Конвертер ватт в амперы: Калькулятор преобразования Ватт в Амперы онлайн

Содержание

Конвертер ватт в амперы. Сколько электричества расходует бытовая техника

Потребляемая мощность – одна из основных характеристик электроприборов. Поэтому на любом электроприборе или в инструкции к нему должна быть точная информация о количестве ватт, необходимых для его работы. Конечно, количество расходуемой электроэнергии может изменяться. Например, количество энергии, потребляемое компьютером, зависит от мощности блока питания и загруженности компьютера. В случае с холодильником, оно зависит от его объема и количества хранящихся в нем продуктов, а со стиральной машиной – от режима стирки, выставленной температуры, массы белья и т. д. Предлагаю вам список различных электроприборов с указанием их примерной мощности в ваттах, который поможет рассчитать потребляемую электроэнергию.

1. Электрическая печь – 17 221 ватт
2. Центральный кондиционер – 5000 ватт
3. Сушильная машина для белья и одежды – 3400 ватт
4. Духовка электрическая – 2300 ватт
5. Посудомоечная машина – 1800 ватт
6. Фен – 1538 ватт
7. Обогреватель – 1500 ватт
8. Кофеварка – 1500 ватт
9. Микроволновая печь – 1500 ватт
10. Аппарат для приготовления попкорна – 1400 ватт
11. Тостер-печь (тостер овен) – 1200 ватт
12. Утюг – 1100 ватт
13. Тостер – 1100 ватт
14. Комнатный кондиционер – 1000 ватт
15. Электрическая кухонная плита – 1000 ватт
16. Пылесос – 650 ватт
17. Нагреватель воды – 479 ватт
18. Стиральная машина – 425 ватт
19. Кофеварка эспрессо (эспрессо-машина) – 360 ватт
20. Осушитель воздуха – 350 ватт
21. Плазменный телевизор – 339 ватт
22. Блендер – 300 ватт
23. Морозильная камера – 273 ватта
24. Жидкокристаллический телевизор (LCD) – 213 ватт
25. Игровая приставка – 195 ватт
26. Холодильник – 188 ватт
27. Обычный телевизор (с электронно-лучевой трубкой) – 150 ватт

28. Монитор – 150 ватт

29. Компьютер (блок питания) – 120 ватт
30. Портативный вентилятор – 100 Вт
31. Электрическое одеяло – 100 Вт
32. Стационарный миксер – 100 Вт
33. Электрическая открывалка для банок – 100 Вт
34. Плойка для завивки волос – 90 Вт
35. Потолочный вентилятор – 75 Вт
36. Увлажнитель воздуха – 75 Вт
37. Лампа накаливания (60-ваттная) – 60 Вт
38. Стереосистема – 60 Вт
39. Ноутбук – 50 Вт
40. Принтер – 45 Вт
41. Цифровой видеорегистратор (DVR) – 33 Вт
42. Аквариум – 30 Вт
43. Кабельная коробка – 20 Вт
44. Компактная люминесцентная лампа (энергосберегающая
лампа), эквивалентная 60-ваттной – 18 Вт
45. DVD-плеер – 17 Вт
46. Спутниковая антенна – 15 Вт
47. Видеомагнитофон – 11 Вт
48. Радиочасы – 10 Вт
49. Переносная стерео-система (бумбокс) – 7 Вт
50. Беспроводной роутер Wi-Fi – 7 Вт
51. Зарядка для мобильного телефона – 4 Вт
52. Беспроводной телефон – 3 Вт
53. Автоответчик – 1 Вт

Суммарная мощность бытовой техники составляет 47 782 Вт или 47,782 кВт.

Учитывая эти данные, 1000 ватт-часов (или 1 киловатт-часа) хватит для того, чтобы:

1. Получить 60 000 сообщений на автоответчик
2. Открыть 7200 банок электрическим консервным ножом
3. Прослушать 2143 песни на переносном
стереомагнитофоне
4. Напечатать 1333 страницы на принтере
5. Приготовить 400 коктейлей в блендере
6. Замесить миксером 300 порций теста
7. Зарядить мобильный телефон 278 раз
8. Послушать 250 песен через стереосистему
9. Приготовить 100 тостов в тостер-овене
10. Сделать 67 причесок с помощью плойки для волос
11. Приготовить 36 гренок в тостере
12. Разговаривать 15 дней по телефону
13. Использовать беспроводной
маршрутизатор Wi-Fi 6 дней
14. Использовать радио-часы 4 дня
15. Записать 45 фильмов на видеомагнитофон
16. Использовать спутниковую антенну 67 часов
17. Просмотреть 29 фильмов на DVD-плеере
18. Использовать энергосберегающую лампочку 56 часов
19. Использовать кабельную коробку 50 часов
20. Использовать аквариум 33 часа
21. Использовать цифровой видеорегистратор (DVR) 30 часов
22. Пользоваться ноутбуком 20 часов
23. Использовать 60-ваттную лампу накаливания 17 часов
24. Использовать увлажнитель воздуха 13 часов
25. Использовать потолочный вентилятор 13 часов
26. Пользоваться электрическим одеялом 1 ночь
27. Использовать портативный вентилятор 10 часов

28. Использовать компьютер (системный блок) 8 часов
29. Использовать монитор 7 часов
30. Посмотреть 13 серий ситкома по телевизору с ЭЛТ
31. Посмотреть 9 серий ситкома на ЖК-телевизоре (LCD)
32. Использовать холодильник 5 часов
33. Использовать игровую приставку 5 часов
34. Использовать осушитель воздуха 3 часа
35. Просмотреть 6 серий ситкома
на плазменном телевизоре
36. Использовать морозилку 4 часа
37. Разогреть 13 блюд в микроволновке
38. Приготовить эспрессо с помощью
эспрессо-машины 11 раз
39. Погладить утюгом 5 рубашек
40. Сделать 4 прически с помощью фена
41. Приготовить 4 пакета попкорна в попкорн-машине
42. Постирать белье в стиральной машине 3 раза
43. Заварить кофе в кофеварке 3 раза
44. Использовать нагреватель воды 2 часа
45. Приготовить 2 блюда на электроплите
46. Пылесосить полтора часа
47. Использовать комнатный кондиционер 1 час
48. Использовать обогреватель 40 минут
49. Испечь 1 раз кексы в духовке
50. Использовать центральный кондиционер 12 минут
51. Использовать электропечь 3 минуты
52. Использовать сушильную машину 18 минут
(хватает на 0,4 полного цикла сушки)
53. Пользоваться посудомойкой 33 минуты
(хватает на 0,3 цикла работы машины)

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 ватт [Вт] = 0,001 киловатт [кВт]

Исходная величина

Преобразованная величина

ватт эксаватт петаватт тераватт гигаватт мегаватт киловатт гектоватт декаватт дециватт сантиватт милливатт микроватт нановатт пиковатт фемтоватт аттоватт лошадиная сила лошадиная сила метрическая лошадиная сила котловая лошадиная сила электрическая лошадиная сила насосная лошадиная сила лошадиная сила (немецкая) брит. термическая единица (межд.) в час брит. термическая единица (межд.) в минуту брит. термическая единица (межд.) в секунду брит. термическая единица (термохим.) в час брит. термическая единица (термохим.) в минуту брит. термическая единица (термохим.) в секунду МBTU (международная) в час Тысяча BTU в час МMBTU (международная) в час Миллион BTU в час тонна охлаждения килокалория (межд.) в час килокалория (межд.) в минуту килокалория (межд.) в секунду килокалория (терм.) в час килокалория (терм.) в минуту килокалория (терм.) в секунду калория (межд.) в час калория (межд.) в минуту калория (межд.) в секунду калория (терм.) в час калория (терм.) в минуту калория (терм.) в секунду фут фунт-сила в час фут·фунт-сила/минуту фут·фунт-сила/секунду фунт-фут в час фунт-фут в минуту фунт-фут в секунду эрг в секунду киловольт-ампер вольт-ампер ньютон-метр в секунду джоуль в секунду эксаджоуль в секунду петаджоуль в секунду тераджоуль в секунду гигаджоуль в секунду мегаджоуль в секунду килоджоуль в секунду гектоджоуль в секунду декаджоуль в секунду дециджоуль в секунду сантиджоуль в секунду миллиджоуль в секунду микроджоуль в секунду наноджоуль в секунду пикоджоуль в секунду фемтоджоуль в секунду аттоджоуль в секунду джоуль в час джоуль в минуту килоджоуль в час килоджоуль в минуту планковская мощность

Общие сведения

В физике мощность — это отношение работы ко времени, в течении которого она выполняется. Механическая работа — это количественная характеристика действия силы F
на тело, в результате которого оно перемещается на расстояние s
. Мощность можно также определить как скорость передачи энергии. Другими словами, мощность — показатель работоспособности машины. Измерив мощность, можно понять в каком количестве и с какой скоростью выполняется работа.

Единицы мощности

Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила — 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.

Мощность бытовых электроприборов

На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.

Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.

  • 450 люменов:
    • Лампа накаливания: 40 ватт
    • Компактная люминесцентная лампа: 9–13 ватт
    • Светодиодная лампа: 4–9 ватт
  • 800 люменов:
    • Лампа накаливания: 60 ватт
    • Компактная люминесцентная лампа: 13–15 ватт
    • Светодиодная лампа: 10–15 ватт
  • 1600 люменов:
    • Лампа накаливания: 100 ватт
    • Компактная люминесцентная лампа: 23–30 ватт
    • Светодиодная лампа: 16–20 ватт

    Из этих примеров очевидно, что при одном и том же создаваемом световом потоке светодиодные лампы потребляют меньше всего электроэнергии и более экономны, по сравнению с лампами накаливания. На момент написания этой статьи (2013 год) цена светодиодных ламп во много раз превышает цену ламп накаливания. Несмотря на это, в некоторых странах запретили или собираются запретить продажу ламп накаливания из-за их высокой мощности.

    Мощность бытовых электроприборов может отличаться в зависимости от производителя, и не всегда одинакова во время работы прибора. Внизу приведены примерные мощности некоторых бытовых приборов.

    • Бытовые кондиционеры для охлаждения жилого дома, сплит-система: 20–40 киловатт
    • Моноблочные оконные кондиционеры: 1–2 киловатта
    • Духовые шкафы: 2.1–3.6 киловатта
    • Стиральные машины и сушки: 2–3.5 киловатта
    • Посудомоечные машины:1.8–2.3 киловатта
    • Электрические чайники: 1–2 киловатта
    • Микроволновые печи:0.65–1.2 киловатта
    • Холодильники: 0.25–1 киловатт
    • Тостеры: 0.7–0.9 киловатта

    Мощность в спорте

    Оценивать работу с помощью мощности можно не только для машин, но и для людей и животных. Например, мощность, с которой баскетболистка бросает мяч, вычисляется с помощью измерения силы, которую она прикладывает к мячу, расстояния которое пролетел мяч, и времени, в течение которого эта сила была применена. Существуют сайты, позволяющие вычислить работу и мощность во время физических упражнений. Пользователь выбирает вид упражнений, вводит рост, вес, длительность упражнений, после чего программа рассчитывает мощность. Например, согласно одному из таких калькуляторов, мощность человека ростом 170 сантиметров и весом в 70 килограмм, который сделал 50 отжиманий за 10 минут, равна 39.5 ватта. Спортсмены иногда используют устройства для определения мощности, с которой работают мышцы во время физической нагрузки. Такая информация помогает определить, насколько эффективна выбранная ими программа упражнений.

    Динамометры

    Для измерения мощности используют специальные устройства — динамометры. Ими также можно измерять вращающий момент и силу. Динамометры используют в разных отраслях промышленности, от техники до медицины. К примеру, с их помощью можно определить мощность автомобильного двигателя. Для измерения мощности автомобилей используется несколько основных видов динамометров. Для того, чтобы определить мощность двигателя с помощью одних динамометров, необходимо извлечь двигатель из машины и присоединить его к динамометру. В других динамометрах усилие для измерения передается непосредственно с колеса автомобиля. В этом случае двигатель автомобиля через трансмиссию приводит в движение колеса, которые, в свою очередь, вращают валики динамометра, измеряющего мощность двигателя при различных дорожных условиях.

    Динамометры также используют в спорте и в медицине. Самый распространенный вид динамометров для этих целей — изокинетический. Обычно это спортивный тренажер с датчиками, подключенный к компьютеру. Эти датчики измеряют силу и мощность всего тела или отдельных групп мышц. Динамометр можно запрограммировать выдавать сигналы и предупреждения если мощность превысила определенное значение. Это особенно важно людям с травмами во время реабилитационного периода, когда необходимо не перегружать организм.

    Согласно некоторым положениям теории спорта, наибольшее спортивное развитие происходит при определенной нагрузке, индивидуальной для каждого спортсмена. Если нагрузка недостаточно тяжелая, спортсмен привыкает к ней и не развивает свои способности. Если, наоборот, она слишком тяжелая, то результаты ухудшаются из-за перегрузки организма. Физическая нагрузка во время некоторых упражнений, таких как велосипедный спорт или плавание, зависит от многих факторов окружающей среды, таких как состояние дороги или ветер. Такую нагрузку трудно измерить, однако можно выяснить с какой мощностью организм противодействует этой нагрузке, после чего изменять схему упражнений, в зависимости от желаемой нагрузки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms
и в течение нескольких минут вы получите ответ.

На бытовых приборах (миксер, фен, блендер) производители пишут потребляемую мощность в ваттах, на устройствах, которые требуют больших объемов электрической нагрузки (электрическая плита, пылесос, водонагреватель), – в киловаттах. А на розетках или автоматических выключателях, через которые подключаются к сети приборы, принято указывать силу тока в амперах. Чтобы понять, выдержит ли розетка подключаемое устройство, нужно знать, как переводить амперы в ватты.

Единицы мощности

Перевод ватты в амперы и наоборот – понятие относительное, потому как это разные единицы измерения. Амперы – это физическая величина силы электрического тока, то есть скорость прохождения электричества через кабель. Ватт – величина электрической мощности, или скорость потребления электроэнергии. Но такой перевод необходим для того, чтобы рассчитать, соответствует ли значение силы тока значению его мощности.

Перевод ампера в ватты и киловатты

Знать, как посчитать соответствие ампер ваттам, нужно для того, чтобы определить, какое устройство способно выдержать мощность подключаемых потребителей. К таким устройствам относят защитную аппаратуру или коммутационную.

Перед тем как выбрать, какой автоматический выключатель или устройство защитного отключения (УЗО) установить, нужно посчитать мощности потребления всех подключаемых приборов (утюг, лампы, стиральная машина, компьютер и т.д.). Или же наоборот, зная, какой стоит автомат или защитное устройство отключения, определить, какое оборудование выдержит нагрузку, а какое нет.

Для перевода ампера в киловатты и наоборот существует формула: I=P/U, где I – амперы, P – ватты, U – вольты. Вольты – это напряжение сети. В жилых помещениях используется однофазная сеть – 220 В. На производстве для подключения промышленного оборудования работает электрическая трехфазная сеть, значение которой равно 380 В. Исходя из этой формулы, зная амперы, можно посчитать соответствие ваттам и наоборот – перевести ватты в амперы.

