех последовательно соединенных витков в каждой обмотке различно: в первичной эдс направлена от начала А к концу X, а во вторичной — от конца х к началу а. Итак, даже при одинаковом обозначении концов эдс первичной и вторичной обмоток могут быть смещены на угол 180°.

У однофазного трансформатора векторы эдс обмоток могут или совпадать, или быть противоположно направленными (рисунок 4, а, б). Если такой трансформатор работает один, то для потребителей совершенно безразлично, как направлены эдс в его обмотках. Но если три однофазных трансформатора работают вместе на линию трехфазного тока, то для правильной работы необходимо, чтобы в каждом из них векторы эдс были направлены или как показано на рисунке 4, а, или как показано на рисунке 4, б.

а, б — однофазных; в — трехфазных

Рисунок 4 — Направление эдс в обмотках трансформаторов

В такой же степени это относится и к каждому трехфазному трансформатору. Если в первичных обмотках эдс во всех фазах имеют одинаковое направление, то и во вторичных обмотках направление эдс должно быть обязательно одинаковым (рисунок 4, в). Очевидно, что у вторичных обмоток направление намотки и обозначение концов должны быть также одинаковыми.

При ошибочной насадке обмотки с другим направлением намотки или при неправильном соединении концов напряжение, получаемое потребителями, резко уменьшится, а нормальная работа нарушится. Особенно неблагоприятные условия возникают в случае, если от одной сети работают одновременно несколько трансформаторов, у которых сдвиги фаз между линейными эдс различны. Чтобы избежать нарушений в работе потребителей, следует иметь трансформаторы с какими-то определенными угловыми смещениями векторов эдс обмоток.

Направления векторов эдс и угловые смещения между ними принято характеризовать группами соединения обмоток. На практике угловое смещение векторов эдс обмоток НН и СН по отношению к векторам эдс обмотки ВН обозначают числом, которое, будучи умножено на 30°, дает угол отставания векторов. Это число называют группой соединения обмоток трансформатора.

Так, при совпадении векторов эдс обмоток по направлению (угловое смещение 0°) получается группа соединения 0 (рисунок 4, а). Угловое смещение 180° (рисунок 4, б) соответствует группе 6 (30 х 6=180°). Как мы видели, в обмотках однофазных трансформаторов могут быть только такие угловые смещения, поэтому у них возможны только 0-я и 6-я группы соединений. Соединения обмоток однофазных трансформаторов для краткости обозначают I/I — 0 и I/I — 6.

В трехфазных трансформаторах, обмотки которых могут соединяться в звезду или треугольник, возможно образование 12 различных групп со сдвигом фаз векторов линейных эдс от 0 до 360° через 30°. Из двенадцати возможных групп соединений в России стандартизованы две группы: 11-я и 0-я со сдвигом фаз 330 и 0°.

Рассмотрим в качестве примера схемы соединений Y/Y и Y/Δ (рисунок 5, а, б). Обмотки, расположенные на одном стержне, изобразим одну под другой; намотку всех обмоток (первичных и вторичных) примем одинаковой; направления фазных эдс показаны стрелками.

Рисунок 5 — Получение группы соединений в схеме звезда — звезда (а) и звезда — треугольник (б)

Построим векторную диаграмму эдс первичной обмотки (рисунок 5, а) так, чтобы вектор эдс фазы С располагался горизонтально. Соединив концы векоторов А и В, получим вектор линейной эдс ЕАВ (АВ). Построим векторную диаграмму эдс вторичной обмотки. Поскольку направления эдс первичной и вторичной обмоток одинаковы, векторы фазных эдс вторичной обмотки строят параллельно соответствующим векторам первичной обмотки. Соединив точки а и b и пристроив вектор Еab (ab) к точке А, убеждаемся, что угловое смещение между линейными эдс первичной и вторичной обмоток равно 0. Итак, в первом примере группа соединения обмоток 0. Это обозначают так: Y/Yн —0, что читается «звезда с выведенной нейтралью».

При рассмотрении второго примера (рисунок 5, б) видим, что векторная диаграмма эдс первичной обмотки построена так же, как и в предыдущем примере. При построении векторной диаграммы эдс вторичной обмотки следует помнить, что при соединении в треугольник фазные и линейные эдс совпадают как по величине, так и по направлению.

Строим вектор эдс фазы с, направляя его параллельно вектору С первичной обмотки. Конец фазы с (точка z) соединяется с началом фазы b, поэтому от конца вектора с проводим вектор эдс фазы b параллельно вектору В. Конец фазы b соединяется с началом фазы а, поэтому от конца вектора b (точки у) проводим вектор эдс фазы а параллельно вектору А. В получившемся замкнутом треугольнике abc вектор ab — это линейная эдс Еab. Пристроив вектор Еab к точке А, убеждаемся, что он сдвинут по отношению к вектору ЕАВ на угол 30° в сторону опережения. Следовательно, вектор Еab отстает на 330° (30° х 11 = 330°) от вектора эдс обмотки ВН. Итак, в этом примере группа соединения обмоток 11. Это обозначается так: Y/Δ —11, что читается: «звезда — треугольник — одиннадцать».

В трехобмоточном трансформаторе группа соединения обмоток определяется аналогично; при этом обмотки рассматриваются попарно: первичная и одна из двух других. Если встречается обозначение Yн/Y/Δ — 0 — 11, то прочитать его надо так: «звезда с выведенной нейтралью — звезда — треугольник — нуль — 11». Это означает, что у рассматриваемого трехобмоточного трансформатора обмотка ВН соединена в звезду с выведенной нулевой точкой, обмотка СН — в звезду, обмотка НН — в треугольник, группа соединения обмоток ВН и СН — нуль, обмоток ВН и НН — 11.

Мы рассмотрели только две группы соединения — 0 и 11. Меняя обозначения концов (путем кругового перемещения обозначений), можно получить другие группы от 1 до 10. Однако эти группы не нашли распространения и встречаются очень редко. В России стандартизованы только три группы: Y/Y — 0, Y/Δ — 11 для трехфазных трансформаторов, I/I — 0 — для однофазных трансформаторов.

Цвета электропроводки — swoofe.ru

Какими бывают цвета проводов фазы, ноля и земли в квартирах или частных домах

Играют ключевую роль для обслуживания и ремонта. Сильно упрощается работа для мастеров и скорость устранения проблемы.

Цвета в электропроводке: важность и практичность

Маркировка — необходимый элемент создания сети электропитания. Благодаря простым обозначениям и цветовому решению удается выделить нужный кабель из пучка.

Такой подход упрощает профилактику, замену оборудования или выявление поломки. Поэтому так важно разбираться в окрашивании электропроводки.

Как окрашиваются провода на электропроводке?

Согласно европейским и нашим стандартам производители окрашивают провода в разный цвет и индивидуально маркируют. Окрашивается изоляционный материал.

Цветная маркировка проводится по всей длине. Такой подход определяет предназначение каждого элемента, что облегчает коммутацию. Обязательно правильно соединять цвета, чтобы предупредить опасные моменты. Провода в электрике делятся на три вида:

Каждый из них имеет разную окраску, чтобы мастер мог быстро определить их назначение.

Всегда ли одинаково обозначение цветов для сети 220 в?

У каждого производителя свои обозначения, но в целом стараются придерживаться общепринятых правил – европейских и отечественных стандартов. Например, фаза обозначается ярким цветом, чтобы даже непрофессионалу было ясно — опасность.

Какие цвета в элетропроводке?

Согласно правилам устройства электроустановок (ПУЭ), электропроводка покрывается изоляционным материалом разного цвета. Так элементы проще распознаются мастером. В работе используется трехжильный кабель, где есть фаза, ноль, земля, которые окрашены по-разному. Ранее было только черное и белое исполнение, но с введением новых правил, стало безопасней и проще.

Цвет провода заземления

Желто-зеленый – элементов «заземления». Иногда владельцу прибора встречается просто желтый или зеленый, с двумя буквами — «РЕ», которые отвечают за маркировку «земли». Если элемент заземления вместе с нулевым, то обозначается «PEN» и чаще имеет зелено-желтый оттенок.

Каким обозначается фаза?

Контакт с фазой самый опасный. При проведении работ стоит остерегаться его. Поскольку некоторые случаи могут быть даже летальными, производители отмечают его ярким цветом, чтобы не спутать с другими вариантами.

Красный и черный – цвета фазы. Встречаются и другие:

Разобраться с пучком элементов питания будет проще, когда будет исключен ноль и земля. Фаза на схеме отмечается буквой L. Если в сети несколько фаз, что часто встречается при 380 В, такие провода обозначаются L1, L2, L3. В других случаях, могут обозначаться: первая фаза — A, вторая — B и т.д.

Нулевой провод в однофазной сети

Представлен синим или голубым оттенками. В электрике больше не встречается другого обозначения этого цвета. Не важно какой используется в работе кабель – трехжильный, пятижильный, цвет один и тот же.

Как проверить правильность маркировки в квартире?

Полагаться только на цвет не рекомендуется. Перед началом работ рекомендуется проверить их принадлежность. Для этого используется специальная отвертка.

Светодиод на ней загорается при прикосновении к фазе. С двухжильным кабелем проблем не возникнет, ведь второй окажется нулем. Для трехжильного используют другой инструмент — мультиметр или тестер.

Переключатель выставляется по шкале больше 220В. На экране должен высветится этот показатель или даже меньше, ведь таковы наши реалии.

Чтобы использовать мультиметр стоит учитывать, что при прозвоне пары «фаза-земля» показатели ниже, чем при прозвоне пары «фаза-ноль»

Обозначение цветов на схемах по электрике

Количество используемых в работе цветов зависит напрямую от конкретной схемы. Если работы проводятся согласно общепринятым стандартам, то опытный электрик в будущем легко разберется с вашей сетью. Не придется использовать дополнительные устройства для определения фазы, хватит знаний в вопросе обозначения цветов. Стандартной палитрой считается:

  • ноль – синий;
  • земля – желтый;
  • фаза – красный.

В однофазной сети применяется один цвет, если же используются более массивные сети, то фаза может быть отмечена черным и зеленым.

Прежде чем приступить к работам с электропроводкой, важно знать обозначения цветов каждого провода. Во-первых, ради собственной безопасности, во-вторых, такой подход обеспечит максимальный комфорт. Такие знания упрощают процесс монтажа и будущую профилактику сети. Не придется каждый раз использовать специально отвертку, чтобы определить фазу. Опытные электрики смогут «разговаривать» на одном языке, пользуясь стандартами цветобуквенной маркировки.

Полезное видео

Цветовая маркировка проводов

Тот кто хоть раз имел дело с проводами и электрикой обратил внимание, что проводники всегда имеют различный цвет изоляции. Сделано это не просто так. Цвета проводов в электрике призваны сделать проще распознавание фазы, нулевого провода и заземления. Все они имеют определенную окраску и при работе легко различаются. О том, каков цвет проводов фаза, ноль, земля и пойдет речь дальше.

Как окрашиваются провода фазы

При работе с проводкой наибольшую опасность представляют фазные провода. Прикосновение к фазе, при определенных обстоятельствах, может стать летальным, потому, наверное, для них выбраны яркие цвета. Вообще, цвета проводов в электрике позволяют быстрее определить которые из пучка проводов наиболее опасны и работать с ними очень аккуратно.

Расцветка фазных проводов

Чаще всего фазные проводники бывают красного или черного цвета, но встречается и другая окраска: коричневый, сиреневый, оранжевый, розовый, фиолетовый, белый, серый. Вот во все эти цвета может быть окрашены фазы. С ними проще будет разобраться, если исключить нулевой провод и землю.

На схемах фазные провода обозначаются латинской (английской) буквой L. При наличии нескольких фаз, к букве добавляют численное обозначение: L1, L2, L3 для трехфазной сети 380 В. В другой версии первая фаза обозначается буквой A, вторая — B, третья — C.

Цвет провода заземления

По современным стандартам, проводник заземления имеет желто-зеленый цвет. Выглядит это обычно как желтая изоляция с одной или двумя продольными ярко-зелеными полосами. Но встречаются также окраска из поперечных желто-зеленых полос.

Такого цвета могут быть заземление

В некоторых случаях, в кабеле могут быть только желтые или ярко-зеленые проводники. В таком случае «земля» имеет именно такой цвет. Такими же цветами она отображается на схемах — чаще ярко-зеленым, но может быть и желтым. Подписывается на схемах или на аппаратуре «земля» латинскими (английскими) буквами PE. Так же маркируются и контакты, к которым «земляной» провод надо подключать.

Иногда профессионалы называют заземляющий провод «нулевой защитный», но не путайте. Это именно земляной, а защитный он потому, что снижает риск поражения током.

Какого цвета нулевой провод

Ноль или нейтраль имеет синий или голубой цвет, иногда — синий с белой полосой. Другие цвета в электрике для обозначения нуля не используются. Таким он будет в любом кабеле: трехжильном, пятижильном или с большим количеством проводников.

Какого цвета нулевой провод? Синий или голубой

Синим цветом обычно рисуют «ноль» на схемах, а подписывают латинской буквой N. Специалисты называют его рабочим нулем, так как он, в отличие от заземления, участвует в образовании цепи электропитания. При прочтении схемы его часто определяют как «минус», в то время как фаза считается «плюсом».

Как проверить правильность маркировки и расключения

Цвета проводов в электрике призваны ускорить идентификацию проводников, но полагаться только на цвета опасно — их могли подключить неправильно. Потому, перед началом работ, стоит удостовериться в том, правильно ли вы определили их принадлежность.

Берем мультиметр и/или индикаторную отвертку. С отверткой работать просто: при прикосновении к фазе загорается светодиод, вмонтированный в корпус. Так что определить фазные проводники будет легко. Если кабель двухжильный, проблем нет — второй проводник это ноль. Но если провод трехжильный, понадобиться мультиметр или тестер — с их помощью определим какой из оставшихся двух фазный, какой — нулевой.

Определение фазного провода при помощи индикаторной отвертки

На приборе переключатель выставляем так, чтобы выбранной была шакала более 220 В. Затем берем два щупа, держим их за пластиковые ручки, аккуратно дотрагиваемся металлическим стержнем одного щупа к найденному фазному проводу, вторым — к предполагаемому нулю. На экране должно высветиться 220 В или текущее напряжение. По факту оно может быть значительно ниже — это наши реалии.

Если высветилось 220 В или чуть больше — это ноль, а другой провод — предположительно «земля». Если значение меньше, продолжаем проверку. Одним щупом снова прикасаемся к фазе, вторым — к предполагаемому заземлению. Если показания прибора ниже чем при первом измерении, перед вами «земля» и она должна быть зеленого цвета. Если показания оказались выше, значит где-то напутали при и перед вами «ноль». В такой ситуации есть два варианта: искать где именно неправильно подключили провода (предпочтительнее) или просто двигаться дальше, запомнив или отметив существующее положение.

Итак, запомните, что при прозвонке пары «фаза-ноль» показания мультиметра всегда выше, чем при прозвонке пары «фаза-земля».

И, в завершение, позвольте совет: при прокладке проводки и соединении проводов соединяйте всегда проводники одного цвета, не путайте их. Это может привести к плачевным результатам — в лучшем случае к выходу аппаратуры из строя, но могут быть травмы и пожары.

Цвета проводов.

В сегодняшнее время невозможно представать монтирование электропроводки без использования разных цветов провода (цветной изоляции проводников). Цветовая маркировка проводов не является чем-то типа маркетинговых ходов для завлечения клиентов или украшения продукции.

На самом деле разные цвета проводов – это острая необходимость, поскольку маркирование проводов помогает узнать назначение каждого из них в определенной группе для облегчения коммутации. Также при выделении, сильно снижается риск ошибки в процессе монтажа проводов, и, соответственно, возникновения короткого замыкания при пробном включении или поражение током в процессе ремонтных и профилактических работ сетей.

Цвета, выбранные для маркирования проводников, специально подобраны и курируются едиными стандартами ПУЭ. В данных стандартах указано, что жилы проводников следует различать по буквенно-цифровым или цветовым обозначениям.

В этой статье будет рассказано именно про значение цвета провода. Стоит отметить, что работа по коммутации проводников значительно упростилась после принятия единых стандартов цветовой идентификации. Каждая жила, с конкретным назначением теперь обозначена уникальным цветом, например: синим, желтым, коричневым, серым и т.д.

Зачастую цветовая маркировка наносится по всей длине проводника, но также допустима идентификация в точках соединений или на концах жил, именно для этого применяются кембрики (цветные термоусадочные трубки) или изолента разных цветов. Для того чтобы избежать лишней работы типа нанесения меток с помощью трубок или изоленты, достаточно при покупке правильно определить цветовую маркировку изоляции. Следует также приобретать его в нужном количестве, чтобы обеспечить одинаковую маркировку разводки по всей квартире или по всему дому.

Ниже будет рассмотрено, как меняется цвет провода в сети постоянного, однофазного и трехфазного тока.

Цвета шин и проводов при переменном трехфазном токе.

На электростанциях и подстанциях в трехфазных сетях высоковольтные провода и шины окрашиваются таким образом: фаза «А» — желтый; фаза «В» — зеленый, а фаза «С» — красный.

Какой цвет проводов «+» и «-» в сети постоянного тока:

Кроме сетей переменного тока, широко используются и цепи постоянного тока. Цепи постоянного тока применяются в:

1. В строительстве, при использовании погрузчиков, электротележек и электрических кранов, а также в промышленности.

2. В электротранспорте – трамваи, троллейбусы, электровозы, теплоходы и т.д.

3. На электрических подстанциях – для снабжения энергией автоматики.

В сети постоянного тока используется только 2 провода, поскольку в подобных сетях отсутствует фазный или нулевой проводник, и есть только положительная и отрицательная шины (+ и -).

Согласно нормативным документам в красный цвет окрашиваются провода и шины, имеющие положительный заряд (+), а провода и шины с отрицательным зарядом (-) маркируются синим цветом. Голубым цветом обозначается средний проводник (М).

Плюсовой проводник двухпроводной сети маркируют тем же цветом, что и положительный проводник трехпроводной сети, с которым он соединен, только в том случае, если двухпроводная сеть постоянного тока создана через ответвление от трехпроводной сети постоянного тока.

Цвет провода в электропроводке: земля, фаза и ноль.

Для исключения путаницы и упрощения монтажных работ при прокладке электросетей переменного тока, используют многожильные провода в разноцветной изоляции.

Цветовое обозначение проводов особенно важно, когда разводку делает один человек, а обслуживанием или ремонтов – другой. Иначе ему придется постоянно проверять, где фаза, а где ноль с помощью пробника. Те, кто работали со старой проводкой, знают, как сильно это может надоедать, ведь раньше в быту была только белая или черная изоляция. Со времен СССР цветовое обозначение проводов постоянно менялась, пока не был определен специальный стандарт. Теперь каждый цвет проводника определяет свое назначение в проводе.

В нынешнее время нормативным документом является ПУЭ 7, который регулирует цветовую маркировку изолированных или же неизолированных проводников, где согласно с ГОСТ Р 50462 «Идентификация проводников по цветам или цифровым обозначениям» должны использоваться только определенные обозначения и цвета.

Основной целью нанесения маркировки электропроводки является легкость и быстрота определения назначения проводника по всей длине, что собственно является одним из главенствующих требований стандартов ПУЭ.

Ниже буде рассмотрено, какой расцветки должны быть проводники электроустановок переменного тока, напряжением до 1000В и с глузозаземленной нейтралью (например, проводка административных зданий или жилых домов).

Цвета нулевого рабочего и нулевого защитного проводника.

Нулевые рабочие проводники (N) обозначаются голубым цветом. Нулевой защитный проводник (РЕ) маркируется желто-зелеными поперечными или продольными полосками. Такая комбинация должна обязательно применяться исключительно для маркировки заземляющих проводников.

Совмещенный нулевой рабочий и нулевой защитный проводники (PEN) – синий цвет по всей длине шнура с желто-зелеными полосками в местах соединения или на концах. Важно упомянуть, что ГОСТ сегодня разрешает обратный вариант окраски, то есть желто-зеленые полосы с синим цветом в местах соединения.

Если обобщить, то цвет провода должна распределяться так:

1. Совмещенный (PEN) – желто-зеленый с голубыми метками на концах;

2. Нулевой рабочий (N) – голубой (синий) цвет;

3. Нулевой защитный (РЕ) – желто-зеленый.

Цвета фазных проводов.

Согласно ПУЭ, при маркировании фазных проводников, нужно отдать предпочтение таким цветам: бирюзовый, черный, оранжевый, коричневый, белый, красный, розовый, серый или фиолетовый цвета.

Известно, что однофазная электрическая цепь может быть создана способом ответвления от трехфазной, в этом случае цвет провода фазы однофазной цепи должен совпадать с цветом фазного проводника трехфазной цепи.

Цветовое обозначение изоляционного покрытия проводников должно проводиться, таким образом, чтоб цвет фазного проводника был легко отличим от цвета проводников N, PE или PEN. В случае использования немаркированного провода, цветные идентификаторы ставятся в местах соединения или на конце.

Цвета проводов в электрике: стандарты и правила маркировки +способы определения проводника

Чтобы облегчить труд электромонтажников, выпуск изоляции кабельной продукции подчинен определенным нормам цветовой маркировки. При подключении многожильного кабеля по окраске полимерной оболочки можно идентифицировать жилу и понять, с каким контактом ее следует коммутировать.

Разные цвета проводов в электрике, установленные положениями ГОСТ, помогают ускорить процесс монтажа и обеспечить электробезопасность. Согласитесь, понимание цветовой маркировки пригодится каждому домашнему мастеру.

Предлагаем разобраться в обозначениях электропроводки, узнать стандарты ГОСТ и научиться читать буквенные коды проводов на схемах. Кроме того, мы расскажем, как проверить соответствие подключенной жилы ее назначению, используя индикаторную отвертку или мультиметр.

Что говорится в ГОСТ и ПУЭ о цветовой маркировке

Основным документом, на который стоит опираться при производстве или приобретении кабелей, является ГОСТ 31947-2012. До его появления единообразия и порядка в области цветового обозначения электропроводки не было.

До сих пор в старых домах можно встретить провода в одинаковой оболочке, по цвету которой не определить, что подключено – «фаза», «ноль» или «земля».

В выше обозначенном документе ГОСТ указано, что изоляция кабельной продукции должна отличаться по расцветке. Определенный оттенок должен покрывать провод сплошным слоем – с начала и до конца. Нельзя, чтобы один провод в начале бухты был синим, а конце – белым; также запрещена прерывистая окраска.

Также в нормативных документах содержатся рекомендации по применению различных схем для 3-жильных, 4-жильных и 5-жильных кабелей.

Например, при производстве 3-жильных кабелей приветствуются следующие комбинации:

  • коричневый – синий – зеленый/желтый;
  • коричневый – серый – черный.

Если кабель состоит из 4 жил, то рекомендуется также два типовых варианта окраски:

  • коричневый – серый – черный – зеленый/желтый;
  • коричневый – серый – черный – синий.

Схемы для 5-жильного провода выглядят следующим образом:

  • коричневый – серый – черный – зеленый/желтый – синий;
  • коричневый – серый – 2 черных – синий.

Синим цветом обозначается «нулевая» жила.

Не рекомендуют использовать только два цвета – красный и белый.

Окраска должна наноситься прочно и быть хорошо различимой.

Если обратиться ко второму важному для электромонтажников документу – ПУЭ, то в п.1.1.29 и п.1.1.30 также можно найти информацию о цвете проводов фаза-ноль-земля. Точнее, данные там не расписаны, но есть отсылка к ГОСТ P 50462-92, который уже давно заменен более свежей редакцией ГОСТ Р 50462-2009, действующей и сегодня.

Материал соответствует информации, изложенной в ГОСТ 31947, но есть некоторые уточнения. Например, особым образом должны окрашиваться провода, выполняющие двойную функцию: если нулевой рабочий совмещен с нулевым защитным, то по всей длине он окрашивается в голубой цвет, а по краям имеет зелено-желтые полоски.

Таким образом, все цвета, за исключением синего (голубого) и зеленого/желтого, можно применять для окраски изоляции фазного проводника. В эту группу попадают белый и красный цвета, которые почему-то ГОСТом редакции 2012 года не рекомендованы к использованию.

В приложении А к ГОСТ Р 50462 есть таблица, в которой можно найти буквенные обозначения всех цветов. Например, фазный проводник 1-фазной цепи (L) окрашивается в коричневый цвет, код цвета – BN. Буквенные коды применяют для черно-белых копий схем, на которых не используются различные цвета.

