Мощность теплого пола на 1 м2 водяного: Расчёт мощности тёплого водяного пола

Содержание

какая мощность на 1 м2

Системы тепловых полов стремительно ворвались в строительную индустрию современного общества. Но неправильный расчет тепла теплого пола, приводят к неприятным сюрпризам, в виде значительной суммы за оплату электроэнергии. Поэтому, чтобы избежать этого, необходимо предварительно подсчитать мощность теплого пола на 1 м2 и на основе данных подсчетов решить для себя, стоит ли осуществлять этот вид ремонта у себя. В этой статье мы произведем примерный расчет мощности теплого пола и распишем алгоритм, по которому он производится.

Факторы, влияющие на расход электроэнергии

В любом доме либо квартире расход электрической энергии не является постоянной величиной, на этот показатель оказывают влияния многие явления, такие как:

  • Чем более качественно произведена теплоизоляция помещения, тем меньше осуществляется расход электроэнергии на его обогрев;
  • В зимний период система тепловых полов будет работать намного дольше, чем в летнее время года;
  • Требуемая мощность теплого пола на 1 м2 возрастает если выполнена более толстая стяжка;
  • Индивидуальная переносимость температурного режима, некоторым людям требуется один режим прогрева с более низкой температурой, а другим необходимо хорошо прогреть теплый пол, чтобы они себя чувствовали комфортно;
  • Применение терморегулируемых изделий, которые позволяют отключать и включать теплый пол в зависимости от его прогрева.

Это основной перечень факторов, на которые влияет расход электроэнергии.

Разновидность нагревателей

Для выполнения системы теплых полов применяются следующие виды нагревательных элементов:

  1. Прогревающий кабель. Укладывается напрямую в стяжку пола;
  2. Нагревательные маты. Используется под плиточное финальное покрытие и закрывается плиточным клеем;
  3. Устройство инфракрасного исполнения. Используется под ламинированный слой или под некоторые виды линолеума.

Каждый из представленных видов обладает набором положительных и отрицательных свойств, присущих только ему.

Правильная комбинация теплового пола и финального слоя

Мощность нагревателей

Расчет тепла теплого пола зависит от типа нагревателей теплых полов. Представлено три основные разновидности.

Таким образом, расход энергии подразделяется следующим образом:

  • Покрытие пленочного типа – варьируется от 150 до 400 Ватт/м2.
  • Прогревающий кабель, отдельный виток кабеля обладает мощностью около 30 Ватт, но на один квадратный метр обычно укладывается не менее пяти витков, а это означает что общая мощность будет равна 150 Ватт/м2.
  • Нагревательные маты – обладают мощностью в пределах 120 – 150 Ватт/м2.

Таким образом система теплые полы мощность которых в среднем составляет от 120 до 200 Ватт/м2 допускает использования ее не только как источник дополнительного подогрева, но и как основной обогрев в помещении.

Алгоритм подсчета

Для подсчета потребления электрической энергии необходимо воспользоваться следующей формулой:

W = S * P * 0.4

Где:

S – площадь помещения в котором предполагается монтаж теплового пола;

P – мощность устанавливаемой системы;

0,4 – это коэффициент который учитывает полезную обогреваемую площадь.

Далее произведем примерный расчет тепла теплого пола. Допустим нужно произвести монтаж теплового пола наделенным мощностью 140 Ватт/м2, площадью в 23 квадратных метра.

Формула приобретает следующий вид:

W = 23 * 140 * 0,4 = 1288 Вт,

из этого вытекает, что потребление такой системы будет равно 1,3 кВт в час.

Этим нехитрым образом было получено часовое потребление, но данная система в среднем работает от семи до 10 часов в сутки, а это означает, что по нашим подсчетам в сутки потребление будет составлять максимум 13 кВт. А месячный показатель при этом показателе будет равен 390 кВт.

Данные цифры являются, крайне приблизительны, а реальный расход обычно меньше буквально наполовину. Это обусловлено тем, что обычно в таких системах монтируется терморегулятор, который позволяет сократить расход энергии почти наполовину.

Чтобы получить окончательную сумму, требуемую для оплаты электроэнергии, останется умножить потраченные киловатты за месяц, на стоимость одного киловатта в вашем регионе.

Пути сокращения затрат

Для обеспечения сокращения расходов на систему теплых полов, существует целый комплекс мероприятий, которые будут озвучены далее:

  • Опытным путем было установлено, что качественно выполненная теплоизоляция помещения сокращает расходы на обогрев ее на 40%;
  • Монтаж терморегулятора и правильная его настройка, так же сокращают расходы на обогрев на величину примерно составляющую 30%;
  • Осуществляйте укладку теплового пола только на полезной площади, так как его установка под мебелью малоэффективна;
  • Снижение общей температуры в помещении на один градус снизит расход электроэнергии примерно на 5%

Процесс укладки теплоизоляции для сокращения расходов на энергию

В приведенном материале была подробно расписана мощность теплого пола и сколько энергии потребляет тепловой пол на квадратный метр и каким образом можно снизить это потребление.

Мощность электрического теплого пола на 1 м2

Расчет мощности теплого пола

При устройстве системы полового обогрева любого вида важным пунктом становится мощность теплого пола на 1 м2. Изначально это влияет на выбор материала, площадь покрытия и тип нагревательного элемента.

В конечном итоге, эффективность отопления скажется на семейном бюджете в виде ежемесячных плат за электроэнергию. Рассмотрим специфику расчета эффективности отопления полом в зависимости от индивидуальных особенностей.

Необходимые данные

Для расчета требуемой эффективности элементов необходимо определиться с некоторыми факторами, имеющими непосредственное влияние на этот показатель:

  • отапливаемая площадь;
  • качество теплоизоляции стен и перекрытий;
  • теплопроводность финишного покрытия пола.

Кроме этих данных, важно понимать, в качестве какого элемента будут использоваться полы: основного или дополнительного?