Ситуация: имеется автоматический выключатель. Технические параметры: номинальный ток 25 А, 1-полюс. Нужно посчитать, какую ваттность приборов способен выдержать автомат.

Проще всего технические данные внести в калькулятор и рассчитать мощность. А также можно использовать формулу I=P/U, получится: 25 А=х Вт/220 В.

х Вт=5500 Вт.

Чтобы ватты перевести в киловатты,необходимо знать следующие меры мощности в ватт:

  • 1000 Вт = 1 кВт,
  • 1000 000 Вт = 1000 кВт = МВт,
  • 1000 000 000 Вт = 1000 МВт = 1000000 кВт и т.д.

Значит, 5500 Вт =5,5 кВт. Ответ: автомат с номинальным током 25 А может выдержать нагрузку всех приборов общей мощностью 5,5 кВт, не более.

Применяют формулу с данными напряжения и силы тока для того, чтобы подобрать тип кабеля по мощности и силе тока. В таблице приведено соответствие тока сечению провода:

Медные жилы проводов и кабелей

Сечение жилы, мм²Медные жилы проводов, кабелей
Напряжение 220 ВНапряжение 380 В
Ток, АМощность, кВтТок, АМощность, кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066260171,6

Как перевести ватт в ампер

Перевести ватт в ампер нужно в ситуации, когда необходимо поставить защитное устройство и нужно выбрать, с каким номинальным током оно должно быть. Из инструкции по эксплуатации ясно, сколько ватт потребляет бытовой прибор, подключаемый к однофазной сети.

Задача рассчитать, сколько ампер в ваттах или какая соответствует розетка для подключения, если микроволновая печь потребляет 1,5 кВт. Для удобства расчета киловатты лучше перевести в ватты: 1,5 кВт = 1500Вт. Подставляем значения в формулу и получаем: 1500Вт / 220В = 6,81 А. Значения округляем в большую сторону и получаем 1500 Вт в пересчете на амперы – потребление тока СВЧ не менее 7 А.

Если подключать несколько приборов одновременно к одному устройству защиты, то чтобы посчитать, сколько в ваттах ампер, нужно все значения потребления сложить вместе. Например, в комнате используется освещение со светодиодными лампами 10 шт. по 6Вт, утюг мощностью 2 кВт и телевизор 30Вт. Сначала все показатели нужно перевести в ватты, получается:

  • лампы 6*10= 60 Вт,
  • утюг 2 кВт=2000 Вт,
  • телевизор 30 Вт.

60+2000+30=2090 Вт.

Теперь можно перевести ампер в ватты, для этого подставляем значения в формулу 2090/220 В = 9,5 А ~ 10А. Ответ: потребляемый ток около 10А.

Необходимо знать, как перевести амперы в ватты без калькулятора. В таблице показано соответствие скорости потребления электроэнергии силе тока при однофазной и трехфазной сетях.

Ампер (А)Мощность (кВт)
220 В380 В
20,41,3
61,33,9
102,26,6
163,510,5
204,413,2
255,516,4
327,021,1
408,826,3
5011,032,9
6313,941,4

Занимаясь проектированием электрических систем, необходимо грамотно оперировать такими величинами, как Амперы, Ватты и Вольты. Кроме того, нужно уметь правильно высчитывать их соотношение во время нагрузки на тот или иной механизм. Да, конечно, есть системы, в которых напряжение является фиксированным, например, домашняя сеть. Однако не нужно забывать о том, что сила и мощность тока все же являются разными понятиями, поэтому надо точно знать, сколько Ватт содержит 1 Ампер.


Есть ли разница между Вольтами и Ваттами?

Для начала давайте вспомним, что обозначают эти понятия. А также попробуем узнать, есть ли между ними существенная разница.

Итак, электрическое напряжение, производящее ток, сила которого равно 1 Ампер называется Вольт. При этом стоит отметить, что «работает» оно в проводнике с сопротивлением 1 Ом.

Вольт можно поделить:

  • 1 000 000 микровольт
  • 1 000 милливольт

В то же время можно сказать, что Ватт – это неизменная мощность электрического тока. При напряжении в 1 Вольт ее сила составляет 1 Ампер.

Исходя из вышесказанного, мы можем смело утверждать, что разница между этими понятиями все же есть. Следовательно, при работе с различными электрическими системами ее необходимо обязательно учитывать.

Что такое Ампер?

Далее, давайте попробуем разобраться с этим понятием. В первую очередь стоит отметить, что Ампер (А) — это сила тока считающаяся неизменной. Однако ее отличительной особенностью является то, что после взаимодействия с раствором кислотно-азотного серебра она отлагает каждую секунду по 0,00111800 г серебра.

Существует общепринятое деление, согласно которому 1 А содержит:

  1. 1 000 000 микроампер
  2. 1 000 миллиампер

Сколько Вольт содержит 1 Ампер?

Ответить на этот вопрос довольно сложно. Однако для того чтобы вам было легче разобраться с этим вопросом мы предлагаем вам ознакомиться с таблицами соотношений:

Для постоянного тока:

Для переменного тока:

Что такое Вольт-амперы и как их перевести в Ватты?

Еще одной единицей измерения мощности принятой в СИ является Вольт-ампер (ВА). Он равен произведению таких действующих значений, как ток и напряжение
.

Дополнительно стоит отметить, что как правило, ВА применяются исключительно для того, чтобы оценить мощность в соединениях переменного тока. То есть в тех случаях, когда у Ватт и Вольт-ампер разное значение.

В настоящее время существует множество различных онлайн-калькуляторов, позволяющих быстро и легко перевести ВА в Вт. Процедура эта настолько проста, что мы не будем останавливать на ней свое внимание.

Но, специально для тех людей, у которых нет под рукой онлайн-калькулятора для перевода Вольт-ампер в Ватты, мы рассмотрим процесс перевода
этих величин более подробно:

С помощью этой формулы мы можем узнать силу тока. Конечно, только в том случае, если нам уже известны напряжение и мощность
.

То есть получается, что для пересчета Ватт в Амперы мы должны выяснить напряжение в системе. К примеру, в США напряжение в электросети составляет 120В, а в России – 220В.

При этом стоит отметить, что аккумуляторы или батареи, используемые в автомобилях , обычно имеют напряжение равное 12 В. А напряжение в небольших батарейках, используемых для различных портативных устройств, как правило, не превышает 1,5 В.

Таким образом, можно сказать, что зная напряжение и мощность, мы можем с легкостью узнать также и силу тока. Для этого нам нужно лишь правильно воспользоваться вышеприведенной формулой
.

Давайте рассмотрим то, как это «работает» на конкретном примере: если напряжение равно 220В и мощность составляет 220Вт, то ток будет равен 220/220 или 1 А.

Сколько Ватт в 1 Ампере?

Теперь давайте попробуем перевести Ватты в Амперы. И для этого нам понадобится еще одна формула:

В ней I – это А, P – Ватт, а U – Вольт.

Произведя несложный расчет по данной формуле, мы сможем узнать, сколько Вт в одном А.

Как мы уже говорили ранее, существует еще один способ для того, чтобы рассчитать, сколько Ватт в 1 А. Для того чтобы воспользоваться им вам нужно будет открыть онлайн-калькулятор
и ввести в него потребляемую мощность, а также напряжение.

Далее, вам всего лишь нужно будет нажать на кнопку с надписью «рассчитать» и в течение пары секунд специальная программа выдаст вам верное значение. Воспользовавшись таким способом вы, несомненно, сможете сэкономить свое время и силы, так как вам не придется самостоятельно рассчитывать все показатели с помощью формул.


Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

Онлайн калькулятор по расчету ватт в амперы

Для получения результата обязательно указывать напряжение и потребляемую мощность.

В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

  1. Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
  2. Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
  3. В вольтах измеряется напряжение протекания электрического тока.

Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

шением. Все просто и доступно!

Таблица расчета Ампер и нагрузки в Ватт

Конвертер ватт в амперы. Простой блок питания

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 киловольт [кВ] = 1000 вольт [В]

Исходная величина

Преобразованная величина

вольт милливольт микровольт нановольт пиковольт киловольт мегавольт гигавольт теравольт ватт на ампер абвольт единица электрического потенциала СГСМ статвольт единица электрического потенциала СГСЭ Планковское напряжение

Оптическая сила в диоптриях и увеличение линзы

Общие сведения

Поскольку мы живём в эпоху электричества, многим нам с детства знакомо понятие электрического напряжения:
ведь мы порой, исследуя окружающую действительность, получали от него немалый шок, засунув тайком от родителей пару пальцев в розетку питания электрических устройств. Поскольку вы читаете эту статью, ничего особо страшного с вами не произошло — трудно жить в эпоху электричества и не познакомится с ним накоротке. С понятием электрического потенциала
дело обстоит несколько сложнее.

Будучи математической абстракцией, электрический потенциал лучше всего по аналогии описывается действием гравитации — математические формулы абсолютно схожи, за исключением того, не существуют отрицательные гравитационные заряды, так как масса всегда положительная и в то же время электрические заряды бывают как положительными, так и отрицательными; электрические заряды могут как притягиваться, так и отталкиваться. В результате же действия гравитационных сил тела могут только притягиваться, но не могут отталкиваться. Если бы мы смогли разобраться с отрицательной массой, мы бы овладели антигравитацией.

Понятие электрического потенциала играет важную роль в описании явлений, связанных с электричеством. Вкратце понятие электрического потенциала описывает взаимодействие различных по знаку или одинаковых по знаку зарядов или групп таких зарядов.

Из школьного курса физики и из повседневного опыта, мы знаем, что поднимаясь в гору, мы преодолеваем силу притяжения Земли и, тем самым, совершаем работу против сил притяжения, действующих в потенциальном гравитационном поле. Поскольку мы обладаем некоторой массой, Земля старается понизить наш потенциал — стащить нас вниз, что мы с удовольствием позволяем ей, стремительно катаясь на горных лыжах и сноубордах. Аналогично, электрическое потенциальное поле старается сблизить разноимённые заряды и оттолкнуть одноимённые.

Отсюда следует вывод, что каждое электрически заряженное тело старается понизить свой потенциал, приблизившись как можно ближе к мощному источнику электрического поля противоположного знака, если никакие силы этому не препятствуют. В случае одноимённых зарядов каждое электрически заряженное тело старается понизить свой потенциал, удалившись как можно дальше от мощного источника электрического поля одинакового знака, если никакие силы этому не препятствуют. А если они препятствуют, то потенциал не меняется — пока вы стоите на ровном месте на вершине горы, сила гравитационного притяжения Земли компенсируется реакцией опоры и вас ничто не тянет вниз, только ваш вес давит на лыжи. Но стоит только оттолкнуться…

Аналогично и поле, создаваемое каким-то зарядом, действует на любой заряд, создавая потенциал для его механического перемещения к себе или от себя в зависимости от знака заряда взаимодействующих тел.

Электрический потенциал

Заряд, внесённый в электрическое поле, обладает определенным запасом энергии, т. е. способностью совершать работу. Для характеристики энергии, запасённой в каждой точке электрического поля, и введено специальное понятие — электрический потенциал. Потенциал электрического поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля.

Возвращаясь к аналогии с гравитационным полем, можно обнаружить, что понятие электрического потенциала сродни понятию уровня различных точек земной поверхности. То есть, как мы рассмотрим ниже, работа по поднятию тела над уровнем моря зависит от того, как высоко мы поднимаем это тело, и аналогично, работа по отдалению одного заряда от другого зависит от того, насколько далеко будут эти заряды.

Представим себе героя древнегреческого мира Сизифа. За его прегрешения в земной жизни боги приговорили Сизифа выполнять тяжёлую бессмысленную работу в загробной жизни, вкатывая огромный камень на вершину горы. Очевидно, что для подъема камня на половину горы, Сизифу нужно затратить вдвое меньшую работу, чем для подъема камня на вершину. Далее камень, волею богов, скатывался с горы, совершая при этом некоторую работу. Естественно, камень, поднятый на вершину горы высотой Н
(уровень Н), при спуске сможет совершить большую работу, чем камень, поднятый на уровень Н
/2. Принято считать уровень моря нулевым уровнем, от которого и производится отсчет высоты.

По аналогии, электрический потенциал земной поверхности считается нулевым потенциалом, то есть

ϕ Earth = 0

где ϕ Earth — обозначение электрического потенциала Земли, являющегося скалярной величиной (ϕ — буква греческого алфавита и читается как «фи»).

Эта величина количественно характеризует способность поля совершить работу (W) по перемещению какого-то заряда (q) из данной точки поля в другую точку:

ϕ = W/q

В системе СИ единицей измерения электрического потенциала является вольт (В).

Напряжение

Одно из определений электрического напряжения описывает его как разность электрических потенциалов, что определяется формулой:

V = ϕ1 – ϕ2

Понятие напряжение ввёл немецкий физик Георг Ом
в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 г. эмпирического закона Ома:

V = I·R,

где V — это разность потенциалов, I — электрический ток, а R — сопротивление.

Другое определение электрического напряжения представляется как отношение работы поля по передвижению заряда в проводнике к величине заряда.

Для этого определения математическое выражение для напряжения описывается формулой:

V = A / q

Напряжение, как и электрический потенциал, измеряется в вольтах
(В) и его десятичных кратных и дольных единицах — микровольтах (миллионная доля вольта, мкВ), милливольтах (тысячная доля вольта, мВ), киловольтах (тысячах вольт, кВ) и мегавольтах (миллионах вольт, МВ).

Напряжением в 1 В считается напряжение электрического поля, совершающего работу в 1 Дж по перемещению заряда в 1 Кл. Размерность напряжения в системе СИ определяется как

В = кг м²/(А с³)

Напряжение может создаваться различными источниками: биологическими объектами, техническими устройствами и даже процессами, происходящими в атмосфере.

Элементарной ячейкой любого биологического объекта является клетка, которая с точки зрения электричества представляет собой электрохимический генератор малого напряжения. Некоторые органы живых существ, вроде сердца, являющихся совокупностью клеток, вырабатывают более высокое напряжение. Любопытно, что самые совершенные хищники наших морей и океанов — акулы различных видов — обладают сверхчувствительным датчиком напряжения, называемым органом боковой линии
, и позволяющим им безошибочно обнаруживать свою добычу по биению сердца. Отдельно, пожалуй, стоит упомянуть об электрических скатах и угрях, выработавших в процессе эволюции для поражения добычи и отражения нападения на себя способность создавать напряжение свыше 1000 В!

Хотя люди генерировали электричество, и, тем самым, создавали разность потенциалов (напряжение) трением кусочка янтаря о шерсть с давних времён, исторически первым техническим генератором напряжения явился гальванический элемент
. Он был изобретён итальянским учёным и врачом Луиджи Гальвани
, который обнаружил явление возникновения разности потенциалов при контакте разных видов металла и электролита. Дальнейшим развитием этой идеи занимался другой итальянский физик Алессандро Вольта
. Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока. Соединив несколько таких источников последовательно, он создал химическую батарею, так называемый «Вольтов столб»
, благодаря которой стало возможным получать электричество с помощью химических реакций.