Маркировка жил для электромонтажных решений

Не зря в начале статьи прозвучала мысль о том, что цветовое обозначение проводников значительно упрощает процесс монтажа.

Если вы самостоятельно занимаетесь разводкой электрики в квартире или частном доме, подбираете провода согласно нормам, при подключении электроустойств, монтаже автоматической защиты, распределении жил в распаечных коробках не нужно перепроверять, где фаза, нуль, земля – об этом расскажет цвет изоляции.

Несколько примеров электромонтажа, когда важна маркировка:

Существуют кабели с большим количеством жил, окрашивание которых не представляется целесообразным. Пример – СИП, в котором используется иной способ определения проводников. Один из них помечен небольшой канавкой по всей длине. Рельефная жила обычно выполняет функцию нулевого проводника, остальные играют роль линейных.

Чтобы отличать жилы, их маркируют скотчем, термоусадками, буквенными обозначениями, которые наносят разноцветными маркерами. А в процессе электромонтажных работ обязательно производят прозвон – дополнительную идентификацию.

Проверка правильности подключения

К сожалению, не все электромонтажники строго соблюдают нормы и при подключении ошибаются в выборе проводника. Поэтому при подвешивании люстры, монтаже розетки или другого электроустановочного устройства лучше дополнительно проверить, соответствует ли изоляция каждой жилы ее назначению.

Для идентификации монтажники применяют два способа: первый – проверка индикаторной отверткой, второй – использование тестера или мультиметра. Отверткой обычно определяют фазу, а измерительными приборами – нейтраль и нуль.

Как пользоваться индикатором?

Даже такие простые устройства, как индикаторные отвертки, бывают разными. Одни из них оснащены небольшой кнопкой, другие срабатывают автоматически, при соединении металлического стержня и токоведущей жилы или контакта.

Но во все без исключения модели вмонтирован светодиод, зажигающийся под напряжением.

Отвертка – удобный инструмент для определения фазного проводника. Чтобы узнать, рабочая ли жила, металлическим стержнем отвертки необходимо аккуратно прикоснуться к оголенному проводу.

Если светодиод загорелся – жила находится под напряжением. Отсутствие сигнала говорит о том, что это земля или нуль.

Процедура проверки выполняется одной рукой, следовательно, вторая свободна. Лучше ее также задействовать – например, для фиксации проводов. Но категорически запрещается второй рукой касаться оголенных частей проводников или металлических предметов, находящихся поблизости (труб, арматуры).

Правила применения тестера

Тестер или мультиметр всегда есть в комплекте электромонтажника. Ему приходится работать с подключением жил в электроустановках внутри помещений и при сборке электрощитка. Если проводка монтировалась давно, маркировкой проводов по цвету можно пренебречь.

Даже если цвета изоляции вроде бы выдержаны, не факт, что они подключены по всем правилам.

Перед замерами следует изучить инструкцию, которой сопровождаются все измерительные приборы.

Порядок действий примерно следующий:

  • выставляем значение, которое заведомо больше ожидаемого напряжения, например, 260 В;
  • подключаем щупы в нужные гнезда;
  • прикасаемся щупами к двум проводникам – предположительно фазе и нейтрали;
  • повторяем процедуру с другой парой проводников.

Сочетание жил фаза-ноль должно выдавать результат, близкий к 220 В. Он всегда будет выше пары фаза-земля.

В продаже есть как цифровые, современные приборы, так и устаревшие, со стрелками и шкалами значений. Пользоваться цифровыми удобнее. Перед самостоятельным монтажом электроустройств рекомендуем научиться пользоваться или индикаторной отверткой, или мультиметром – полагаться только на цвет жил не стоит.

Умение использовать мультиметр пригодится домашнему мастеру и для проверки напряжения в розетке. Подробная инструкция по использованию тестера приведена в этой статье.

Выводы и полезное видео по теме

Общепринятые стандарты цветовой маркировки:


Когда все провода одного цвета – проверка контрольной лампой:

Цветовая маркировка жил – замечательный способ идентификации провода при его монтаже. Однако в процессе работы с уже установленными кабелями не стоит полагаться только на внешний вид проводников, так как они могут быть подключены ошибочно.

Обязательно следует использовать дополнительные способы определения жил, и если нельзя поменять сами провода, то нужно промаркировать их цветным скотчем или буквенными символами.

Есть, что дополнить, или возникли вопросы по цветовой маркировке? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом определения проводников. Форма для связи находится в нижнем блоке.

Каких цветов бывают провода в кабеле: фаза, ноль, земля

В большинстве современных кабелей проводники имеют изоляцию разных цветов. Цвета эти имеют определенное значение и выбираются не просто так. Что такое цветовая маркировка проводов и как с ее помощью определить где ноль и заземление, а где — фаза, и будем говорить дальше.

Зачем это надо

В электрике принято различать провода по цветам. Это намного облегчает и ускоряет работу: вы видите набор проводов разных цветов и, по цвету, можете предположить какой для чего предназначен. Но, если разводка не заводская и делали ее не вы, перед началом работ обязательно надо проверить соответствуют ли цвета предполагаемому назначению.

Цвета проводов имеют определенное значение

Для этого берут мультиметр или тестер, проверяют на каждом проводнике наличие напряжения, его величину и полярность (это при проверке сети электропитания) или просто прозванивают куда и откуда идут провода и не меняется ли «в пути» цвет. Так что знание цветовой маркировки проводов — один из необходимых навыков домашнего мастера.

Цветовая маркировка провода заземления

По последним правилам проводка в доме или квартире должна иметь заземление. Последние годы вся бытовая и строительная техника выпускается с заземляющим проводом. Причем заводская гарантия сохраняется только при условии подачи электропитания с работающим заземлением.

Чтобы не путаться для провода заземления принято использовать желто-зеленую окраску. Жесткий одножильный провод имеет зеленый основной цвет с желтой полосой, а мягкий многожильный — основное поле желтого цвета с зеленой продольной полосой. Изредка могут встречаться экземпляры с горизонтальными полосками или просто зеленые, но это — нестандарт.

Цвет провода заземления — одножильного и многожильного

Иногда в кабеле есть только ярко-зеленый или желтый провод. В таком случае именно их используют как «земляной». На схемах «земля» обычно рисуется зеленым цветом. На аппаратуре соответствующие контакты подписываются латинскими буквами PE или в русскоязычном варианте пишут «земля». К надписям часто добавляется графическое изображение (на рисунке ниже).

В некоторых случаях на схемах шина «земля» и подключение к ней обозначается зеленым цветом

Цвет нейтрали

Еще один проводник, который выделяют определенным цветом — нейтраль или «ноль». Для него выделен синий цвет (ярко-синий или темно-синий, изредка — голубой). На цветных схемах эта цепь также прорисовывается синим, подписывается латинской буквой N. Так же подписываются контакты, к которым необходимо подключить нейтраль.

Цвет нейтрали — синий или голубой

В кабелях с гибкими многожильными проводами, как правило, используется более светлые оттенки, а одножильные жесткие проводники имеют оболочку более темных, насыщенных тонов.

Окраска фазы

С фазными проводниками несколько сложнее. Их окрашивают в разные цвета. Исключены уже используемые — зеленый, желтый и синий — а все остальные могут присутствовать. При работе с этими проводами надо быть особенно аккуратными и внимательными, ведь именно на них присутствует напряжение.

Цветовая маркировка проводов: какого цвета фаза — возможные варианты

Итак, наиболее часто встречающаяся цветовая маркировка проводов фазы — красный, белый и черный. Еще могут быть коричневый, бирюзовый оранжевый, розовый, фиолетовый, серый.

На схемах и клеммах фазные провода подписываются латинской буквой L, в многофазных сетях рядом стоит номер фазы (L1, L2, L3). П кабелях с несколькими фазами они имеют разную окраску. Так проще при разводке.

Как определить правильно ли подключены провода

При попытке установить дополнительную розетку, подключить люстру, бытовую технику, требуется знать, какой именно провод является фазным, какой нулевым, а какой — заземляющим. При неправильном подключении техника выходит из строя, а неосторожное прикосновение к токоведущим проводам может окончиться печально.

Надо убедиться что цвета проводов — земля, фаза, ноль — совпадают с их разводкой

Проще всего ориентироваться по цветовой маркировке проводов. Но не всегда все просто. Во-первых, в старых домах проводка обычно однотонная — торчат два-три провода белого или черного цвета. В этом случае надо разбираться конкретно, после чего навешивать бирки или оставлять цветные метки. Во-вторых, даже если в кабеле проводники окрашены в разные цвета, и вы визуально можете найти нейтраль и землю, правильность своих предположений надо проверить. Случается, что при монтаже цвета перепутаны. Потому сначала перепроверяем правильность предположений, потом начинаем работы.

Для проверки понадобятся специальные инструменты или измерительные приборы:

  • индикаторная отвертка;
  • мультиметр или тестер.

Найти фазный провод можно при помощи индикаторной отвертки, для определения нуля и нейтрали нужен будет тестер или мультиметр.

Проверка с индикатором

Индикаторные отвертки бывают нескольких видов. Есть модели, на которых светодиод зажигается при прикосновении металлической частью к токоведущим частям. В других моделях для проверки требуется дополнительно нажать кнопку. В любом случае при наличии напряжения зажигается светодиод.

С индикаторной отверткой работать просто

При помощи индикаторной отвертки можно найти фазы. Металлической частью прикасаемся к оголенному проводнику (при необходимости наживаем на кнопку) и смотрим, горит ли светодиод. Горит — это фаза. Не горит — нейтраль или земля.

Работаем аккуратно, одной рукой. Второй к стенам или металлическим предметам (трубам, например) не прикасаемся. Если провода в проверяемом кабеле длинные и гибкие, можно придержать их второй рукой за изоляцию (держитесь подальше от оголенных концов).

Проверка с мультиметром или тестером

На приборе выставляем шкалу, которая немного больше предполагаемого напряжения в сети, подключаем щупы. Если позваниваем бытовую однофазную сеть 220В, ставим переключатель в положение 250 В. Одним щупом прикасаемся к оголенной части фазного провода, вторым — к предполагаемой нейтрали (синего цвета). Если при этом стрелка на приборе отклоняется (запоминаем ее положение) или на индикаторе загорается цифра, близкая к 220 В. Проделываем ту же операцию со вторым проводником — который по цвету определили как «землю». Если все верно, показания прибора должны быть ниже — меньше чем те, которые были перед этим.

Тестер дает однозначный ответ

В случае, если цветовая маркировка проводов отсутствует, придется перебирать все пары, определяя назначение проводников по показаниям. Пользуемся тем же правилом: при прозвонке пары «фаза-земля» показания ниже, чем при прозвонке пары «фаза-ноль».

Какой цвет провода что обозначает. Цветовая маркировка проводов и шин

Существует, по сути, не так много всяческих видов проводников и их подключений. В электроэнергетике различают питающие и защитные проводники. Некоторые слышали такие слова как «нулевой» и «фазный» провод. Однако тут и возникают вопросы. Как определить ноль и фазу в реальной сети?

Какие существуют проводники в розетке?

Можно разобраться с вопросом «что такое фаза и ноль», не углубляясь в дебри выяснения строения, преимуществ и негативных моментов в трехфазных или пятифазных цепях. Все разобрать можно фактически на пальцах, раскрыв самую обычную домашнюю розетку, которая поставлена в квартиру или частный дом лет десять — пятнадцать назад. Как видно, эта розетка подключается к двум проводкам. Как определить ноль и фазу?

Как работают провода в розетке и зачем они нужны?

Как видно, есть определенные различия между рабочими и нулевыми. Какое обозначение фазы и нуля? Голубоватая или синяя окраска — это цвет провода фаза, ноль же обозначается любыми другими цветами, за исключением, естественно, голубых цветов. Он может быть желтым, зеленым, черным и в полоску. По ток не идет. Если взяться за него и не касаться рабочего, то ничего не случится — на нем нет разницы потенциалов (в сущности, сеть не идеальна, и небольшое напряжение все-таки может быть, но измеряться оно будет в лучшем случае в милливольтах). А вот с фазным проводником так не пройдет. Прикосновение к нему может повлечь за собой электрический удар, даже со смертельным исходом. Этот провод всегда находится под напряжением, к нему идет ток от генераторов и трансформаторов и станций. Необходимо всегда помнить о том, что касаться рабочего проводника ни в коем случае нельзя, так как напряжение даже в сотню вольт может быть смертельным. А в розетке составляет двести двадцать.

Как определить ноль и фазу в таком случае? В розетке, разработанной с учетом европейских стандартов, находится сразу три проводника. Первый — фазный, который находится под напряжением и окрашен в самые разные цвета (за исключением голубых оттенков). Второй — ноль, который абсолютно безопасен для прикосновения и окрашен в А вот третий провод называют нулевым защитным. Он обычно окрашен в желтые или зеленые цвета. Раположен он в розетках слева, в выключателях — снизу. Фазный провод находится справа и сверху соответственно. Учитывая такие окраски и особенности, легко определить, где фаза, а где ноль, а где защитный нулевой провод. Но для чего он?

Зачем нужен защитный проводник в евророзетках?

Если фазный предназначен для подвода тока к розетке, нулевой — для отведения к источнику, то зачем европейские стандарты регламентируют еще один провод? Если оборудование, которое подключено, работает исправно, и вся проводка находится в работоспособном состоянии, то защитный нулевой не будет принимать участие, он бездействует. Но если вдруг где-то произойдет или же перенапряжение, или замыкание на какие-то части приборов, то ток попадает в места, находящиеся обычно без его влияние, то есть не соединенные ни с фазой, ни с нулем. Человек просто сможет ощутить электрический удар на себе. В самой худшей ситуации можно даже погибнуть от этого, так как сердечная мышца может остановиться. Именно тут и нужен защитный нулевой провод. Он «забирает» ток короткого замыкания и направляет его в землю или к источнику. Такие тонкости зависят от конструкции проводки и характеристик помещения. Поэтому можно спокойно прикасаться к оборудованию — не будет никакого электрического удара. Все дело в том, что ток всегда протекает по пути наименьшего сопротивления. У тела человека величина этого параметра составляет более одного килоОма. У защитного проводника сопротивление не превышает нескольких десятых долей одного Ома.

Определение назначения проводников

Как определить ноль и фазу? Любой человек так или иначе сталкивался с этими понятиями. Особенно, когда необходимо починить розетку или заняться монтажом проводки. Поэтому необходимо точно понимать, где какой проводник. Но как определить ноль и фазу? Необходимо помнить, что все манипуляции подобного рода с электричеством опасны. Поэтому в случае неуверенности в своих действиях лучше обратитесь к специалисту. Если уже и подходить к розетке и проводам в ней, то необходимо для начала полностью обесточить всю квартиру. Как минимум, это может сохранить здоровье и жизнь. Как уже говорилось ранее, обычно обозначение фазы и нуля делают с помощью окраски. При правильной маркировке отличить их не составит никакого труда. Черный (либо коричневый) — цвет провода фаза, ноль обычно имеет голубоватый или синеватый оттенок. Если же установлена розетка европейского стандарта, то третий (защитный нулевой) выполнен зеленым или желтым цветом. Что делать, если проводка одноцветная? Как правило, в таком случае на концах проводов обычно находятся специальные изоляционные трубочки, имеющие необходимую цветовую маркировку. Их называют «кембрики».

Определение проводников с помощью специальной отвертки

Как определить ноль и фазу? Для этого удобнее всего купить специальную индикаторную отвертку. Рукоятка такого прибора изготавливается из полупрозрачного или прозрачного пластика. Внутри встроен диод — светящаяся лампочка. Верхняя часть у такой отвертки металлическая. Как определить ноль и фазу этим методом?

Порядок выполнения работ при измерении с помощью индикаторной отвертки:

  • обесточиваем квартиру;
  • зачищаем слегка концы проводов;
  • разводим их в стороны, для того чтобы случайно не вызвать короткое замыкание путем соприкосновения фазы и нуля;
  • включаем рубильник и подаем ток в квартиру;
  • берем отвертку за ручку, которая имеет диэлектрическое покрытие;
  • кладем палец (большой или указательный) на контакт, который расположен на тыльной части розетки;
  • прикасаемся рабочим концом индикатора к одному оголенному проводнику;
  • внимательно наблюдаем за реакцией отвертки;
  • если диод загорелся, то можно с уверенностью констатировать, что ;
  • методом исключения понимаем, что оставшийся проводник — это ноль.

Индикаторная отвертка реагирует на наличие напряжения. Естественно, что в нулевом проводе его нет. Однако имеется существенный недостаток такого метода. С помощью индикаторной отвертки нельзя понять, как определить: фаза, ноль, земля — где что в случае с европейской розеткой.

Метод определения фазы и нуля с помощью вольтметра

Если провода не окрашены в соответствующие цвета, и под рукой нет индикаторной отвертки, то можно пойти другим путем. Нам необходим вольтметр (мультиметр, тестер). Необходимо выставить его на необходимый диапазон — свыше двух сотен вольт переменного тока. Как тестером определить фазу? Берем один проводник, который отходит от прибора (обозначенный V). Прикрепляем его на предварительно обесточенный проводник (любой). Затем подаем ток (включаем рубильник). И просто фиксируем, что показывает дисплей прибора. После всего вышеуказанного снова выключаем питание и перебрасываем зажим тестера уже на другой проводник. Если на дисплее ничего нет, то это означает, что перед нами находится либо ноль, либо заземляющий защитный нулевой провод. Однако можно использовать и другой метод, который отвечает на вопрос: «Как определить ноль и фазу, а также заземление». Для этого снова обесточиваем квартиру, фиксируем зажим V на одном их проводов. Второй также бросаем на любой из трех проводников. Включается напряжение. Если стрелка не двигается, то вы выбрали нулевой и защитный. Соответственно, напряжение снова необходимо выключить и поменять положение клемы V (закинуть ее на другой неиспользуемый ранее проводник). Снова включаем ток и делаем соответствующие замеры. Затем проводим ту же самую операцию, но снова меняем проводник. Теперь необходимо сверить результаты. Если первая цифра оказалась больше, то значит что мы измеряли напряжением между фазным проводником (на котором висела клема V) и нулевым. Соответственно, второй провод будет является защитным заземляющим. Этот метод основан на измерении разности потенциалов.

Экзотические способы определения фазы и нуля в проводке

Существуют и «народные методы», которые не подразумевают наличие каких-либо специальных приспособлений. Использовать их можно разве что в самых крайних случаях, так как они сопряжены с повышенной опасностью для здоровья и жизни. Например, метод картошки. Для этого на предварительно обесточенные проводники надевают свежесрезанный кусок картошки. Необходимо не допустить прикосновение проводов друг к другу, чтобы не было короткого замыкания между ними. Затем буквально на пару секунд подают напряжение и смотрят на картошку. Если один участок возле провода посинел, значит к нему подведена фаза.

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

При проведении электромонтажных работ, очень часто поднимается вопрос о цветовой маркировки проводов.

Это раньше, так сказать в «застойное» время, применялись провода только белого цвета, реже черного.

Поэтому определить в электрической сборке фазу или ноль, занимало достаточно много времени. Приходилось прибегать к помощи и .

Чтобы этого избежать, нужно приводить цветовую маркировку проводов и шин к единому стандарту.

И как всегда обратимся к нормативным документам, а именно к , Глава 1, п.1.1.29. и п.1.1.30. Там четко сказано, что идентификацию жил проводов и шин по цветам или цифровым обозначениям необходимо использовать, согласно ГОСТ Р 50462-92.

И что же сказано в этом ГОСТе?!

Согласно ГОСТ Р 50462-92, п.3.1.1, для идентификации проводников и шин могут быть применены следующие цвета: черный, коричневый, красный, оранжевый, желтый, зеленый, синий, голубой, серый, белый, розовый, бирюзовый.

Согласно ПУЭ, п.1.1.29:

  • нулевые рабочие проводники (N) должны иметь голубой цвет
  • cовмещенные нулевые рабочие и нулевые защитные проводники (PEN) должны иметь голубой цвет по всей длине и желто-зеленые полосы на концах
  • нулевые защитные проводники (РЕ) и проводники защитного заземления должны иметь желто-зеленый цвет

Приведу для примера несколько фотографий. Все нулевые рабочие проводники (N) подключены к шине (N) и имеют голубой цвет. Все нулевые защитные проводники (РЕ) подключены к шину (РЕ) и имеют желто-зеленый цвет.

А все остальные цвета, кроме голубого (синего) и желто-зеленого могут быть использованы в качестве фазных проводников.

На фотографиях ниже видно, что фазные проводники имеют белый цвет.

Согласно ПУЭ, п.1.1.30, при переменном трехфазном токе шины фазы А должны иметь желтый цвет, фазы В — зеленый цвет, фазы С — красный цвет. Запоминается легко и просто в виде сокращения «ЖЗК», т.е. желтый, зеленый, красный.

Для наглядности приведу несколько примеров.

Два измерительных трансформатора НОМ-10 (кВ).

Отходящий фидер распределительной подстанции напряжением 500 (В).

Как видите, на приведенных примерах цветовая маркировка шин при переменном трехфазном токе полностью соблюдается.

Кстати, не обязательно, чтобы шины были полностью выкрашены в тот или иной цвет. Вполне достаточно делать цветовую маркировку (в виде краски, наклеек, термоусадочных трубок, бирок и т.п.) в местах присоединения шин к коммутационным аппаратам.

Согласно ПУЭ, п.1.1.30, при переменном однофазном токе шина фазы В, присоединенная к концу обмотки источника питания, должна иметь красный цвет, а шина фазы А, присоединенная к началу обмотки источника питания, должна иметь желтый цвет.

К сожалению, наглядных примеров таких электроустановок у меня нет. Может у кого имеются фотографии, то буду очень благодарен, если Вы поделитесь.

Кстати, если шины однофазного тока являются ответвлением от системы трехфазного тока, то они обозначаются, согласно требований цветовой маркировки трехфазной системы.

Согласно ПУЭ, п.1.1.30, при постоянном токе положительная шина («плюс») должна иметь красный цвет, отрицательная шина («минус») — синий цвет и нулевая рабочая («М») — голубой цвет.

В качестве примера приведу щит постоянного тока (ЩПТ) =220 (В).

А это выводы непосредственно с аккумуляторной батареи.

Кстати, со свинцовой-кислотных батарей СК-5 мы плавно переходим на необслуживаемые батареи Varta.

Дополнение

С 01.01.2011 отменен, указанный в начале статьи ГОСТ Р 50462-92. Вместо него вступил в силу ГОСТ Р 50462-2009, в котором некоторые пункты противоречат предыдущему ГОСТу. Например, в п.5.2.3 говорится, что для фазных проводников предпочтительны следующие цвета:

  • серый
  • коричневый
  • черный

Для наглядности выкладываю фотографию распределительного щитка одного из банков, на котором мы производили электромонтаж.

По моему мнению, ранее принятая маркировка «ЖЗК» является более наглядной.

В однофазной сети для фазного проводника предпочтительным цветом является коричневый. Соответственно, что если однофазная сеть является ответвлением от трехфазной, то цвет фазного проводника должен соответствовать цвету фазного проводника трехфазной сети.

Также был введен запрет на желтый и зеленый цвета, применяемые по отдельности (п.5.2.1). Они должны быть использованы только в комбинации желто-зеленого цвета для защитных проводников РЕ. В связи с этим и была изменена маркировка трехфазной сети «ЖЗК», т.к. желтый и зеленый цвета применялись в ней по отдельности.

Цифровая маркировка цепей постоянного тока тоже была изменена (п.5.2.4):

  • коричневый цвет — положительный полюс (+)
  • серый цвет — отрицательный полюс (-)
  • синий цвет — средний проводник (М)

Внимание!!! Хочу Вас предупредить, что не нужно сейчас бежать и изменять существующую маркировку. Ведь когда вводились объекты, действовал еще старый ГОСТ Р 50462-92. А вот при вводе в эксплуатацию уже новых электроустановок ГОСТом 50462-2009 пренебрегать не следует.

Если по каким то причинам нет возможности выполнить маркировку проводов и шин по вышеперечисленным требованиям, то можно использовать любые цвета. Но необходимо на концы жил намотать изоленту, наклейки, одеть кембрики или термоусадочные трубки соответствующего цвета, например, вот так:

И уже по традиции, смотрите видео по материалам данной статьи:

P.S. Уважаемые коллеги, я прошу Вас при выполнении электромонтажных работ соблюдать требования по цветовой маркировке проводов и шин. Давайте уважать друг друга.

Тот кто хоть раз имел дело с проводами и электрикой обратил внимание, что проводники всегда имеют различный цвет изоляции. Сделано это не просто так. Цвета проводов в электрике призваны сделать проще распознавание фазы, нулевого провода и заземления. Все они имеют определенную окраску и при работе легко различаются. О том, каков цвет проводов фаза, ноль, земля и пойдет речь дальше.