Для беспроблемной работы и гарантированного долгого срока службы отопления она должна работать в режиме, не превышающим 80% от максимальной мощности.

Расчет мощности теплого пола во много зависит от правильности заданной полезной площади.

В качестве основного отопления укладка электрических полов может использоваться только при условии, что покрытие составляет не менее 70% от общей площади помещения.

Для определения эффективности отопления используем формулу P = S*k, где:

P – мощность элемента обогрева;

S – полезная площадь;

k – удельная мощность.

Удельные мощности электрического теплого пола для помещений различного типа:

Тип помещенияУдельная мощность системы теплого пола на 1 м2 (Вт/м2)
1Жилые комнаты, кухня (1 этаж)140-150
2Жилые комнаты, кухня (2 этаж и выше)110-120
3Застекленные и утепленные балконы и лоджии140-180
4Санузлы (1 этаж)120-150
5Санузлы (2 этаж и выше)110-130
6Основное отоплениене менее 180
7Дополнительное создание комфортных условий110-120

Расход электроэнергии при этом весьма приблизительный. Многое зависит от уровня теплоизоляции в целом: уровень теряемого тепла через окна, стены, перекрытия.

Расчет необходимой мощности комфортных полов для санузла общей площадью 10 м2 на втором этаже в качестве основной системы отопления:

Полезная площадь составит: 10/100*70= 7 м2. Удельная сила для санузлов второго этажа 130 Вт/м2, но при этом использование полов как основного элемента системы отопления предполагает мощность не менее 180 Вт/м2.

Принимаем большее значение. Получаем: Р=7*180=1260 Вт (1,26 кВт) – общая теплоотдача пола в санузле.

Не всегда планировка комнаты может позволить использовать половую систему в качестве основного источника отопления. Между нагревательным элементом и мебелью должно быть расстояние не менее 10 см.

В небольших комнатах с широкой мебелью (диван, кровать) использовать систему теплого пола в качестве основной не целесообразно.

Расчет потребления электроэнергии

При проектировании системы обогрева, как правило, составляется чертеж расположения её элементов. Исходя из данных плана, легко высчитать площадь теплого пола. Если чертеж не сохранился, то приблизительно принимаем площадь отапливаемых полов 70% от общей площади.

Условно время работы теплых полов берут из расчета 6 ч в день

Для жилого помещения первого этажа площадью 20 м2, обогревать в качестве основного источника необходимо 14 м2.

Удельная мощность теплого пола для данного типа помещения составляет 150 Вт/м2. Соответственно потребление электроэнергии на систему напольного обогрева составит: 150*14=2100 Вт.

Условно в день полы включены в течение 6 часов, тогда ежемесячная норма составит 6*2,1*30=378 кВт/час. Умножьте полученное число на стоимость 1 кВт в регионе и получите стоимость затрат на электроэнергию в данной комнате.

При условии включения в систему отопления терморегулятора и установки работы в экономичный режим расход на электроэнергию, затрачиваемую полами, можно сократить на 40%.

Мощность системы водяного теплого пола вычислить сложнее, в данных расчетах лучше довериться онлайн — калькулятору или проконсультироваться со специалистом. О том, как рассчитать мощность для пленочных полов, смотрите в этом видео:

Типы нагревательных элементов

Существует несколько видов электрического теплого пола, мощность которых напрямую зависит от типа нагревательного элемента. Электрополы работают на:

Нагревающий элементМощность (Вт/м2)Тип финишного покрытия
Инфракрасная пленка150 — 400Любое
Электрокабель120 — 150Керамическая плитка, керамогранит
Термомат120 — 200Керамическая плитка

Данные приняты среднестатистические, у конкретного бренда показатели могут незначительно отличаться. Таким образом, видно, что устройство любой системы обогрева в помещение любого типа возможно всеми вариантами электрических теплых полов.

Сокращаем затраты

Удобство и комфорт, создаваемые отапливаемыми полами, омрачает только один фактор – счет за электроэнергию. Как, не лишая себя удобств, снизить расходы на электроэнергию? Несколько советов по умному потреблению:

  1. Обязательно смонтируйте терморегулятор. Расположить его лучше на максимальном удалении от основной отопительной системы. Регуляторы позволяют сэкономить до 40% электроэнергии за счет необходимого включения.
  2. Максимально снизьте потерю тепла. При необходимости проведите работы по теплоизоляции стен. Согласно опытных статистических исследований, улучшение теплоизоляции снижает расходы на электроэнергию почти в 2 раза.
  3. Установите многотарифную систему оплаты электроэнергии. При этом отопление полами в ночное время обойдется в зависимости от региона в 1,5 – 2 раза дешевле.
  4. Начните экономить ещё на этапе монтажа. Не заводите элементы отопления в места расположения мебели, делайте необходимые отступы от стен и приборов отопления.
  5. И простая математика: понизив температуру всего на 1 0 С, потребление электроэнергии сокращается на 5%.

Подойдите к вопросу укладки теплых полов ответственно. Заранее просчитайте необходимую мощность приборов. Эти данные помогут правильно подобрать элементы нагрева и пользоваться системой без значительного ущерба для семейного бюджета.

Электрический теплый пол — расход электроэнергии. Сколько кВт в месяц?

Когда вы определились с тем, что однозначно будете монтировать систему теплых полов, вам необходимо высчитать, сколько же кВт энергии будет потреблять такое отопление. Сделать это можно самостоятельно, не прибегая к услугам специалистов.

Теплые полы, изготовленные из разных нагревательных элементов, имеют и разный расход электроэнергии.