Из-за заслуг в создания надёжных электрохимических источников напряжения, сослуживший немалую роль в деле дальнейших исследования электрофизических и электрохимических явлений, именем Вольта названа единица измерения электрического напряжения — Вольт.

Среди создателей генераторов напряжения необходимо отметить голландского физика Ван дер Граафа
, создавшего генератор высокого напряжения
, в основе которого лежит древняя идея разделения зарядов с помощью трения — вспомним янтарь!

Отцами современных генераторов напряжения были два замечательных американских изобретателя — Томас Эдисон
и Никола Тесла
. Последний был сотрудником в фирме Эдисона, но два гения электротехники разошлись во взглядах на способы генерации электрической энергии. В результате последующей патентной войны выиграло всё человечество — обратимые машины Эдисона нашли свою нишу в виде генераторов и двигателей постоянного тока, исчисляющихся миллиардами устройств — достаточно просто заглянуть под капот своего автомобиля или просто нажать кнопку стеклоподъёмника или включить блендер; а способы создания переменного напряжения в виде генераторов переменного тока, устройств для его преобразования в виде трансформаторов напряжения и линий передач на большие расстояния и бесчисленных устройств для его применения по праву принадлежат Тесле. Их число ничуть не уступает числу устройств Эдисона — на принципах Тесла работают вентиляторы, холодильники, кондиционеры и пылесосы, и масса других полезных устройств, описание которых выходит за рамки настоящей статьи.

Безусловно, учёными позднее были созданы и другие генераторы напряжения на других принципах, в том числе и на использовании энергии ядерного распада. Они призваны служить источником электрической энергии для космических посланцев человечества в дальний космос.

Но самым мощным источником электрического напряжения на Земле, не считая отдельных научных установок, до сих пор остаются естественные атмосферные процессы.

Ежесекундно на Земле грохочут свыше 2 тысяч гроз, то есть, одновременно работают десятки тысяч естественных генераторов Ван дер Граафа, создавая напряжения в сотни киловольт, разряжаясь током в десятки килоампер в виде молний. Но, как ни удивительно, мощь земных генераторов не идёт ни в какое сравнение с мощью электрических бурь, происходящих на сестре Земли — Венере — не говоря уже об огромных планетах вроде Юпитера и Сатурна.

Характеристики напряжения

Напряжение характеризуется своей величиной и формой. Относительно его поведения с течением времени различают постоянное напряжение (не изменяющееся с течением времени), апериодическое напряжение (изменяющееся с течением времени) и переменное напряжение (изменяющееся с течением времени по определённому закону и, как правило, повторяющее само себя через определённый промежуток времени). Иногда для решения определённых целей требуется одновременное наличие постоянного и переменного напряжений. В таком случае говорят о напряжении переменного тока с постоянной составляющей.

В электротехнике генераторы постоянного тока (динамо-машины) используются для создания относительно стабильного напряжения большой мощности, в электронике применяются прецизионные источники постоянного напряжения на электронных компонентах, которые называются стабилизаторами
.

Измерение напряжения

Измерение величины напряжения играет большую роль в фундаментальных физике и химии, прикладных электротехнике и электрохимии, электронике и медицине и во многих других отраслях науки и техники. Пожалуй, трудно найти отрасли человеческой деятельности, исключая творческие направления вроде архитектуры, музыки или живописи, где с помощью измерения напряжения не осуществлялся бы контроль над происходящими процессами с помощью разного рода датчиков, являющимися по сути дела преобразователями физических величин в напряжение. Хотя стоит заметить, что в наше время и эти виды человеческой деятельности не обходятся без электричества вообще и без напряжения в частности. Художники используют планшеты, в которых измеряется напряжение емкостных датчиков, когда над ними перемещается перо. Композиторы играют на электронных инструментах, в которых измеряется напряжение на датчиках клавиш и в зависимости от него определяется насколько сильно нажата та или иная клавиша. Архитекторы используют AutoCAD и планшеты, в которых тоже измеряется напряжение, которые преобразуется в числовую форму и обрабатывается компьютером.

Измеряемые величины напряжения могут меняться в широких пределах: от долей микровольта при исследованиях биологических процессов, до сотен вольт в бытовых и промышленных устройствах и приборах и до десятков миллионов вольт в сверхмощных ускорителях элементарных частиц. Измерение напряжения позволяет нам контролировать состояние отдельных органов человеческого организма при помощи снятия энцефалограмм
мозговой деятельности. Электрокардиограммы
и эхокардиограммы
дают информацию о состоянии сердечной мышцы. При помощи различных промышленных датчиков мы успешно, а, главное, безопасно, контролируем процессы химических производств, порой происходящие при запредельных давлениях и температурах. И даже ядерные процессы атомных станций поддаются контролю с помощью измерения напряжений. С помощью измерения напряжения инженеры контролируют состояние мостов, зданий и сооружений и даже противостоят такой грозной природной силе как землетрясения.

Блестящая идея связать различные значения уровней напряжения со значениями состояния единиц информации дало толчок к созданию современных цифровых устройств и технологий. В вычислительной технике низкий уровень напряжения трактуется как логический нуль (0), а высокий уровень напряжения — как логическая единица (1).

По сути дела, все современные устройства вычислительной техники являются в той или иной степени компараторами (измерителями) напряжения, преобразовывая свои входные состояния по определённым алгоритмам в выходные сигналы.

Помимо всего прочего, точные измерения напряжения лежат в основе многих современных стандартов, выполнение которых гарантирует их абсолютное соблюдение и, тем самым, безопасность применения.

Средства измерения напряжения

В ходе изучения и познания окружающего мира, способы и средства измерения напряжения значительно эволюционировали от примитивных органолептических методов
— русский учёный Петров срезал часть эпителия на пальцах, чтобы повысить чувствительность к действию электрического тока — до простейших индикаторов напряжения и современных приборов разнообразных конструкций на основе электродинамических и электрических свойств различных веществ.

К слову сказать, начинающие радиолюбители легко отличали «рабочую» плоскую батарейку на 4,5 В от «подсевшей» без каких-либо приборов по причине их полного отсутствия, просто лизнув её электроды. Протекавшие при этом электрохимические процессы давали ощущение определённого вкуса и лёгкого жжения. Отдельные выдающиеся личности брались определять таким способом пригодность батареек даже на 9 В, что требовало немалой выдержки и мужества!

Примером простейшего индикатора — пробника сетевого напряжения — может служить обыкновенная лампа накаливания с рабочим напряжением не ниже напряжения сети. В продаже имеются простые пробники напряжения на неоновых лампах и светодиодах, потребляющие малые токи. Осторожно, использование самодельных конструкций может быть опасным для Вашей жизни!

Необходимо отметить, что приборы для измерения напряжения (вольтметры) весьма отличаются друг от друга в первую очередь по типу измеряемого напряжения — это могут быть приборы постоянного или переменного тока. Вообще, в измерительной практике важно поведение измеряемого напряжения — оно может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ электротехнических цепей и устройств (слаботочные и силовые).

Различают следующие значения напряжения:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение напряжения U i (см. рисунок) — это значение напряжения в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение напряжения U a — это наибольшее мгновенное значение напряжения за период. Размах напряжения U p-p — величина, равная разности между наибольшим и наименьшим значениями напряжения за период.

Среднее квадратичное (действующее) значение напряжения U rms определяется как корень квадратный из среднего за период квадрата мгновенных значений напряжения.

Все стрелочные и цифровые вольтметры обычно градуируются в среднеквадратических значениях напряжения.

Среднее значение (постоянная составляющая) напряжения — это среднее арифметическое всех его мгновенных значений за время измерения.

Средневыпрямленное напряжение определяется как среднее арифметическое абсолютных мгновенных значений за период.

Разность между максимальным и минимальным значениями напряжения сигнала называют размахом сигнала.

Сейчас, в основном, для измерения напряжения используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение напряжения осциллографом

Иллюстрацией к вышесказанному будет серия опытов по измерению напряжений с использованием генератора сигналов, источника постоянного напряжения, осциллографа и многофункционального цифрового прибора (мультиметра).

Эксперимент №1

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов нагружен на сопротивление нагрузки R1 в 1 кОм, параллельно сопротивлению подключены измерительные концы осциллографа и мультиметра. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1:
Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 герц и амплитудой 4 вольт. На экране осциллографа будем наблюдать изображение, показанное ниже. Отметим, что цена деления масштабной сетки экрана осциллографа по вертикальной оси 2 В. Мультиметр и осциллограф при этом покажут среднеквадратичное значение напряжение 1,36 В.

Опыт 2:
Увеличим сигнал от генератора вдвое, размах изображения на осциллографе возрастёт ровно вдвое и мультиметр покажет удвоенное значение напряжения:

Опыт 3:
Увеличим частоту генератора в 100 раз (6 кГц), при этом частота сигнала на осциллографе изменится, но размах и среднеквадратичное значение останутся прежними, а показания мультиметра станут неправильными — сказывается допустимый рабочий частотный диапазон мультиметра 0-400 Гц:

Опыт 4:
Вернёмся к исходной частоте 60 Гц и напряжению генератора сигналов 4 В, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением напряжения, которое он показывал в опыте №1, так как изменилось действующее напряжение сигнала:

Эксперимент №2

Схема эксперимента №2, аналогична схеме эксперимента 1.

Ручкой изменения напряжения смещения на генераторе сигналов добавим смещение 1 В. На генераторе сигналов установим синусоидальное напряжение с размахом 4 В с частотой 60 Гц — как и в эксперименте №1. Сигнал на осциллографе поднимется на половину большого деления, а мультиметр покажет среднеквадратичное значение 1,33 В. Осциллограф покажет изображение, подобное изображению из опыта 1 эксперимента №1, но поднятое половину большого деления. Мультиметр покажет почти такое же напряжение, как было в опыте 1 эксперимента №1, так как у него закрытый вход, а осциллограф с открытым входом покажет увеличенное действующее значение суммы постоянного и переменного напряжений, которое больше действующего значения напряжения без постоянной составляющей:

Техника безопасности при измерении напряжения

Поскольку в зависимости от класса безопасности помещения и его состояния даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:

  1. Не проводить измерения напряжения, требующих определённых профессиональных навыков (свыше 1000 В).
  2. Не производить измерения напряжений в труднодоступных местах или на высоте.
  3. При измерении напряжений в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  4. Пользоваться исправным измерительным инструментом.
  5. В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  6. Пользоваться измерительным прибором с исправными щупами.
  7. Строго следовать рекомендациям производителя по использованию измерительного прибора.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms
и в течение нескольких минут вы получите ответ.

Я вас приветствую и от всей души поздравляю с Днем Победы! Сегодняшний обзор хочу посвятить сопротивлению. Пока жаба впала в кому после покупки , приобрел еще и нормальную нагрузку вдовесок.
Уже был обзор на , вроде даже не один, но отличия от текущей все же есть, как минимум одно и довольно значительное.
Многобуков не будет — постараюсь кратко описать возможности и протестировать сабж во всем диапазоне заявленных напряжений.
Кому лень читать — модуль оправдал ожидания. Подробнее — под катом.

С поинтами цена падала до 16$

Отслеживание. Там где замазано — посылка путешествовала из одного отделения в другое рядом с моим домом.

Распаковка

Все как всегда. Серый пакет

Пенополиэтилен

Ноунейм коробочка

И прозрачный блистер. В нем и храню =)

Внешний вид. Мне тут на днях пришел лайтбокс, вот осваиваю.

На лицевой стороне расположен дисплей и кнопка управления

С торцов USB вход, индикатор питания и гнездо для подключения доп. нагрузки/триггера QC.

И регуляторы грубой(0-4.5А) и тонкой(0-0.2А) настройки нагрузки. Плюс пищалка, которая оповещает о включении устройства, перегрузке и выключению по таймеру.

С тыльной стороны куча разъемов: DIY
(подача любого напряжения от 1 до 25 Вольт), miniUSB
, Type-C
, microUSB
, Lightning
и еще один microUSB в качестве доп питания при напряжении источника питания менее 3 Вольт.

Экраны:

Общий. Довольно информативен. При 5-кратном нажатии на кнопку можно выставить таймер отключения нагрузки(1-24 часа). По умолчанию отключается сама при падении мощности до 2Вт*ч.

На втором крупнее отображаются ток и напряжение, пожертвовали температурой и добавили Ватты.

Третий показывает напряжение на шине данных и сопротивление цепи, так что можно без проблем вычислить сопротивление USB шнурка.

Так чем же отличается данная модель от обозреваемой ранее? Давайте посмотрим поближе.

Добавлен дополнительный microUSB разъем(крайний справа) для подключения внешнего питания, которое не влияет на тестируемую цепь. Ну почти не влияет.

А вот потребление по линии доп. питания с выключенным вентилятором.

Характеристики из описания

Интеллектуальный контроль температуры
.
Два типа регулировки
.
35 Ватт нагрузки
.
Напряжение: 1-25V

Ток: 0,1-4,5А
(при 5 Вольтах)
Мониторинг в режиме реального времени
.
Отображение напряжения, тока, емкости, мощности, времени
.
Энергонезависимая память.

Поддержка тестирования Qualcomm QC2.0, QC3.0
(отдельно продается триггер для симуляции потребителя)

Тесты.

Для теста использовал блок питания из . Диапазон напряжения 9-24 Вольта, в нагрузке выдавал около 100 Ватт.
Начал с 10 Вольт. 1.1 Ампера. Фон немного размыт, но мультиметр показывает 1.116 А.

Далее 2 Ампера.

В это же время амперметр

3 Ампера

4 Ампера… сработала защита. Хотя бы знаем, что она есть =) при этом нагрузка упала пока не докрутил до приемлемого значения

Немного поднимем напряжение, раза так в 2

В этот раз погрешность немного выше и разница составила 0.03 Ампера.

При 1.8 Амперах на 19 Вольт снова сработала защита.
С напряжением от 5 Вольт разобрались, но как же обстоят дела с низким? Я откопал цифровую понижайку, но в определенных ситуациях ее показометр врет, так что не обращайте внимания на проскакивающую большую погрешность.
Для начала подключился к DIY разъему без дополнительного питания и снижал напряжение пока показания тестера нагрузки не замерли.

Наглядный показатель — тестер заснул на 3.45 Вольтах. Правда мозги нагрузки работали и при 2.5, когда экран уже сдался =)

Признаки жизни подавал до 0.93 Вольта.

Но после подключения доп. питания все же малость разочаровал.
Показывать напряжение начал с минимального, но вот ток начал расти только ближе к 1.7 Вольтам.

При 1.79 уже можно было поднять значение до 1 Ампера

При 1.85 до 2.

При 2 до 4. Преобразователь по характеристикам не должен столько выдавать, поэтому остановился на 3.01 Ампера и задумался — дальше мучить его не стал.