Как окрашиваются провода фазы


При работе с проводкой наибольшую опасность представляют фазные провода. Прикосновение к фазе, при определенных обстоятельствах, может стать летальным, потому, наверное, для них выбраны яркие цвета. Вообще, цвета проводов в электрике позволяют быстрее определить которые из пучка проводов наиболее опасны и работать с ними очень аккуратно.

Чаще всего фазные проводники бывают красного или черного цвета, но встречается и другая окраска: коричневый, сиреневый, оранжевый, розовый, фиолетовый, белый, серый. Вот во все эти цвета может быть окрашены фазы. С ними проще будет разобраться, если исключить нулевой провод и землю.

На схемах фазные провода обозначаются латинской (английской) буквой L. При наличии нескольких фаз, к букве добавляют численное обозначение: L1, L2, L3 для трехфазной сети 380 В. В другой версии первая фаза обозначается буквой A, вторая — B, третья — C.

Цвет провода заземления

По современным стандартам, проводник заземления имеет желто-зеленый цвет.
Выглядит это обычно как желтая изоляция с одной или двумя продольными ярко-зелеными полосами. Но встречаются также окраска из поперечных желто-зеленых полос.

В некоторых случаях, в кабеле могут быть только желтые или ярко-зеленые проводники. В таком случае «земля» имеет именно такой цвет. Такими же цветами она отображается на схемах — чаще ярко-зеленым, но может быть и желтым. Подписывается на схемах или на аппаратуре «земля» латинскими (английскими) буквами PE
. Так же маркируются и контакты, к которым «земляной» провод надо подключать.

Иногда профессионалы называют заземляющий провод «нулевой защитный», но не путайте. Это именно земляной, а защитный он потому, что снижает риск поражения током.

Какого цвета нулевой провод

Ноль или нейтраль имеет синий или голубой цвет, иногда — синий с белой полосой. Другие цвета в электрике для обозначения нуля не используются. Таким он будет в любом кабеле: трехжильном, пятижильном или с большим количеством проводников.

Синим цветом обычно рисуют «ноль» на схемах, а подписывают латинской буквой N. Специалисты называют его рабочим нулем, так как он, в отличие от заземления, участвует в образовании цепи электропитания. При прочтении схемы его часто определяют как «минус», в то время как фаза считается «плюсом».

Как проверить правильность маркировки и расключения

Цвета проводов в электрике призваны ускорить идентификацию проводников, но полагаться только на цвета опасно — их могли подключить неправильно. Потому, перед началом работ, стоит удостовериться в том, правильно ли вы определили их принадлежность.

Берем мультиметр и/или индикаторную отвертку. С отверткой работать просто: при прикосновении к фазе загорается светодиод, вмонтированный в корпус. Так что определить фазные проводники будет легко. Если кабель двухжильный, проблем нет — второй проводник это ноль. Но если провод трехжильный, понадобиться мультиметр или тестер — с их помощью определим какой из оставшихся двух фазный, какой — нулевой.

На приборе переключатель выставляем так, чтобы выбранной была шакала более 220 В. Затем берем два щупа, держим их за пластиковые ручки, аккуратно дотрагиваемся металлическим стержнем одного щупа к найденному фазному проводу, вторым — к предполагаемому нулю. На экране должно высветиться 220 В или текущее напряжение. По факту оно может быть значительно ниже — это наши реалии.

Если высветилось 220 В или чуть больше — это ноль, а другой провод — предположительно «земля». Если значение меньше, продолжаем проверку. Одним щупом снова прикасаемся к фазе, вторым — к предполагаемому заземлению. Если показания прибора ниже чем при первом измерении, перед вами «земля» и она должна быть зеленого цвета. Если показания оказались выше, значит где-то напутали при и перед вами «ноль». В такой ситуации есть два варианта: искать где именно неправильно подключили провода (предпочтительнее) или просто двигаться дальше, запомнив или отметив существующее положение.

Итак, запомните, что при прозвонке пары «фаза-ноль» показания мультиметра всегда выше, чем при прозвонке пары «фаза-земля».

И, в завершение, позвольте совет: при прокладке проводки и соединении проводов соединяйте всегда проводники одного цвета, не путайте их. Это может привести к плачевным результатам — в лучшем случае к выходу аппаратуры из строя, но могут быть травмы и пожары.

Практичность и безопасность монтажа электропроводки во многом достигается за счет цветовой маркировки проводов
. Каждая жила покрывается защитной оболочкой определенного цвета. При монтаже в электрощите, распределительных коробках, или при подключении розеток и выключателей такая цветовая систематизация позволяет безошибочно и быстро выполнить все работы.

Для более четкого понимания маркировки, перейдем от общих фраз к более детальному анализу, рассмотрим конкретные примеры и выделим главные правила безопасной работы с электропроводкой.

Первым делом, стоит ознакомится с видами электрических цепей:

  • Цепь переменного тока однофазной сети 220 В применяется в домах и квартирах.
  • Трехфазная сеть 380 В переменного тока применяется как на производстве, так и в частных домах (при необходимости).
  • Сеть постоянного тока находит свое применение в промышленности, транспорте, высоковольтных электрических подстанциях.

В каждом из рассмотренных случаев используется единый стандарт соединения электрических проводов.

Маркировка проводов в однофазной сети 220 В

Рассматривая данный тип сети, можно выделить две вариации. Первая состоит из двух жил, вторая – из трех. Как можно понять, основное отличие между ними – в наличии или отсутствии проводника заземления (PE).

Двухпроводная проводка
относится к устаревшему типу и встречается все реже. Такое проектирование разрешено ГОСТом и подходит для помещений с невысокими требованиями к безопасности. Используемая в старых домах двухжильная проводка TN-C имела совмещенную нейтраль и землю (PEN). С учетом современных требований, такая схема считается не безопасной.

Как и какими цветами маркируются жилы в двухпроводной однофазной проводке? Рассмотрим несколько вариантов:

(L)
(N)
Если использовать цельный провод с коричневой и синей жилой, то первая должна идти на фазу, а вторая на нулевой рабочий проводник. Данный порядок не стоит изменять. Единственное исключение — в качестве маркировки фазного проводника можно использовать черный, красный, серый, фиолетовый, розовый, белый, оранжевый, бирюзовый цвет. Для подстраховки, соответствующие жилы с обоих концов рекомендуется пометить бирками с подписью L (фаза) и N (ноль).
(L)
(PEN)
Данная схема в качестве фазного проводника (L) имеет традиционную коричневую жилу. Как и в предыдущем случае, коричневое покрытие может быть заменено на один из допустимых цветов. Трехцветный (желтый, зеленый, синий) проводник (PEN) используется одновременно как нулевой рабочий (N) и нулевой защитный (PE). Несмотря на объединение N и PE, фактически, у конечного потребителя заземление отсутствует.

Начиная с седьмой редакции ПУЭ (правила устройства электроустановок), электропроводка в квартире или доме должна осуществляться трехжильным кабелем с медными жилами (трехпроводная схема
).

Рассмотрим, какие проводники входят в трехпроводную схему, и как они маркируются:

Фаза L
(от английского Live
— живой) — рабочий провод под высоким напряжением.
Основной цвет жилы – коричневый (возможно, коричневая полоса на белом фоне)
Допустимый цвет жилы: черный, красный, серый, фиолетовый, розовый, белый, оранжевый, бирюзовый цвет.
Нейтраль (рабочий ноль) N
(от английского Neutral
) – вспомогательная жила без напряжения, по которой в рабочем состоянии протекает нагрузочный ток.
Основной цвет жилы – синий, голубой (возможно, голубая полоса на белом фоне)
Земля (защитный ноль)
PE
(от английского Protective Earth
-защитная земля) – отдельная ненагруженная жила для заземления. При нормальных условиях по защитному нулю ток не протекает.
Основной цвет жилы – желтые и зеленые полосы (возможно, зеленая полоса на желтом фоне).

Маркировка проводов в трехфазной сети 380 В

Как и в однофазном варианте, трехфазная сеть может быть с заземлением или без него. Исходя из этого, выделяют трехфазную сеть с четырьмя и пятью жилами. Четырех проводная система 380 В включает три фазных (L) и одну жилу рабочего зануления (N). В пяти проводной системе добавляется жила защитного зануления (PE).

Цветовая маркировка жил в трехфазной сети следующая:

  • Фаза A (L1) – провод в коричневой оболочке.
  • Фаза B (L2) – провод в черной оболочке.
  • Фаза C (L3) – провод в серой оболочке.
  • Рабочее зануление (N) – провод в синей (голубой) оболочке.
  • Защитное зануление (PE) – провод в желто-зеленой оболочке.

Фазные жилы в определенных случаях могут иметь другие цвета. Во избежание путаницы, применение синего и желто-зеленого цвета для их маркировки недопустимо.

Маркировка проводов в сети постоянного тока

Сеть постоянного тока включает в себя только положительную (+) и отрицательную (-) шину. По нормативам провода (шины) с положительным зарядом окрашиваются в красный цвет. Провода (шины) с отрицательным зарядом окрашиваются в синий цвет. Средний проводник, если таковой имеется, имеет голубой цвет.

В случае, когда двухпроводная электрическая сеть постоянного тока выполнена путем ответвления от трехпроводной сети, положительный провод двухпроводной сети маркируется так же, как и положительная жила трехпроводной цепи, с которой он соединен.

Как определить L, N, PE

Если возникают сомнения по поводу цветовой маркировки проводов в конкретной цепи, необходимо обезопасить электромонтажные работы и провести предварительное определением фазы, нейтрали и земли. Следующие приемы помогут безошибочно проверить
L
,
N
и
PE
:

  • Самый простой вариант, когда имеется двухпроводная однофазная сеть. В этом случае потребуется лишь индикаторная отвертка. При контакте с фазной жилой лампочка в индикаторе должна загореться. Определив L, в цепи остается лишь провод рабочего зануления, при контакте с которым индикатор в отвертке не светится.
  • Более сложная ситуация – когда в кабеле проводки три жилы. Если фазу, как и в предыдущем случае, можно определить с помощью индикаторной отвертки, то для поиска рабочего и защитного зануления потребуется мультиметр (тестер). После того, как фазная жила (L) найдена, на ACV (может обозначаться V~ измерение переменного напряжения) на отметке выше 220 В, фазный щуп красного цвета фиксируется на фазной жиле, а черным щупом определяется ноль и земля. При контакте с рабочим занулением (N) прибор будет отображать напряжение в пределах 220 Вольт. При касании щупом защитного зануления (PE) – показания будут ниже 220 Вольт.

Если приобретенный кабель имеет жилы не соответствующего нормам цвета, или проводка уже проложена и имеет неверную маркировку, нужно провести дополнительную идентификацию.

Дополнительная маркировка проводов

В процессе электромонтажа концы жил помечаются при помощи термоусадочных трубок или цветной изоляционной ленты. Дополнительно, на провод или прикрепленную к проводу бирку можно нанести буквенное обозначение жил:

  • L – фаза.
  • N – нейтраль (рабочее зануление).
  • PE – земля (защитное зануление).

Цветовая маркировка электрических проводов в разных странах

Страна (регион)
Цвет наружной изоляции проводника или жилы
Фазный проводник L1
Фазный проводник L2
Фазный проводник L3
Рабочее зануление N (нейтраль)
Защитное зануление PE (земля)
США
. Общепринятые цвета (120/208/240 В).
черныйкрасныйсинийсеребристыйзеленый
США
. Альтернативная цветовая маркировка (277/480 В).
коричневыйоранжевый или фиолетовыйжелтыйсерыйзеленый
Канада
. Обязательные цвета.
красныйчерныйсинийбелыйзеленый или без изоляции
Канада
. Трехфазные установки с изолированной нейтралью.
оранжевыйкоричневыйжелтыйбелыйзеленый
Индия и Пакистан. Великобритания
до 31 марта 2004 года. Гонконг
до апреля 2009 года. Малайзия, ЮАР и Сингапур
до февраля 2011 года.
красныйжелтый или белый (ЮАР)синийчерныйжелто-зеленый или зеленый
Европа и все страны, пользующиеся стандартом CENELEC
(IEC 60446) с апреля 2004 года. Великобритания
с 31 марта 2004 года. Гонконг
с июля 2007 года. Сингапур
с марта 2009 года.
коричневыйчерныйсерыйсинийжелто-зеленый
Европа
. Обозначение шин.
желтыйкоричневыйкрасный
СССР
. Обозначение шин.
желтыйзеленыйкрасныйсинийжелто-зеленый, встречается черный
Россия, Украина, Беларусь
. Обозначение шин.
желтыйзеленыйкрасныйголубойжелто-зеленый

Ознакомившись с основой цветовой маркировкой проводов, при проектировании проводки и иных электромонтажных работах не должно возникнуть трудностей. Четко соблюдайте все унифицированные правила. А в случаях малейшего сомнения, обязательно проверяйте кабель при помощи индикаторной отвертки и мультиметра.

Для правильного соединения проводов используют их цветную маркировку, позволяющую быстро обнаружить нужный проводник в пучке. Но не все знают,
как обозначается фаза и ноль в электрике, поэтому часто путают цвета, что затрудняет будущий ремонт электропроводки. В этой статье мы разберем принципы цветовой маркировки проводов и расскажем, как правильно разводить фазу, землю и ноль.

Провода нужно соединять друг с другом только в строгом соответствии. Если перепутать, то произойдет короткое замыкание, которое может привести к выходу оборудования или самого кабеля из строя, а в некоторых случаях — даже к возгоранию.

Стандартная расцветка проводов

Маркировка позволяет правильно соединять провода, быстро искать нужные контакты и безопасно работать с кабелями любых типов и форм. Маркировка, согласно ПУЭ, является стандартной
, поэтому зная принципы соединения, вы сможете работать в любой стране мира.

Отметим, что старые кабеля, выпускавшиеся при СССР, имели один цвет проводника (обычно черный, синий или белый). Чтобы обнаружить нужный контакт, их приходилось прозванивать или подавать фазу поочередно на каждый провод, что приводило к необоснованным тратам времени и частым ошибкам (многие помнят свежепостроенные хрущевки, в которых при нажатии на звонок у входной двери включался свет в ванной, а при нажатии на выключатель в спальне пропадало напряжение в розетке в прихожей).

Различные
значительно упростили процесс создания проводки, а через несколько лет стали стандартом
в России, ЕС, США и других странах мира.

Земля, ноль и фаза

Всего существует три вида проводов: заземление, ноль и фаза. Расцветка наносится на весь провод, поэтому даже если вы перережете кабель посередине, то все равно сможете понять, где какой контакт.
Заземление обозначается следующим образом:

  1. Желто-зеленый цвет (в абсолютном большинстве случаев).
  2. Зеленый или желтый.

В схеме электропроводки заземление обозначается аббревиатурой РЕ.

Обратите внимание:
на чертежах и на сленге электриков заземление часто называется нулевой защитой. Не перепутайте ее с нулем, иначе произойдет замыкание.

Ноль в кабеле обозначается сине-белым или просто синим цветом, обозначение в схеме буквой N. Иногда его называют нейтралью или нулевым контактом, поэтому будьте внимательны и не путайте эти понятия.

Теперь разберем,
применяется чаще всего. Здесь вам придется нелегко, поскольку вариантов может быть масса. Мы советуем идти обратным путем — сначала обнаружить желто-зеленую землю, потом синий ноль, а оставшиеся в кабеле провода будут фазой. Соединять их необходимо согласно цветов, чтобы не возникало путаницы. Чаще всего в трехжильных системах они маркируются коричневым цветом, но могут быть и иные варианты:

  • черный;
  • красный;
  • серый;
  • белый;
  • розовый.

На схематических изображениях фазу отображают буквой L. Обнаружить ее можно тестерной отверткой или мультиметром. При соединении проводов используйте специальные зажимы или спаивайте их со смещением друг относительно друга
, чтобы не произошло КЗ или окисления контактов с последующей потерей напряжения.

Классическая расцветка проводов в кабеле

Разница между нулем и землей

Некоторые начинающие электрики не знают,
и для чего он вообще нужен. Разберем этот вопрос подробнее. По нулю и фазе протекает электрический ток, поэтому касаться к ним нельзя. Земля же служит для отвода напряжения, если оно пробьет на корпус прибора. Это своеобразная защита, которая в последние годы стала обязательной — некоторые устройства не работают, если их не заземлить.

Внимание:
не игнорируйте требование к заземлению — скопившееся статическое электричество или пробой могут испортить прибор или поразить вас электрическим током.

Если вы не уверены в том, какой из проводов земля, а какой ноль, то воспользуйтесь следующими советами. Они помогут вам определиться без
цветового обозначения проводов:

  1. Замеряйте сопротивление провода — оно будет менее 4 Ом (проверьте, чтобы на нем не было напряжения, чтобы не сжечь мультиметр).
  2. Найдите фазу, при помощи вольтметра измерьте напряжение между предполагаемым нулем и землей. На земле значение будет выше, чем на нуле.
  3. Если измерить мультиметром напряжение между землей и заземленным прибором (к примеру, батареей в многоэтажном доме), то вольтметр не определит напряжения. Если замерить напряжение между нулем и землей, то некое значение отобразится.

Все это справедливо только к трех- и более проводниковым кабелям. Если в кабеле всего два провода, то в них по умолчанию один будет землей (синий), второй фазой (черный или коричневый).

Соблюдайте правила соединения кабелей

Ищем фазу

Вы уже знаете, какой
цвет проводов фаза, ноль, земля. Рассмотрим основной вопрос — как найти фазу. Если вы собираетесь подключить розетку, то вас, по сути, этот вопрос не волнует — нет никакой разницы, на какой контакт подавать фазу или ноль. Но с выключателем дело обстоит иначе.

Внимание:
в выключателе всегда размыкается фаза, а ноль приходит на лампочку. Это необходимо для того, чтобы во время ремонта или замены лампы вас не ударило током. Фазу нужно пускать на нижний контакт патрона, ноль — на боковой.

Если в проводке два одноцветных провода, то проще всего найти фазу индикатором — при прикосновении к оголенному проводу он начинает светиться. Перед тем как прикоснуться к проводу, отключите электроэнергию, зачистите изоляцию на проводе (1 см вполне достаточно), разведите провода в разные стороны, чтобы не произошло замыкания. Затем включите электроэнергию и прикоснитесь индикатором к контакту. Большой палец руки нужно положить на верхнюю часть отвертки, там, где расположена контактная площадка. После этого светодиод на индикаторе должен засветиться. Это позволит вам найти фазу, но вот разобраться между нулем и землей устройство не поможет. Чтобы узнать,
какого цвета провод заземления в трехжильном проводе,вам нужно будет воспользоваться указанными выше способами.

Найти фазу можно индикатором

Заключение

Если вы создаете новую проводку, то обязательно соблюдайте принятую в ПУЭ
маркировку проводов в электрике — это поможет вам в последующем ремонте системы, ведь вы легко определите провода по цвету. Используйте желто-зеленый кабель для заземления, синий для нуля, коричневый/черный/белый для фазы. В кабелях с большим количеством фаз соединяйте контакты только по цветам, используя соответствующие зажимы и термоусадку. Если приходится работать со старой проводкой, где цвета не отвечают стандарту, то первым делом ищите фазу при помощи индикаторной отвертки. Контакт, который не светится, и будет искомым нулем.

При прокладке проводов соблюдайте правила — они должны пролегать только горизонтально и вертикально. Не нужно пытаться сэкономить, таская их по наклонной через всю стену или потолок — в будущем вы просто не сможете найти их или во время ремонта зацепите/перебьете их, что приведет к серьезным последствиям. Раз и навсегда запомните
цвета проводов в трехжильном кабеле —это поможет вам в жизни, ведь любой электрик сталкивается с ремонтом розеток, выключателей, электрощитков, прокладкой новых линий и пр.

Рекомендуем также

Что такое Фаза и Ноль. Фаза, ноль и земля – что это такое

Источником электрической энергии
служит генератор, который состоит их трех обмоток или полюсов, соединенных в трех лучевую звезду, центральная точка соединяется с землей или заземляется. Посмотрите как это происходит.

Как видно по схеме к трем концам звезды
подключаются провода, отводящие фазы, а центральная точка будет нулем, как Я говорил она заземляется, потому что электропитание величиной 380 Вольт- это система с глухозаземленной нейтралью. Без заземления нейтрали трансформатора на ТП- не будет работать нормально электроснабжение.

Три фазы, ноль
и еще дополнительно заземляющий проводник (также соединенный с землей)- итого пять жил, которые приходят с подстанции в электрощит дома, но до каждой квартиры с этажного щитка приходит только одна фаза, ноль и земля. Но в передаче электрического тока участвуют только фаза и ноль. А по пятому заземляющему проводнику электрический ток не течет, у него другая защитная функция, которая заключается в то что, при попадании фазы на металлический корпус бытовой техники (соединенной с заземляющим проводником) происходит и отключение автомата или УЗО- при утечке тока.

Электрическая энергия
передается по фазе, а на нулевом проводнике напряжение равно нулю, но не всегда при подключенным к нему электроприборах- читайте дальше.

Напряжение между нулем (землей) и любой фазой равно
220 В, а между разноименными фазами 380 Вольт- а это напряжение используются там, где большие нагрузки или большая потребляемая мощность. А это к квартире не относится! К тому же 380 Вольт кратно опаснее для человека.

В водном электрощите
дома ноль и земля соединены вместе и дополнительно с заземлителем, который закопан в землю. А далее идут раздельно по этажным щиткам дома, то есть изолированны друг от друга, к тому же заземляющий проводник соединяется на прямую с корпусом электрощита, а ноль садится на изолированную колодку!

Электрический переменный ток течет
между двумя проводами фазным и нулевым, при чем при его частоте в нашей электросети 50 Гц он меняет свое направление (от нуля или к нулю) 50 раз в секунду.

Но он не просто течет а через электро потребитель, подключенный в розетку или к электрическому кабелю на прямую!

Третий проводник является защитным
он не участвует в передаче электроэнергии, а служит для одной цели- это защиты нас от поражения электрическим током при аварийных ситуациях, когда фаза появляется на металлическом корпусе электроприборов! Поэтому он через заземляющие контакты розетки соединяется с металлическими корпусами стиральной машины, холодильника, микроволновой печи и т. д. А кроме того заземление значительно снижает вредное электромагнитное излучение от бытовой техники.

При прикосновении бьется
током только фаза. Если Вы недостаточно хорошо изолированны от земли, т. е. не в резиновых тапочках или не стоите на деревянном стуле при этом второй рукой не касаясь пола или стены, то при при прикосновении к оголенному фазному проводу Вы ощутите протекание через Вас электрического тока от фазы на землю.

Внимание не редки случаи гибели людей в быту в результате продолжительном воздействия или прохождении электротока через сердце человека. Будьте осторожны!

В некоторых редких случаях может биться и ноль
, когда к нему подключен электроприбор с импульсным блоком питания- компьютер, бытовая техника и т.п. Но, как правило, там напряжение не велико и безопасно, Вас только пощекочет!

Заземляющий проводник всегда можно брать и не бояться, кроме случаев его обрыва в электропроводке или в щите!

Как найти фазу, ноль и землю?

Для определения фазного провода необходимо приобрести недорогую индикаторную отвертку, которая при прикосновении к защищенному фазному проводу светится. Рекомендую прочитать нашу . Обычно фазный провод- красного, коричневого, белого или черного цветов.

Ноль подключается
в светильнике или розетке вместе с фазой на питающий контакт, и при прикосновении индикатором- он не светится. Используется под него синий провод или с синей полоской!

Защитный проводник
подключается на заземляющие контакты розетки, металлический корпус светильника или электроприбора. По общепринятым нормам жила заземления выполняется проводом желто-зеленного цвета или с полосой этих цветов.

Похожие материалы.

Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления. Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой. В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.


В чем отличие фазного проводника от нулевого?

Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих. Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.

Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.

Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.

Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.

В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.

В зависимости от назначения электропередающей линии она может иметь:

  • Глухозаземленный нейтральный кабель.
  • Изолированный нулевой провод.
  • Эффективно-заземленный ноль.

Первый тип линий все чаще используется при обустройстве современных жилых зданий.

Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.

Наглядно про разницу между фазой и нолем на видео:

Для чего нужен заземляющий кабель?

Заземление предусмотрено во всех современных электрических бытовых устройствах. Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.

На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.

Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Заключение

В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.