Основные разновидности теплого пола:

    нагревательная пленка — применяется для укладки под линолеумом или ламинатом
    электрический кабель – применяется в стяжке
    термомат – под плиткой

Мощность вышеуказанных видов теплого пола следующая:

    нагревательная (инфракрасная) пленка – 0,2-0,4квт/м2
    электрический нагревательный кабель – 0,01-0,06квт/м. В один квадратный метр, в среднем помещается пять витков.Но тут многое зависит именно от шага укладки.
    термомат до 0,2квт/м2

В среднем, мощность теплого пола составляет от 0,1 до 0,2квт/м2. Данную информацию всегда можно найти на коробке или бирке от изделия.

Подбирая минимальную или максимальную мощности, можно выбирать — теплый пол у вас будет основной системой отопления или дополнительной.

Основной — это когда у вас в загородном доме вообще нет центральной системы отопления или в квартире многоэтажного дома постоянно плохо греют радиаторные батареи.

В первую очередь запомните, что «кушать» электроэнергию электрические полы будут исходя из условий закладки (толщина стяжки, теплопотери, наличие теплоизоляции), а не столько сколько вам клятвенно наобещали менеджеры в магазине.

Для расчета затрат электроэнергии воспользуемся следующей формулой:

Пример расчета

Мощность элемента теплого пола возьмем максимальную для не очень хорошо утепленного дома 0,2квт/м2. Лучше сначала узнать свои предельные затраты.

Если же у вас дом как «термос» и всё с теплопотерями в порядке, то и применять мощные термоматы не обязательно. Берите в расчеты среднее значение 0,1-0,15квт/м2.

Условно принято использовать следующие мощности для разных отапливаемых помещений:

    жилые комнаты, кухня, прихожая — до 120Вт/м2
    ванная — 150Вт/м2
    лоджия, балкон — 200Вт/м2

Общая площадь спальни, где будет укладываться пол – 20м2. Применяя формулу, получаем:

То есть в час, ваш теплый пол будет потреблять 1,6квт.

Включают такой обогрев в основном на 7-10 часов в сутки. С 17.00 до 24.00 — после прихода с работы, перед сном. И иногда по утрам с 5.00 до 8.00. Но график работы при наличии специальных устройств, о которых будет сказано ниже, вы можете с легкостью устанавливать сами.

Таким образом, расход в сутки за 10 часов составит – 16квт. Итого за месяц пользования теплыми полами счетчик намотает – 480квт. Это только в одном помещении.

Но не пугайтесь, такие счета могут прийти только в том случае, если:

    электрический пол у вас работает как основной источник отопления
    вы используете максимальную мощность элементов 0,2квт и выше
    не применяются никакие терморегуляторы

А как узнать, хватит ли тепла от электрического пола, чтобы согреть все помещение и дом? Для этого требуется высчитать ваши теплопотери. Безусловно в каждом случае все индивидуально, и куча факторов будет влиять на погрешность.

Однако можно приблизительно сориентироваться на требования СНиП.

При этом высота потолков — максимум 3м, а стены, пол и все остальное должно быть утеплено опять же согласно СНиП.

Возьмем те же расчетные данные, что и ранее. Площадь комнаты 20м2.

Соответственно на такой площади теплопотери составят — 2кВт/час

Ваша задача перекрыть полученные данные. То есть, вы должны уложить маты определенной мощности и на определенной площади так, чтобы итоговый результат от такого монтажа был либо равен, либо превышал расчетные тепло потери помещения.

Мы знаем, что полезная площадь, которую можно использовать под маты или греющий кабель в комнате — 8м2.

Исходя из этого высчитываем, какой мощности теплый пол нужно выбрать, чтобы его хватило для согревания комнаты как основного источника тепла.

Итого для нашей комнаты имеем:

Pтп= 2 / 8 = 0,25кВт/м2

При этом если вы проживаете в климатической зоне, когда несколько дней температура на улице может опуститься до -30 градусов, рекомендуется к этой мощности добавить еще +25%.

Если такого мощного мата или кабеля нет в наличии, то попробуйте увеличить полезную площадь укладки и сделать расчет заново.

Что делать чтобы уменьшить такие большие цифры и киловатты расхода энергии?

Если вы будете применять терморегуляторы, то расход легко можно снизить сразу на 30-40%. Правда, установив его на максимальное значение, ни о какой экономии говорить уже не придется. Работать он будет практически без простоев.

Правда, если теплый пол это основной источник тепла во всех комнатах, то придется их ставить несколько штук по разным зонам. Например в ванной комнате греющий кабель или маты работают гораздо дольше чем на кухне или в зале.

Также никто вас не ограничивает в выборе мощности обогревательного элемента теплого пола. Не обязательно использовать максимально возможные мощности.

Просчитав таким образом расход по всем помещениям, можно легко сделать соответствующие выводы: выгоден данный вид обогрева или нет.

С качественными терморегуляторами, температурными датчиками и другими комплектующими ведущих фирм, а также с текущими ценами по теплым полам на сегодняшний день, можно ознакомиться здесь.

Если теплые полы уложены в каждом помещении квартиры, то итоговая сумма за электроэнергию может выйти очень существенной. Можно ли как-то сэкономить и уменьшить свои затраты? Ответ – Да, и вот что для этого нужно сделать:

1 Утеплите собственный дом или квартиру

Почти половину тепла можно потерять из-за некачественного утепления окон и дверей.

2 Используйте терморегулятор

Его необходимо монтировать в самом прохладном месте комнаты. Отопление будет самостоятельно отключаться при достижении определенной температуры, которую вы заранее задаете и также включаться без вашего участия, экономя электроэнергию.

Понижение температуры нагрева теплых полов на 1 градус позволяет примерно сэкономить до 5% расхода эл.энергии

3 Установите многотарифный прибор учета электроэнергии

Включая теплые полы преимущественно в ночные часы, когда тариф минимален, вы сможете сэкономить не одну сотню киловатт в месяц.

4 Не прокладывайте теплый пол в тех местах, где располагается мебель и бытовая техника (без ножек)

Мало того, что это неэффективно с точки зрения обогрева помещения, так еще и запрещается производителями самих теплых полов.