К вопросу — «а где же сопротивление, о котором говорилось в кратком описании?» я приложу немного тестов в паре с UM25C. Тут можно высмотреть и коррекцию сопротивления с ростом напряжения дабы не выходить за рамки выставленного тока и степень выхода за эти рамки. Изображение кликабельно — не стал закидывать 6 больших однообразных картинок.

По поводу активного охлаждения.

При включении вентилятора его потребление плюсуется к нагрузке.
В том числе
и с подключенным доп. питанием
. Хотя я не вижу ничего страшного в лишних 50 мА нагрузки во время охлаждения — все данные ведь учитываются и будут соответствовать действительности.
Потребление внешнего питания в холостом режиме 0.0024А

Даем нагрузку на тестируемую цепь — значения подскочили почти в 3 раза до 0.0067А

Ток основной цепи 2 Ампера

Модуль прогрелся до 55 градусов, включилось охлаждение

В это время нагрузка на основную цепь выросла на 0.04 Ампера. Отключение внешнего питания ни на что не повлияло.

Но для цепи ниже 5 Вольт разница есть.

Включилось охлаждение. Ток поднялся, а напряжение немного просело.

Выключаем внешнее питание. Ток подскочил еще больше, а вольтметр начал врать из-за нехватки питания.

Инструкция по управлению сабжем одной кнопкой
:
1 нажатие
– переключение между экранами;
1 длительное нажатие
– сброс всех подсчитываемых значений;
2 нажатия
– сброс значения емкости в Ah;
3 нажатия
– сброс значения подсчитанной энергии в Wh;
4 нажатия
– сброс времени работы под нагрузкой;
5 нажатий
– установка таймера отключения питания;
6 нажатий
– переключение языка.

В качестве активного элемента использован
Фото платы:

Для тех, кто не любит тесты в картинках, я сделал небольшое видео. Можно смотреть со второй минуты.

Итоги

Производителю удалось сделать довольно гибкий инструмент для тестирования источников питания и шнурков.
Есть защита от избыточной нагрузки, дабы пользователь не спалил ничего в первый день использования.
Вентилятор включается автоматически при перегреве, охлаждает хорошо и не создает шума во время «легких» тестов.
Можно нагружать цепи от 1.7 до 5 Вольт при подключении дополнительного питания.
Вообще изначально планировалось приобрести обычную модель, но с тестером стоил немного дороже, а лишний экран с данными никогда не помешает, хоть и не с идеально точным измерением значений.

Да, можно было немного добавить и купить устройство, которое само нагрузит как надо и графики красивые нарисует, но не таскать же с собой компьютер/планшет, так что в плане практичности уступает текущему варианту. Да и есть у меня чем рисовать.

Ну и небольшой купон, скидывающий цену до 17.99$
(6%): affiliate6

Надеюсь данный материал был полезен. Всем добра =)

Планирую купить

+6

Добавить в избранное

Обзор понравился

+28

+35

Вольт Инжиниринг Ампер Э 12-1/25 — одна из самых популярных моделей симисторных стабилизаторов напряжения.

    Основные характеристики и преимущества
    стабилизатора напряжения Вольт Инжиниринг Ампер Э 12-1/25 v2.0 (серия Вольт engineering, НПО «Вольт»).

  • современный ARM микроконтроллер
  • RMS измерение входного напряжения
  • ограничение тока короткого замыкания
  • анализатор сети и состояния стабилизатора
  • расширенное сервисное меню — 15 параметров
  • 2 скорости вращения вентиляторов охлаждения
  • электронный байпас с функцией защитного реле
  • бесшумный силовой тороидальный трансформатор
  • отсутствие искажения формы входной синусоиды сети
  • высоконадёжное трансформаторное управление ключами
  • варисторы установлены на входе и на выходе стабилизатора
  • стальной корпус, окрашенный высококачественной порошковой эмалью
  • входной дроссель выполнен на сердечнике с распределённым магнитным зазором
  • минимально возможное время реакции на изменение входного напряжения — 20 мс
  • мощный игольчатый охладитель тиристоров, изготовленный по технологии литья под высоким давлением

Технические параметры Вольт Инжиниринг АМПЕР Э 12-1/25

Модель: АМПЕР Э 12-1/25
Мощность: 5,5 кВт
Тип: электронный, симисторный
Исполение: настенный
Управление: микропроцессорное
Трансформатор: бесшумный, тороидальный
Рабочий диапазон входных напряжений: 100-295 вольт
Диапазон рабочего напряжения в режиме «байпас»: 120-265 вольт
Диапазон стабилизации с точностью 220В +-10% 135-290 вольт
Диапазон стабилизации с точностью 220В +-3,5% 145-275 вольт
Настройка откл. по мин. кратковременному напряжению 60-135 вольт
Выходное напряжение: 220 вольт
Частота сети питания: 45-65 Гц
Точность стабилизации: 3,5%
Рабочий ток: 25 ампер
Потребляемая активная мощность х.х.: до 35 Вт
Показания измерительных приборов: входное/выходное напряжение
Количество ступеней стабилизации: 12
Выходное напряжение: 212-228 В
Время реакции: 20 мс
Наличие защиты:
высоковольтная зашита — есть
низковольтная зашита — есть
защита от перегрузки — есть
высокотемпературная защита — есть
защита от высокого тока — есть
Тип охлаждения: принудительное
Ручной байпас: есть
Материал корпуса: сталь
Габаритные размеры (стабилизатор): 460x270x170 мм
Вес стабилизатора: 18 кг
Гарантия производителя: 2 года

Результаты тестирования

Данная модель стабилизатора была разобрана и протестирована независимым экспертом сайта Сисадмин .
Выводы по сборке: «Стабилизатор собран качественно. Никаких нареканий не возникло.
Удивил трансформатор своим размером и качеством сборки. Не гудит на любых входных напряжениях. Все провода, где они должны
быть опрессованы, имеют наконечники. Разъемные соединения нигде не болтаются и не отходят,
сидят плотно. Риск разъединения минимален.
Плата собрана качественно, но есть неотмытый флюс.
По пайке и монтажу нареканий нет. Плата сделана качественно. Все винты в стабилизаторе хорошо
протянуты и имеются шайбы гровер там, где это необходимо.
Сборка качественная и без каких-либо
замечаний».


Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

Онлайн калькулятор по расчету ватт в амперы

Для получения результата обязательно указывать напряжение и потребляемую мощность.

В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

  1. Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
  2. Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
  3. В вольтах измеряется напряжение протекания электрического тока.

Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

шением. Все просто и доступно!

Таблица расчета Ампер и нагрузки в Ватт

Свежие статьи

Вольт-амперы в киловатты — перевод 50 вольт-ампер в киловатты на калькуляторе онлайн в 2021

Как перевести вольт-амперы в киловатты на калькуляторе? Воспользуйтесь нашим онлайн конвертером перевода единиц мощности, и вы сможете конвертировать 50 вольт-ампер в киловатты и обратно

Сколько киловатт в одном ампере?

1 В-А = 0,001 кВт

1 ампер: сколько ватт?

1 В-А = 1 Вт

Как перевести вольт-амперы в киловатты на калькуляторе онлайн?

Для быстрого перевода из вольт-ампер в киловатт, воспользуйтесь онлайн калькулятором единиц мощности от Prostobank.ua. Пользоваться конвертером очень легко —  достаточно указать число, которое нужно конвертировать из В-А в кВт и нажать кнопку «Рассчитать». С помощью наших расчетов, вы узнаете, сколько лошадиных сил в указанной вами мощности в киловаттах. Таким образом, вам не нужно искать формулу соотношения разных величин мощности, калькулятор сделает все расчеты самостоятельно, а вы сэкономите свое драгоценное время на поиск информации и вычисления.

В результатах расчетов вы увидите конвертацию вольт-ампер) во все единицы измерения мощности: ватты (Вт), мегаватты (МВт), вольт-амперы (В-А), лошадиные силы (ЛС), гигакалорий в час (гКал/час), килокалорий в час (кКал/час), калорий в час (кал/час), джоули в секунду (дж/сек).

Популярные конвертации мощности

— 55 квт в лс

— 75 квт в лс

— 5 киловатт в амперах

— сколько мегаватт в 2500 квт

— 500 ватт сколько киловатт

— 1500 ватт сколько киловатт

— 2000 ватт сколько киловатт

— 1200 ватт сколько киловатт

— 16 ампер сколько киловатт

— 25 ампер в киловаттах

— 40 ампер в киловатты

— 6 ампер в киловаттах

— 50 ампер в киловатты

— 102 лошадиных силы в киловатты

Зарядное устройство 2.4 ампера. Конвертер ватт в амперы

Несколько раз в комментариях, а потом и в личке меня просили об обзорах блоков питания на определенное напряжение. Я ответил, что постараюсь взять такие БП на обзор и протестировать.
Сегодня обзор блока питания на 5 Вольт.
Но просто сделать обзор было бы совсем скучно, поэтому в этот раз я попробую рассказать какие компоненты в блоке питания за что отвечают и на что надо обращать внимание при выборе блока питания.

В обзоре будет много букв и не очень много фотографий. И хоть я буду стараться писать на понятном языке, но могу сорваться и начать выражаться неприличными словами типа — синфазный, насыщение, утечка и т.п. Если вдруг что то непонятно, спрашивайте, объясню:)

Изначально я планировал заказать два блока питания, на разную мощность, 18 и 36 Ватт, но потом решил что 18 совсем неинтересно и заказал только 36 Ватт версию, ее и будем обозревать.

Начну обзор я как всегда с упаковки, так как по упаковке и встречают товар.
Пришел блок питания в коробочке из коричневого картона, на которой нанесена маркировка указывающая что перед нами блок питания на напряжение 5 Вольт и ток 7.2 Ампера.

Судя по маркировке, блоки питания в таком корпусе изготавливаются на разную мощность и разные напряжения. мне уже попадался как то 12 Вольт блок питания в таком корпусе.
Технические характеристики блока питания, заявленные на наклейке.
Входное напряжение 100-240 Вольт
Частота питающей сети — 50/60Гц.
Выходное напряжение — 5 Вольт
Выходной ток (максимальный) — 7.2 Ампера
Максимальная мощность — 36 Ватт. Написано что общая, что подразумевали под этим в данном случае, не совсем понятно.

Блок питания относительно небольшой, высота примерно соответствует высоте спичечного коробка и составляет 37мм.
Масса блока питания всего 133 грамма (вообще, чем больше этот параметр, тем лучше, хотя и косвенно).
Длина 85мм, ширина 58мм.

Вход, выход и заземление выведено на один клеммник.
Клеммник имеет крышку, полностью она не открывается, не хватает буквально немного, рядом расположен подстроечный резистор для корректировки выходного напряжения и светодиод, показывающий что блок питания включен.

Так как снаружи блока питания ничего интересного нет, разве что блестящий перфорированный кожух, защищающий от удара током и помех, то посмотрим что внутри и как это все работает.
Отвинчиваем пару винтов и добираемся до внутренностей.
Внешне претензий нет. Первым делом о культуре производства говорит монтаж. Если детали стоят ровно, отсутствуют пустые места на плате, а габаритные компоненты закреплены при помощи клея (ну или герметика), то чаще всего это признаки скорее хорошего БП, чем плохого.
Здесь установлено все аккуратно, но пустые места все таки присутствуют, хоть их и немного.

Внешний осмотр закончен, теперь можно перейти к более детальному описанию.
Для начала конструкция, в этом блоке питания применено пассивное охлаждение компонентов.
Часть тепла передается на алюминиевый корпус, выполняющий роль радиатора. Это довольно таки классический принцип охлаждения подобных блоков питания.
Кстати повысить эффективность охлаждения можно закрепив блок питания к чему то теплорассеивающему. Не рекомендуется крепить такой блок питания на теплоизолирующую поверхность, либо делать это только при условии уменьшения нагрузки.

Тепло на корпус передается от двух деталей, это высоковольтный транзистор и выходной диод, о них я расскажу позже. Между компонентами и корпусом был нанесена теплопроводящая паста, а сами компоненты прижаты стальной пластинкой.

А теперь рассмотрим отдельные части типичного блока питания и я попробую объяснить какие из них за что отвечают.
1. Клеммник, ну тут все понятно, отвечает за подсоединение входных и выходных проводов. при больших токах используют несколько одноименных клемм, например две плюсовые клеммы и две минусовые. Здесь на этом несколько сэкономили, так как выходной ток до 7.2 Ампера, а клемм всего по одной на полюс. Не скажу что это критично, но лучше когда нагрузку можно распределить.
2. Входной фильтр.
3. Диодный мост, выпрямляет сетевое напряжение, иногда устанавливается на радиатор (если выполнен в виде отдельного компонента), но в маломощных это не надо.
4. Конденсатор входного выпрямителя
5. Высоковольтный транзистор
6. Трансформатор
7. Выходной выпрямительный диод.
8. Выходной фильтр питания
9. Узел стабилизации и регулировки выходного напряжения.

Дальше я покажу и опишу вышеуказанные узлы более расширенно.
Входной фильтр питания. На самом деле больше необходим для фильтрации помех, которые проникают от блока питания в сеть. Если у вас фонит радиоприемник при включении импульсного блока питания, то сначала проверьте, а есть ли в нем такой фильтр.
В полном варианте включает в себя дроссель с двумя обмотками, два конденсатора х типа (на фото желтый), два конденсатора Y типа (обычно небольшие голубого цвета). Также в фильтр помех входит конденсатор, соединяющий первичную и вторичную стороны БП, и соединяющий минус выходных клемм с корпусом, но они больше влияют на гашение помех по выходу.
Из-за этих Y1 конденсаторов незаземленный блок питания обычно «кусается».
С дросселем и Х конденсаторами все просто, чем больше индуктивность и емкость, тем лучше, иногда даже применяют двухступенчатые фильтры (два дросселя).
В некоторых случаях фильтр упрощают, оставляя только дроссель, один конденсатор Х типа и один или два Y1 типа (между первичной и вторичной стороной БП и между минусом БП и корпусом). Это также вполне нормальное решение, но иногда вместо дросселя ставят «специально обученные перемычки», либо убирают фильтр совсем, вот так делать нельзя, помехи гарантированы.
В данном случае мы видим «эконом вариант», но вполне работоспособный, его можно было бы не дорабатывать, но производитель вместо правильных Y1 конденсаторов установил обычные высоковольтные (2.2нФ 2КВ). Это небезопасно, так как при пробое таких конденсаторов выход БП окажется соединенным со входом и может ударить током. пробить его может от всплеска напряжения вызванного например мощным разрядом молнии недалеко от линии электропередач.
Вывод, фильтр вполне жизнеспособен, но для безопасной эксплуатации лучше заменить конденсаторы голубого цвета обозначенные на плате как CY на правильные Y1 конденсаторы, либо заземлить корпус БП.
К сожалению подобным грешат наверное 90% недорогих БП.
Также, перед фильтром питания, в импульсных блоках питания устанавливается специальный терморезистор, который ограничивает бросок тока при включении. Здесь его нет, вернее его роль частично выполняет дроссель, это не очень хорошо, но в данном случае терпимо, при большой мощности БП (и соответственно конденсаторах большой емкости) он обязателен, а в особо тяжелых случаях даже стоит специальная схема, которая после включения его замыкает.
Работает он так: пока терморезистор холодный, его сопротивление велико и он ограничивает ток, после включения он нагревается и его сопротивление падает, и он не вносит больших потерь. Но если выключить блок питания, а затем включить не дождавшись остывания терморезистора, то бросок тока почти не будет ограничен.