Источниками электрических систем, устанавливаемых в домах и квартирах, выступают станции и генераторы, состоящие из трех обмоток и фазных проводников. Чтобы в процессе эксплуатации жилища не возникало проблем с использованием и обслуживанием электросети, нужно знать, что такое фаза, ноль и земля в электропроводке квартиры .

На рисунке ниже представлена схема расщепления трехфазной сети на однофазные.

Помимо 3-х фаз и 1 ноля кабель имеет еще и заземление , потому от подстанции к объектам подводится провод с пятью жилами. От общедомовых щитков на распределительные приборы отдельных квартир прокладывают однофазный ввод, имеющий фазу, ноль и заземление. За счет этого в сети мы имеем напряжение 220 В, а не изначальные 380 В. В процессе передачи электроэнергии участвует только два проводника – фаза и ноль, заземление имеет другую функцию, заключающуюся в обеспечении безопасности эксплуатации электросети в случае возникновения аварийных ситуаций – появления пробоев в изоляции или токов утечки.

В трехфазной цепи уровень напряжения между двумя любыми фазами составляет 380 В, между фазой и нолем – 220 В.

В общедомовом электрическом щите ноль и земля соединяются и подключаются к установленному контуру заземления. К распределительным щитам квартир эти проводники прокладываются отдельно. В этажных распределительных приборах ноль подключают к специальному контакту, а заземление соединяется с корпусом электрощитка.

В бытовых электросетях используется электрический переменный ток частотой 50 Гц. Он протекает между нулевым и фазным проводником, меняя свое направление 50 раз в секунду.

Ноль и фаза соединяются с точками потребления квартиры. Проводник , но через специальные контакты.

При работе с электрической сетью обязательно нужно помнить, что при соприкосновении фазы с телом человека, через организм пройдет электрический заряд, способный причинить существенный вред здоровью. Именно поэтому установка розеток и выключателей может производиться только при обесточивании линии электроснабжения в квартире.

Если к нулю подключено электрическое устройство с импульсным блоком питания, через нулевой проводник также может проходить электроток, хотя из-за низкого уровня напряжения он редко представляет опасность для человека.

Маркировка и определение фазы, ноля и земли

В электрических кабелях фазный, нулевой и заземлительный проводники имеют изоляцию разных цветов. Маркировка проводов требуется для обеспечения безопасности выполнения электромонтажных работ – прокладки электрических кабелей и установки точек потребления. Маркируются проводники согласно современным требованиям ПУЭ и ГОСТа.

Изоляция заземлительного проводника должна быть окрашена в желто-зеленый цвет. Некоторые производители выпускают кабели, в которых земля имеет чисто желтую или чисто зеленую окраску. Иногда изоляция заземления маркируется желто-зелеными полосами. На электрических схемах заземление обозначается латинскими буквами PE.

Нулевой проводник, именуемый также нейтралью, должен иметь изоляцию синего или светло-голубого цвета. На схемах ноль принято обозначать латинской буквой N.

Сложнее всего обстоят дела с фазным проводником. Различные производители для фазы используют изоляцию черного, белого, коричневого, серого, красного, оранжевого, бирюзового, розового или фиолетового цвета. Чаще всего встречаются черные, белые и коричневые проводники. Фазы обозначаются на схемах латинской буквой L. В сетях 380 В кабели имеют также числовое значение: L1, L2, L3.

Если по маркировке сложно определить тип проводника, всегда можно воспользоваться индикаторной отверткой . С ее помощью легко найти фазу и ноль в розетке или электрическом кабеле. При использовании индикаторов обязательно нужно помнить о технике безопасности.

  • Чтобы в процессе эксплуатации жилища не возникало проблем с использованием и обслуживанием электросети, нужно знать, что такое фаза, ноль и земля в электропроводке квартиры.

    Andrey
    Май 25, 2017 в 12:07

«То, что «потрясло», не убивает». Эта фраза, автором которой является Конфуций, стала сегодня расхожим «статусом» в соцсетях, приписываемая то Ницше, то Канту, трансформировавшись в: «То, что нас не убивает, делает сильнее». Вы спросите, при чём тут древний китайский философ и проблема бытового электричества? Всё просто — если перепутать три провода, ноль, фаза, земля, то Вас или «потрясёт», или убъёт. Может быть, разберёмся, почему мы можем уцелеть?

Немного физики

Электричество — это некая «бочка», залитая «электричеством» (электронами). При открытии «крана» они мчатся по проводам со скоростью света по направлению ноль — фаза, при этом, чем «ниже уровень Земли», «ноль», тем выше «фаза». Вы тоже заметили, что слишком много кавычек? Давайте обдумаем, как несчастный электрон, снабжённый зарядом, мчится по медному проводу со скоростью света, уворачиваясь от атомов меди и преодолевая сопротивление движению. В 5-м классе, это воспринималось как Аксиома. Но мы повзрослели, и чувствуем, что тут какой-то подвох. Не пора ли разобраться, о чём наврали в школе учителя физики, заодно поняв, что же такое электричество, и почему его не надо боятся, если уверен, что оно тебя не убьёт?

Электричество — это не беготня электронов по проводам. Электроны вообще редко отлучаются от своих орбит, поскольку ленивы, но очень общительны. Поэтому электрон очень любит выйти на край орбиты, и сообщить соседу «новость — сплетню». Соседний электрон так возбуждается от этой новости, что спешит передать сплетню своему соседу по даче. А тот другому соседу. Вы не поверите, но электроны научились распространять сплетни и слухи со скоростью света. Причем в буквальном смысле слова.

В итоге мы имеем простую модель. «Возбудитель Спокойствия» шепнул одному электрону, что на краю света (в 20 000 км) распродажа, сто пар носков продают за 1 рубль. Ровно через 0,6 секунды про это узнает электрон, который ближе всего к распродаже, и будьте уверены! Через ещё секунду, в точке распродажи столпится огромное количество возбуждённых электронов, желающих приобрести носки задаром. Это

модель фазы под напряжением

. Все слухи электронов соберутся в одном месте. При этом количество электронов не имеет значения.

Допустим, автор статьи играет в бильярд. Он страстно желает попасть шаром в лузу. Условие простое — ударил один шар, второй шар должен упасть в лузу. Я поступлю просто — выставлю шары в линию так, чтобы последний точно был нацелен на лузу, после чего кием нанесу удар в шар с другой стороны цепочки. Импульс движения (вспомните физику) мгновенно пройдёт по цепочке шаров, и последний шар, не имея сопротивления, покатится и упадёт в лузу. Количество шаров не имеет значения, если мы не учитываем «трение». Более того, если мы ударим в первый шар цепочки под углом, то и последний шар откатится под таким же углом. Не верите? Возьмите в руки кий. Этот пример — лучшая аналогия

прямой передачи тока фаза ноль

для понимания природы электричества.

Что такое «земля», в данном примере? Это луза, куда упал шар, принявший на себя всё количество движения (импульс) всей цепочки. Обдумайте. Последний шар откатился, и упал, при этом вся цепочка шаров осталась неподвижной. То есть движение «заземлилось». Обратите внимание, что двигался только последний шар (электрон), все остальные как стояли в ряд, так и стоят. Кто ответит на вопрос в рамках примера фаза ноль, что это? Может быть, поймем, что тут три параметра — ноль, фаза, земля?

Движения материи нет

Движение электронов привело бы к перераспределению массы, чего не происходит. Строго говоря, по проводам движется «возбуждение», заряд, который передаётся по цепочке. Процесс практически мгновенный (скорость света) с бытовой точки зрения, и приводит к тому, что поданный на один конец проводника 1 вольт, мгновенно возникает на другом конце проводника. Этот проводник будет находиться под напряжением, всё время, пока на один конец подается 1 вольт.

В первых опытах по получению электричества, действительно «направление движения» тока было постоянным — односторонним. Это тот самый постоянный ток, разница между плюсом и минусом. Пример — обычная батарейка, в которой ток возникает только после «замыкания» плюса с минусом. При размыкании вырабатывание тока прекращается. Сюда же можно отнести пъезоэлементы, с одним отличием — сроком их службы. Химические ингредиенты батарейки со временем (даже без использования) «перегорят», и ток вырабатываться не будет. Пъезоэлемент будет работать, пока не выработает ресурс разности потенциалов, а это — огромное количество времени.

Постоянный ток во много раз опаснее переменного, поскольку человек, попавший под напряжение, становится элементом сопротивления. Будьте особо осторожны с напряжениями постоянного тока свыше 12 вольт!

Что же такое переменный ток

Для промышленных энергосистем (а бытовые сети — это всего лишь сектор энергосистемы) использование «плюса» и «минуса» невыгодно. Если мы возьмём батарейку, и попробуем соединить плюс с минусом проводом длиной в 100 метров, то ничего не произойдёт. Нить в лампочке даже «не покраснеет», не говоря о свечении. Вся энергия батарейки уйдёт на преодоление сопротивления провода. Провод немного нагреется, но лампочка не будет светиться.

Начнём с генерации электроэнергии. Она вырабатывается промышленными генераторами, которые представляют собой три катушки, каждая из которых создаёт напряжение по отношению к нулевому потенциалу (центральной точке системы, надёжно заземлённой). В итоге мы имеем три провода, на каждом из которых напряжение (фазы), провод с нулевым потенциалом и пятый провод — заземление. Вращение стержней внутри катушек создаёт напряжение на внешних обмотках, с которых и снимается напряжение. Нулевой потенциал балансирует систему и создаёт безопасность в контуре снятия напряжения. Заземление страхует систему передачи энергии от коротких замыканий и создания напряжения на конструкциях, участвующих в распределении энергии.

Измерение разницы трёх проводников даёт те самые 380 Вольт, «трёхфазную сеть», используемую в промышленных целях. Преимущество этой сети — минимизация потерь, снижение пусковых токов, значительная экономия на материале проводников, возможность отключения одной фазы без остановки подачи энергии. Проблема в том, что именно это напряжение, минимизируя потери, наиболее опасно для человека в случае поражения током. Строго говоря, напряжение можно и повысить, но при этом резко вырастут затраты на изоляцию линий, и меры по защите населения от тока. Хорошо известно, что в зоне ЛЭП высокого напряжения, во время дождя, или повышенной влажности, даже при надёжной изоляции проводов наблюдаются «Огни Святого Эльфа», микроразряды, шумы и значительные помехи для работы электроприборов. Чем выше напряжение, тем больше «электрический мусорный фон» вокруг. В целях безопасности и было принято решение, на оконечных участках распределения энергии трансформаторами снижать напряжение до 380 Вольт.

380 Вольт в 220

Итак, мы имеем в трансформаторе пять кабелей. Три фазы, ноль и землю. Измерение между двумя фазами даст нам напряжение 380 вольт. Откуда берутся 220?

Вспомним, что исходных катушек, создающих напряжение, три. 380 Вольт — это круговая делимая диаграмма напряжения, при которой одна фаза по отношению к нулевому проводу даёт именно 220 Вольт. Проще говоря, к нам в квартиру приходит один провод с фазой и один нулевой провод. Они и дают нам 220 Вольт. Можно (по согласованию с энергетиками) завести в квартиру и честные 380 Вольт, но это потребует мер безопасности. Тогда у Вас в квартире будет три фазы и ноль с землёй. В частных домах это не редкость, а вот в квартире, вряд ли Вы получите на это разрешение. Проблема в заземлении. Однофазную сеть 220 В можно обезопасить нулевым проводом, а вот для 380 В потребуется профессиональное заземление, и батареей на кухне тут не обойтись. Для того, чтобы обезопасить свою электросеть, самое правильное, организовать щиток именно так:

Надеемся, что мы Вас окончательно не запутали, поэтому давайте теперь распутаем этот клубок проводов, найдя, где фаза, где ноль и что всё же будет, если перепутать фазу и ноль с заземлением.

При вращении сердечника катушки, во внешней обмотке возникает возбуждение контура, снимаемого как электрический разряд и отправляемого в энергосистему как ток. Импульсные (вращение сердечника это подача импульсов) токи выравниваются трансформаторами, и полученный ток передаётся по проводам в точку потребления. На месте приёма трансформатор распределяет полученный трёхфазный ток потребителям, выделив каждому по одной фазе и одному нулевому проводу. В нашу квартиру входят два провода — фаза и ноль. Третий провод, который мы считаем «заземлением» чаще всего фикция, хотя в современных домах он честно заземлён в ноль.

Некоторые приборы крайне не любят изменения фазировки сети. А электрики не любят обращать на это внимание, и при ремонте меняют ноль и фазу. Если точный прибор не работает, не спешите в ремонт! Для начала отключите свой щиток на 15 минут, после чего выньте вилку прибора из розетки, переверните её и попробуйте включить этот прибор. Особенно это касается умных приборов вроде цифровых тюнеров ТВ сигналов.

В заключение

Физика электричества пока ещё темный лес даже для физиков, поэтому мы не стали вдаваться в детали, не рассчитывая на Нобелевскую премию. Нам просто хотелось помочь Вам оценить простой факт. Наши «знания» об электричестве, это помесь дремучих предрассудков, заблуждений, неверных выводов из верных предпосылок и почти всегда — трагедия, если мы решили, что фаза ноль, по отдельности безопасны.

Посмотрите на это фото. Именно так выглядит «честная розетка на 380 Вольт». Посмотрите, сравните с обычной розеткой, это поможет понять, что опасность напряжения тем больше, чем оно выше. Неправильное обращение с такой розеткой не потрясёт, а именно убъёт. Помните, «То, что потрясло — не убивает». Но электричество это то самое, что может сначала потрясти, а потом и убить. Убить, а не сделать Вас сильнее. Поэтому будьте осторожны! Три фазы, почти гарантировано, не просто потрясёт, и даже одна фаза может доставить неприятности.

Приступая к работам по электрике, купите прорезиненные перчатки, индикаторную отвёртку, найдите кусок фанеры толщиной 15 мм, на котором можно стоять в резиновых галошах, если решили полезть в розетку или выключатель. Но перед тем как приступите, осмотрите свой щиток, если не понятно, где фаза, ноль — это что, то не поленитесь — позвоните местным энергетикам.


Имейте в виду, в любой сети, пусть даже в квартире, безопасных проводов нет! Любой из них может оказаться под напряжением!

Любой человек, занимаясь электромонтажными работами у себя дома или просто решивший установить люстру, бра или подключить розетку, обязательно столкнется с вопросом – как определить фазу, ноль и заземление у проводов, в месте монтажа?

В наших статьях и инструкциях, мы часто выкладываем схемы подключения, правила монтажа и подсоединения электрооборудования к сети, а также многое другое, где для правильного выполнения всех операций необходимо знать, где у фас фазный провод, где нулевой (рабочий ноль), а где заземляющий (защитный ноль). Для опытного электрика определить где фаза и ноль или найти землю, обычно не составляет труда, а вот как быть остальным?
Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.
Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов — как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.
На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.
Маркировка проводов по цвету
Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку
и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.
Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.
В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года, который жестко регламентирует цветовую маркировку электрических проводов.
Согласно этому стандарту для квартирной электросети:
Рабочий ноль

(нейтраль или ноль) —
Синий провод или сине-белый
Защитный ноль


(земля или заземление) — желто-зеленый провод
Фаза


– Все остальные цвета среди которых – черный, белый, коричневый, красный и т.д.

Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.
Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного).

Итак, начнем по порядку:

ОПРЕДЕЛЕНИЕ ФАЗЫ

Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза.

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ

Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.
Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки — загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

Принцип действия индикаторной отвертки прост — внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.
Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.

ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ

Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.
Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.

Определить фазу и ноль из двух проводов

В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.
Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.

Найти фазу, ноль и заземление из трех проводов:

В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.
Действуем методом исключения:

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.

После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:
— Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

— Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.
— Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.

Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.
А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

6.1.2 Считывание фазовых диаграмм: одиночные фазы и границы

© H. Föll (скрипт Iron, Steel и Swords)

6.1.2 Чтение фазовых диаграмм:
Однофазные и границы

А теперь приступим к работе. Сначала перерисовываю
фазовую диаграмму железо-углерод таким образом, чтобы вы могли лучше понять
разные фазы.
Фазовая диаграмма железо-углерод
Разные цвета обозначают разные фазы.Смешанные цвета = смешанные
фазы
Теперь у нас есть простое правило:
разные фазы = разные цвета. Смешанные цвета = смешанные фазы. Вы помните, из
конечно, что такое фаза? Спасибо; иначе
идти
вернуться к разделу 2.3.1.
Начнем «читать»
фазовая диаграмма железо-углерод.Сначала мы выбираем определенную концентрацию
углерод, допустим 1,3% . Мне нравится такая концентрация, потому что ее легко
нарисуйте на фазовой диаграмме вертикальную линию. Соответствующая часть показана на
право на немедленную справку. Вдоль красной линии у нас то же самое
состав, но разные температуры.
От 600 K (328 o C; 620 o F) и ниже (не показано) до
около 1000 K (727 o C; 1341 o F) у нас есть
смешанная фаза «синий и
розовый».
При 1000 K (727 o C; 1341 o F) наблюдается
фаза
превращение в смешанную фазу «розовый и желтый».
Эта первая фаза трансформации — самая важная для вас, древних
(или современный) кузнец. В большинстве случаев, когда вы вставляете заготовку в горячую
угли в вашем очаге, вы делаете это, чтобы вызвать это фазовое превращение. Мы будем
назовите температуру около 1000 K (727 o C; 1341 o F)
где происходит это фазовое превращение « » температура перехода (обычно
сокращенно A 1 ), потому что
это самый важный.
Если продолжать повышать температуру, произойдет еще одно фазовое превращение.
около 1170 К (897 o C; 1447 o F). Смешанная фаза
«розовый и желтый» теперь превращается в чистую фазу
«желтый».
Затем, около 1550 K (1277 o C; 2331 o F), мы достигли смешанного
фаза «желто-белый» и около 1730 К (1457 o С; 2655
o F), он весь белый, значит фазовый переход на этом
температура просто означает полное плавление , потому что белый цвет
жидкая фаза , всегда обозначается сокращенно «L».
Пора присмотреться
при чем именно определяет
однофазный . Что я вам предлагал
давным-давно в
это уважение слишком слабо, чтобы нас здесь хватило. Итак, начнем.
Фаза — это область пространства, где все
физические свойства материала

(например.грамм. плотность, твердость, химический состав)
практически однородны.
Фаза, следовательно, является частью
материал, который является химически однородным, физически отличным и часто (или
по крайней мере в принципе) механически отделим от окружающей среды.
Теперь мы знаем, что
линии на фазовой диаграмме означают:
Они обозначают «где», т.е.е. при каких составах и температуре,
происходит фазовое превращение . Они
разделить разные фазы или разные смеси фаз по составу —
температурный «космос».
Если мы проделаем ту же процедуру для чистого
железа (до упора влево для 0% углерода), пробегаем три одиночных
фазы (синий, желтый, голубоватый) по мере увеличения температуры. Маленькая часть
на фазовой диаграмме справа показаны только первые две фазы.
Мы уже знаем
что они означают: синий = кубический кристалл с кубической кубической структурой, желтый = кубическая грань
центрированный кубический), голубоватый = ОЦК еще раз.
Конечно, в этом случае у нас могут быть только отдельные фазы, и пора дать
их имена. Железное правило состоит в том, что твердые фазы — это , всегда с греческой буквой. Для исторического
По этой причине фаза может иметь более или менее причудливое имя в дополнение к . Иногда бывает даже два имени,
часто с участием мертвых
белые парни.Что мы имеем в случае чистого железа:
То, что мы имеем в случае железа и некоторого количества углерода, точно такое же. Пока
поскольку вы «находитесь» в однофазной области, показанной здесь одним цветом, вы
иметь фазу этого цвета. Чтобы это было совершенно ясно, я повторяю
список выше для железа плюс некоторые
углерод:
Такие названия, как Феррит или аустенит , таким образом, относятся не к чистому железу , а к железу с некоторым количеством растворенного в нем углерода .Сколько углерода это могло
быть при некоторой заданной температуре показано однофазными областями в фазе
диаграмма.
Вообще говоря, состав сингла
Фаза
в бинарных сплавах всегда представляет собой A (или B), где растворяется в B (или A, соответственно).
Это важно. Мы должны разрешить
отдельные фазы должны содержать два вида атомов, если они атомарно
«смешанный». В конце концов, это определение фазы, как указано выше,
если подумать.Растворенные одиночные атомы распределены равномерно и
не могут быть разделены.
Повторим:
«Феррит», «аустенит» и т. Д.
не
означает чистое железо с некоторыми специфическими
кристаллическая структура
, но железо с определенной кристаллической структурой
и некоторыми

растворенный углерод в
это
Сколько углерода может быть растворено в фазе — это то, что фаза
Диаграмма говорит вам.
Растворенный означает, что иностранный
атомы сидят как индивидуумы в кристалле (промежуточные места для углерода
в железе) в некотором случайном распределении. Другими словами: они
внешняя точка
дефекты. Любая точка внутри синей области на фазовой диаграмме выше (
a-фаза или ферритная фаза) обозначает допустимую
комбинация твердого раствора углерода
концентрация и температура. Углерод окончательно растворяется.
Обратите внимание, что если он достаточно горячий,
атомы углерода не «сидят» на месте, а перемещаются случайным образом. Они
размытый,
как мы называли этот процесс. У нас также будут перемещаться вакансии и, следовательно,
атомы тоже не сидят на месте. Тем не менее, снимок
всегда выглядишь как наш
старая фигура с
отображается только нужное количество атомов углерода. Другими словами, композиция
не меняется от всего этого движения.
Так что любая точка в тонком синем
область на фазовой диаграмме обозначает альфа-фазу или феррит, а феррит всегда
имеет решетку ОЦК и различные, но неизменно небольшие концентрации углерода (включая ноль) в некоторых
температура.
Любая точка в желтой области обозначает гамма-фазу или аустенит, а
аустенит всегда имеет решетку fcc и различные концентрации углерода
от нуля до максимум около 2% при некоторой температуре.
Название феррит происходит от латинского «феррум».
для железа. Это всегда
скрытая копия
кристалл и лучшее, что он может сделать в отношении растворения углерода, — это примерно
0,1% около 1000 K (727 o C, 1341 o F). Мы называем это
предел растворимости .
Аустенит был назван в честь
Сэр Уильям Чендлер Робертс-Остин , британец
металлург (1843-1902), проводивший обширные исследования влияния
примесей на механические свойства чистых металлов.Аустентит или
фаза g всегда
fcc
кристалл. Он может растворять углерод намного лучше, чем феррит — почти 2%.
около 1400 K (1127 o C, 2061 o F), и все еще около 0,7%
около 1000 K (727 o C, 1341 o F).
Разница в растворении углерода
«сила» между аустенитом и ферритом лежит в основе производства стали.
и ковку лезвия, и мы потратим много времени на разгадку
последствия.
Теперь посмотрим на
точка плавления железа с некоторыми
углерод в нем. Линия между желто-белым и белым
Об этом сообщает регион « L «. L = « Ликвидус »
всегда обозначает жидкую фазу (зачем использовать
простое слово, если есть латинское?). Конечно, жидкая фаза также может
содержат углерод.
Линия, отделяющая жидкую фазу от другой фазы «внизу»
эта линия дает температуру плавления как функцию концентрации примеси =
концентрация углерода в нашем случае здесь.
Как я утверждал
давно
и объяснил в некоторой степени
не так долго
назад температура плавления действительно снижалась с увеличением содержания углерода до
минимум 1403 K (1130 o C, 2066 o F) для углерода
концентрация чуть выше 4% масс.
Итак, железоуглеродистый сплав с примерно 4% углерода
был бы ваш идеал
состав
для отливки
утюг .Почему? На самом деле есть две веские причины:

  1. Первый: в этой композиции у вас есть
    самая низкая температура плавления , которую вы когда-либо найдете в
    система Fe — C. Низкие температуры плавления хороши тем, что
    не так просто
    достичь температуры выше 1100 o C (2012 o F).
  2. Секунда: это
    эвтектический состав .
??? Если это выглядит
Греческий для вас, это потому, что это так.
Хорошо. Я допускаю, что даже приличное общее образование в большинстве стран
больше не включать древнегреческий язык. Даже одна из моих дочерей, которая отсидела
классический немецкий «гимназия» и конечно выучил древнегреческий
(вместе с большим количеством латыни и немного (конечно, древнееврейского) иврита), не
знаете, что означает « эвтектика «. Так
Вы определенно извиняетесь за то, что не знаете этого.
Я скоро займусь этим. Но сначала мы
посмотрите еще раз, что происходит при концентрации углерода 1,3%, которую я пометил
красная линия на фазовой диаграмме выше.
Для состава 1,3 мас.% Углерода
в железе фаза чуть ниже линии, определяющей точку плавления, представляет собой
смешанная фаза , обозначается g + L. Это может означать только смесь из твердого вещества
g фаза или аустенит и жидкость .
Это не так странно, как может показаться: на 0
o C (32 o F) можно хранить смесь жидкой воды и льда.
(= твердая вода) стабильна сколько угодно долго.Попытайся. Вам разрешено использовать
виски вместо воды.
Внутри (g + L)
смешанная фаза, вы можете сохранить смесь жидкой стали и твердой стали стабильной, поскольку
как хотите (и можете терпеть жар). Если вы пойдете в разные места
внутри области смешанной фазы, только вы
измените относительное количество жидкости и твердого вещества (много льда и немного
виски или много виски и немного льда). Но все, что у вас есть, все еще
смешанная фаза.
Когда ты, кузнец, делаешь меч
лезвие, у вас есть сталь с определенной концентрацией углерода, которую вы подвергаете
к различным температурам при ковке. Для простоты предположим, что
концентрация углерода не меняется во время ковки, всего нагрева и охлаждения
просто означает, что вы двигаетесь вверх и вниз a
вертикальная линия на фазовой диаграмме.
Если температура превышает 1000 K (727 o C, 1341
o F) для концентраций углерода в обычном диапазоне (около 0,1 мас.% — 2
% по весу), ваша сталь претерпит хотя бы одно фазовое превращение.И ты
обязательно пойдет выше этой температуры; делать это это то, что ковка все
о.
Итак, здесь идет прозрение в одной строчке, которую вы должны прочитать вслух:
То, что у вас на наковальне выше
1000 K, является полностью
материал

отличается от того, что у вас есть при комнатной температуре.
Насколько отличается « полностью
другой
«? Ну, согласитесь, бриллиант полностью
отличается от куска угля (по крайней мере, ваша жена будет), так почему это должно быть
иначе с ферритом и аустенитом?
Это две разных фазы одного и того же материала (железо + немного
углерода), и нет никаких причин, по которым их свойства не могут быть
такие же разные, как у графита и алмаза.Их электрические
проводимости или магнитные свойства, например, разные, и поэтому
их механические свойства, такие как твердость.
Это только потому, что никому не нужна горячая железная проволока или магнит на 1000 К, которые
мы не очень заботимся об этих различиях и не осознаем их.
Тем не менее, решетчатый тип, возможность
растворяют углерод, а механическая «твердость» и общая
поведение при деформации совершенно иное в феррите и аустените.Аустенит — это
на самом деле немного тверже феррита при высоких температурах. Однако обе фазы
намного мягче при высоких температурах, чем феррит при низких температурах.
основная причина, по которой вы нагреваете сталь, когда хотите придать ей форму путем ковки.