Во-первых, резко уменьшается теплосъем с полезной площади. А во-вторых, повышается риск перегреть секции мата, кабеля или продавить пленку.

5 Первоначально сделанная стяжка толщиной до 85мм, очень сильно поможет вам сэкономить в будущем на отоплении

Включая такие теплые полы только на ночь, они как аккумулятор будут набирать тепло и отдавать его вплоть до вечера следующего дня.

Электрический теплый пол: мощность на метр квадратный

Теплый пол появился сравнительно недавно и быстро стал популярным. Его основным показателем является потребление энергии, которое зависит прежде всего от назначения. Если теплый пол является основным обогревателем, мощность составит 180-200 Вт/м 2 , если дополнительным — 100-160 Вт/м 2 .

При любом отоплении, в том числе когда применяется теплый пол, мощность больше всего расходуется на разогрев. В стационарный режим отопления параметры энергии только поддерживаются и ее требуется меньше. При благоприятных условиях теплый пол может включаться только на 15 мин за часовой период. За сутки это составит всего 6 часов.

Энергопотребление в доме

На потребления энергии влияют следующие факторы:

  • чем выше теплоизоляция помещений, тем меньше расходуется энергии на отопление;
  • в холодное время электрический пол включается намного чаще;
  • мощность нагревателей требуется больше с увеличением толщины стяжки;
  • каждый человек по-разному воспринимает температуру: для одних требуется больше обогрева, для других — меньше;
  • наличие программируемых терморегуляторов снижает расход энергии при их правильной настройке.

Типы нагревателей

Для обогрева помещений применяются:

  • греющий кабель;
  • термоматы;
  • инфракрасные устройства (пленка или стержни).

Кабель закладывается в стяжку или клеевую прослойку керамической кладки. Пленка может размещаться в клеевом слое, под ламинатом или линолеумом. Как правило, она применяется для тонкого напольного покрытия. Каждый способ обогрева имеет особенности, но общим для всех является обогрев снизу, на что требуется на 15 % меньше затрат энергии. Радиаторы не греют нижнюю часть помещения. Чтобы там было тепло, следует подавать на них теплоноситель с большей температурой подогрева.

Какой выбрать пол?

Теплый пол может быть водяным или электрическим на усмотрение хозяина. Первый вариант разрешается применять в частных домах, поскольку его подключение к централизованной системе отопления запрещено. Для своего дома водяной пол предпочтительней, поскольку применение электричества для отопления обходится дороже.

В квартирах многоэтажек предпочтительно применять электрический теплый пол. Мощность можно выбирать небольшую, поскольку напольное отопление является дополнительным, а радиаторное — основным. Выбор типа нагревателя зависит от того, какое применяется покрытие.

Греющий кабель

По причине небольшой стоимости кабеля, укладываемого в стяжке, многие предпочитают применять его. Толщина бетона составляет около 5 см. С ее увеличением потери тепла увеличиваются. Чтобы сделать стяжку тоньше, применяют армирование или наливные полы.

Самый простой и дешевый кабель — резистивный. Он выпускается одножильным и двухжильным. Последний удобней применять, поскольку обратный конец не нужно заводить обратно на терморегулятор. При этом встречное протекание электрического тока в соседних жилах взаимно компенсирует помехи.

Мощность у кабеля небольшая, но ее можно увеличить до 200 Вт/м 2 при плотной укладке витками на каждом квадратном метре.

Тепло по всей поверхности провода выделяется равномерно. Если в определенном месте сверху поставить мебель или постелить ковер, там может возникнуть перегрев из-за ухудшения теплообмена. Этого недостатка лишен саморегулирующийся кабель, у которого сопротивление зависит от температуры. Ток течет в поперечном направлении через электропроводный слой от одного проводника к другому, проходящему с ним параллельно.

Однако, прокладка теплого пола под бытовыми приборами или мебелью является нерациональным решением. Обогрев помещения зависит от того, какая мощность теплого пола в нем заложена. При наличии препятствий в отдаче тепла его может оказаться недостаточно.

Теплый пол обычно прокладывают в местах, где не предполагается установка мебели и бытовых приборов. В качестве основного обогрева он эффективен, если занимает не менее 70 % площади помещения. Когда комната сильно заставлена, целесообразно применять радиаторное отопление. Под дополнительный обогрев достаточно использовать не ниже 30 %. Применяют также комфортный режим, когда важно, чтобы пол не был холодным.

Кабельные маты

Тонкий греющий кабель производят закрепленным на гибкой сетке. Преимущество заключается в небольшой толщине кабельного мата. Кроме того, нет необходимости в его прокладке по полу змейкой. Достаточно расстелить мат по полу и подключить к нему питание. Кабельный мат помещается даже в слое плиточного клея. Стяжка с покрытием нагревается быстрее, благодаря ее малой толщине.

Конструкция кабельного мата совершенствуется. Сейчас стали выпускаться изделия с теплоизолирующим слоем и прочным покрытием. Теплый пол расстилается на ровной поверхности и сверху без стяжки укладывается доска или ламинат.

Инфракрасная пленка

Рулонный пленочный нагреватель на основе углерода — это инновационное решение. Толщина пленки не превышает 3 мм. Нагрев происходит инфракрасным излучением, что дает возможность повысить КПД до 95 %. Поэтому мощность инфракрасного теплого пола расходуется более экономично. Такой подогреватель подходит под любые покрытия.

Кроме пленки, производятся термоматы с карбооновыми нагревательными стержнями, работающие по тому же принципу. Его укладывают под напольное покрытие. Если используется стяжка, термомат защищают полиэтиленовой пленкой.

Мощность пленочного теплого пола составляет 110-220 Вт/м 2 , стержневого — 70-160 Вт/м 2 .