После входного фильтра установлен диодный мост, который выпрямляет переменный ток, дальше уже постоянный ток поступает на электролитический конденсатор.
Диодный мост бывает также разным, либо из отдельных диодов, либо в виде отдельного компонента, иногда его даже устанавливают на радиатор. В данном случае применено 4 отдельных диода. Диоды самые классические, 1N4007, вполне достаточно для такого блока питания. В дешевых блоках питания применяют вообще один диод, это очень плохо, так как входной конденсатор работает неэффективно.
Входной электролитический конденсатор. Ну тут все просто, чем больше емкость (в разумных пределах), тем лучше.
Для блока питания рассчитанного только под 230 (± 10%) необходимо конденсатор емкостью равной мощности БП. Т.е. если блок питания на 90 Ватт, то конденсатор ставят 100мкФ.
Для блоков питания рассчитанных под расширенный диапазон 100-240 Вольт емкость этого конденсатора должна быть больше в 2-3 раза.
В данном случае применен конденсатор емкостью 47мкФ на напряжение 450 Вольт (это очень хорошо, обычно применяют конденсаторы на 400 Вольт). Для входного напряжения 230 Вольт его емкость более чем достаточна (при мощности блока питания в 36 Ватт), но для работы при напряжении 100-150 Вольт он мал.
Емкость конденсатора влияет на следующие характеристики.
1. Диапазон входного напряжения при котором блок питания нормально работает.
2. Срок жизни конденсатора, из-за больших пульсаций конденсатор меньшей емкости состарится раньше, чем больше емкость, тем дольше будет жить.
3. Увеличение емкости положительно влияет на КПД блока питания, хоть и слабо.

Высоковольтный транзистор. Ну тут особо сказать нечего.
Разве что тут не проходит правило — чем больше, тем лучше. Параметры транзистора должны быть оптимальны для примененной микросхемы ШИМ контроллера.
Может влиять максимальное напряжение, у этого транзистора оно равняется 600 Вольт, для данной схемы это вполне нормально, я встречал иногда на 800 Вольт, но это очень большая редкость.
Влияет еще вариант корпуса. Бывают в полностью пластмассовом корпусе, а бывают с металлической частью, тогда транзистор крепится к радиатору/корпусу через изолирующую прокладку. Вариант с полностью изолированным корпусом мне лично нравится больше.

Силовой трансформатор.
Если сильно упростить, то здесь действует правило — чем больше, тем лучше.
В данном БП применена схемотехника «обратноходового преобразователя», т.е. сначала открывается транзистор, «накачивает» трансформатор (на самом деле не совсем именно трансформатор, но это не важно), потом транзистор закрывается и энергия от трансформатора «перекачивается» в нагрузку через выходной диод.
Почему я написал насчет упрощения, дело в том, что размеры трансформатора зависят не только от мощности, а и от частоты работы блока питания. Чем частота выше, тем меньше можно применить трансформатор, но большинство ширпотребных блоков питания работают в диапазоне 60-130КГц, потому правило все таки действует.
Существуют более высокочастотные контроллеры, но высокая частота требует очень качественных материалов для трансформатора, потому цена такого БП будет гораздо выше.
Я встречал в дешевых АТХ блоках питания мощностью 250-300 Ватт трансформаторы размеров с пол спичечного коробка, но это была не работа на очень высокой частоте, а просто дикая экономия:(
Иногда спрашивают, а можно перестроить БП с 5 Вольт на 9, или с 19 на 12?
Чаще всего нельзя, так как трансформатор имеет определенное соотношение витков в первичной и вторичной обмотке, и перестроенный БП будет работать в не оптимальном режиме. или вообще не будет, так как у трансформатора есть еще одна обмотка, от которой питается микросхема ШИМ контроллера и напряжение на этой обмотке также зависит от напряжения на других обмотках.
В данном блоке питания трансформатор вполне соответствует заявленной мощности.

Выходной выпрямительный диод.
От этого диода довольно сильно зависит надежность работы блока питания, одно из правил, диод должен быть рассчитан на ток в 2.5-3 раза больше, чем максимальный выходной ток блока питания. В нашем случае это 7.2х3=21.6
В данном блоке питания применена диодная сборка, состоящая из двух диодов. Согласно документации диод рассчитан на 20 Ампер (2х10) и напряжение 100 Вольт.
По току соответствует необходимым параметрам, а по напряжению значительно превышает требуемые.
Обычно для БП 5 Вольт достаточно чтобы диод был рассчитан на 45-60, для БП 12 Вольт на 100 Вольт, для 24 Вольта надо уже 150 Вольт.
Но на самом деле, слишком хорошо это тоже плохо. Объясню почему.
Диоды Шоттки вещь очень хорошая, имеют маленькое падение, быстрое переключение, что положительно сказывается на КПД блока питания и его нагреве.
Но в отличии от обычных диодов у них более выражена разница в зависимости падения на нем от максимального напряжения, на которое рассчитан диод. Т.е. диод на 45 Вольт запросто имеет падение в 1.5 раза меньше чем диод на 100 Вольт. Т.е в данном БП лучше смотрелся бы диод на 30-40 Ампер и 60 Вольт, КПД был бы выше, а цена практически той же.
Т.е. по факту в этом БП применен хороший диод с большим запасом по напряжению, это надежно, думаю что если и сгорит он, то одним из последних, но он просто не совсем оптимален.

Выходной фильтр и узел стабилизации.
Для начала здесь также существуют свои правила, например суммарная емкость конденсаторов желательна из расчете 1000мкФ на каждый 1 Ампер выходного тока, но на самом деле БП вполне нормально работает и при в 2 раза уменьшенной емкости. Не менее важно максимальное напряжение на которое рассчитаны конденсаторы и их тип.
Выходное напряжение обычно желательно:
Для 5 вольт БП — 16, в крайнем случае 10 Вольт, ни в коем случае не 6.3
Для 12 Вольт — 25, в крайнем случае 16.
Для 24 Вольта, 35, ни в коем случае не 25.
Конденсаторы должны быть с низким внутренним сопротивлением (LowESR) и рассчитаны на 105 градусов, тогда будет работать долго.
В этом БП конденсаторы имеют емкость 1000мкФ, что дает в сумме 2000мкФ, исходя из этого максимальный длительный ток не желателен выше 4-5 Ампер. кратковременно можно снимать и больше, но сократится срок службы конденсаторов.
Кстати в этом блоке питания есть место для установки нормальных конденсаторов с диаметром 10мм, хотя сейчас установлены небольшие, диаметром 7мм.
Выходной дроссель, ну тут точно, чем больше, тем лучше. но следует учитывать, что важен не только размер, а и ток, на который рассчитан дроссель. Если дроссель намотан тонким проводом, то он будет греться. А если феррит, на котором намотан дроссель, перегревается, то его характеристики резко ухудшаются (при превышении определенной температуры). примерно на таком принципе работают индукционные паяльники, то там зло обратили во благо, но это уже тему другого обзора.
Здесь применен не очень мощный дроссель, позже при тестах мы к нему еще вернемся.
Схема стабилизации выходного напряжения. О ней я напишу чуть позже, так как она расположена снизу печатной платы, сверху расположен только подстроечный резистор для точной установки выходного напряжения и светодиод, показывающий что блок питания включен и работает (иногда это не одно и то же:).

Постепенно мы дошли до более «тонкой» электроники. В данном БП основная часть компонентов расположена снизу, со стороны дорожек из-за того, что применены безвыводные (SMD) компоненты. В блоке питания могут быть применены и обычные детали, особого значения то не имеет, потому по большому счету на это не стоит особо обращать внимания.
А вот на монтаж платы внимание обращать стоит. Плата должна быть изготовлена качественно, выводы припаяны и обкушены. а не торчать в разные стороны как попало. Желательно чтобы флюс был смыт, как минимум основная его часть.
К данному БП особых претензий нет, вполне заслуженные 4 балла. Не скажу что идеально, скорее нормально.
Я вообще имею привычку покрывать плату лаком после монтажа и промывки, но такое встречается только у брендов верхнего уровня и то чаще в промышленных устройствах.
Немного расстроило отсутствие защитного прореза под оптроном, разделяющим высоковольтную часть и низковольтную. Желательно чтобы были прорезы между близким расположением проводников разных сторон блока питания, это повышает безопасность.

По печатной плате я начертил принципиальную схему. По большому счету я взял схему одного из обозреваемых ранее БП и внес необходимые дополнения и коррективы так как большинство таких блоков питания построено по похожей (если не сказать одинаковой) схемотехнике.

Шунт из нескольких SMD резисторов под номерами 9, 19, 21, 22, 23 предназначен для измерения тока через высоковольтный транзистор, это необходимо для защиты блока питания от перегрузки и короткого замыкания. При выходе блока питания чаще всего уходит в другой мир вместе с высоковольтным транзистором, ШИМ контроллером и резистором, который стоит между транзистором и контролером.
Пайка аккуратная, мало того, компоненты приклеены, это уже одна из «примет» более-менее нормальных блоков питания.

В этом БП применен ШИМ контроллер неизвестного происхождения, но он полностью совпадает по выводам с контроллером 63D39, который в свою очередь является аналогом .
В небольших блоках питания применяется три вида схемных решений
1. Микросхема ШИМ контроллера + высоковольтный полевой транзистор.
2. Микросхема мощного ШИМ контроллера у которой внутри находится и полевой транзистор и шунт (иногда вместо шунта измеряется падение на полевом транзисторе в открытом состоянии)
примеры — TOP Powerintegrations, Viper и т.п.
3. Автогенератор, микросхем нет, иногда нет и защиты от превышения тока.
Первые два типа по сути аналогичны, третий гораздо хуже, если вы увидели небольшую микросхему, значит 99% у вас первый тип БП. Если на плате есть высоковольтный транзистор и рядом с ним еще 1-2 транзистора, но меньших размеров, то это на 99% автогенератор.
Здесь применено правильное решение, замечаний нет.

Вторичная сторона, отвечает за выпрямление и стабилизацию выходного напряжения.
Некоторые люди заблуждаются, считая что за стабильность выходного напряжения отвечает первичная сторона (хотя есть и такие варианты БП). За точность стабилизации выходного напряжения отвечает именно вторичная сторона, так как она контролирует поведение первичной.
Отвечает за стабилизацию небольшая микросхемка под названием TL431, на этом фото она в очень маленьком корпусе с тремя выводами под названием V3. Эта микросхема — управляемый стабилитрон, при подаче напряжения с выхода блока питания на эту микросхему она управляет включением оптрона (на фото сверху платы, он между трансформатором и транзистором), который передает команду на ШИМ контроллер и он уже управляет мощностью БП, подстраивая ее так, чтобы на выходе было стабильное напряжение.
Напряжение на микросхему подается через делитель, иногда через просто два резистора, а иногда еще добавлен подстроечный резистор, при помощи которого можно изменить выходное напряжение в небольших пределах.
Существует еще одно заблуждение, что при выходе блока питания из строя, обычно страдает и то, что подключено. Скажу так, такое возможно, теоретически, но реально бывает ОЧЕНЬ редко. Также при выходе БП из строя вторичная сторона страдает реже всего, чаще всего все неприятности происходят на первичной (высоковольтной) стороне.
Иногда некоторые производители не делают стабилизацию выходного напряжения при помощи специальной микросхемы и оптрона, но это не очень хорошо. Мало того, у меня даже есть обзор блока питания, где есть оптрон, но он никуда не подключен.
Бывает даже влияет то, как разведены дорожки через которые измеряется выходное напряжение, это критично, особенно при больших токах.
В общем если есть оптрон и маленькая трехногая микросхема недалеко от выхода БП, то данный БП скорее всего с правильной стабилизацией.

Для большего понимания, что такое первичная (она же «горячая») сторона и вторичная (она же «холодная») я разделил на схеме стороны двумя цветами, черным цветом обозначены компоненты, которые относятся к двум сторонам одновременно.

Для начала первое включение (надо же было его когда нибудь включить). все заработало и ничего не сгорело:).
При включении БП показал напряжение на выходе равное 5,12 Вольта.
Проверяем диапазон регулировки, он составляет 4.98-5.19 Вольта, вполне нормально.
После этого выставляем на выходе заявленные 5 Вольт.

Для проверки блока питания я использую уже известный моим читателям «стенд», состоящий из:

Как и в прошлые разы я провожу ступенчатые тесты по 20 минут каждый, поднимая ток нагрузки после успешного прохождения теста. Щуп осциллографа стоит в положении 1:1.

Первый тест проводим без нагрузки, напряжение 5 Вольт, пульсации почти отсутствуют.
2. Нагрузка 2 Ампера, напряжение 5 Вольт, пульсации на уровне 30-40мВ, отлично.

1. Нагрузка 4 Ампера, напряжение 5 Вольт, пульсации около 40мВ, отлично.
2. Нагрузка 6 Ампер, напряжение чуть просело до 4.99 Вольта, пульсации практически неизменны и составляют около 40мВ, отлично.

1. Ток нагрузки 7.2 ампера, напряжение 4.99 Вольта, а вот пульсации очень выросли. Это плохо.
Рост пульсаций обусловлен не только током нагрузки, а скорее нагревом дросселя (вернее его перегревом). Выше я писал, что сердечник дросселя (и трансформатора) меняет свои характеристики при нагреве выше определенной температуры. В данном случае дроссель начинает работать как просто кусок проволоки почти ничего не фильтруя. Если так перегреется трансформатор, то это закончится походом за другим БП. Именно из измерения температур я делаю выводы от том, в каком режиме работает БП и какая его максимальная мощность.
Дроссель в этом БП намотан тонким проводом, потому он имеет большое сопротивление и сильно греется.
Ради эксперимента я охладил дроссель и измерил пульсации под нагрузкой еще раз. на всякий случай я сделал фото экрана осциллографа » в режиме реального времени», а не в режиме удержания показаний.
2. Тока нагрузки 7.2 Ампера, дроссель охлажден до 88 градусов (правда я невольно немного охладил и весь БП, но в основном охлаждал дроссель), пульсации составляют максимум 50мВ.