10.4 Фазовые диаграммы — Химия

Цели обучения

К концу этого раздела вы сможете:

  • Объясните устройство и использование типовой фазовой диаграммы
  • Используйте фазовые диаграммы для определения стабильных фаз при заданных температурах и давлениях и для описания фазовых переходов, возникающих в результате изменения этих свойств
  • Опишите сверхкритическую жидкую фазу вещества

В предыдущем модуле было описано изменение равновесного давления пара жидкости в зависимости от температуры.Учитывая определение точки кипения, графики зависимости давления пара от температуры показывают, как точка кипения жидкости изменяется с давлением. Также было описано использование кривых нагрева и охлаждения для определения точки плавления (или замерзания) вещества. Выполнение таких измерений в широком диапазоне давлений дает данные, которые могут быть представлены графически в виде фазовой диаграммы. Фазовая диаграмма объединяет графики зависимости давления от температуры для равновесия фазового перехода жидкость-газ, твердое тело-жидкость и твердое тело-газ для вещества.Эти диаграммы показывают физические состояния, которые существуют при определенных условиях давления и температуры, а также обеспечивают зависимость от давления температур фазовых переходов (точки плавления, точки сублимации, точки кипения). Типичная фазовая диаграмма чистого вещества показана на рисунке 1.

Рис. 1. Физическое состояние вещества и температуры его фазовых переходов графически представлены на фазовой диаграмме.

Чтобы проиллюстрировать полезность этих графиков, рассмотрим фазовую диаграмму для воды, показанную на рисунке 2.

Рис. 2. Оси давления и температуры на этой фазовой диаграмме воды нанесены не в постоянном масштабе, чтобы проиллюстрировать несколько важных свойств.

Мы можем использовать фазовую диаграмму для определения физического состояния образца воды при определенных условиях давления и температуры. Например, давление 50 кПа и температура -10 ° C соответствуют области диаграммы, обозначенной «лед». В этих условиях вода существует только в твердом виде (лед).Области «воды» соответствуют давление 50 кПа и температура 50 ° C — здесь вода существует только в виде жидкости. При 25 кПа и 200 ° C вода существует только в газообразном состоянии. Обратите внимание, что на фазовой диаграмме H 2 O оси давления и температуры не приведены в постоянном масштабе, чтобы можно было проиллюстрировать некоторые важные особенности, как описано здесь.

Кривая BC на рисунке 2 представляет собой график зависимости давления пара от температуры, как описано в предыдущем модуле этой главы.Эта кривая «жидкость-пар» разделяет жидкую и газообразную области на фазовой диаграмме и обеспечивает точку кипения воды при любом давлении. Например, при 1 атм температура кипения составляет 100 ° C. Обратите внимание, что кривая жидкость-пар заканчивается при температуре 374 ° C и давлении 218 атм, что указывает на то, что вода не может существовать как жидкость выше этой температуры, независимо от давления. По физическим свойствам вода в этих условиях занимает промежуточное положение между ее жидкой и газообразной фазами.Это уникальное состояние вещества называется сверхкритической жидкостью, и эта тема будет описана в следующем разделе этого модуля.

Кривая твердое тело-пар, обозначенная AB на рисунке 2, показывает температуры и давления, при которых лед и водяной пар находятся в равновесии. Эти пары данных температуры и давления соответствуют точкам сублимации или осаждения воды. Если бы мы могли увеличить масштаб линии твердое тело — газ на рисунке 2, мы бы увидели, что лед имеет давление пара около 0,20 кПа при -10 ° C.Таким образом, если мы поместим замороженный образец в вакуум с давлением менее 0,20 кПа, лед возгонится. Это основа процесса «сублимационной сушки», часто используемого для консервирования продуктов, таких как мороженое, показанное на Рисунке 3.

Рис. 3. Лиофилизированные продукты, такие как это мороженое, обезвоживаются путем сублимации при давлениях ниже тройной точки для воды. (кредит: ʺlwaoʺ / Flickr)

Кривая твердое тело-жидкость, обозначенная BD, показывает температуру и давление, при которых лед и жидкая вода находятся в равновесии, представляя точки плавления / замерзания воды.Обратите внимание, что эта кривая имеет небольшой отрицательный наклон (сильно преувеличенный для ясности), что указывает на то, что температура плавления воды немного снижается с увеличением давления. Вода — необычное вещество в этом отношении, так как большинство веществ демонстрируют повышение температуры плавления с увеличением давления. Такое поведение частично отвечает за движение ледников, как показано на рисунке 4. Дно ледника испытывает огромное давление из-за своего веса, который может растопить часть льда, образуя слой жидкой воды, на котором ледник может легче скользить.

Рис. 4. Огромное давление под ледниками приводит к частичному таянию с образованием слоя воды, обеспечивающей смазку, способствующую движению ледников. На этом спутниковом снимке показан приближающийся край ледника Перито-Морено в Аргентине. (кредит: НАСА)

Точка пересечения всех трех кривых обозначена буквой B на рисунке 2. При давлении и температуре, представленных этой точкой, все три фазы воды сосуществуют в равновесии. Эта пара данных температура-давление называется тройной точкой .При давлениях ниже тройной точки вода не может существовать в виде жидкости независимо от температуры.

Пример 1

Определение состояния воды
Используя фазовую диаграмму для воды, приведенную на рисунке 2, определите состояние воды при следующих температурах и давлениях:

(а) −10 ° C и 50 кПа

(b) 25 ° C и 90 кПа

(c) 50 ° C и 40 кПа

(d) 80 ° C и 5 кПа

(e) −10 ° C и 0,3 кПа

(f) 50 ° C и 0.3 кПа

Раствор
Используя фазовую диаграмму для воды, мы можем определить, что состояние воды при каждой заданной температуре и давлении следующее: (а) твердое; (б) жидкость; (c) жидкость; (г) газ; (д) твердые; (е) газ.

Проверьте свои знания
Какие фазовые изменения могут претерпевать вода при изменении температуры, если давление поддерживается на уровне 0,3 кПа? Если давление удерживается на уровне 50 кПа?

Ответ:

При 0,3 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {g} [/ latex] при –58 ° C.При 50 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {l} [/ latex] при 0 ° C, [латекс] \ text {l} \; {\ longrightarrow} \; \ text {g} [/ latex] при 78 ° C

Рассмотрим фазовую диаграмму для диоксида углерода, показанную на рисунке 5, в качестве другого примера. Кривая твердое тело-жидкость имеет положительный наклон, что указывает на то, что температура плавления CO 2 увеличивается с давлением, как и для большинства веществ (вода является заметным исключением, как описано ранее). Обратите внимание, что тройная точка намного выше 1 атм, что указывает на то, что диоксид углерода не может существовать в виде жидкости в условиях атмосферного давления.Вместо этого охлаждение газообразного диоксида углерода до 1 атм приводит к его осаждению в твердом состоянии. Точно так же твердый диоксид углерода не плавится при давлении 1 атм, а вместо этого сублимируется с образованием газообразного CO 2 . Наконец, обратите внимание, что критическая точка для углекислого газа наблюдается при относительно умеренных температуре и давлении по сравнению с водой.

Рис. 5. Оси давления и температуры на этой фазовой диаграмме диоксида углерода не приведены в постоянном масштабе, чтобы проиллюстрировать несколько важных свойств.

Пример 2

Определение состояния диоксида углерода
Используя фазовую диаграмму для диоксида углерода, показанную на рисунке 5, определите состояние CO 2 при следующих температурах и давлениях:

(а) −30 ° C и 2000 кПа

(б) −60 ° C и 1000 кПа

(c) −60 ° C и 100 кПа

(d) 20 ° C и 1500 кПа

(e) 0 ° C и 100 кПа

(f) 20 ° C и 100 кПа

Раствор
Используя приведенную фазовую диаграмму для диоксида углерода, мы можем определить, что состояние CO 2 при каждой заданной температуре и давлении следующее: (a) жидкость; (б) твердые; (c) газ; (г) жидкость; е) газ; (е) газ.

Проверьте свои знания
Определите фазовые изменения, которым углекислый газ претерпевает при изменении его температуры, таким образом поддерживая постоянное давление на уровне 1500 кПа? При 500 кПа? При каких примерных температурах происходят эти фазовые переходы?

Ответ:

при 1500 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {l} [/ latex] при -45 ° C, [латекс] \ text {l} \; {\ longrightarrow} \; \ text {g} [/ latex] при –10 ° C;

при 500 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {g} [/ latex] при –58 ° C

Если мы поместим образец воды в герметичный контейнер при 25 ° C, удалим воздух и позволим установиться равновесию испарения и конденсации, у нас останется смесь жидкой воды и водяного пара с давлением 0.03 атм. Четко прослеживается четкая граница между более плотной жидкостью и менее плотным газом. По мере увеличения температуры давление водяного пара увеличивается, как это описано кривой жидкость-газ на фазовой диаграмме для воды (рис. 2), и сохраняется двухфазное равновесие жидкой и газообразной фаз. При температуре 374 ° C давление пара повысилось до 218 атм, и любое дальнейшее повышение температуры приводит к исчезновению границы между жидкой и паровой фазами.Вся вода в контейнере теперь находится в одной фазе, физические свойства которой являются промежуточными между газообразным и жидким состояниями. Эта фаза вещества называется сверхкритической жидкостью , а температура и давление, выше которых существует эта фаза, составляют критическую точку (рис. 6). Выше критической температуры газ не может быть сжижен независимо от того, какое давление приложено. Давление, необходимое для сжижения газа при его критической температуре, называется критическим давлением.Критические температуры и критические давления некоторых распространенных веществ приведены в таблице 6.

Вещество Критическая температура (К) Критическое давление (атм)
водород 33,2 12,8
азот 126,0 33,5
кислород 154,3 49,7
диоксид углерода 304.2 73,0
аммиак 405,5 111,5
диоксид серы 430,3 77,7
вода 647,1 217,7
Таблица 6.

Рис. 6. (a) Герметичный контейнер с жидким диоксидом углерода немного ниже его критической точки нагревается, что приводит к (b) образованию сверхкритической жидкой фазы.Охлаждение сверхкритической жидкости снижает ее температуру и давление ниже критической точки, что приводит к восстановлению отдельных жидких и газообразных фаз (c и d). Цветные поплавки показывают разницу в плотности между жидким, газообразным и сверхкритическим состояниями текучей среды. (кредит: модификация работы «mrmrobin» / YouTube)

Наблюдайте за переходом из жидкости в сверхкритическую для диоксида углерода.

Подобно газу, сверхкритическая жидкость будет расширяться и заполнять контейнер, но ее плотность намного больше, чем типичная плотность газа, обычно близкая к плотности жидкости.Подобно жидкостям, эти жидкости способны растворять нелетучие растворенные вещества. Однако они практически не проявляют поверхностного натяжения и обладают очень низкой вязкостью, поэтому они могут более эффективно проникать в очень маленькие отверстия в твердой смеси и удалять растворимые компоненты. Эти свойства делают сверхкритические жидкости чрезвычайно полезными растворителями для широкого спектра применений. Например, сверхкритический диоксид углерода стал очень популярным растворителем в пищевой промышленности, который используется для удаления кофеина из кофе, удаления жиров из картофельных чипсов и экстракции вкусовых и ароматических соединений из цитрусовых масел.Это нетоксично, относительно недорого и не считается загрязняющим веществом. После использования CO 2 можно легко восстановить, снизив давление и собрав образовавшийся газ.

Пример 3

Критическая температура углекислого газа
Если мы встряхнем углекислый огнетушитель в прохладный день (18 ° C), мы услышим, как внутри цилиндра плещется жидкий CO 2 . Однако в жаркий летний день (35 ° C) в этом же цилиндре нет жидкости.Объясните эти наблюдения.

Раствор
В прохладный день температура CO 2 ниже критической температуры CO 2 , 304 K или 31 ° C (Таблица 6), поэтому жидкий CO 2 присутствует в цилиндр. В жаркий день температура CO 2 превышает его критическую температуру 31 ° C. Выше этой температуры никакое давление не может привести к сжижению CO 2 , поэтому в огнетушителе нет жидкого CO 2 .

Проверьте свои знания
Аммиак можно сжижить путем сжатия при комнатной температуре; кислород не может быть сжижен в этих условиях. Почему два газа ведут себя по-разному?

Ответ:

Критическая температура аммиака составляет 405,5 К, что выше комнатной температуры. Критическая температура кислорода ниже комнатной; таким образом кислород нельзя сжижать при комнатной температуре.

Кофе без кофеина с использованием сверхкритического CO

2

Кофе — второй по популярности товар в мире после нефти.Во всем мире люди любят кофе за аромат и вкус. Многие из нас также зависят от одного компонента кофе — кофеина — который помогает нам двигаться утром или оставаться бодрым днем. Но в конце дня стимулирующий эффект кофе может помешать вам уснуть, поэтому вы можете пить кофе без кофеина вечером.

С начала 1900-х годов для обеззараживания кофе использовалось множество методов. У всех есть свои преимущества и недостатки, и все они зависят от физических и химических свойств кофеина.Поскольку кофеин представляет собой несколько полярную молекулу, он хорошо растворяется в воде, полярной жидкости. Однако, поскольку многие из других 400 с лишним соединений, которые способствуют вкусу и аромату кофе, также растворяются в H 2 O, процессы декофеинизации горячей водой также могут удалить некоторые из этих соединений, отрицательно влияя на запах и вкус кофе без кофеина. Дихлорметан (CH 2 Cl 2 ) и этилацетат (CH 3 CO 2 C 2 H 5 ) имеют сходную полярность с кофеином и поэтому являются очень эффективными растворителями для экстракции кофеина, но оба также удаляют некоторые компоненты вкуса и аромата, а их использование требует длительного времени экстракции и очистки.Поскольку оба эти растворителя токсичны, высказывались опасения по поводу воздействия остаточного растворителя, остающегося в кофе без кофеина.

Сверхкритическая флюидная экстракция с использованием диоксида углерода в настоящее время широко используется как более эффективный и экологически безопасный метод удаления кофеина (рис. 7). При температурах выше 304,2 К и давлениях выше 7376 кПа CO 2 представляет собой сверхкритическую жидкость, обладающую свойствами как газа, так и жидкости. Как газ, он проникает глубоко в кофейные зерна; как жидкость, он эффективно растворяет определенные вещества.Сверхкритическая экстракция углекислым газом из пропаренных кофейных зерен удаляет 97-99% кофеина, оставляя неизменными вкусовые и ароматические соединения кофе. Поскольку CO 2 представляет собой газ при стандартных условиях, его удаление из экстрагированных кофейных зерен легко осуществляется, как и извлечение кофеина из экстракта. Кофеин, полученный из кофейных зерен с помощью этого процесса, является ценным продуктом, который впоследствии можно использовать в качестве добавки к другим продуктам питания или лекарствам.

Рисунок 7. (a) Молекулы кофеина имеют как полярные, так и неполярные области, что делает его растворимым в растворителях различной полярности. (b) На схеме показан типичный процесс удаления кофеина с участием сверхкритического диоксида углерода.

Условия температуры и давления, при которых вещество находится в твердом, жидком и газообразном состояниях, суммированы на фазовой диаграмме для этого вещества. Фазовые диаграммы представляют собой комбинированные графики трех кривых равновесия давления-температуры: твердое тело-жидкость, жидкость-газ и твердое тело-газ.Эти кривые представляют отношения между температурами фазовых переходов и давлениями. Точка пересечения всех трех кривых представляет тройную точку вещества — температуру и давление, при которых все три фазы находятся в равновесии. При давлениях ниже тройной точки вещество не может существовать в жидком состоянии независимо от его температуры. Конец кривой жидкость-газ представляет собой критическую точку вещества, давление и температуру, выше которых жидкая фаза не может существовать.

Упражнения по окончании главы по химии

  1. По фазовой диаграмме воды (Рисунок 2) определите состояние воды при:

    (а) 35 ° C и 85 кПа

    (б) −15 ° C и 40 кПа

    (в) -15 ° C и 0,1 кПа

    (d) 75 ° C и 3 кПа

    (e) 40 ° C и 0,1 кПа

    (f) 60 ° C и 50 кПа

  2. Какие фазовые изменения произойдут, когда вода подвергнется воздействию переменного давления при постоянной температуре 0,005 ° C? При 40 ° C? При -40 ° С?
  3. Скороварки позволяют еде готовиться быстрее, потому что более высокое давление внутри скороварки увеличивает температуру кипения воды.В конкретной скороварке есть предохранительный клапан, который настроен на выпуск пара, если давление превышает 3,4 атм. Какая приблизительная максимальная температура может быть достигнута внутри этой скороварки? Объясните свои рассуждения.
  4. Из фазовой диаграммы диоксида углерода на рисунке 5 определите состояние CO 2 при:

    (a) 20 ° C и 1000 кПа

    (b) 10 ° C и 2000 кПа

    (c) 10 ° C и 100 кПа

    (d) −40 ° C и 500 кПа

    (e) −80 ° C и 1500 кПа

    (f) −80 ° C и 10 кПа

  5. Определить фазовые изменения, которым подвергается углекислый газ при изменении давления, если температура поддерживается на уровне -50 ° C? Если поддерживать температуру -40 ° C? При 20 ° C? (См. Фазовую диаграмму на рисунке 5.)
  6. Рассмотрим баллон, содержащий смесь жидкой двуокиси углерода в равновесии с газообразной двуокисью углерода при начальном давлении 65 атм и температуре 20 ° C. Нарисуйте график, изображающий изменение давления в цилиндре со временем, когда газообразный диоксид углерода выделяется при постоянной температуре.
  7. Сухой лед, CO 2 ( s ), не тает при атмосферном давлении. Он возгоняется при температуре −78 ° C. При каком минимальном давлении CO 2 ( s ) расплавится с образованием CO 2 ( l )? Примерно при какой температуре это произойдет? (См. Диаграмму фазы на рисунке 5.)
  8. Если сильный шторм привел к отключению электричества, возможно, потребуется использовать веревку для белья для сушки белья. Во многих частях страны в разгар зимы одежда быстро замерзает, если ее повесить на веревке. Если не пойдет снег, они все равно высохнут? Поясните свой ответ.
  9. Можно ли сжижать азот при комнатной температуре (около 25 ° C)? Можно ли сжижать диоксид серы при комнатной температуре? Объясни свои ответы.
  10. Элементарный углерод состоит из одной газовой фазы, одной жидкой фазы и двух различных твердых фаз, как показано на фазовой диаграмме:

    (a) На фазовой диаграмме отметьте газовую и жидкую области.

    (b) Графит — наиболее стабильная фаза углерода при нормальных условиях. На фазовой диаграмме обозначьте графитовую фазу.

    (c) Если графит при нормальных условиях нагревается до 2500 К, а давление повышается до 10 10 Па, он превращается в алмаз. Обозначьте алмазную фазу.

    (d) Обведите каждую тройную точку на фазовой диаграмме.

    (e) В какой фазе находится углерод при 5000 К и 10 8 Па?

    (f) Если температура образца углерода повышается с 3000 K до 5000 K при постоянном давлении 10 6 Па, какой фазовый переход происходит, если он есть?

Глоссарий

критическая точка
температура и давление, выше которых газ не может конденсироваться в жидкость
фазовая диаграмма
График давление-температура, обобщающий условия, при которых могут существовать фазы вещества
сверхкритическая жидкость
вещество при температуре и давлении выше его критической точки; обладает промежуточными свойствами между газообразным и жидким состояниями
тройная точка
температура и давление, при которых паровая, жидкая и твердая фазы вещества находятся в равновесии

Решения

Ответы на упражнения в конце главы по химии

2.При низком давлении и 0,005 ° C вода представляет собой газ. Когда давление увеличивается до 4,6 торр, вода становится твердой; по мере увеличения давления он становится жидкостью. При 40 ° C вода при низком давлении представляет собой пар; при давлениях выше примерно 75 торр он превращается в жидкость. При -40 ° C вода переходит из газа в твердое тело, когда давление увеличивается выше очень низких значений.

4. (а) жидкость; (б) твердые; (c) газ; (г) газ; е) газ; (е) газ

6.

8.Да, лед будет возвышенным, хотя на это может потребоваться несколько дней. Лед имеет небольшое давление пара, и некоторые молекулы льда образуют газ и выходят из кристаллов льда. Со временем все больше и больше твердого вещества превращается в газ, пока в конце концов одежда не высохнет.

10. (а)

б)

(в)

(г)

(д) жидкая фаза (е) сублимация

Фазовые диаграммы | Химия

ЦЕЛИ ОБУЧЕНИЯ

К концу этого раздела вы сможете:

  • Объясните устройство и использование типовой фазовой диаграммы
  • Используйте фазовые диаграммы для определения стабильных фаз при заданных температурах и давлениях и для описания фазовых переходов, возникающих в результате изменения этих свойств
  • Опишите сверхкритическую жидкую фазу вещества

Рисунок 1.Физическое состояние вещества и температуры его фазовых переходов графически представлены на фазовой диаграмме.

В предыдущем модуле было описано изменение равновесного давления пара жидкости в зависимости от температуры. Учитывая определение точки кипения, графики зависимости давления пара от температуры показывают, как точка кипения жидкости изменяется с давлением. Также было описано использование кривых нагрева и охлаждения для определения точки плавления (или замерзания) вещества.Выполнение таких измерений в широком диапазоне давлений дает данные, которые могут быть представлены графически в виде фазовой диаграммы. Фазовая диаграмма объединяет графики зависимости давления от температуры для равновесия фазового перехода жидкость-газ, твердое тело-жидкость и твердое тело-газ для вещества. Эти диаграммы показывают физические состояния, которые существуют при определенных условиях давления и температуры, а также обеспечивают зависимость от давления температур фазовых переходов (точки плавления, точки сублимации, точки кипения).Типичная фазовая диаграмма чистого вещества показана на рисунке 1.

Чтобы проиллюстрировать полезность этих графиков, рассмотрим фазовую диаграмму для воды, показанную на рисунке 2.

Рис. 2. Оси давления и температуры на этой фазовой диаграмме воды построены не в постоянном масштабе, чтобы проиллюстрировать несколько важных свойств.