Электро-водяное отопление

Разработана новая система, которая не нуждается в бойлерах, насосах и системе коллекторов. В полиэтиленовую трубку, залитую антифризом вставлен по всей длине нагревательный кабель. При включении теплоноситель нагревается и кипит. В результате повышается эффективность отопления.

Электро-водяной пол можно оставлять в квартире без присмотра, благодаря высокой надежности и безопасности. Большая инерционность стяжки позволяет переключаться на другое помещение, когда одна комната нагрета.

Расчет потребления энергии в одном помещении

Для площади комнаты среднего размера 14 м 2 обогревать достаточно 70 % поверхности, что составляет 10 м 2 . Средняя мощность теплого пола составляет 150 Вт/м 2 . Тогда расход энергии на весь пол составит 150∙10=1500 Вт. При оптимальном суточном энергопотреблении в течение 6 часов месячный расход электроэнергии составит 6∙1,5∙30= 270 кВт∙час. При стоимости киловатт-часа 2,5 р. затраты составят 270∙2,5=675 р. Эта сумма тратится при постоянной круглосуточной эксплуатации теплого пола. При установке терморегулятора на программируемый экономичный режим со снижением интенсивности отопления при отсутствии в доме хозяев, расход энергии можно уменьшить на 30-40 %.

Свой расчет можно проверить с помощью онлайн-калькулятора.

Расчет мощности теплого пола делается с небольшим запасом. Кроме того, она зависит от типа помещения. Реальный среднегодовой расчет будет меньше, поскольку отопление выключается в теплое время (в конце весны, летом и в начале осени).

Проверить реальное потребление энергии можно с помощью счетчика, когда остальные электроприборы будут отключены.

Мощность водяных теплых полов рассчитать сложней. Здесь лучше воспользоваться оннлайн-калькулятором Audytor CO.

Мощность обогрева в разных помещениях

Когда устанавливается в разных помещениях теплый пол, мощность в каждом из них должна отличаться в зависимости от функционального назначения. Максимальный обогрев нужен для балконов и застекленных лоджий. Комфортные условия достигаются при мощности 180 Вт/м 2 . При этом помещения должны быть тщательно утеплены и в них заделаны все щели. Потребляемая мощность теплого пола на балконе или лоджии будет небольшой, так как в постоянном включении нет необходимости.

Спальня, кухня, гостиная требуют небольшого уровня — 120 Вт/м 2 . В детской, ванной и комнатах, где снизу отсутствуют отапливаемые помещения, мощность теплого пола должна быть порядка 140 Вт/м 2 .

Для разных покрытий требуются свои условия обогрева. Линолеум и ламинат могут подогреваться теплым полом, мощность которого не должна превышать 100-130 Вт/м 2 . При его применении как дополнительного обогревателя, рекомендуемая мощность составляет 110-140 Вт/м 2 .

С учетом требований всех жильцов и влияния погодных условий напольное отопление следует взять с запасом. Кроме того, почти в каждом помещении устанавливаются теплорегуляторы, с помощью которых можно устанавливать желаемый режим обогрева. Отопление работает эффективно и без аварий, когда оно загружено не более чем на 70 % от максимальной мощности.

Заключение

При правильном проектировании система теплого пола обеспечивает экономное использование электроэнергии, создавая при этом комфортные условия в доме. Для получения эффекта нужно правильно сделать расчеты нагревателей и подобрать элементы управления. Энергозатраты также зависят от правильной эксплуатации системы отопления. Следует устанавливать программируемый регулятор на теплый пол, мощность которого определяется временем включения, типом помещения и другими факторами.

Сколько потребляет электроэнергии теплый пол

Перед тем, как Вы решите осуществлять укладку такой системы отопления в доме, полностью просчитайте выгодность ее использования по сравнению с альтернативными вариантами подогрева. Далее мы рассмотрим, как самому рассчитать расход электроэнергии теплого пола и расскажем Вам, сколько потребляет пленочное покрытие, термомат, греющий кабель.

Мощность нагревательных элементов

Основными видами электрического теплого пола является пленка (инфракрасный), термомат и греющий кабель. Что касается пленочного покрытия, его принято использовать при укладке системы под ламинат и линолеум, маты и кабель применяются для подогрева пола из керамической плитки. У каждого из перечисленных нагревательных элементов свои характеристики: мощность, толщина, температура нагрева и т.д. Сейчас мы рассмотрим, сколько электроэнергии потребляет теплый пол каждого вида.

Итак, расход энергии у нагревательных элементов следующий:

  • пленочное покрытие – от 150 до 400 Ватт/м 2 ;
  • греющий кабель – от 10 до 60 Вт/метр (в среднем 30 Ватт). Обычно на 1 квадратный метр поверхности укладывается около 5 витков материала, чтобы суммарная мощность составляла 120-150 Вт/м 2 ;
  • термомат – от 120 до 200 Вт/м 2 (взят средний расход по характеристикам производителей тепло пола DEVI и ТЕПЛОЛЮКС).

Как Вы видите, мощность электрического теплого пола в среднем от 120 до 200 Ватт/м 2 , что позволяет сделать систему как для полного отопления помещения, так и для вспомогательного.

Технология подсчета затрат

Чтобы самостоятельно определить, сколько берет электрический теплый пол энергии, необходимо воспользоваться следующей формулой:

W=S*P*0,4 ,

  • S – площадь помещения;
  • P – мощность системы;
  • 0,4 – коэффициент, учитывающий, сколько поверхности пола в комнате застелено кабелем/пленкой. Другими словами 0,4*S – полезная площадь обогрева.

Полезная площадь обогрева

Итак, к примеру, если Вы решили рассчитать расход электроэнергии электрического теплого пола мощностью 150 Вт/м 2 в гостиной, площадью 25 м 2 , формула будет иметь вид:

W =25*150*0,4=1500 Вт, что означает потребление 1,5 кВт в час.