Согласно результатам тестирования, была составлена небольшая табличка температур основных элементов данного блока питания.
Немного о температурах.
Пускай вас не пугают температуры под 100 градусов у транзисторов и диодов, при таких температурах они себя вполне нормально чувствуют.
Гораздо более критична температура трансформатора и дросселя, а также электролитических конденсаторов. В данном БП после 1час 40 минут тестирования (последняя колонка + 20 минут под максимальным током) выходные конденсаторы разогрелись до 104.2 градуса, это очень плохо, но судя по температуре дросселя в 142 градуса я думаю что основной «вклад» в этот результат дал именно он и если его заменить, то температура конденсаторов значительно снизится.
Вообще диоды и транзисторы нормально могут работать и при 130-140 градусов, но я считаю это большой температурой. Раньше в наших справочниках писали — запрещается эксплуатация компонентов при превышении более чем одного из параметров, я стараюсь не превышать вообще никакие параметры.
В данном БП самым греющимся компонентом является выходной дроссель, температуры остальных компонентов даже под максимальным током и после длительного прогрева находятся на безопасном уровне, я был даже удивлен что диод так мало нагрелся.
При измерении температур измерялась температура именно компонента, а не радиатора, на котором он установлен, это дает более точное понимание процесса.

Резюме.
Плюсы

БП отлично держит выходное напряжение, пока это самый лучший результат среди протестированных мною БП.
Уровень пульсаций можно было бы считать очень хорошим, если бы не перегрев дросселя на максимальном токе и последующий рост пульсаций.
Общий нагрев БП находится в пределах допустимого.
Неплохое общее качество изготовления БП.
Входной конденсатор на 450 Вольт

Минусы

Дроссель «несоразмерен» выходному току БП, перегрев.
Выходные конденсаторы установлены заниженной емкости.
Применены не правильные Y, а обычные высоковольтные.

Мое мнение. Данный блок питания можно вполне безопасно эксплуатировать при токе нагрузки до 5-6 Ампер, но если заменить выходной дроссель и конденсаторы, то можно спокойно длительно работать и при токе 7 Ампер. При тесте я кратковременно нагружал его током 7.5 Ампер, работал абсолютно без проблем. т.е. запас по мощности у этого БП есть.
Очень жаль, что опять сэкономили на конденсаторах, соединяющих первичную и вторичную стороны БП и поставили обычные высоковольтные, но судя по моей практике разбора недорогих БП, так делается очень часто:(
Очень обрадовала точность стабилизации выходного напряжения, при изменении тока нагрузки от холостого хода до 7.5 ампер выходное напряжение снизилось всего на 10мВ, это просто отлично, честно, я не ожидал.
В общем такой себе БП-конструктор с хорошим потенциалом, но буквально «просящий» доработки.

На этом пока все. Надеюсь что немного помог тем, кто испытывает затруднения при выборе блоков питания. Частично обзор является ответом на многие вопросы, которые мне задают в личке и в комментариях, но в планах продолжение (скорее дополнение) данного обзора-объяснения, но уже с другим блоком питания, заметно мощнее. Второй блок питания также заказан для обзора по просьбе читателей и я надеюсь, что он уже где то на подходе ко мне.

Как всегда жду вопросов и предложений в комментариях:)

А если кратко по пунктам, то:
Клеммник, при большом токе лучше когда выходных клемм больше одной пары.
Терморезистор (покажу в другом обзоре), в маломощном БП желателен, в мощном обязателен.
Входной дроссель, обязателен если не хотите помех на радиоприемники. да и просто в сеть.
Входной электролитический конденсатор, минимум 400 Вольт, если 450, то вообще отлично, емкость минимум равняется мощности БП в Ваттах.
Высоковольтный транзистор, тут все проще, меньше чем на 600 Вольт еще не встречал (в с такой схемотехникой).
Трансформатор, если грубо, то чем больше, тем лучше. при работе проверить нагрев, если греется более 95-100 градусов — плохо.
Выходной диод, данные есть в тексте, ток не менее 2.5-3 раза от выходного, напряжение не менее 100 Вольт для 12 Вольт БП и не менее 45-60 для 5 Вольт БП
Выходные конденсаторы — Емкость чем больше (но в разумных пределах), тем лучше, но не менее чем 470мкФ на 1 Ампер, лучше 1000мкФ на 1 Ампер. Конденсаторы должны быть LowESR 105 градусов и напряжение не менее 10 Вольт для 5В БП и 25В для 12В БП.
Выходной дроссель, чем больше. тем лучше. Но с максимальным током, соответствующим выходному току БП.
Наличие регулировки выходного напряжения, необязательно, но приветствуется.
Обязательно наличие стабилизации на вторичной стороне.
Обязательно наличие ШИМ контроллера, а не транзисторной схемы.
Все элементы должны быть хорошо прижаты к радиатору/корпусу.
Предохранитель ДОЛЖЕН БЫТЬ.
Обязательно наличие правильных конденсаторов Y типа между сторонами БП (присутствие надписи Y1 на конденсаторе)
Общая аккуратность сборки говорит о контроле со стороны производителя, если БП изначально собран «криво», то от него уже тяжело ждать хороших результатов.

Именно по этим критериям я оцениваю качество блока питания

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить

+181

Добавить в избранное

Обзор понравился

+169

+360

Началось все с того, что у старенького планшета начал барахлить блок питания и я решил подобрать ему замену. Нашел вариант с привычной нам вилкой и не отсоединяемым кабелем.
Старый блок питания я скорее всего починю и уже даже придумал куда его применить, а сегодня попробую протестировать новый.

Постараюсь сделать обзор коротким, но максимально по делу. Будут как всегда, тесты, разборка, анализ.

Пришел блок питания в конверте, без всяких коробочек и т.п.
К слову в последнее время приятно удивляет скорость доставки с чайнабея, посылки удет примерно полторы недели.

Блок питания относительно маленьких размеров, на вид уменьшенная копия популярных блоков 12 Вольт 2 Ампера.
Длина кабеля около 1.4 метра, как по мне лучше бы он был раза в два короче.
Обрадовало несколько вещей.
1. Блок питания действительно с евро вилкой, а не с переходником в комплекте.
2. Кабель не отключаемый, лишние контакты никак не увеличивают надежность.
3. БП брался для планшета u9gt4. Он имеет алюминиевый корпус и далеко не все штеккеры нормально работают. Здесь проблем я не обнаружил.

Всем думаю понятно, что без тестов обзор блока питания это вообще не обзор, потому я собрал небольшой стенд для проверки.
В него входило:
Электронная нагрузка + блок питания к ней
Осциллограф
microUSB гнездо с припаянным проводом.
Ну и сам обозреваемый блок питания

Наверняка некоторые читатели скажут, что правильно измерять напряжение на выходе блока питания, а не после кабеля. Но я рассуждал так — раз кабель не отсоединяемый, то заменить его на лучший нельзя, значит он будет работать именно в таком виде, потому и тестировать надо именно так.

Первое испытание на холостом ходу.
Выходное напряжение несколько завышено, позже я объясню почему, но скажу сразу, сделано это было специально.

Пульсации измерялись в положении делителя щупа 1:1.
Ну на холостом ходу пульсации бывают очень редко, потому здесь так же все в порядке.

Дальше четыре теста с разным током нагрузки, заодно здесь хорошо видно что такое электронная нагрузка и зачем она нужна.
Испытательные токи:
0.5 Ампера — напряжение в норме.
1.0 Ампера — напряжение в норме, пульсации почти такие же как при 0.5 Ампера и составляют 90мВ.
1.5 Ампера — напряжение еще в норме, но пульсации уже явно повыше, около 120мВ
2.0 Ампера — напряжение уже сильно просело, пульсации выросли до 150мВ.
Не скажу что напряжение пульсаций ну очень критичное, но мне скорее не нравится их форма.

Ну и осциллограммы.

Еще с далеких времен, когда в ходу была 155 и 555 серия логических микросхем, я привык считать, что пока напряжение питания находится в пределах +/-5% (для 5 Вольт), то все нормально.
Соответственно я решил определить максимальный ток, который может выдать БП еще оставаясь в границах допуска.
Измерение показало, что это 1.71 Ампера, хотя БП промаркирован как 2 Ампера.
Но на самом деле это скорее не вина самого БП, а большой длины кабеля. Собственно потому я и жалел что кабель длинный.

После этого я погонял блок питания на токе 2 Ампера примерно с пол часа и измерил температуру. БП был включен в настенную розетку, кабелем вниз.
Самая горячая точка была примерно чуть ниже середины БП, температура корпуса в этом месте составила 62.2 градуса. В верху блока питания температура была около 55 градусов.

В процессе тестов я пробовал подключать этот БП к своему планшету и увидел знакомый многим дефект в виде «фантомных» нажатий тачскрина.
Выглядело это как:
Нажатие в одном месте, но реально отклик происходил в другом.
На одно нажатие несколько откликов
При длительном нажатии пробегает горизонтальная полоса с видимыми «фантомными» нажатиями. Т.е. правый клик (длительное удержание) произвести просто невозможно, вообще.
все глюки были в горизонтальной плоскости экрана.
Хотя БП брался и не для этого планшета, но я решил попробовать разобраться в проблеме.
Ну а как все понимают, любое разбирательство начинается с разборки:)

БП удивил меня в очередной раз. Я уже взял по привычке нож, молоток и стукнул пару раз по шву между половинками корпуса, но сразу понял что что-то не так, звук был другой.
Не дело, подумал я и начал искать крепеж, как и ожидалось он нашелся под наклейкой.
Удобно, уже так привык что БП клееные, что даже непривычно.

Долез я до платы и тут меня БП опять удивил.
Еще когда я увидел «фантомы», то первым делом подумал, что БП сделан как всегда по автогенераторной схеме, как самой дешевой и не имеет выходного дросселя.
БП был собран на довольно известном ШИМ контроллере и имел выходной дроссель.
А вот входной дроссель отсутствовал:(
Зато стоял Y1 конденсатор между входом и выходом, хотя часто ставят просто высоковольтный керамический.
Выходные конденсаторы по 470мкФ, мало, при 2 Амперах надо хотя бы 1000мкФ.

Но первое что бросилось в глаза, это слишком мелкий трансформатор. Насколько я знаю, для частоты 60КГц, на которой работает этот ШИМ контроллер, трансформатор должен быть раза в полтора больше.
По входу присутствует предохранитель.
Выше я писал, что объясню почему завышено выходное напряжение. Это не дефект, а именно так и задумано. микросхема, которая следит за выходным напряжением, имеет пороговое напряжение в 2.5 Вольта, значит для 5 Вольт ставят делитель 1 к 2. но здесь стоял делитель из резисторов 4.7 и 5.1 КОм. Соответственно выходное напряжение поднимали специально, именно из расчета работы на большую длину кабеля, но помогло это слабо:(

Хоть плата сделана на дешевом гетинаксе, пайка вполне терпимая, но ШИМ контроллер явно менялся, присутствуют следы пайки и флюса.

Более подробные фотографии.
1. ШИМ контроллер Viper22A, при этих условиях расчетная мощность около 12 Ватт, запас совсем маленький.
2. Выходной диод SR560 , Шоттки 5 Ампер, неплохо, при этом рядом присутствует место для еще одного диода, видимо расчет на установку двух более слабых диодов.
А вот кабель для такого тока тонковат, особенно при такой длине.
3. Входной конденсатор на 6.8 мкФ, мало. Для такого БП должно быть 10мкФ или больше.
4. Еще один электролитический конденсатор, в цепи питания ШИМ контроллера. Здесь емкость вполне достаточна. Проблем с запуском БП нет, стартует мгновенно.

После осмотра я составил принципиальную схему данного БП.

Так как я открыл Бп не только для осмотра, а и для попытки доработки, то я порылся в своих запасах и решил добавить\заменить некоторые компоненты.
1. Увеличить емкость входного конденсатора, но 10мкФ не нашел, пришлось взять 2.2 и добавить параллельно существующему (уменьшение пульсаций на частоте 100Гц и снижение нагрева ШИМ контроллера)
2. Поставить керамические конденсаторы емкостью 0.22мкФ параллельно выходным конденсаторам (уменьшение пульсаций выходного напряжения на ВЧ)
3. Поставить RC цепочку параллельно выходному диоду (немного уменьшает помехи от переключения диода)
4. Заменить выходной дроссель с 10мкГн на 20мкГн, кроме того старый дроссель был намотан явно тонким проводом и замена дросселя даст чуть меньшие потери на нагрев.
5. Заменить одни из выходных конденсаторов на более емкий и качественный.

На схеме я пометил цветом измененные и добавленные компоненты.
На самом деле я пробовал еще увеличивать емкость С3 до 100нФ и ставить такой же конденсатор параллельно С4, но разницы не было.

Вот как выглядел БП после доработки.

Но как показала практика, разницы не было, вообще. Так же никуда не пропали «фантомы».
Увеличение С3 и установка керамического конденсатора параллельно С4 была уже последней попыткой, но это ничего не изменило.
Первый раз моя модификация не помогла. Думаю что объяснение этому может крыться в неправильном трансформаторе, который скорее всего работает в режимах близких к насыщению.

Зато в процессе экспериментов я проверил температуру компонентов в работе. Прогрев около получаса, быстрое открытие корпуса и замер температур:
Трансформатор — 90-93 градуса
ШИМ контроллер — 80 градусов
Выходной диод — 80-86 градусов.

Но когда я подключил этот БП к планшету, для которого он вообще предназначался, то увидел что проблем с ним нет, все работает отлично.

После этого я решил уже скорее ради любопытства посмотреть как работает родной БП моего планшета. Ведь с ним проблем нет, можно спокойно работать во время заряда.
Измерение показало, что колебания напряжения от изменения нагрузки гораздо меньше.
При работе без нагрузки он показал около 5.06 Вольта, а под нагрузкой в 2 Ампера — 4.92 Вольта. Результат отличный.

Но когда я увидел осциллограмму пульсаций по выходу этого БП, то подумал, КАК?
Как БП с таким уровнем пульсаций не дает помех работе тачскрина, а при БП с явно меньшим уровнем пульсаций работать вообще невозможно?

На основании тестов, проведенных выше, разборки и попытки переделки, я вполне могу определить плюсы и минусы данного БП.
Плюсы

Блок питания имеет евровилку, а не переходник
Схемотехника с применением специализированного ШИМ контроллера
Неразъемная конструкция кабеля (хотя в данном случае это оказалось и минусом)
Штеккер имеет нормальную фиксацию в разъеме планшета, даже если гнездо утоплено в корпусе.

Минусы

На некоторых устройствах возможны проблемы с тачскрином.
Отсутствие входного фильтра питания.
Занижена емкость конденсаторов и размеры трансформатора.
Большое падение на кабеле из-за большой его длины и малого сечения жил.

Мое мнение. Если рассматривать его как просто блок питания, то он вполне нормально может работать до тока в 1.5 Ампера, при этом не будет проблем с перегревом и просадкой напряжения. но при большем токе напряжение упадет ниже допустимых границ. Так же непонятна причина возникновения помех работе тачскрина, но проблема есть и видна невооруженным глазом, хотя пульсации выходного напряжения не такие уж и большие.

Я не знаю, поможет ли кому нибудь этот обзор, но я старался показать что это за блок питания максимально подробно.

Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.

Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.

Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.

Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.

Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.

Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.

Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.

Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.

Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.

Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.

Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.

Историческая справка

С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.

Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.

Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.

Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.

Электрический ток. Определения

Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:

I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах

Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:

I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах

Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).

Размерность тока в системе СИ определяется как

[А] = [Кл] / [сек]

Особенности протекания электрического тока в различных средах. Физика явлений

Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках

При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.

Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.

С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.

В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.

Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.

Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.

Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.

Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.

Электрический ток в жидкостях (электролитах)

Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.

Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.

Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.

Электрический ток в газах

Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.

Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.

Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.

Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.

Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.

Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.

Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.

Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.

При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.

Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.

Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.

Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.

Электрический ток в вакууме

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.

Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.

Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.

Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.

Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.

При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.

В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.

Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.

Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.

Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.

Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.

Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток
за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.

Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.

Электрический ток в биологии и медицине

Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.

При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.

Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.

В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.

Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.

К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.

Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.

Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.

У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.

Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.

Характеристики электрического тока, его генерация и применение

Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.

Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.

Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.

Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.

В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.

Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.

Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.

В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.

Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.

Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.

Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.

Измерение электрического тока

Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.

По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.

Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение тока I m — это наибольшее мгновенное значение тока за период.

Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.

Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.

Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.

Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.

Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма
напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение тока с помощью осциллографа

Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта R s =100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта R s . Значение сопротивления шунта выбирается из условия R s

Опыт 1

Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор R s определяется по закону Ома:

I RMS = U RMS /R = 0,31 В / 100 Ом = 3,1 мА,

что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен

I P-P = U P-P /R = 0,89 В / 100 Ом = 8,9 мА

Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить I RMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).

Опыт 2

Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:

I RMS = U RMS /R = 0,152 В / 100 Ом = 1,52 мА,

что приблизительно соответствует показаниям мультиметра (1,55 мА).

Опыт 3

Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.

Опыт 4

Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму
его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе R s =100 Ом.

Техника безопасности при измерении тока и напряжения

Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии

  • Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
  • Не проводить измерения токов, требующих определённых профессиональных навыков (при напряжении свыше 1000 В).
  • Не производить измерения токов в труднодоступных местах или на высоте.
  • При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  • Пользоваться исправным измерительным инструментом.
  • В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  • Пользоваться измерительным прибором с исправными щупами.
  • Строго следовать рекомендациям производителя по использованию измерительного прибора.

На бытовых приборах (миксер, фен, блендер) производители пишут потребляемую мощность в ваттах, на устройствах, которые требуют больших объемов электрической нагрузки (электрическая плита, пылесос, водонагреватель), – в киловаттах. А на розетках или автоматических выключателях, через которые подключаются к сети приборы, принято указывать силу тока в амперах. Чтобы понять, выдержит ли розетка подключаемое устройство, нужно знать, как переводить амперы в ватты.


Единицы мощности

Перевод ватты в амперы и наоборот – понятие относительное, потому как это разные единицы измерения. Амперы – это физическая величина силы электрического тока, то есть скорость прохождения электричества через кабель. Ватт – величина электрической мощности, или скорость потребления электроэнергии. Но такой перевод необходим для того, чтобы рассчитать, соответствует ли значение силы тока значению его мощности.

Перевод ампера в ватты и киловатты

Знать, как посчитать соответствие ампер ваттам, нужно для того, чтобы определить, какое устройство способно выдержать мощность подключаемых потребителей. К таким устройствам относят защитную аппаратуру или коммутационную.

Перед тем как выбрать, какой автоматический выключатель или устройство защитного отключения (УЗО) установить, нужно посчитать мощности потребления всех подключаемых приборов (утюг, лампы, стиральная машина, компьютер и т.д.). Или же наоборот, зная, какой стоит автомат или защитное устройство отключения, определить, какое оборудование выдержит нагрузку, а какое нет.

Для перевода ампера в киловатты и наоборот существует формула: I=P/U, где I – амперы, P – ватты, U – вольты. Вольты – это напряжение сети. В жилых помещениях используется однофазная сеть – 220 В. На производстве для подключения промышленного оборудования работает электрическая трехфазная сеть, значение которой равно 380 В. Исходя из этой формулы, зная амперы, можно посчитать соответствие ваттам и наоборот – перевести ватты в амперы.

Ситуация: имеется автоматический выключатель. Технические параметры: номинальный ток 25 А, 1-полюс. Нужно посчитать, какую ваттность приборов способен выдержать автомат.

Проще всего технические данные внести в калькулятор и рассчитать мощность. А также можно использовать формулу I=P/U, получится: 25 А=х Вт/220 В.

х Вт=5500 Вт.

Чтобы ватты перевести в киловатты,необходимо знать следующие меры мощности в ватт:

  • 1000 Вт = 1 кВт,
  • 1000 000 Вт = 1000 кВт = МВт,
  • 1000 000 000 Вт = 1000 МВт = 1000000 кВт и т.д.

Значит, 5500 Вт =5,5 кВт. Ответ: автомат с номинальным током 25 А может выдержать нагрузку всех приборов общей мощностью 5,5 кВт, не более.

Применяют формулу с данными напряжения и силы тока для того, чтобы подобрать тип кабеля по мощности и силе тока. В таблице приведено соответствие тока сечению провода:

Медные жилы проводов и кабелей

Сечение жилы, мм²Медные жилы проводов, кабелей
Напряжение 220 ВНапряжение 380 В
Ток, АМощность, кВтТок, АМощность, кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066260171,6

Как перевести ватт в ампер

Перевести ватт в ампер нужно в ситуации, когда необходимо поставить защитное устройство и нужно выбрать, с каким номинальным током оно должно быть. Из инструкции по эксплуатации ясно, сколько ватт потребляет бытовой прибор, подключаемый к однофазной сети.

Задача рассчитать, сколько ампер в ваттах или какая соответствует розетка для подключения, если микроволновая печь потребляет 1,5 кВт. Для удобства расчета киловатты лучше перевести в ватты: 1,5 кВт = 1500 Вт. Подставляем значения в формулу и получаем: 1500 Вт / 220 В = 6,81 А. Значения округляем в большую сторону и получаем 1500 Вт в пересчете на амперы – потребление тока СВЧ не менее 7 А.

Если подключать несколько приборов одновременно к одному устройству защиты, то чтобы посчитать, сколько в ваттах ампер, нужно все значения потребления сложить вместе. Например, в комнате используется освещение со светодиодными лампами 10 шт. по 6 Вт, утюг мощностью 2 кВт и телевизор 30 Вт. Сначала все показатели нужно перевести в ватты, получается:

  • лампы 6*10= 60 Вт,
  • утюг 2 кВт=2000 Вт,
  • телевизор 30 Вт.

60+2000+30=2090 Вт.

Теперь можно перевести ампер в ватты, для этого подставляем значения в формулу 2090/220 В = 9,5 А ~ 10 А. Ответ: потребляемый ток около 10 А.

Необходимо знать, как перевести амперы в ватты без калькулятора. В таблице показано соответствие скорости потребления электроэнергии силе тока при однофазной и трехфазной сетях.

Ампер (А)Мощность (кВт)
220 В380 В
20,41,3
61,33,9
102,26,6
163,510,5
204,413,2
255,516,4
327,021,1
408,826,3
5011,032,9
6313,941,4

Все автоматы, которые имеются в продаже, содержат в маркировке величину предельно допустимого тока (но никак не поддерживаемой мощности в ваттах), а большинство потребителей имеют пометку на бирке о потребляемой мощности. Чтобы правильно подобрать кабель и автоматический выключатель нужно знать, как перевести амперы в киловатты и обратно. Об этом мы и расскажем читателям сайта далее.


Краткие о напряжении, токе и мощности

Напряжением (измеряют в Вольтах) называется разность потенциалов между двумя точками или работу, выполненную по перемещению единичного заряда. Потенциал, в свою очередь, характеризует энергию в данной точке. Величина тока (количество Ампер) описывает, сколько зарядов протекли через поверхность за единицу времени. Мощность (ватты и киловатты) описывает скорость, с которой этот заряд был перенесен. Из этого следует – чем больше мощность, тем быстрее и больше переместилось носителей заряда через тело. В одном киловатте тысяча ватт, это нужно запомнить для быстрого расчета и перевода.

В теории звучит довольно сложно, давайте рассмотрим на практике. Основная формула, которой вычисляется мощность электрических приборов следующая:

P=I*U*cosФ

Важно!
Для чисто активных нагрузок используется формула P=U*I
, у которых cosФ равен единице. Активные нагрузки – это нагревательные приборы (электрический обогрев, электропечь с ТЭНами, водонагреватель, электрочайник), лампы накаливания. Все остальные электроприборы имеют некоторое значение реактивной мощности, это обычно небольшие значения, поэтому ими пренебрегают, поэтому расчет в итоге примерный получается.

Как выполнить перевод

Постоянный ток

В сфере автоэлектрики и декоративной подсветки используются цепи 12 В. Давайте рассмотрим на практике, как перевести амперы в ватты на примере светодиодной ленты. Для её подключения зачастую необходим блок питания, но подключить «просто так» его нельзя, он может сгореть, или наоборот, вы можете купить слишком мощный и дорогой БП там, где он не нужен и зря потратить деньги.

В характеристиках блока питания на бирке указываются такие величины, как напряжение, мощность и ток. Причем количество Вольт указываются обязательно, а вот мощность или ток могут быть описаны вместе, а может быть и такое, что только одна из характеристик указана. В характеристиках светодиодной ленты указаны те же характеристики, но мощность и ток с учетом на метр.

Представим, что вы купили 5 метров ленты 5050 с 60 светодиодами на 1 метр. На упаковке написано «14,4 Вт/м», а в магазине на бирках БП указан только ток. Подбираем правильный источник питания, для этого умножим количество метров на удельную мощность и получим общую мощность.

14,4*5=72 Вт – необходимо для питания ленты.

Значит нужно перевести в амперы по этой формуле:

Итого: 72/12=6 Ампер

Итого нужен блок питания минимум на 6 Ампер. Более подробно узнать о том, вы можете узнать из нашей отдельной статьи.

Другая ситуация. Вы установили на свой автомобиль дополнительные фары, но на лампочках указана характеристика, допустим 55 Вт. Подключение всех потребителей в авто лучше производить через предохранитель, но какой нужен для этих фар? Нужно перевести ватты в амперы по формуле выше – разделив мощность на напряжение.

55/12=4,58 Ампера, ближайший номинал – 5 А.

Однофазная сеть

Большинство бытовых приборов рассчитаны на подключение к однофазной сети 220 В. Напомним, что в зависимости от страны, в которой вы живете, напряжение может быть и 110 вольт и любым другим. В России принятая за стандарт величина именно 220 В для однофазной и 380 В для трёхфазной сети. Большинству читателей чаще всего приходится работать именно в таких условиях. Чаще всего нагрузку в таких сетях измеряют в киловаттах, при этом автоматические выключатели содержат маркировку в Амперах. Рассмотрим немного практических примеров.

Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Здесь эффективна та же формула, связывающая силу тока и напряжение в мощность.

P=I*U*cosФ

Для удобства расчетов принимаем cosФ за единицу.Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.

С помощью таблицы можно быстро перевести амперы в киловатты при выборе автоматического выключателя:

Немного сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Чтобы определить, сколько у вас будет потреблять киловатт в час такой двигатель, нужно обязательно учитывать коэффициент мощности в формуле:

P=U*I*cosФ

Следует отметить, что cosФ должен быть указан на бирке, обычно от 0,7 до 0,9. В данном случае, если полная мощность двигателя 5,5 киловатт или 5500 Ватт, то потребляемая активная мощность (а мы платим, в отличие от предприятий, только за активную):

5,5*0,87= 4,7 киловатта, а если точнее то 4785 Вт

Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.

Еще один пример, сколько ампер потребляет чайник на 2 кВт? Делаем расчет, сначала нужно выполнить : 2*1000 = 2000 Ватт. После этого переводим ватты в Амперы, а именно: 2000/220 = 9 Ампер.

Это значит, что пробка на 16 Ампер выдержит чайник, но если вы включите еще один мощный потребитель (например, обогреватель) и в суммарная мощность будет выше 16 Ампер – она через время выбьет. Также дело обстоит и с автоматами, и предохранителями.

Для подбора кабеля, который выдержит определенное количество ампер чаще, чем формулы используют таблицу. Вот пример одной из них, кроме тока в ней и указана мощность нагрузки в киловаттах, что очень удобно:

Трёхфазная сеть

В трёхфазной сети есть две основных схемы соединения нагрузки, например обмоток электродвигателя – это звезда и треугольник. Формула определения и перевода мощности в ток несколько иная, чем в предыдущих вариантах:

P = √3*U*I*cosФ

Так как наиболее частым потребителем трёхфазной электросети является электродвигатель, рассмотрим на его примере. Допустим, у нас есть электродвигатель мощностью в 5 киловатт, собранный по схеме звезды с напряжением питания 380 В.

Нужно запитать его через автоматический выключатель, но чтобы его подобрать, нужно знать ток двигателя, значит нужно перевести из киловатт в амперы. Формула для расчета будет иметь вид:

I=P/(√3*U*cosФ)

На нашем примере это будет 5000/(1,73*380*0,9)=8,4 А. Таким образом мы без труда смогли перевести киловатты в амперы в трехфазной сети.

Как преобразовать 1 ватт в амперы

Как преобразовать электрическую мощность 1 ватта (Вт) в электрический ток в амперах (А).

Вы можете рассчитать (но не преобразовать) амперы из ватт и вольт:

Расчет ампер при напряжении 12 В постоянного тока

Для источника питания постоянного тока ампер равен ваттам, разделенным на вольты.

ампер = ватт / вольт

А = 1 Вт / 12 В = 0,083333 А

Расчет ампер при напряжении 120 В переменного тока

Для источника питания переменного тока ток равен ваттам, разделенным на коэффициент мощности, умноженный на вольты.

ампер = Вт / ( PF × вольт)

Для резистивной нагрузки без катушек индуктивности или конденсаторов коэффициент мощности равен 1:

.

А = 1 Вт / (1 × 120 В) = 0,008333 А

Для индуктивной нагрузки (например, асинхронного двигателя) коэффициент мощности может быть приблизительно равен 0,8:

А = 1 Вт / (0,8 × 120 В) = 0,010417 А

Расчет ампер при напряжении 230 В переменного тока

Для источника питания переменного тока ток равен ваттам, разделенным на коэффициент мощности, умноженный на вольты.

ампер = Вт / ( PF × вольт)

Для резистивной нагрузки без катушек индуктивности или конденсаторов коэффициент мощности равен 1:

.

А = 1 Вт / (1 × 230 В) = 0,004348 А

Для индуктивной нагрузки (например, асинхронного двигателя) коэффициент мощности может быть приблизительно равен 0,8:

А = 1 Вт / (0,8 × 230 В) = 0,005435 А

Как перевести ватты в амперы »


В настоящее время у нас есть около 940 калькуляторов, таблиц преобразования и полезных онлайн-инструментов и программных функций для студентов, преподавателей и учителей, дизайнеров и просто для всех.