Мы можем использовать фазовую диаграмму для определения физического состояния образца воды при определенных условиях давления и температуры.Например, давление 50 кПа и температура -10 ° C соответствуют области диаграммы, обозначенной «лед». В этих условиях вода существует только в твердом виде (лед). Области «воды» соответствуют давление 50 кПа и температура 50 ° C — здесь вода существует только в виде жидкости. При 25 кПа и 200 ° C вода существует только в газообразном состоянии. Обратите внимание, что на фазовой диаграмме H 2 O оси давления и температуры не приведены в постоянном масштабе, чтобы можно было проиллюстрировать некоторые важные особенности, как описано здесь.

Кривая BC на рисунке 2 представляет собой график зависимости давления пара от температуры, как описано в предыдущем модуле этой главы. Эта кривая «жидкость-пар» разделяет жидкую и газообразную области на фазовой диаграмме и обеспечивает точку кипения воды при любом давлении. Например, при 1 атм температура кипения составляет 100 ° C. Обратите внимание, что кривая жидкость-пар заканчивается при температуре 374 ° C и давлении 218 атм, что указывает на то, что вода не может существовать как жидкость выше этой температуры, независимо от давления.По физическим свойствам вода в этих условиях занимает промежуточное положение между ее жидкой и газообразной фазами. Это уникальное состояние вещества называется сверхкритической жидкостью, и эта тема будет описана в следующем разделе этого модуля.

Рис. 3 Лиофилизированные продукты, такие как это мороженое, обезвоживаются путем сублимации при давлениях ниже тройной точки для воды. (кредит: ʺlwaoʺ / Flickr)

Кривая твердое тело-пар, обозначенная AB на рисунке 2, показывает температуры и давления, при которых лед и водяной пар находятся в равновесии.Эти пары данных температуры и давления соответствуют точкам сублимации или осаждения воды. Если бы мы могли увеличить масштаб линии твердое тело — газ на рисунке 2, мы бы увидели, что лед имеет давление пара около 0,20 кПа при -10 ° C. Таким образом, если мы поместим замороженный образец в вакуум с давлением менее 0,20 кПа, лед возгонится. Это основа процесса «сублимационной сушки», часто используемого для консервирования продуктов, таких как мороженое, показанное на Рисунке 3.

Кривая твердое тело-жидкость, обозначенная BD, показывает температуру и давление, при которых лед и жидкая вода находятся в равновесии, представляя точки плавления / замерзания воды.Обратите внимание, что эта кривая имеет небольшой отрицательный наклон (сильно преувеличенный для ясности), что указывает на то, что температура плавления воды немного снижается с увеличением давления. Вода — необычное вещество в этом отношении, так как большинство веществ демонстрируют повышение температуры плавления с увеличением давления. Такое поведение частично отвечает за движение ледников, как показано на рисунке 4. Дно ледника испытывает огромное давление из-за своего веса, который может растопить часть льда, образуя слой жидкой воды, на котором ледник может легче скользить.

Рис. 4. Огромное давление под ледниками приводит к частичному таянию, в результате чего образуется слой воды, обеспечивающий смазку, способствующую движению ледников. На этом спутниковом снимке показан приближающийся край ледника Перито-Морено в Аргентине. (Источник: НАСА)

Точка пересечения всех трех кривых обозначена буквой B на рисунке 2. При давлении и температуре, представленных этой точкой, все три фазы воды сосуществуют в равновесии. Эта пара данных температура-давление называется тройной точкой .При давлениях ниже тройной точки вода не может существовать в виде жидкости независимо от температуры.

Пример 1

Определение состояния воды

Используя фазовую диаграмму для воды, приведенную на рисунке 10.30, определите состояние воды при следующих температурах и давлениях:

(а) −10 ° C и 50 кПа

(b) 25 ° C и 90 кПа

(c) 50 ° C и 40 кПа

(d) 80 ° C и 5 кПа

(e) -10 ° C и 0.3 кПа

(f) 50 ° C и 0,3 кПа

Решение

Используя фазовую диаграмму для воды, мы можем определить, что состояние воды при каждой заданной температуре и давлении следующее: (a) твердое; (б) жидкость; (c) жидкость; (г) газ; (д) твердые; (е) газ.

Проверьте свои знания

Какие фазовые изменения могут претерпеть вода при изменении температуры, если давление поддерживается на уровне 0,3 кПа? Если давление удерживается на уровне 50 кПа?

Ответ : 0.3 кПа: [латекс] \ text {s} \ longrightarrow \ text {g} [/ latex] при –58 ° C. При 50 кПа: [латекс] \ text {s} \ longrightarrow \ text {l} [/ latex] при 0 ° C, l ⟶ г при 78 ° C

Рассмотрим фазовую диаграмму для диоксида углерода, показанную на рисунке 5, в качестве другого примера. Кривая твердое тело-жидкость имеет положительный наклон, что указывает на то, что температура плавления CO 2 увеличивается с давлением, как и для большинства веществ (вода является заметным исключением, как описано ранее). Обратите внимание, что тройная точка намного выше 1 атм, что указывает на то, что диоксид углерода не может существовать в виде жидкости в условиях атмосферного давления.Вместо этого охлаждение газообразного диоксида углерода до 1 атм приводит к его осаждению в твердом состоянии. Точно так же твердый диоксид углерода не плавится при давлении 1 атм, а вместо этого сублимируется с образованием газообразного CO 2 . Наконец, обратите внимание, что критическая точка для углекислого газа наблюдается при относительно умеренных температуре и давлении по сравнению с водой.

Рис. 5. Оси давления и температуры на этой фазовой диаграмме диоксида углерода не приведены в постоянном масштабе, чтобы проиллюстрировать несколько важных свойств.

Пример 2

Определение состояния диоксида углерода

Используя фазовую диаграмму для диоксида углерода, показанную на рисунке 5, определите состояние CO 2 при следующих температурах и давлениях:

(а) −30 ° C и 2000 кПа

(б) −60 ° C и 1000 кПа

(c) −60 ° C и 100 кПа

(d) 20 ° C и 1500 кПа

(e) 0 ° C и 100 кПа

(f) 20 ° C и 100 кПа

Решение

Используя приведенную фазовую диаграмму для диоксида углерода, мы можем определить, что состояние CO 2 при каждой заданной температуре и давлении является следующим: (a) жидкий; (б) твердые; (c) газ; (г) жидкость; е) газ; (е) газ.

Проверьте свои знания

Определить фазовые изменения, которым диоксид углерода претерпевает при изменении его температуры, таким образом поддерживая его давление постоянным на уровне 1500 кПа? При 500 кПа? При каких примерных температурах происходят эти фазовые переходы?

Ответ : при 1500 кПа: [латекс] \ text {s} \ longrightarrow \ text {l} [/ latex] при -45 ° C, [латекс] \ text {l} \ longrightarrow \ text {g} [ / латекс] при -10 ° С; при 500 кПа: [латекс] \ text {s} \ longrightarrow \ text {g} [/ latex] при –58 ° C

Сверхкритические жидкости

Если мы поместим образец воды в герметичный контейнер при 25 ° C, удалим воздух и позволим установиться равновесию испарения и конденсации, у нас останется смесь жидкой воды и водяного пара с давлением 0.03 атм. Четко прослеживается четкая граница между более плотной жидкостью и менее плотным газом. По мере увеличения температуры давление водяного пара увеличивается, как это описано кривой жидкость-газ на фазовой диаграмме для воды (рис. 2), и сохраняется двухфазное равновесие жидкой и газообразной фаз. При температуре 374 ° C давление пара повысилось до 218 атм, и любое дальнейшее повышение температуры приводит к исчезновению границы между жидкой и паровой фазами.Вся вода в контейнере теперь находится в одной фазе, физические свойства которой являются промежуточными между газообразным и жидким состояниями. Эта фаза вещества называется сверхкритической жидкостью , а температура и давление, выше которых эта фаза существует, являются критической точкой . Выше критической температуры газ не может быть сжижен независимо от того, какое давление приложено. Давление, необходимое для сжижения газа при его критической температуре, называется критическим давлением.Критические температуры и критические давления некоторых распространенных веществ приведены в таблице 1.

Таблица 1.
Вещество Критическая температура (К) Критическое давление (атм)
водород 33,2 12,8
азот 126,0 33,5
кислород 154,3 49,7
диоксид углерода 304.2 73,0
аммиак 405,5 111,5
диоксид серы 430,3 77,7
вода 647,1 217,7

Рис. 6. (a) Герметичный контейнер с жидким диоксидом углерода немного ниже его критической точки нагревается, что приводит к (b) образованию сверхкритической жидкой фазы. Охлаждение сверхкритической жидкости снижает ее температуру и давление ниже критической точки, что приводит к восстановлению отдельных жидких и газообразных фаз (c и d).Цветные поплавки показывают разницу в плотности между жидким, газообразным и сверхкритическим состояниями текучей среды. (кредит: модификация работы «mrmrobin» / YouTube)

Понаблюдайте за переходом из жидкости в сверхкритическую жидкость для диоксида углерода в этом видео.

Подобно газу, сверхкритическая жидкость будет расширяться и заполнять контейнер, но ее плотность намного больше, чем типичная плотность газа, обычно близкая к плотности жидкости. Подобно жидкостям, эти жидкости способны растворять нелетучие растворенные вещества.Однако они практически не проявляют поверхностного натяжения и обладают очень низкой вязкостью, поэтому они могут более эффективно проникать в очень маленькие отверстия в твердой смеси и удалять растворимые компоненты. Эти свойства делают сверхкритические жидкости чрезвычайно полезными растворителями для широкого спектра применений. Например, сверхкритический диоксид углерода стал очень популярным растворителем в пищевой промышленности, который используется для удаления кофеина из кофе, удаления жиров из картофельных чипсов и экстракции вкусовых и ароматических соединений из цитрусовых масел.Это нетоксично, относительно недорого и не считается загрязняющим веществом. После использования CO 2 можно легко восстановить, снизив давление и собрав образовавшийся газ.

Пример 3

Критическая температура диоксида углерода

Если встряхнуть углекислый огнетушитель в прохладный день (18 ° C), мы услышим, как внутри цилиндра плещется жидкий CO 2 . Однако в жаркий летний день (35 ° C) в этом же цилиндре нет жидкости.Объясните эти наблюдения.

Решение

В прохладный день температура CO 2 ниже критической температуры CO 2 , 304 K или 31 ° C (Таблица 10.3), поэтому в баллоне присутствует жидкий CO 2 . В жаркий день температура CO 2 превышает его критическую температуру 31 ° C. Выше этой температуры никакое давление не может привести к сжижению CO 2 , поэтому в огнетушителе нет жидкого CO 2 .

Проверьте свои знания

Аммиак можно сжижать путем сжатия при комнатной температуре; кислород не может быть сжижен в этих условиях. Почему два газа ведут себя по-разному?

Ответ : Критическая температура аммиака составляет 405,5 К, что выше комнатной температуры. Критическая температура кислорода ниже комнатной; таким образом кислород нельзя сжижать при комнатной температуре.

Кофе без кофеина с использованием сверхкритического CO

2

Кофе — второй по популярности товар в мире после нефти.Во всем мире люди любят кофе за аромат и вкус. Многие из нас также зависят от одного компонента кофе — кофеина — который помогает нам двигаться утром или оставаться бодрым днем. Но в конце дня стимулирующий эффект кофе может помешать вам уснуть, поэтому вы можете пить кофе без кофеина вечером.

С начала 1900-х годов для обеззараживания кофе использовалось множество методов. У всех есть свои преимущества и недостатки, и все они зависят от физических и химических свойств кофеина.Поскольку кофеин представляет собой несколько полярную молекулу, он хорошо растворяется в воде, полярной жидкости. Однако, поскольку многие из других 400 с лишним соединений, которые способствуют вкусу и аромату кофе, также растворяются в H 2 O, процессы декофеинизации горячей водой также могут удалить некоторые из этих соединений, отрицательно влияя на запах и вкус кофе без кофеина. Дихлорметан (CH 2 Cl 2 ) и этилацетат (CH 3 CO 2 C 2 H 5 ) имеют сходную полярность с кофеином и поэтому являются очень эффективными растворителями для экстракции кофеина, но оба также удаляют некоторые компоненты вкуса и аромата, а их использование требует длительного времени экстракции и очистки.Поскольку оба эти растворителя токсичны, высказывались опасения по поводу воздействия остаточного растворителя, остающегося в кофе без кофеина.

Сверхкритическая флюидная экстракция с использованием диоксида углерода в настоящее время широко используется как более эффективный и экологически безопасный метод удаления кофеина (рис. 7). При температурах выше 304,2 К и давлениях выше 7376 кПа CO 2 представляет собой сверхкритическую жидкость, обладающую свойствами как газа, так и жидкости. Как газ, он проникает глубоко в кофейные зерна; как жидкость, он эффективно растворяет определенные вещества.Сверхкритическая экстракция углекислым газом из пропаренных кофейных зерен удаляет 97-99% кофеина, оставляя неизменными вкусовые и ароматические соединения кофе. Поскольку CO 2 представляет собой газ при стандартных условиях, его удаление из экстрагированных кофейных зерен легко осуществляется, как и извлечение кофеина из экстракта. Кофеин, полученный из кофейных зерен с помощью этого процесса, является ценным продуктом, который впоследствии можно использовать в качестве добавки к другим продуктам питания или лекарствам.

Рисунок 7.(а) Молекулы кофеина имеют как полярные, так и неполярные области, что делает его растворимым в растворителях различной полярности. (b) На схеме показан типичный процесс удаления кофеина с участием сверхкритического диоксида углерода.

Ключевые концепции и резюме

Условия температуры и давления, при которых вещество находится в твердом, жидком и газообразном состояниях, суммированы на фазовой диаграмме для этого вещества. Фазовые диаграммы представляют собой комбинированные графики трех кривых равновесия давления-температуры: твердое тело-жидкость, жидкость-газ и твердое тело-газ.Эти кривые представляют отношения между температурами фазовых переходов и давлениями. Точка пересечения всех трех кривых представляет тройную точку вещества — температуру и давление, при которых все три фазы находятся в равновесии. При давлениях ниже тройной точки вещество не может существовать в жидком состоянии независимо от его температуры. Конец кривой жидкость-газ представляет собой критическую точку вещества, давление и температуру, выше которых жидкая фаза не может существовать.

Chemsitry Упражнения в конце главы

  1. По фазовой диаграмме воды (Рисунок 2) определите состояние воды при:
    1. 35 ° C и 85 кПа
    2. −15 ° C и 40 кПа
    3. −15 ° C и 0,1 кПа
    4. 75 ° C и 3 кПа
    5. 40 ° C и 0,1 кПа
    6. 60 ° C и 50 кПа
  2. Какие фазовые изменения произойдут, когда вода подвергнется воздействию переменного давления при постоянной температуре 0,005 ° C? При 40 ° C? При -40 ° С?
  3. Скороварки позволяют еде готовиться быстрее, потому что более высокое давление внутри скороварки увеличивает температуру кипения воды.В конкретной скороварке есть предохранительный клапан, который настроен на выпуск пара, если давление превышает 3,4 атм. Какая приблизительная максимальная температура может быть достигнута внутри этой скороварки? Объясните свои рассуждения.
  4. Из фазовой диаграммы диоксида углерода на рисунке 5 определите состояние CO 2 при:
    1. 20 ° C и 1000 кПа
    2. 10 ° C и 2000 кПа
    3. 10 ° C и 100 кПа
    4. −40 ° C и 500 кПа
    5. −80 ° C и 1500 кПа
    6. −80 ° C и 10 кПа
  5. Определить фазовые изменения, которым подвергается углекислый газ при изменении давления, если температура поддерживается на уровне -50 ° C? Если поддерживать температуру -40 ° C? При 20 ° C? (См. Фазовую диаграмму на рисунке 5).
  6. Рассмотрим баллон, содержащий смесь жидкой двуокиси углерода в равновесии с газообразной двуокисью углерода при начальном давлении 65 атм и температуре 20 ° C. Нарисуйте график, изображающий изменение давления в цилиндре со временем, когда газообразный диоксид углерода выделяется при постоянной температуре.
  7. Сухой лед, CO 2 ( s ), не тает при атмосферном давлении. Он возгоняется при температуре −78 ° C. При каком минимальном давлении CO 2 ( s ) расплавится с образованием CO 2 ( l )? Примерно при какой температуре это произойдет? (См. Диаграмму фазы на рисунке 5.)
  8. Если сильный шторм привел к отключению электричества, возможно, потребуется использовать веревку для белья для сушки белья. Во многих частях страны в разгар зимы одежда быстро замерзает, если ее повесить на веревке. Если не пойдет снег, они все равно высохнут? Поясните свой ответ.
  9. Можно ли сжижать азот при комнатной температуре (около 25 ° C)? Можно ли сжижать диоксид серы при комнатной температуре? Объясни свои ответы.
  10. Элементарный углерод состоит из одной газовой фазы, одной жидкой фазы и трех различных твердых фаз, как показано на фазовой диаграмме:
    1. На фазовой диаграмме отметьте газовую и жидкую области.
    2. Графит — наиболее стабильная фаза углерода при нормальных условиях. На фазовой диаграмме обозначьте графитовую фазу.
    3. Если графит при нормальных условиях нагреть до 2500 К при повышении давления до 10 5 атм, он превращается в алмаз. Обозначьте алмазную фазу.
    4. Обведите каждую тройную точку на фазовой диаграмме.
    5. В какой фазе находится углерод при 4000 К и 10 5 атм?
    6. Если температура образца углерода повышается с 4000 K до 5000 K при постоянном давлении 10 2 атм, какой фазовый переход происходит, если он есть?
Избранные ответы

2.При низком давлении и 0,005 ° C вода представляет собой газ. Когда давление увеличивается до 4,6 торр, вода становится твердой; по мере увеличения давления он становится жидкостью. При 40 ° C вода при низком давлении представляет собой пар; при давлениях выше примерно 75 торр он превращается в жидкость. При -40 ° C вода переходит из газа в твердое тело, когда давление увеличивается выше очень низких значений.

4. (а) жидкость; (б) твердые; (c) газ; (г) газ; е) газ; (е) газ

6.

8. Да, лед станет возвышенным, хотя на это может потребоваться несколько дней.Лед имеет небольшое давление пара, и некоторые молекулы льда образуют газ и выходят из кристаллов льда. Со временем все больше и больше твердого вещества превращается в газ, пока в конце концов одежда не высохнет.

10. (а)

б)

(в)

(г)

(д) жидкая фаза

(е) сублимация

Глоссарий

критическая точка
температура и давление, выше которых газ не может конденсироваться в жидкость

фазовая диаграмма
диаграмма давление-температура, обобщающая условия, при которых могут существовать фазы вещества

сверхкритический флюид
вещество при температуре и давлении выше его критической точки; обладает промежуточными свойствами между газообразным и жидким состояниями

тройная точка
температура и давление, при которых паровая, жидкая и твердая фазы вещества находятся в равновесии

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г.,
    браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с вашим системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie
потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт
не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к
остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Выявление различных причин воздействия нитратов и аммония на обесцвечивание кораллов

  • 1.

    Dubinsky, Z. & Jokiel, P. L. Соотношение потоков энергии и питательных веществ регулирует симбиоз между зооксантеллами и кораллами. Pac. Sci. 48 , 313–324 (1994).

    Google Scholar

  • 2.

    LaJeunesse, T. C. et al. Систематический пересмотр Symbiodiniaceae подчеркивает древность и разнообразие коралловых эндосимбионтов. Curr. Биол. 28 , 2570–2580 (2018).

    CAS
    PubMed

    Google Scholar

  • 3.

    Фальковски П. Г., Дубинский З., Мускатин Л. и Портер Дж. У. Лайт и биоэнергетика симбиотических кораллов. Bioscience 34 , 705–709 (1984).

    CAS

    Google Scholar

  • 4.

    Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Поглощение аммония кораллами-склерактиниями Stylophora pistillata : эффект питания, света, и концентрации аммония. Лимнол.Oceanogr. 47 , 782–790 (2002).

    ADS

    Google Scholar

  • 5.

    Гровер Р., Магуэр Ж.-Ф., Аллеманд Д. и Феррье-Паж С. Поглощение нитратов склерактиниевым кораллом Stylophora pistillata . Лимнол. Oceanogr. 48 , 2266–2274 (2003).

    ADS
    CAS

    Google Scholar

  • 6.

    Годино, К., Феррье-Паж, К.И Гровер Р. Кинетика поглощения фосфата склерактиниевым кораллом Stylophora pistillata . Лимнол. Oceanogr. 54 , 1627–1633 (2009).

    ADS

    Google Scholar

  • 7.

    Muscatine, L., McCloskey, L. R. и Marian, R. E. Оценка ежедневного вклада углерода зооксантелл в дыхание коралловых животных. Лимнол. Oceanogr. 26 , 601–611 (1981).

    ADS
    CAS

    Google Scholar

  • 8.

    Трембли П., Гровер Р., Магуэр Ж.-Ф., Лежандр Л. и Ферье-Паж К. Автотрофный углеродный бюджет в коралловых тканях: новая основанная на 13C модель транслокации фотосинтатов. J. Exp. Биол. 215 , 1384–1393 (2012).

    Google Scholar

  • 9.

    Hoegh-Guldberg, O. et al. Коралловые рифы в условиях быстрого изменения климата и закисления океана. Наука 318 , 1737–1742 (2007).

    ADS
    CAS
    PubMed

    Google Scholar

  • 10.

    Клаар, Д. К., Шостек, Л., МакДевит-Ирвин, Дж. М., Шанце, Дж. Дж. И Баум, Дж. К. Глобальные закономерности и влияние явлений Эль-Ниньо на коралловые рифы: метаанализ. PLoS ONE 13 , e01

    (2018).

    PubMed
    PubMed Central

    Google Scholar

  • 11.

    Лох, Дж. М., Андерсон, К.Д. и Угес, Т. П. Повышение термического стресса для тропических коралловых рифов: 1871–2017 гг. Sci. Отчетность 8 , 6079 (2018).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 12.

    Hughes, T. P. et al. Пространственно-временные закономерности массового обесцвечивания кораллов в антропоцене. Наука 359 , 80–83 (2018).

    ADS
    CAS
    PubMed

    Google Scholar

  • 13.

    Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Обогащение азотом, измененная стехиометрия и сокращение коралловых рифов в Лоо-Ки, Флорида-Кис, США: исследование, продолжавшееся 3 десятилетия. Mar. Biol. 166 , 108 (2019).

    Google Scholar

  • 14.

    Wiedenmann, J. et al. Обогащение питательными веществами может повысить восприимчивость рифовых кораллов к обесцвечиванию. Nat. Клим. Чанг. 3 , 160–164 (2013).

    ADS
    CAS

    Google Scholar

  • 15.

    Burkepile, D. E. et al. Азот определяет различное влияние питательных веществ на обесцвечивание кораллов и их смертность. Экосистемы https://doi.org/10.1007/s10021-019-00433-2 (2019).

    Артикул

    Google Scholar

  • 16.

    Шанц, А. и Беркепил, Д. Э. Контекстно-зависимые эффекты нагрузки питательными веществами на кораллово-водорослевое мутуализм. Экология 95 , 1995–2005 (2014).

    PubMed

    Google Scholar

  • 17.

    Nordemar, I., Nyströn, M. & Dizon, R. Влияние повышенной температуры морской воды и обогащения нитратами на ветвящийся коралл Porites cylindrica в отсутствие твердых частиц пищи. Mar. Biol. 142 , 669–677 (2003).

    CAS

    Google Scholar

  • 18.

    Béraud, E., Gevaert, F., Rottier, C. и Ferrier-Pagès, C. Реакция склерактиниевого коралла Turbinaria reniformis на термический стресс зависит от азотного статуса кораллового голобионта. J. Exp. Биол. 216 , 2665–2674 (2013).

    PubMed

    Google Scholar

  • 19.

    Эззат, Л., Магуэр, Ж.-Ф., Гровер, Р. и Ферье-Паж, К. Ограниченная доступность фосфора — это ахиллесова пята тропических рифовых кораллов в теплеющем океане. Sci. Отчетность 6 , 31768 (2015).

    ADS

    Google Scholar

  • 20.

    Лессер, М. П. Повышенные температуры и ультрафиолетовое излучение вызывают окислительный стресс и подавляют фотосинтез у симбиотических динофлагеллат. Лимнол. Oceanogr. 41 , 271–283 (1996).

    ADS
    CAS

    Google Scholar

  • 21.