Часовое потребление известно, но это еще далеко не все. Как правило, система подогрева работает 8-9 часов в сутки, когда все жители находятся дома. Итого, в день затраты электроэнергии будут примерно 12-13,5 киловатт. Несложными расчетами можно определить, что месячный расход теплого пола составит около 360-400 кВт.

Сразу же обращаем Ваше внимание на то, что данные подсчеты очень грубые и, как правило, фактическое потребление меньше в 2 раза. Связано это с тем, что дополнительно можно применять терморегуляторы, которые еще на 40% сокращают расход электроэнергии. Итого, система будет потреблять не 360 кВт в месяц, а 216, к тому же мы для примера выбрали мощность 150 Вт, а Вы можете использовать кабель с характеристикой 90-120 Вт/м 2 , чего также может хватить в индивидуальных условиях!

Последнее, что Вам останется сделать – умножить мощность, которую расходует система в месяц на стоимость одного киловатта энергии в Вашем городе. Итого, получится готовое энергопотребление системы, на основании которого можно делать анализ, выгодно такое отопление или нет. Как Вы видите, формула расчета довольно простая. По данной технологии можно запросто подсчитать энергопотребление теплого пола в любой комнате: спальне, кухне, ванной и даже на балконе, главное – иметь под рукой калькулятор!

Хотелось бы также отметить, что для отопления дома инфракрасным пленочным материалом расчет расхода электроэнергии производится с учетом, что на 1 метр квадратный неотапливаемого помещения необходимо около 60 Ватт мощности материала. Для отапливаемой комнаты это значение сокращается до 20-30 Вт. Связано это с тем, что пленка имеет высокий КПД и низкое энергопотребление, что является в принципе преимуществом инфракрасных обогревателей любого типа!

Как можно сократить затраты

Выше Вы увидели, сколько электроэнергии потребляет теплый пол. Если произвести расчет для всех комнат, то выйдет приличная сумма «за свет» в конце месяца. Конечно же, при оплате первой же квитанции Вы задумаетесь, как можно сократить расход и сделать систему отопления экономичной.

Итак, к Вашему вниманию советы, которые позволят заметно снизить потребление электричества теплым полом в доме:

  1. Позаботьтесь о качественном утеплении дома. Экспериментальным путем было определено, что хорошая теплоизоляция сокращает расход электроэнергии на 35-40%, а это практически вполовину!
  2. Обязательно установите терморегулятор на стену в самой холодной точке комнаты. Таким образом, отопление будет включаться при понижении температуры ниже уставки и наоборот – выключаться при достаточном нагреве помещения. Регуляторы температуры, как мы уже говорили, позволяют сократить до 40% потребляемого электричества.
  3. Установите в доме многотарифный счетчик электроэнергии, при котором тариф на электричество в ночное время меньше в 1,5-2 раза (в зависимости от региона). Все равно, электрический теплый пол будет работать при Вашем присутствии, а это как раз в вечернее время, когда Вы приходите с работы. Так зачем платить больше? О самых главных преимуществах и недостатках двухтарифных электросчетчиков мы Вам рассказывали, одновременно предоставив отзывы покупателей.
  4. Осуществляйте укладку материала только по полезной площади. Не стоит производить монтаж под мебелью и бытовой техникой, это не целесообразно с точки зрения сокращения расхода и к тому же запрещается самими производителями нагревательных материалов.
  5. Вы можете немного пожертвовать отоплением, понизив температуру в помещении всего лишь на 1 градус. Незначительное пожертвование позволяет сократить расход электроэнергии электрического теплого пола на целых 5%!

Вот и все, что хотелось рассказать Вам по поводу данного вопроса. Теперь Вы знаете, сколько тратит электричества такая система подогрева, и как самостоятельно сократить расход электроэнергии теплого пола!

Советуем изучить:

Мощность тёплых полов — Ремонт220


Автор Фома Бахтин На чтение 3 мин. Просмотров 3.9k. Опубликовано
Обновлено

Главным критерием при выборе и покупке комплекта тёплого пола является, конечно,  электрическая мощность тёплых полов, которая в свою очередь напрямую зависит от следующих факторов:

  • Площади обогреваемого помещения
  • Вида требуемого обогрева помещения
  • Типа помещения

При расчёте площади обогреваемого помещения учитывается только его  полезная площадь (на рисунке ниже отмечена зелёным цветом), не занятая мебелью или крупной бытовой техникой – холодильники, стиральные машины и т. д.  Поэтому,  при расчёте площади для выбора мощности тёплых полов нужно сразу определиться с расположением мебели в помещении.

Следует учесть, что при использовании электрических тёплых полов в качестве основного источника  отопления обогреваемая площадь должна  быть не менее 70 % от общей площади помещения – это необходимое условие.

В некоторых случаях использование тёплых полов в качестве основного источника отопления  весьма затруднительно или вовсе не представляется возможным – обычно, это сильно «заставленные» мебелью помещения, поэтому, этот момент нужно обязательно учесть при выборе комплекта тёплых полов.

Основной вид отопления (удельная мощность – 150 – 180  Вт на квадратный метр) – когда тёплые электрические полы служат основным (или единственным) источником тепла. Понятно, что электрическая мощность этих полов должна быть больше, чем у электрических полов, предназначенных для дополнительного отопления.

Дополнительное (комфортного) отопления (удельная мощность – 110 – 140 Вт на квадратный метр). Как видно из его названия предназначено для использования совместно с основным источникам отопления – газ, электричество и т. д.  Хорошо подходит для поддержания комнатной температуры в квартирах многоэтажных  домов с централизованным отоплением – когда отопительный сезон ещё не начался (или уже  закончился).

Типы помещений. Все помещения нашего жилья имеют разные функциональные особенности, соответственно и требования к отоплению , точнее к удельной мощности системе (Вт/м2). Совершенно очевидно, что удельная мощность системы, скажем, на лоджии должна быть больше, чем на кухне.