На этой странице Вы можете найти финансовые калькуляторы, ипотечные калькуляторы, калькуляторы для кредитов, калькуляторы для автокредитования и лизинга, калькуляторы процентов, калькуляторы платежей, пенсионные калькуляторы, калькуляторы амортизации, инвестиционные калькуляторы, калькуляторы инфляции, финансовые калькуляторы, калькуляторы налога на прибыль , калькуляторы сложных процентов, калькулятор заработной платы, калькулятор процентной ставки, калькулятор налога с продаж, калькуляторы фитнеса и здоровья, калькулятор BMI, калькуляторы калорий, калькулятор телесного жира, калькулятор BMR, калькулятор идеального веса, калькулятор темпа, калькулятор беременности, калькулятор зачатия беременности, срок родов калькулятор, математические калькуляторы, научный калькулятор, калькулятор дробей, процентные калькуляторы, генератор случайных чисел, треугольный калькулятор, калькулятор стандартного отклонения, другие калькуляторы, калькулятор возраста, калькулятор даты, калькулятор времени, калькулятор часов, калькулятор GPA, калькулятор оценок, конкретный калькулятор, подсеть калькулятор, генерация паролей калькулятор преобразования и многие другие инструменты, а также для редактирования и форматирования текста, загрузки видео с Facebok (мы создали один из самых известных онлайн-инструментов для загрузки видео с Facebook).Мы также предоставляем вам онлайн-загрузчики для YouTube, Linkedin, Instagram, Twitter, Snapchat, TikTok и других социальных сетей (обратите внимание, что мы не размещаем видео на своих серверах. Все загружаемые вами видео загружаются с Facebook, YouTube, Linkedin, CDN в Instagram, Twitter, Snapchat, TikTok. Мы также специализируемся на сочетаниях клавиш, кодах ALT для Mac, Windows и Linux и других полезных советах и ​​инструментах (как писать смайлы в Интернете и т. Д.)

В Интернете есть много очень полезных бесплатных инструментов, и мы будем рады, если вы поделитесь нашей страницей с другими или отправите нам какие-либо предложения по другим инструментам, которые придут вам в голову.Также, если вы обнаружите, что какой-либо из наших инструментов не работает должным образом или вам нужен лучший перевод — сообщите нам об этом.

Наши инструменты сделают вашу жизнь проще или просто помогут вам выполнять свою работу или обязанности быстрее и эффективнее.

Это наиболее часто используемые пользователями по всему миру.

И мы все еще развиваемся. Наша цель — стать универсальным сайтом для людей, которым нужно быстро производить расчеты или которым нужно быстро найти ответ на базовые конверсии.

Кроме того, мы считаем, что Интернет должен быть источником бесплатной информации. Таким образом, все наши инструменты и услуги полностью бесплатны и не требуют регистрации. Мы кодировали и разрабатывали каждый калькулятор индивидуально и подвергали каждый строгому всестороннему тестированию. Однако, пожалуйста, сообщите нам, если вы заметите даже малейшую ошибку — ваш вклад очень важен для нас. Хотя большинство калькуляторов на Justfreetools.com предназначены для универсального использования во всем мире, некоторые из них предназначены только для определенных стран.

Преобразователь из ватт в вольт-амперы

Ватт (обозначение: Вт) — это единица измерения мощности. Единица измерения — один джоуль в секунду — измеряет скорость преобразования или передачи энергии.

Этот инструмент преобразует ватты в вольтамперы (w в va) и наоборот. 1 ватт = 1 вольт-ампер . Пользователь должен заполнить одно из двух полей, и преобразование произойдет автоматически.

1
Вт =
1 вольт-ампер

Формула ватт в вольт-амперах (w in va). Va = w * 1

Преобразование ватт в другие единицы

Таблица из ватт в вольт-ампер

1 ватт = 1 вольт-ампер 11 ватт = 11 вольт-ампер 21 ватт = 21 вольт-ампер
2 ватта = 2 вольт-ампера 12 ватт = 12 вольт-ампер 22 ватта = 22 вольт-ампера
3 ватта = 3 вольт-ампера 13 ватт = 13 вольт-ампер 23 ватта = 23 вольт -ампер
4 Вт = 4 вольт-ампер 14 Вт = 14 вольт-ампер 24 Вт = 24 вольт-ампер
5 Вт = 5 вольт-ампер 15 Вт = 15 вольт- ампер 25 ватт = 25 вольт-ампер
6 ватт = 6 вольт-ампер 16 ватт = 16 вольт-ампер 26 ватт = 26 вольт-ампер
7 ватт = 7 вольт-ампер 17 ватт = 17 вольт-ампер 27 ватт = 27 вольт-ампер
8 ватт = 8 вольт-ампер 18 ватт = 18 вольт-ампер 28 ватт = 28 вольт-ампер
9 ватт = 9 вольт-ампер 19 ватт = 19 вольт-ампер 29 ватт = 29 вольт-ампер
10 ватт = 10 вольт-ампер 20 ватт = 20 вольт-ампер 30 ватт = 30 вольт-ампер
40 ватт = 40 вольт-ампер 70 ватт = 70 вольт-ампер100 ватт = 100 вольт-ампер
50 ватт = 50 вольт-ампер 80 ватт = 80 вольт-ампер 110 ватт = 110 вольт-ампер
60 ватт = 60 вольт -ампер 90 ватт = 90 вольт-ампер 120 ватт = 120 вольт-ампер
200 ватт = 200 вольт-ампер 500 ватт = 500 вольт-ампер 800 ватт = 800 вольт-ампер
300 ватт = 300 вольт-ампер 600 ватт = 600 вольт-ампер 900 ватт = 900 вольт вольт-ампер
400 ватт = 400 вольт-ампер 700 ватт = 700 вольт-ампер 1000 ватт = 1000 вольт-ампер

Преобразование мощности

Ватт / Ампер в Вольт Калькулятор преобразования


Используйте следующий калькулятор для преобразования в ватт / ампер
и вольт .Если вам нужно преобразовать ватт / ампер в другие единицы измерения, попробуйте наши универсальные
Конвертер единиц электрического потенциала.
ватт / ампер [Вт / А]:
вольт [В]:

Как использовать калькулятор преобразования ватт / ампер в вольт
Введите значение в поле рядом с « ватт / ампер [Вт / А] ».Результат появится в поле рядом с « вольт [В] ».

Сделайте закладку ватт / ампер в вольт. Калькулятор преобразования — он вам, вероятно, понадобится в будущем.

Загрузить преобразователь единиц электрического потенциала

наша мощная программная утилита, которая поможет вам легко преобразовать более 2100 различных единиц измерения в более чем 70 категорий.Откройте для себя универсального помощника для всех ваших потребностей в преобразовании единиц измерения —
скачать бесплатную демо-версию прямо сейчас!

Сделайте 78 764 преобразования с помощью простого в использовании, точного и мощного калькулятора единиц измерения

Мгновенно добавьте бесплатный виджет преобразователя электрического потенциала на свой веб-сайт

Это займет меньше минуты, это так же просто, как вырезать и наклеить.Конвертер органично впишется в ваш веб-сайт, поскольку его можно полностью переименовать.

Щелкните здесь, чтобы просмотреть пошаговое руководство по размещению этого конвертера единиц на своем веб-сайте.

Ищете интерактивную таблицу преобразования электрического потенциала
?
Посетите наш форум, чтобы обсудить проблемы преобразования
и попросить о бесплатной помощи!
Попробуйте мгновенный поиск категорий и единиц
, он дает результаты по мере ввода!

ватт в ампер таблица преобразования

ватт в ампер Калькулятор Omni.

3 способа преобразования ватт в амперы Wikihow.

Вольт в ватты Ватты в амперы Преобразование из вольт в амперы.

Ватт в Ампер в Ватт Калькулятор преобразования электрической энергии.

Преобразование ватт-ампер напряжения.

3 способа преобразования ватт в амперы Wikihow.

Сколько ватт на 1 ампер при 220 вольт Схема подключения.

Ватт в Ампер в Ватт Калькулятор преобразования электрической энергии.

Рассчитайте переменный ток в постоянный ток через аккумуляторную батарею инвертора.

Ватт в Ампер в Ватт Калькулятор преобразования электрической энергии.

Как легко рассчитать преобразование вольт ампер ватт.

Закон Ома Преобразование ватт и сопротивления в ток с помощью колеса закона Ома.

Калькулятор ватт в амперы с формулами и примерами.

Преобразование вольт-ампер-ватт в вольт-ампер.

Как преобразовать кВт в амперы в трехфазной системе.

Ватт Вольт Ампер Калькулятор Ом в 2019 Вольт Ампер.

кВА в амперы. Таблица преобразования усилителей в 2019.

Ватт в ампер Калькулятор преобразования.

Как это работает Генератор вольт и ампер для мощности в ваттах.

Преобразование вольт-ампер-ватт в вольт-ампер.

Калькулятор преобразования в ваттах и ​​амперах.

Как преобразовать вольт-ампер в ватты по электрическим формулам Va и W.

3 способа преобразования ватт в амперы Wikihow.

Калькулятор преобразования киловатт кВт в ампер.

Как рассчитать формулу мощности и инструменты Wikihow.

Рисунок Вольт Амп Ватт.

Ватт Formula Mechanical Electrical Send104b.

Калькулятор ампер в ватт.

Калькулятор закона Ома Дюймовый калькулятор.

Kw to Amps Таблица формулы преобразования Конвертировать и.

Ватт в ампер Калькулятор преобразования электрической энергии Дюймовый калькулятор.

Mycncuk.

Ватт в Ампер в Ватт Калькулятор преобразования электрической энергии.

Калькулятор закона Ома Дюймовый калькулятор.

Однофазный трехфазный переменный ток.

Как рассчитать электрический расчет вольт-ампер.

Калькулятор ватт в амперы с формулами и примерами.

Расчет преобразования ампер в ква трансформатора А.

Как преобразовать электрические расчеты в л.с. в амперы.

Колесо закона Ома Советы, хитрости, рецепты.

Ватт в ампер Калькулятор преобразования электрической энергии Дюймовый калькулятор.

Как понять мощность ватт, ампер, вольт и омов.

Калькулятор вольт-ампер ватт-ампер.

Калькулятор преобразования л.с. в ампер 3 фазы, одна фаза, две фазы.

3 способа преобразования ватт в амперы Wikihow.

Ватт вольт ампер преобразование.

Факты об электричестве Расчеты мощности Вольт Амперы Ватты.

Вольт-ампер Преобразование вольт-ампер в ватты.

Калькулятор ватт в ампер Omni.

Ампер Вольт Калькулятор и преобразователь электроэнергии.

Вт, ампер, калькулятор вольт, 3.7 Скачать бесплатно

Полезный преобразователь единиц электрической мощности для расчета однофазных электрических единиц в ваттах, амперах, вольтах и ​​трехфазных кВт, амперах, вольтах и ​​коэффициенте мощности.

Ватт Ампер Вольт Характеристики:
i) ОДНОФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ РАСЧЕТЫ
— Ватты
— Амперы
— Вольт

Как использовать:
* Однофазный
1) Введите ЛЮБЫЕ два значения для расчета третьего.
2) Нажмите «Расчет».

* Трехфазный
1) Введите ЛЮБЫЕ три значения для расчета четвертого.
2) Нажмите «Расчет».

Watts Amps Volts Calculator — бесплатное приложение для Android, опубликованное в списке приложений PIMS & Calendars, входящем в состав Business.

Компания, которая разрабатывает калькулятор ватт-ампер-вольт, — это Pro Certs Software Ltd. Последняя версия, выпущенная ее разработчиком, — 3.7. Это приложение было оценено 13 пользователями нашего сайта и имеет средний рейтинг 3.9.

Чтобы установить калькулятор ватт-ампер-вольт на вашем устройстве Android, просто нажмите зеленую кнопку «Продолжить работу с приложением» выше, чтобы начать процесс установки. Приложение размещено на нашем веб-сайте с 18 марта 2020 года и было загружено 4580 раз. Мы уже проверили, безопасна ли ссылка для загрузки, однако для вашей собственной защиты мы рекомендуем сканировать загруженное приложение с помощью вашего антивируса.Если ваш антивирус определяет калькулятор ватт-ампер-вольт как вредоносное ПО или ссылка для загрузки на com.procerts.wattsampsvolts не работает, используйте страницу контактов, чтобы написать нам.

Как установить калькулятор ватт-ампер-вольт на ваше устройство Android:
  • Нажмите кнопку «Продолжить работу с приложением» на нашем веб-сайте. Это перенаправит вас в Google Play.
  • Когда калькулятор ватт-ампер-вольт появится в списке Google Play вашего Android-устройства, вы можете начать его загрузку и установку.Нажмите на кнопку «Установить», расположенную под панелью поиска и справа от значка приложения.
  • Появится всплывающее окно с разрешениями, необходимыми для калькулятора ватт-ампер-вольт. Нажмите «Принять», чтобы продолжить процесс.
  • Ватт Ампер Калькулятор вольт будет загружен на ваше устройство, показывая прогресс. После завершения загрузки начнется установка, и вы получите уведомление после ее завершения.

преобразование dbi антенны в ватты и ампер-ватт в dbi, что вы действительно получаете на выходе!

ПРИМЕЧАНИЕ. Выходная мощность ватт — это ERP-ватты (эффективная излучаемая мощность), что означает ВЧ-мощность, подаваемую на антенну, умноженную на усиление антенны в заданном направлении.

, как я уже сказал, это расчетное число! разъемы, кабель и т. д. оказывают влияние, и никакая антенна не может быть сделана «идеальной», это невозможно! но эти цифры дадут вам представление!

Я выбираю следующие коэффициенты усиления антенны (дБи) и размер усилителя в зависимости от того, что в основном используется в этом хобби для модов!

2 Вт усилитель в 5 дБи антенну = 3,85 Вт

2 Вт усилитель на 6 дБи антенну 8 =.85 Вт

2 Вт усилитель в антенну 9 дБи = 9,68 Вт (1)

2 Вт усилитель на антенну 12 дБи = 19,32 Вт (2)

2 Вт ампер на антенну 15 дБи = 38,56 Вт (3)

4 Вт 8 Антенна 5 дБи = 7.71 Вт

4 Вт усилитель в антенну 6 дБи = 9,70 Вт (1)

4 Вт усилитель на антенну 9 9023 = 19,37 Вт (2 )

4 Вт усилитель на антенну 12 дБи = 38,65 Вт (3)

4 Вт на ампер 15 дБи антенна = 77.128 Вт (4)

8 Вт усилитель в антенну 5 дБи = 15,425 Вт

8 Вт усилитель 9048 = 19,41 Вт (2)

8 Вт ампер в антенну 9 дБи = 38,74 Вт (3)

8 Вт 8 Вт 8 Вт Антенна 12 дБи = 77.31 Вт (4)

8 Вт усилитель в антенну 15 дБи = 154,25 Вт

Вы видите закономерность? если нет, вы можете видеть, что я пометил их: 1 идет с 1, а 2 идет с 2 и т.