    Лессер, М. П. Окислительный стресс вызывает обесцвечивание кораллов при воздействии повышенных температур. Коралловые рифы 16 , 187–192 (1997).

    ADS

    Google Scholar

  • 22.

    Лессер, М. П. Окислительный стресс в морской среде: биохимия и физиологическая экология. Annu. Rev. Physiol. 68 , 253–278 (2006).

    CAS
    PubMed

    Google Scholar

  • 23.

    Даунс, К. А. и др. Окислительный стресс и сезонное обесцвечивание кораллов. Free Rad. Биол. Med. 33 , 533–543 (2002).

    CAS
    PubMed

    Google Scholar

  • 24.

    Перес, С. и Вайс, В. Оксид азота и отбеливание книдарий: уведомление о выселении опосредует разрыв симбиоза. J. Exp. Биол. 209 , 2804–2810 (2006).

    CAS
    PubMed

    Google Scholar

  • 25.

    Вейс, В. М. Клеточные механизмы обесцвечивания книдарий: стресс вызывает крах симбиоза. J. Exp. Биол. 211 , 59–66 (2008).

    Google Scholar

  • 26.

    Halliwell, B. & Gutteridge, J.M.C. (ред.) Свободные радикалы в биологии и медицине . (Оксфорд, 2007).

  • 27.

    Пёртнер, Х. О. и Фаррелл, А. П. Физиология и изменение климата. Наука 322 , 690–692 (2008).

    PubMed

    Google Scholar

  • 28.

    Соколова, И. М. Энергетическая толерантность к стрессу как концептуальная основа для интеграции эффектов множественных стрессоров. Integ. Комп. Биол. 53 , 597–608 (2013).

    Google Scholar

  • 29.

    Dominguez-Valdivia, M. D. et al. Азотное питание и антиоксидантный обмен у толерантных и чувствительных к аммонию растений. Phys. Растение. 132 , 359–369 (2008).

    CAS

    Google Scholar

  • 30.

    Бушар, Дж. Н. и Ямасаки, Х. Тепловой стресс стимулирует выработку оксида азота в Symbiodinium microadriaticum : возможная связь между оксидом азота и явлением обесцвечивания кораллов. Завод. Cell Physiol. 49 , 641–652 (2008).

    CAS
    PubMed

    Google Scholar

  • 31.

    Ямасаки, Х. и Сакихама, Ю. Одновременное производство оксида азота и пероксинитрита растительной нитратредукатазой: доказательства in vitro NR * -зависимого образования активных форм азота. FEBS. 468 , 89–92 (2000).

    CAS

    Google Scholar

  • 32.

    Бетке П. К., Баджер М. Р. и Джонс Р. Л. Апопластный синтез оксида азота тканями растений. Завод. Клетка. 16 , 332–341 (2004).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 33.

    Tischner, R., Planchet, E. & Kaiser, W.М. Митохондриальный перенос электронов как источник оксида азота в одноклеточных зеленых водорослях Chlorella sorokiniana . FEBS Lett. 576 , 151–155 (2004).

    CAS
    PubMed

    Google Scholar

  • 34.

    Планше, Э., Гупта, К. Дж., Сонода, М. и Кайзер, В. М. Эмиссия оксида азота из листьев табака и клеточных суспензий: факторы, ограничивающие скорость, и доказательства участия митохондриального транспорта электронов. Завод. J. 41 , 732–743 (2005).

    CAS
    PubMed

    Google Scholar

  • 35.

    Bartesaghi, S. & Radi, R. Основы биохимии пероксинитрита и нитрования тирозина белка. Редокс. Биол. 14 , 618–625 (2018).

    CAS
    PubMed

    Google Scholar

  • 36.

    Броди, Дж., Девлин, М., Хейнс, Д.И Уотерхаус Дж. Оценка состояния эвтрофикации лагуны Большого Барьерного рифа (Австралия). Биогеохимия 106 , 281–302 (2011).

    CAS

    Google Scholar

  • 37.

    Говерс, Л. Л., Ламерс, Л. П., Баума, Т. Дж., Де Брауэр, Дж. Х. и ван Катвейк, М. М. Эвтрофикация угрожает карибским водорослям : пример из Кюрасао и Бонайре. Мар. Опрос. Бык. 89 , 481–486 (2014).

    CAS

    Google Scholar

  • 38.

    Науманн, М.С., Беднарз, В.Н., Ферс, С.К., Ниггл, В. и Уайлд, К. Мониторинг прибрежных коралловых рифов вблизи Дахаба (залив Акаба, Красное море) указывает на местную эвтрофикацию как потенциальную причину изменений в донных сообществах. Environ. Монит. Оценивать. 187 , 1–14 (2015).

    CAS

    Google Scholar

  • 39.

    Rouzé, H., Lecellier, G., Langlade, M., Planes, S. & Berteaux-Lecellier, V. Окрашивающие рифы, подверженные различным уровням эвтрофикации и седиментации, могут поддерживать сходные бентосные сообщества. Март Загрязнение. Бык. 92 , 212–221 (2015).

    PubMed

    Google Scholar

  • 40.

    Hoogenboom, M., Beraud, E. & Ferrier-Pagè, C. Взаимосвязь между плотностью симбионтов и фотосинтетическим накоплением углерода в кораллах умеренного пояса Cladocora caespitosa . Коралловые рифы 29 , 21–29 (2010).

    ADS

    Google Scholar

  • 41.

    Bradford, M. M. Быстрый и чувствительный метод количественного определения количества белка в микрограммах, использующий принцип связывания белок-краситель. Анал. Биохим. 7 , 248–254 (1976).

    Google Scholar

  • 42.

    Джеффри С. и Хамфри Г.Новые спектрофотометрические уравнения для определения хлорофиллов a, b, c1 и c2 у высших растений, водорослей и природного фитопланктона. Biochem. Physiol. Pfl. 167 , 191–194 (1975).

    CAS

    Google Scholar

  • 43.

    Телятина, К. Дж., Карми, М., Файн, М. и Хуг-Гулдберг, О. Повышение точности оценки площади поверхности с помощью однократного погружения фрагментов кораллов в воск. Коралловые рифы 29 , 893–897 (2010).

    ADS

    Google Scholar

  • 44.

    Джонс, Р. Дж., Килдеа, Т. и Хуг-Гулдберг, О. Флуорометрия хлорофилла PAM: новый метод in situ для оценки стресса у склерактиниевых кораллов, используемый для изучения воздействия цианида в результате промысла цианида. Март Загрязнение. Бык. 38 , 864–874 (1999).

    CAS

    Google Scholar

  • 45.

    Джонс Р. Экотоксикологические эффекты гербицидов фотосистемы II на кораллы. Март Загрязнение. Бык. 51 , 495–506 (2005).

    CAS
    PubMed

    Google Scholar

  • 46.

    Дэвис П. С. Краткосрочные измерения роста кораллов с использованием точного метода плавучего взвешивания. Mar. Biol. 101 , 389–395 (1989).

    Google Scholar

  • 47.

    Aguiar, R. B. et al. Эстрадиола валерат и тиболон: влияние на окислительный стресс мозга и биохимию крови во время старения у самок крыс. Биогеронтология 9 , 285–298 (2008).

    CAS
    PubMed

    Google Scholar

  • 48.

    Оукс, К. Д. и ван дер Краак, Г. Дж. Полезность анализа TBARS для обнаружения окислительного стресса у популяций белых присосок ( Catostomus commersoni ), подвергшихся воздействию стоков целлюлозных заводов. Aquat. Toxicol. 63 , 447–463 (2003).

    CAS
    PubMed

    Google Scholar

  • 49.

    Хуанг, Д., Оу, Б. и Прайор, Р. Л. Химия, лежащая в основе анализов антиоксидантной способности. J. Agric. Еда. Chem. 53 , 1841–1856 (2005).

    CAS
    PubMed

    Google Scholar

  • 50.

    Соколова, И. М., Фредерих, М., Багве, Р., Ланнинг, Г. и Сухотин, А. А. Энергетический гомеостаз как интегративный инструмент для оценки пределов устойчивости водных организмов к стрессу окружающей среды. Mar. Environ. Res. 79 , 1–15 (2012).

    CAS
    PubMed

    Google Scholar

  • 51.

    Андервуд А. Дж. Эксперименты в области экологии: их логический план и интерпретация с использованием дисперсионного анализа (Cambridge University Press, Кембридж, Великобритания, 1997).

    Google Scholar

  • 52.

    Холливелл Б. Биохимия окислительного стресса. Biochem. Soc. Пер. 35 , 1147–1150 (2007).

    CAS
    PubMed

    Google Scholar

  • 53.

    Havaux, M. & Niyogi, K. K. Цикл виолаксантина защищает растения от фотоокислительного повреждения более чем одним механизмом. Proc. Natl. Акад. Sci. USA 96 , 8762–8767 (1999).

    ADS
    CAS
    PubMed

    Google Scholar

  • 54.

    Тарди, Ф. и Хаво, М.Текучесть и термостабильность тилакоидной мембраны во время работы цикла ксантофилла в хлоропластах высших растений. Biochim. Биофиз. Acta. 1330 , 179–193 (1997).

    CAS
    PubMed

    Google Scholar

  • 55.

    Даунс, К. А., Мюллер, Э., Филлипс, С., Фаут, Дж. Э. и Вудли, С. М. Система молекулярных биомаркеров для оценки состояния кораллов ( Montastrea faveolata ) во время теплового стресса. Mar. Biotechnol. 2 , 533–544 (2000).

    CAS
    PubMed

    Google Scholar

  • 56.

    Krueger, T. et al. Дифференциальное обесцвечивание кораллов — противопоставление активности и реакции ферментативных антиоксидантов у симбиотических партнеров при тепловом стрессе. Комп. Биохим. Physiol. Часть А: Мол. Интег. Physiol. 190 , 15–25 (2015).

    CAS

    Google Scholar

  • 57.

    Marangoni, L. F. B. et al. Биомаркеры окислительного стресса как потенциальные инструменты для мониторинга деградации рифов: пример исследования рифа в Южной Атлантике под влиянием Эль-Ниньо / Южного колебания (ENSO) 2015–2016 гг. Ecol. Инд 106 , 105533 (2019).

    CAS

    Google Scholar

  • 58.

    Моррис, Л. А., Вулстра, К. Р., Куигли, К. М., Борн, Д. Дж. И Бэй, Л. К. Доступность питательных веществ и их метаболизм влияют на стабильность симбиозов кораллов-Symbiodiniaceae. Trends Microbiol. 8 , 678–689 (2019).

    Google Scholar

  • 59.

    Аксенов-Грибанов Д.В. и др. Клеточная и метаболическая оценка реакции на тепловой стресс у эндемичного брюхоногого моллюска Benedictia limnaeoides ongurensis из озера Байкал. Комп. Биохим. Physiol. Часть B. 167 , 16–22 (2013).

    Google Scholar

  • 60.

    Лараде, С. и Стори, К. Б. Профиль метаболических ответов на аноксию у морских беспозвоночных. В Sensing, Signaling and Cell Adaptation (eds Storey, K. B. & Storey, J. M.) 27–46 (Elsevier, Amsterdam, 2002).

    Google Scholar

  • 61.

    Филип А., Макдональд А. Л. и Ватт П. В. Лактат — клетка, координирующая сигнал и системная функция. J. Exp. Биол. 208 , 4561–4575 (2005).

    Google Scholar

  • 62.

    Riobò, N.A. et al. Оксид азота подавляет активность митохондриальной НАДН: убихинонредуктазы за счет образования пероксинитрита. Biochem. J. 359 , 139–145 (2001).

    PubMed
    PubMed Central

    Google Scholar

  • 63.

    Ван, Ю. и Руби, Э. Г. Роли NO в микробных симбиозах. Cell.Microbiol. 13 , 518–526 (2013).

    Google Scholar

  • 64.

    Хигучи Т., Юяма И. и Накамура Т. Комбинированное воздействие нитратов с высокой температурой и высокой интенсивностью света на обесцвечивание кораллов и активность антиоксидантных ферментов. Рег. S. Mar. Sci. 2 , 27–31 (2015).

    Google Scholar

  • 65.

    Muscatine, L. & Porter, J.W. Рифовые кораллы-мутуалистические симбиозы, адаптированные к бедным питательными веществами средам. Bioscience 27 , 454–460 (1977).

    Google Scholar

  • 66.

    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. Новые взгляды на получение и обмен углерода в рамках симбиоза кораллов и динофлагеллят в рамках NH 4+ и НЕТ 3 питания. Proc. R. Soc. Б. 282 , 20150610 (2015).

    PubMed

    Google Scholar

  • 67.

    Каннинг, Р. и Бейкер, А.С. Избыток водорослевых симбионтов увеличивает восприимчивость рифовых кораллов к обесцвечиванию. Nat. Клим. Изменить 3 , 259–262 (2013).

    ADS

    Google Scholar

  • 68.

    Мейер, Дж. Л. и Шульц, Э. Т. Мигрирующие рыбы-гемулиды как источник питательных веществ и органических веществ на коралловых рифах. Лимнол. Oceanogr. 30 , 146–156 (1985).

    ADS

    Google Scholar

  • % PDF-1.6
    %
    3074 0 объект
    >
    эндобдж

    xref
    3074 222
    0000000016 00000 н.
    0000005640 00000 п.
    0000006012 00000 н.
    0000006202 00000 н.
    0000006625 00000 н.
    0000006654 00000 н.
    0000006813 00000 н.
    0000007553 00000 н.
    0000008030 00000 н.
    0000008080 00000 н.
    0000008304 00000 н.
    0000008534 00000 н.
    0000008581 00000 п.
    0000008660 00000 п.
    0000009397 00000 н.
    0000009436 00000 н.
    0000010093 00000 п.
    0000010667 00000 п.
    0000011228 00000 п.
    0000011809 00000 п.
    0000012351 00000 п.
    0000012922 00000 п.
    0000014962 00000 п.
    0000015559 00000 п.
    0000018254 00000 п.
    0000018355 00000 п.
    0000018398 00000 п.
    0000018479 00000 п.
    0000018553 00000 п.
    0000018720 00000 п.
    0000018927 00000 п.
    0000018986 00000 п.
    0000019193 00000 п.
    0000019271 00000 п.
    0000019327 00000 п.
    0000019405 00000 п.
    0000019461 00000 п.
    0000019553 00000 п.
    0000019609 00000 п.
    0000019701 00000 п.
    0000019757 00000 п.
    0000019849 00000 п.
    0000019905 00000 п.
    0000019997 00000 п.
    0000020053 00000 п.
    0000020145 00000 п.
    0000020201 00000 п.
    0000020293 00000 п.
    0000020349 00000 п.
    0000020441 00000 п.
    0000020497 00000 п.
    0000020589 00000 н.
    0000020645 00000 п.
    0000020737 00000 п.
    0000020793 00000 п.
    0000020885 00000 п.
    0000020941 00000 п.
    0000021033 00000 п.
    0000021089 00000 п.
    0000021181 00000 п.
    0000021237 00000 п.
    0000021329 00000 п.
    0000021385 00000 п.
    0000021477 00000 п.
    0000021533 00000 п.
    0000021625 00000 п.
    0000021681 00000 п.
    0000021773 00000 п.
    0000021829 00000 п.
    0000021921 00000 п.
    0000021977 00000 п.
    0000022069 00000 п.
    0000022125 00000 п.
    0000022217 00000 п.
    0000022273 00000 п.
    0000022365 00000 п.
    0000022421 00000 п.
    0000022513 00000 п.
    0000022569 00000 п.
    0000022661 00000 п.
    0000022717 00000 п.
    0000022809 00000 п.
    0000022865 00000 п.
    0000022957 00000 п.
    0000023013 00000 п.
    0000023105 00000 п.
    0000023161 00000 п.
    0000023253 00000 п.
    0000023309 00000 п.
    0000023401 00000 п.
    0000023457 00000 п.
    0000023549 00000 п.
    0000023605 00000 п.
    0000023697 00000 п.
    0000023753 00000 п.
    0000023809 00000 п.
    0000023887 00000 п.
    0000023945 00000 п.
    0000024023 00000 п.
    0000024080 00000 п.
    0000024172 00000 п.
    0000024229 00000 п.
    0000024321 00000 п.
    0000024378 00000 п.
    0000024470 00000 п.
    0000024527 00000 п.
    0000024619 00000 п.
    0000024676 00000 п.
    0000024768 00000 п.
    0000024825 00000 п.
    0000024917 00000 п.
    0000024974 00000 п.
    0000025066 00000 п.
    0000025123 00000 п.
    0000025215 00000 п.
    0000025272 00000 п.
    0000025364 00000 п.
    0000025421 00000 п.
    0000025513 00000 п.
    0000025570 00000 п.
    0000025662 00000 п.
    0000025719 00000 п.
    0000025811 00000 п.
    0000025868 00000 п.
    0000025960 00000 п.
    0000026017 00000 п.
    0000026109 00000 п.
    0000026166 00000 п.
    0000026258 00000 п.
    0000026315 00000 п.
    0000026407 00000 п.
    0000026464 00000 н.
    0000026556 00000 п.
    0000026613 00000 п.
    0000026705 00000 п.
    0000026762 00000 н.
    0000026854 00000 п.
    0000026911 00000 п.
    0000027003 00000 п.
    0000027060 00000 п.
    0000027152 00000 п.
    0000027209 00000 н.
    0000027301 00000 п.
    0000027358 00000 н.
    0000027450 00000 п.
    0000027507 00000 п.
    0000027599 00000 п.
    0000027656 00000 н.
    0000027748 00000 н.
    0000027805 00000 п.
    0000027897 00000 н.
    0000027954 00000 н.
    0000028046 00000 п.
    0000028103 00000 п.
    0000028195 00000 п.
    0000028252 00000 п.
    0000028344 00000 п.
    0000028401 00000 п.
    0000028493 00000 п.
    0000028550 00000 п.
    0000028642 00000 п.
    0000028699 00000 п.
    0000028791 00000 п.
    0000028848 00000 п.
    0000028940 00000 п.
    0000028997 00000 п.
    0000029089 00000 н.
    0000029146 00000 п.
    0000029238 00000 п.
    0000029295 00000 п.
    0000029387 00000 п.
    0000029444 00000 п.
    0000029536 00000 п.
    0000029593 00000 п.
    0000029685 00000 п.
    0000029742 00000 п.
    0000029834 00000 п.
    0000029891 00000 п.
    0000029983 00000 н.
    0000030040 00000 п.
    0000030132 00000 п.
    0000030189 00000 п.
    0000030281 00000 п.
    0000030338 00000 п.
    0000030430 00000 п.
    0000030487 00000 п.
    0000030579 00000 п.
    0000030636 00000 п.
    0000030728 00000 п.
    0000030785 00000 п.
    0000030877 00000 п.
    0000030934 00000 п.
    0000031026 00000 п.
    0000031083 00000 п.
    0000031175 00000 п.
    0000031232 00000 п.
    0000031324 00000 п.
    0000031380 00000 п.
    0000031472 00000 п.
    0000031528 00000 п.
    0000031620 00000 н.
    0000031676 00000 п.
    0000031768 00000 н.
    0000031824 00000 п.
    0000031916 00000 п.
    0000031972 00000 п.
    0000032064 00000 п.
    0000032120 00000 н.
    0000032212 00000 п.
    0000032268 00000 п.
    0000032360 00000 п.
    0000032416 00000 п.
    0000032508 00000 п.
    0000032564 00000 н.
    0000032656 00000 п.
    0000032712 00000 п.
    0000032804 00000 п.
    0000032860 00000 п.
    0000032952 00000 п.
    0000033011 00000 п.
    0000005410 00000 н.
    0000004836 00000 н.
    трейлер
    ] >>
    startxref
    0
    %% EOF

    3295 0 объект
    > поток
    xb«b`c`e`gg @

    Принципы двулучепреломления | Nikon’s MicroscopyU

    Двулучепреломление формально определяется как двойное лучепреломление в прозрачном, молекулярно упорядоченном материале, которое проявляется в наличии зависимых от ориентации различий в показателе преломления.Многие прозрачные твердые тела оптически изотропны, что означает, что показатель преломления одинаков во всех направлениях по всей кристаллической решетке. Примерами изотропных твердых веществ являются стекло, поваренная соль (хлорид натрия, проиллюстрированный на рис. 1 (а) ), многие полимеры и широкий спектр как органических, так и неорганических соединений.

    Рисунок 1 — Кристаллическая структура изотропных и анизотропных материалов

    Простейшая структура кристаллической решетки — кубическая, как показано на молекулярной модели хлорида натрия в рис. 1 (a) , расположение, в котором все ионы натрия и хлорида упорядочены с равномерным интервалом по трем взаимно перпендикулярным осям.Каждый хлорид-ион окружен (и электростатически связан) с шестью отдельными ионами натрия, и наоборот для ионов натрия. Структура решетки, проиллюстрированная на рисунке Рис. 1 (b) , представляет собой минерал кальцит (карбонат кальция), который состоит из довольно сложной, но высокоупорядоченной трехмерной матрицы ионов кальция и карбоната. Кальцит имеет анизотропную структуру кристаллической решетки, которая взаимодействует со светом совершенно иначе, чем изотропные кристаллы. Полимер, проиллюстрированный на фигуре , рис. 1 (c) , является аморфным и лишен какой-либо заметной периодической кристаллической структуры.Полимеры часто обладают некоторой степенью кристаллического порядка и могут быть или не быть оптически прозрачными.

    Кристаллы классифицируются как изотропные или анизотропные в зависимости от их оптических свойств и от того, эквивалентны ли их кристаллографические оси. Все изотропные кристаллы имеют эквивалентные оси, которые одинаково взаимодействуют со светом, независимо от ориентации кристалла по отношению к падающим световым волнам. Свет, попадающий в изотропный кристалл, преломляется под постоянным углом и проходит через кристалл с единственной скоростью, не поляризуясь из-за взаимодействия с электронными компонентами кристаллической решетки.

    Термин анизотропия относится к неоднородному пространственному распределению свойств, которое приводит к получению разных значений, когда образцы исследуются с нескольких направлений в одном и том же материале. Наблюдаемые свойства часто зависят от конкретного используемого зонда и часто меняются в зависимости от того, основаны ли наблюдаемые явления на оптических, акустических, тепловых, магнитных или электрических событиях. С другой стороны, как упоминалось выше, изотропные свойства остаются симметричными, независимо от направления измерения, при этом каждый тип датчика сообщает идентичные результаты.

    Анизотропные кристаллы, такие как кварц, кальцит и турмалин, имеют кристаллографически различные оси и взаимодействуют со светом по механизму, который зависит от ориентации кристаллической решетки относительно угла падения света. Когда свет попадает на оптическую ось анизотропных кристаллов, он ведет себя аналогично взаимодействию с изотропными кристаллами и проходит через нее с единственной скоростью. Однако, когда свет попадает на неэквивалентную ось, он преломляется на два луча, каждый из которых поляризован с направлениями колебаний, ориентированными под прямым углом (взаимно перпендикулярно) друг другу и движущимися с разными скоростями.Это явление называется двойным лучепреломлением или двулучепреломлением и проявляется в большей или меньшей степени во всех анизотропных кристаллах.

    Электромагнитное излучение распространяется в пространстве с осциллирующими векторами электрического и магнитного поля, чередующимися по синусоидальной схеме, перпендикулярной друг другу и направлению распространения волны. Поскольку видимый свет состоит как из электрических, так и из магнитных компонентов, скорость света через вещество частично зависит от его электропроводности.Световые волны, проходящие через прозрачный кристалл, должны взаимодействовать с локализованными электрическими полями во время своего путешествия. Относительная скорость, с которой электрические сигналы проходят через материал, зависит от типа сигнала и его взаимодействия с электронной структурой и определяется свойством, называемым диэлектрической постоянной материала . Векторное соотношение, определяющее взаимодействие между световой волной и кристаллом, через который она проходит, определяется внутренней ориентацией электрических векторов решетки и направлением компонента электрического вектора волны.Следовательно, тщательное рассмотрение электрических свойств анизотропного материала имеет фундаментальное значение для понимания того, как световая волна взаимодействует с материалом, когда она распространяется.