Вот примерные значения мощности электрического теплого пола, закладываемой на 1 м2 для разных помещений (комфортное отопление):

Вид помещенияМощность (Вт/м2)
Кухня, жилая комната110 – 150
Застеклённая лоджия140 – 180
Ванная комната140 – 150

Приведённые значения удельной мощности даны с некоторым запасом – в этом случае система будет иметь необходимый резерв, работая на 70 – 75 %.

При расчете мощности тёплых полов стоит принять во внимание и этаж  квартиры (в многоквартирных домах). Если это первый этаж, то удельную мощность при расчёта следует имеет смысл больше на 15 – 20 %.

Какие расчеты необходимы перед устройством теплого пола


#Расчет длины контуров теплого пола#водяной теплый пол#коллектор теплых полов


Тёплые полы – советы по самостоятельному ремонту от Леруа Мерлен в Курске

5Критерии выбора нагревательных матов

ТИП ПОМЕЩЕНИЯ, В КОТОРОМ ПЛАНИРУЕТСЯ ИХ ПРИМЕНЕНИЕ

В качестве дополнительного источника тепла лучше всего использовать теплый пол на кухне или в ванной комнате. В ванной комнате можно по-разному спланировать укладку нагревательных матов:

3 квадратных мата1 большой мат

2 больших и 1 малый мат

ПОЛНОЦЕННАЯ ОТОПИТЕЛЬНАЯ СИСТЕМА ИЛИ ДОПОЛНИТЕЛЬНЫЙ ОБОГРЕВ?

Электрический теплый пол очень удобен как локальный обогреватель. Небольшой энергосберегающий мат в состоянии обеспечить комфорт при входе в жилое помещение, на том участке, где вы снимаете обувь, на кухне и в ванной комнате, в местах, где дети могут безопасно играть, не рискуя простудиться из-за холодных плиток.

Если вы решили использовать теплые полы как дополнительный обогрев помещения, маты могут иметь меньшую мощность, быть меньше по размерам, а соответствующая установка терморегулятора в этом случае не имеет большого значения.

Если вы выбрали теплые полы в качестве полноценной отопительной системы, отказавшись от центрального отопления, необходимо обратить внимание на соответствующий подбор мощности матов, управление регулятором и качество греющего кабеля.

Необходимо подобрать маты так, чтобы при наименьшей мощности они могли нагреть помещение до оптимальной температуры. В связи с этим рекомендуется сделать проект подогрева пола с учетом различных функций помещений.

КАКУЮ ВЫБРАТЬ МОЩНОСТЬ?

Мощность системы теплого пола подбирается в зависимости от задачи, которую нужно решить: комфортный подогрев поверхности пола или полноценное отопление помещения.

Мощность можно подобрать примерно так:

  1. 100 Вт на 1 м2 – этой мощности достаточно, чтобы использовать эту систему отопления для большинства помещений. Правда, достижение комфортной температуры при использовании таких матов займет некоторое время. Такие маты используются как дополнительный обогрев.
  2. 150 Вт на 1м2 – используется в качестве дополнительного источника тепла в комнате или полноценной системы отопления в коридоре.
  3. 200 Вт на 1м2 – для ванных комнат, а также других помещений с кафельным напольным покрытием рекомендуется выбрать маты большей мощности, так как в этих зонах требуется более высокая температура, а место для укладки матов ограничено.

Маты большей мощности используются в зданиях с высокими потолками, производственных помещениях, гаражах.

ВИД КАБЕЛЯ – КАЧЕСТВО

Греющий кабель должен отвечать нормам безопасности PN-IEC. В этих нормах изложены спецификации на рекомендуемые виды и минимальную толщину кабелей.

Греющий кабель спроектирован таким образом, чтобы не было необходимости в его консервации. Имеет смысл приобрести маты известных фирм, тогда не возникнет необходимости сбивать пол в случае возникновения неисправностей.

ВНИМАНИЕ! Не рекомендуется приобретать маты более высокой мощности, чем требуется для обогрева данного помещения.

Расход электроэнергии теплым полом

Низкотемпературное отопление «теплый пол» – это самый эффективный метод обогрева любых помещений. Потребителям предлагается такой нагрев с помощью греющих кабелей или пленки ТМ RATEY. 

Преимущества такого способа отопления:

— Отсутствие эффекта осушки (понижения влажности) воздуха в комнате и восходящих потоков.

— Температура по высоте комнаты распределена равномернее, чем с водяными радиаторными системами отопления. Это делает пребывание человека в комнате более комфортным.

Теплый пол RATEY производится в виде удобных в монтаже и эксплуатации продуктов – греющей пленки и кабеля. Эти элементы имеют слой высокопрочной электрической изоляции, устойчивой к повреждениям. Реализуемые нами теплые полы абсолютно безопасны. Например, греющий кабель RATEY серии RD имеет класс М1 по стойкости к случайному продавливанию или прокалыванию во время монтажа. При полном соблюдения инструкции по установке гарантия на кабели 15 – 25 лет (в зависимости от  серии), а на пленку – 10 лет. Ресурс работы – более чем 50 лет.

Чтобы выбрать нужный вариант исполнения (инфракрасная пленка или греющий кабель), разберитесь в отличиях помещений, в которых будут монтировать теплый пол. Лучшим вариантом считается нагревательный кабель. Для эффективной работы его заливают в цементно-песчаную стяжку. Последняя играет роль аккумулятора тепла. Стяжка должна быть толщиной не менее 30 мм. Если нет возможности поднять уровень пола на такую величину, лучше выбрать пленку  RATEY. Сверху нее без стяжки укладывают паркет, ламинат, линолеум и ковролин.

Сколько электроэнергии использует теплый пол?