    Рисунок 2 — Световой путь через кристалл кальцита

    Явление двойного лучепреломления основано на законах электромагнетизма, впервые предложенных британским математиком Джеймсом Клерком Максвеллом в 1860-х годах. Его тщательно продуманная серия уравнений демонстрирует, что скорость света через материал равна скорости света в вакууме ( c ), деленной на произведение квадратного корня из диэлектрической проницаемости материала ( e ), умноженное на магнитную проницаемость. ( м ) средней.В общем, биологические и родственные материалы имеют магнитную проницаемость очень близко к 1,0, как и многие проводящие и непроводящие образцы, представляющие интерес для микроскописта. Таким образом, диэлектрическая проницаемость материала связана с показателем преломления посредством простого уравнения:

    1

    ε = п 2

    , где e — переменная, представляющая диэлектрическую проницаемость, а n — измеренный показатель преломления материала.Это уравнение было выведено для определенных частот света и не учитывает дисперсию полихроматического света при его прохождении через материал. Анизотропные кристаллы состоят из сложных ориентаций молекулярной и атомной решетки, которые обладают различными электрическими свойствами в зависимости от направления, с которого они исследуются. В результате показатель преломления также изменяется в зависимости от направления, когда свет проходит через анизотропный кристалл, что приводит к появлению траекторий и скоростей, зависящих от направления.

    Возможно, одна из самых ярких демонстраций двойного лучепреломления происходит с кристаллами карбоната кальция (кальцита), как показано на Рис. 2 . Ромбоэдрический блок расщепления кальцита дает два изображения, когда он помещается над объектом, а затем рассматривается в отраженном свете, проходящем через кристалл. Одно из изображений выглядит так, как обычно ожидается при наблюдении за объектом через прозрачное стекло или изотропный кристалл, в то время как другое изображение кажется слегка смещенным из-за природы дважды преломленного света.Когда анизотропные кристаллы преломляют свет, они разделяют входящие лучи на две составляющие, которые проходят разные пути во время своего путешествия через кристалл и появляются как отдельные световые лучи. Это необычное поведение, как обсуждалось выше, объясняется расположением атомов в кристаллической решетке. Поскольку точное геометрическое упорядочение атомов не является симметричным относительно кристаллических осей, световые лучи, проходящие через кристалл, могут иметь разные показатели преломления в зависимости от направления распространения.

    Один из лучей, проходящих через анизотропный кристалл, подчиняется законам нормального преломления и проходит через кристалл с одинаковой скоростью во всех направлениях. Этот световой луч называется обыкновенным лучом . Другой луч движется со скоростью, которая зависит от направления распространения внутри кристалла, и называется необычным лучом . Следовательно, каждый световой луч, входящий в кристалл, разделяется на обычный и необычный луч, которые выходят из дальнего конца кристалла в виде линейно поляризованных лучей, векторы электрического поля которых колеблются во взаимно перпендикулярных плоскостях.

    Рисунок 3 — Электрические векторные ориентации кристалла двулучепреломляющего кальцита

    Эти явления проиллюстрированы на рисунках с 2 по 4 . Кристалл кальцита, представленный на рис. 3 (b) , расположен над заглавной буквой A на белом листе бумаги, демонстрируя двойное изображение, наблюдаемое через кристалл. Если кристалл медленно вращать вокруг буквы, одно из изображений буквы останется неподвижным, а другое прецессирует по круговой орбите на 360 градусов вокруг первого.Ориентация плоскостей электрических векторов колебаний как для обыкновенного ( O ), так и для необычного ( E ) лучей обозначена линиями с удвоенными стрелками на рис. 3 (b) . Обратите внимание, что эти оси перпендикулярны друг другу. Оптическая ось кристалла, которая составляет равный угол (103 градуса) со всеми тремя гранями кристалла, соединенными в углу, также указана в нижней части кристалла. Степень двойного лучепреломления в кальците настолько выражена, что изображения буквы A , образованные обыкновенным и необыкновенным лучами, полностью разделены.Такой высокий уровень двойного лучепреломления наблюдается не во всех анизотропных кристаллах.

    Прозрачные дихроичные поляризаторы можно использовать для определения направлений электрических векторов необычных и обыкновенных лучей в кристалле кальцита, как показано на рисунках 3 (a) и 3 (c) . Когда поляризатор ориентирован так, что передаются все световые волны с электрическими векторами, ориентированными в горизонтальном направлении (, рисунок 3 (a), ), волны с аналогичными векторами в вертикальном направлении поглощаются, и наоборот (, рисунок 3 (c) ) ).В кристалле кальцита, представленном в рис. 3 , необычный луч имеет вертикальный угол электрического вектора колебаний, который поглощается, когда поляризатор ориентирован в горизонтальном направлении ( рис. 3 (a) ). В этом случае через поляризатор проходит только свет обычного луча, и соответствующее ему изображение буквы A является единственным наблюдаемым. Напротив, когда поляризатор поворачивается так, что направление передачи вибрации ориентировано вертикально ( Рис. 3 (c) ), обычный луч блокируется, и изображение буквы A , создаваемое необычным лучом, является единственным. видимый.

    На фиг. 3 падающие световые лучи, порождающие обыкновенные и необыкновенные лучи, входят в кристалл в направлении, наклонном по отношению к оптической оси, и ответственны за наблюдаемый характер двойного лучепреломления. Однако поведение анизотропного кристалла отличается, если падающий свет входит в кристалл в направлении, параллельном или перпендикулярном оптической оси, как показано на рис. 4 . Когда падающий луч входит в кристалл перпендикулярно оптической оси, он разделяется на обычные и необычные лучи, как описано выше, но вместо того, чтобы идти разными путями, траектории этих лучей совпадают.Несмотря на то, что обыкновенный и необычный лучи выходят из кристалла в одном и том же месте, они имеют разную длину оптического пути и впоследствии сдвигаются по фазе относительно друг друга ( Рис. 4 (b) ). Два только что описанных случая проиллюстрированы на рис. 4 (a) , для наклонного случая (см. Рис. 2 и 3, ), и на рис. 4 (b) для случая, когда падающий свет перпендикулярен оптической оси. двулучепреломляющего кристалла.

    В случае, когда падающие световые лучи падают на кристалл в направлении, параллельном оптической оси ( Рисунок 4 (c) ), они ведут себя как обычные световые лучи и не разделяются на отдельные компоненты анизотропным кристаллом с двойным лучепреломлением.Кальцит и другие анизотропные кристаллы в этих условиях действуют как изотропные материалы (например, стекло). Длины оптических путей выходящих из кристалла световых лучей идентичны, и нет относительного фазового сдвига.

    Рисунок 4 — Разделение световых волн двулучепреломляющим кристаллом

    Хотя термины двойное лучепреломление и двойное лучепреломление широко используются для обозначения способности анизотропного кристалла разделять падающий свет на обычные и необычные лучи, эти явления фактически относятся к различным проявлениям одного и того же процесса.Фактическое разделение светового луча на два видимых вида, каждый из которых преломляется под разным углом, представляет собой процесс двойного лучепреломления. Напротив, двойное лучепреломление относится к физическому происхождению разделения, которое заключается в существовании изменения показателя преломления, которое зависит от направления в геометрически упорядоченном материале. Разница в показателе преломления или двулучепреломлении между необыкновенным и обычным лучами, проходящими через анизотропный кристалл, является измеримой величиной и может быть выражена в виде абсолютного значения с помощью уравнения:

    2

    Двулучепреломление (B) = | n e — n o |

    , где n (e) и n (o) — это показатели преломления необыкновенного и обыкновенного лучей, соответственно.Это выражение справедливо для любой части или фрагмента анизотропного кристалла, за исключением световых волн, распространяющихся вдоль оптической оси кристалла. Поскольку значения показателя преломления для каждого компонента могут изменяться, абсолютное значение этой разницы может определять общую величину двулучепреломления, но знак двулучепреломления будет либо отрицательным, либо положительным значением. Определение знака двойного лучепреломления аналитическими методами используется для разделения анизотропных образцов на категории, которые называются положительными или отрицательными двойными лучепреломления.Двулучепреломление образца не является фиксированным значением, но будет меняться в зависимости от ориентации кристалла относительно угла падения света.

    Разность оптического пути — это классическая оптическая концепция, связанная с двойным лучепреломлением, и оба они определяются относительным фазовым сдвигом между обычным и необыкновенным лучами, когда они выходят из анизотропного материала. Как правило, разность оптических путей вычисляется путем умножения толщины образца на показатель преломления, но только в том случае, если среда однородна и не содержит значительных отклонений или градиентов показателя преломления.Эта величина, как и величина двулучепреломления, обычно выражается в нанометрах и увеличивается с увеличением толщины образца. Для системы с двумя значениями показателя преломления ( n (1) и n (2) ) разность оптических путей ( D ) определяется из уравнения:

    3

    Разница оптического пути D = (n 1 — n 2 ) • t (Толщина)

    Чтобы учесть фазовое соотношение и разность скоростей между обычным и необыкновенным лучами после того, как они проходят через кристалл с двойным лучепреломлением, часто определяется величина, называемая относительным запаздыванием .Как упоминалось выше, два световых луча ориентированы так, что они колеблются под прямым углом друг к другу. Каждый луч будет сталкиваться с немного разной электрической средой (показателем преломления), когда входит в кристалл, и это влияет на скорость, с которой луч проходит через кристалл. Из-за разницы показателей преломления один луч будет проходить через кристалл медленнее, чем другой. Другими словами, скорость более медленного луча будет , отставая от по отношению к более быстрому лучу.Это значение замедления (относительное замедление) можно количественно определить с помощью следующего уравнения:

    4

    Замедление (Γ) = Толщина (t) x Двулучепреломление (B)

    5

    Γ = t • | n e — n o |

    Где G — количественное замедление материала, t — толщина двулучепреломляющего кристалла (или материала) и B — измеренное двулучепреломление, как определено выше.Факторами, влияющими на величину замедления, являются величина разницы в показателях преломления для окружающей среды, видимой обычным и необыкновенным лучами, а также толщина образца. Очевидно, что чем больше толщина или разница показателей преломления, тем больше степень запаздывания между волнами. Ранние наблюдения, сделанные на минеральном кальците, показали, что более толстые кристаллы кальцита вызывают большие различия в расщеплении изображений, видимых через кристаллы, таких как те, что показаны на рис. Это наблюдение согласуется с приведенным выше уравнением, которое указывает, что замедление будет увеличиваться с увеличением толщины кристалла (или образца).

    Поведение обычного светового луча в кристалле с двойным лучепреломлением можно описать в терминах сферического волнового фронта, основанного на принципе Гюйгенса о вейвлетах, исходящих от точечного источника света в однородной среде (как показано на рис. 5 ). Распространение этих волн через изотропный кристалл происходит с постоянной скоростью, потому что показатель преломления, испытываемый волнами, одинаков во всех направлениях ( Рис. 5 (a) ).Напротив, расширяющийся волновой фронт необычных волн, которые сталкиваются с изменениями показателя преломления в зависимости от направления (см. рис. 5 (b) ), можно описать поверхностью эллипсоида вращения.

    Рисунок 5 — Распространение волнового фронта в анизотропных кристаллах

    Верхний и нижний пределы скоростей необыкновенных волн определяются длинной и короткой осями эллипсоида ( Рисунок 5 (c) ).Волновой фронт достигает своей максимальной скорости при распространении в направлении, параллельном длинной оси эллипсоида, которая называется быстрой осью . С другой стороны, самые медленные волновые фронты возникают, когда волна движется вдоль короткой оси эллипсоида. Эта ось называется медленной осью . Между этими двумя крайностями волновые фронты, распространяющиеся в других направлениях, испытывают градиент показателя преломления, который зависит от ориентации, и распространяются со скоростями промежуточных значений.

    Прозрачные кристаллические материалы обычно подразделяются на две категории, определяемые количеством оптических осей, присутствующих в молекулярных решетках. Одноосные кристаллы имеют одну оптическую ось и составляют самое большое семейство обычных образцов с двойным лучепреломлением, включая кальцит, кварц и упорядоченные синтетические или биологические структуры. Другой основной класс — это двухосных кристаллов , которые представляют собой двулучепреломляющие материалы с двумя независимыми оптическими осями. Обычный и необычный волновые фронты в одноосных кристаллах совпадают либо на медленной, либо на быстрой оси эллипсоида, в зависимости от распределения показателей преломления внутри кристалла (проиллюстрировано на рис. 6, ).Разность оптических путей или относительное замедление между этими лучами определяется отставанием одной волны от другой на фронтах поверхностных волн вдоль направления распространения.

    В случаях, когда обыкновенный и необычный волновые фронты совпадают на длинной или большой оси эллипсоида, тогда показатель преломления необыкновенной волны больше, чем у обыкновенной волны ( Рисунок 6 (b) ). Эта ситуация называется положительным двулучепреломлением. Однако, если обычный и необычный волновые фронты перекрываются на малой оси эллипсоида ( Рис. 6 (a) ), то верно обратное.Фактически, показатель преломления, через который проходит обычная волна, превышает показатель преломления необычной волны, и материал называется отрицательно двупреломляющим. Схематический эллипсоид, связывающий ориентацию и относительную величину показателя преломления в кристалле, называется эллипсоидом показателя преломления и показан на рисунках 5 и 6.

    Рисунок 6 — Эллипсоиды показателя преломления

    Возвращаясь к кристаллу кальцита, представленному на фиг. , рис. 2, , кристалл показан с оптической осью, расположенной в верхнем левом углу.Попадая в кристалл, обычная световая волна преломляется без отклонения от нормального угла падения, как если бы она проходила через изотропную среду. В качестве альтернативы необыкновенная волна отклоняется влево и распространяется с электрическим вектором, перпендикулярным вектору обыкновенной волны. Поскольку кальцит является кристаллом с отрицательным двулучепреломлением, обычная волна является медленной волной, а необыкновенная волна — быстрой волной.

    Кристаллы двулучепреломления в поляризационном оптическом микроскопе

    Как упоминалось выше, свет, который дважды преломляется через анизотропные кристаллы, поляризован с направлениями электрических векторных колебаний обыкновенной и необыкновенной световых волн, ориентированных перпендикулярно друг другу.Теперь можно исследовать поведение анизотропных кристаллов при освещении скрещенными поляризациями в оптическом микроскопе. На рисунке 7 показан кристалл с двойным лучепреломлением (анизотропный), расположенный между двумя поляризаторами, направления колебаний которых ориентированы перпендикулярно друг другу (и лежат в направлениях, указанных стрелками рядом с метками поляризатора и анализатора).

    Неполяризованный белый свет от осветителя попадает в поляризатор слева и линейно поляризован с ориентацией в направлении, указанном стрелкой (рядом с этикеткой поляризатора), и произвольно представлен красной синусоидальной световой волной.Затем поляризованный свет попадает в анизотропный кристалл (установленный на столике микроскопа), где он преломляется и разделяется на две отдельные составляющие, колеблющиеся параллельно кристаллографическим осям и перпендикулярно друг другу (красная открытая и заполненная световые волны). Поляризованные световые волны затем проходят через анализатор (положение поляризации которого указано стрелкой рядом с этикеткой анализатора), что позволяет проходить только тем компонентам световых волн, которые параллельны азимуту передачи анализатора.Относительное замедление одного луча по отношению к другому указывается уравнением (толщина, умноженная на разность показателей преломления), которое связывает изменение скорости между обычным и необыкновенным лучами, преломленными анизотропным кристаллом.

    Рисунок 7 — Кристаллы двойного лучепреломления между скрещенными поляризаторами

    Чтобы более подробно изучить, как двулучепреломляющие анизотропные кристаллы взаимодействуют с поляризованным светом в оптическом микроскопе, мы рассмотрим свойства отдельного кристалла.Материал образца представляет собой гипотетический тетрагональный кристалл с двойным лучепреломлением, оптическая ось которого ориентирована в направлении, параллельном длинной оси кристалла. Свет, попадающий в кристалл из поляризатора, будет распространяться перпендикулярно оптической (длинной) оси кристалла. На рисунках 8 показан кристалл в том виде, в котором он будет отображаться в окулярах микроскопа при освещении со скрещенными поляризациями, когда он вращается вокруг оптической оси микроскопа. В каждом кадре фиг. 8 ось поляризатора микроскопа обозначена заглавной буквой P и ориентирована в направлении восток-запад (горизонтальное).Ось анализатора микроскопа обозначена буквой A и ориентирована в направлении север-юг (вертикальное). Эти оси перпендикулярны друг другу и приводят к полностью темному полю при наблюдении через окуляры без образца на предметном столике микроскопа.

    Рисунок 8 (a) иллюстрирует анизотропный тетрагональный кристалл с двойным лучепреломлением в ориентации, где длинная (оптическая) ось кристалла расположена параллельно азимуту пропускания поляризатора.В этом случае свет, проходящий через поляризатор, а затем через кристалл, колеблется в плоскости, параллельной направлению поляризатора. Поскольку свет, падающий на кристалл, не преломляется в расходящиеся обыкновенные и необыкновенные волны, изотропные световые волны, проходящие через кристалл, не могут произвести электрические векторные колебания в правильной ориентации, чтобы пройти через анализатор и вызвать интерференционные эффекты (см. Горизонтальную стрелку в Рисунок 8 (a) и обсуждение ниже).В результате кристалл получается очень темным, практически незаметным на черном фоне. В целях иллюстрации кристалл, изображенный на фигуре , рис. 8 (a), не полностью потух (как это было бы между скрещенными поляризаторами), но пропускает небольшую часть красного света, чтобы читатель мог заметить положение кристалла. .

    Микроскопы классически называют эту ориентацию позицией экстинкции кристалла, которая важна как точка отсчета для определения показателей преломления анизотропных материалов с помощью поляризационного микроскопа.При удалении анализатора в микроскопе с перекрестной поляризацией единственное разрешенное направление световой вибрации, проходящей через поляризатор, взаимодействует только с одним электрическим компонентом в кристалле двойного лучепреломления. Этот метод позволяет выделить для измерения единственный показатель преломления. Впоследствии оставшийся показатель преломления двулучепреломляющего материала может быть измерен поворотом поляризатора на 90 градусов.

    Рисунок 8 — Ориентация двулучепреломляющего кристалла в поляризованном свете

    Ситуация совсем иная в Рис. 8 (b) , где длинная (оптическая) ось кристалла теперь расположена под косым углом ( a ) по отношению к азимуту пропускания поляризатора, ситуация, вызванная вращение столика микроскопа.В этом случае часть света, падающего на кристалл от поляризатора, проходит на анализатор. Чтобы получить количественную оценку количества света, проходящего через анализатор, для решения проблемы можно применить простой векторный анализ. Первым шагом является определение вкладов поляризатора в o и e (см. рис. 8 (b) ; буквы относятся к обыкновенному ( o ) лучу и необыкновенному ( e ) лучу, которые обсуждались выше).Проекции векторов падают на ось поляризатора и принимают произвольное значение 1 как для o , так и для e , которые пропорциональны действительной интенсивности обыкновенного и необыкновенного луча. Вклады поляризатора для o и e проиллюстрированы черными стрелками, обозначенными x и y на оси поляризатора ( P ) на рисунке 8 (b) . Эти длины затем измеряются на векторах o и e (показаны красными стрелками, обозначающими векторы), которые затем складываются вместе для получения результирующего вектора r ‘.Проекция результата на ось анализатора ( A ) дает абсолютное значение R . Значение R на оси анализатора пропорционально количеству света, проходящего через анализатор. Результаты показывают, что часть света от поляризатора проходит через анализатор, и двулучепреломляющий кристалл демонстрирует некоторую степень яркости.

    Максимальная яркость для двулучепреломляющего материала наблюдается, когда длинная (оптическая) ось кристалла ориентирована под углом 45 градусов по отношению как к поляризатору, так и к анализатору, как показано на рис. 8 (c) .Падение проекций векторов o и e на ось поляризатора ( P ) определяет вклады поляризатора в эти векторы. Когда эти проекции затем измеряются на векторах, результат можно определить, завершив прямоугольник до оси анализатора ( A ). Только что описанная методика будет работать для ориентации любого кристалла относительно оси поляризатора и анализатора, потому что o и e всегда расположены под прямым углом друг к другу, с той лишь разницей, что ориентация o и e по отношению к осям кристалла.

    Когда обычный и необычный лучи выходят из двулучепреломляющего кристалла, они все еще колеблются под прямым углом друг к другу. Однако компоненты этих волн, которые проходят через анализатор, колеблются в одной плоскости (как показано на рисунке 8). Поскольку одна волна запаздывает по отношению к другой, возникает интерференция (конструктивная или деструктивная) между волнами, когда они проходят через анализатор. В результате некоторые образцы с двойным лучепреломлением приобретают спектр цвета при наблюдении в белом свете через скрещенные поляризаторы.

    Рисунок 9 — Диаграмма двулучепреломления Мишеля-Леви

    Количественный анализ интерференционных цветов, наблюдаемых в образцах с двойным лучепреломлением, обычно выполняется с помощью диаграммы Мишеля-Леви, подобной той, которая проиллюстрирована на рис. 9 . Как видно из этого графика, цвета поляризации, визуализированные в микроскоп и записанные на пленку или захваченные в цифровом виде, могут коррелировать с фактическим замедлением, толщиной и двулучепреломлением образца.Диаграмму относительно легко использовать с образцами с двойным лучепреломлением, если известны две из трех требуемых переменных. Когда образец помещается между скрещенными поляризаторами в микроскопе и поворачивается в положение максимальной яркости с помощью любой из множества пластин замедления, цвет, визуализируемый в окулярах, можно проследить по оси замедления, чтобы найти разницу длин волн между обычными пластинами. и необычные волны, проходящие через образец. В качестве альтернативы, измеряя показатели преломления анизотропного образца и вычисляя их разность (двойное лучепреломление), интерференционный цвет (ы) можно определить по значениям двойного лучепреломления в верхней части диаграммы.Путем экстраполяции наклонных линий обратно к ординате можно также оценить толщину образца.

    В нижней части диаграммы Мишеля-Леви (ось x) отмечены порядки запаздывания, кратные приблизительно 550 нанометрам. Область между нулем и 550 нанометрами известна как первого порядка цветов поляризации, а пурпурный цвет, который встречается в области 550 нанометров, часто называют красным первого порядка . Цвета между 550 и 1100 нанометрами называются цветами второго порядка, цветами, и так далее в таблице.Черный цвет в начале графика известен как черный цвет нулевого порядка . Многие диаграммы Мишеля-Леви, напечатанные в учебниках, отображают цвета высших порядков вплоть до пятого или шестого порядка.

    Самая чувствительная область диаграммы — красный цвет первого порядка (550 нанометров), потому что даже небольшое изменение замедления приводит к резкому смещению цвета либо вверх по длине волны до голубого, либо вниз до желтого. Многие производители микроскопов используют эту чувствительность, предоставляя двухполупериодную пластину задержки или компенсатор красного цвета первого порядка вместе со своими поляризационными микроскопами, чтобы помочь ученым в определении свойств двулучепреломляющих материалов.

    Категории двулучепреломления

    Хотя двойное лучепреломление является неотъемлемым свойством многих анизотропных кристаллов, таких как кальцит и кварц, оно также может возникать из-за других факторов, таких как структурное упорядочение, физическое напряжение, деформация, поток через ограниченный канал и деформация. Собственное двулучепреломление — это термин, используемый для описания материалов природного происхождения, которые имеют асимметрию показателя преломления, зависящую от направления. Эти материалы включают множество анизотропных природных и синтетических кристаллов, минералов и химикатов.

    Структурное двулучепреломление — это термин, который применяется к широкому спектру анизотропных образований, включая биологические макромолекулярные сборки, такие как хромосомы, мышечные волокна, микротрубочки, жидкокристаллическая ДНК и волокнистые белковые структуры, такие как волосы. В отличие от многих других форм двулучепреломления, структурное двулучепреломление часто чувствительно к колебаниям или градиентам показателя преломления в окружающей среде. Кроме того, многие синтетические материалы также демонстрируют структурное двойное лучепреломление, включая волокна, длинноцепочечные полимеры, смолы и композиты.

    Напряжение и деформация Двулучепреломление возникает из-за внешних сил и / или деформации, действующих на материалы, которые не обладают естественным двойным лучепреломлением. Примерами являются растянутые пленки и волокна, деформированные стеклянные и пластиковые линзы, а также отливки из напряженных полимеров. Наконец, поток двойное лучепреломление может происходить из-за индуцированного выравнивания материалов, таких как асимметричные полимеры, которые упорядочиваются в присутствии потока жидкости. Палочковидные и пластинчатые молекулы и макромолекулярные сборки, такие как высокомолекулярная ДНК и детергенты, часто используются в качестве кандидатов в исследованиях двойного лучепреломления потока.

    В заключение, двулучепреломление — это явление, проявляющееся в асимметрии свойств, которые могут быть оптическими, электрическими, механическими, акустическими или магнитными по своей природе. Широкий спектр материалов демонстрирует различную степень двойного лучепреломления, но особый интерес для оптического микроскописта представляют те образцы, которые прозрачны и легко наблюдаются в поляризованном свете.

    .