Не менее важным, чем выбор типа, является ответ на вопрос – сколько электроэнергии расходует теплый пол? Нагревательный кабель укладывают на пол, а на него наклеивают керамическую или другую плитку. Каждый вид электрического теплого пола имеет свои технические характеристики. Это  расход электроэнергии, потребляемая мощность, толщина нагревательного элемента и создаваемая температура. Попробуем разобраться с мощностью теплого пола на 1 погонный метр (м.п.) нагревательного элемента:

— Для нагревательной пленки она лежит в диапазоне 110 – 220 Вт/м (в зависимости от ширины пленки).

— Для греющих кабелей 18 – 50 Вт/м. Его укладывают с определенным шагом соседних витков (минимум 75 мм, максимум 125 мм). Это нужно, чтобы удельная мощность кабельного теплого пола была 0,12…0,15 кВт/м². 

Расход электроэнергии теплым полом находится в диапазоне 110…220 Вт/м². Причем минимальная мощности соответствует теплым полам для обеспечения комфорта на уровне ног (дополнительный обогрев), а максимальная – для полного отопления комнат.

Для расчета расхода электроэнергии W на пленочный теплый пол (либо с нагревательным кабелем) подходит простая формула
W = S * P * 0,4, где: 
S – площадь помещения;
P – удельная мощность пола; 
0,4 – коэффициент, учитывающий площадь комнаты, где уложена пленка. Т. е. S * 0,4 – площадь эффективного нагрева.

Пример расчета

Сколько электроэнергии за 1 час расходует теплый пол мощностью 120 Вт/м² в спальной комнате (площадь 15 м²)?

Wч = 15 * 120 * 0,4 = 720 Вт, т.е. 0,72 кВт*ч.

Но часовой расход электроэнергии мало о чем говорит. Теплый пол работает не менее 6…8 часов в сутки, когда жильцы есть дома.

Суточный расход равен Wc = 0,72 * (6…8) ч = 4,3…5,8 кВт*ч.

За 1 месяц Wм = (4,3…5,8) * 30 дн. = 129…174 кВт*ч.

Это максимально возможная величина. Наш расчет носит ориентировочный характер, а реальное потребление будет меньше примерно вдвое. Ведь система теплого пола управляется терморегулятором, который сэкономит до 40 % электроэнергии. Т. о. расход электроэнергии для электрического теплого пола, покрытого ламинатом, может составить около 77 кВт. К тому же стоит помнить, что без ущерба для комфорта можно уложить инфракрасную пленку с немного меньшей удельной мощностью.

Далее, умножив месячный расход электроэнергии теплым полом на цену 1 кВт * ч, вы получите стоимость израсходованного электричества. Теперь стоит проанализировать, выгодно вам такое отопления или нет. Эта формула поможет ориентировочно оценить расходы на электроэнергию теплых полов в любых комнатах.

При расчете стоимости электроэнергии помните, что обогрев инфракрасной пленкой, используемой в качестве основного (единственного) источника отопления, можно сделать при ее удельной мощности не менее 60 Вт/м². Для дополнительного отопления эта величина меньше в 2 — 3 раза (порядка 20…30 Вт/м²). Это объяснимо высоким КПД пленки и ее малым потребление электроэнергии.

Что способствует снижению расхода электроэнергии на электрический теплый пол под плитку?

— Качественная теплоизоляция помещений уменьшит потери тепла на 35 — 40 %. 

— Терморегулятор теплого пола установите на самую холодную стену комнаты. Питание теплого пола включится тогда, когда температура воздуха станет ниже уставки. А выключится – при достаточном прогреве помещения.

— Замените ваш прибор учета на многотарифный. Стоимость 1 кВт*ч электроэнергии по ночному тарифу будет вдвое меньше, чем днем. Ведь теплый пол больше времени работает вечером, когда все дома.

— Монтаж греющих элементов делайте только по полезной площади комнаты, которая свободна от мебели, техники и других предметов. Это соответствует требованиям по монтажу теплых полов, не вызывает перегрева кабеля или пленки. Отсутствуют нецелевые затраты тепла и электроэнергии.

— Снизьте температуру воздуха в комнате с теплым полом на 1 ºС – это уменьшит расход электроэнергии на 5 %.

 

Оцените новость:

Водяной электрический XL PIPE

XL PIPE professional = водяной теплый пол + электрический теплый пол. Это жидкостный электрический теплый пол нового поколения! Экономичнее электрических кабельных теплых полов на 30%-40%! Выполняет роль основного отопления и комфортного теплого пола.

Преимущества перед другими системами:


  • Нулевая потеря тепла
    100% электроэнергии идет на обогрев.
  • Аккумуляция тепла
  • Материал пола и жидкость внутри трубы аккумулируют тепло, и даже при работе системы на минимальном уровне мощности тепло сохраняется дольше.
  • Низкое потребление электроэнергии
  • При использовании системы в качестве основного источника отопления затраты электроэнергии намного ниже, чем при использовании других систем теплых полов.
  • Экономия электроэнергии
    Благодаря эффекту пузырькового кипения затраты на энергопотребление снижаются на 20-30%.

Применение

  • Основное отопление помещений + экономичный теплый пол
  • По типу — водяной теплый пол. По принципу работы — электрический (без котла и насоса)
  • Монтируется в стяжку 4- 8 см
  • Среднее энергопотребление  17 — 25 Вт/кв.м. (зависит от климатического региона)*
  • Незамерзающий теплоноситель и греющий элемент внутри труб, в комплекте

Теплоизоляция пола

1 способ
Залейте площадь пенобетоном, толщиной  3-5 см.  Сверху положите металлизированную лавсановую  теплоотражающую подложку толщиной 2-5 мм.

2 способ
Сделайте пирог. Уложите слой пенополистирола толщиной 3-5 см (или больше). Поверх постелите полиэтиленовую пленку и залейте стяжкой 3-5 см.  Когда стяжка высохнет,  переходите к следующему шагу.

Положите армирующую сетку или методом без сверления (сетка не обязательна, проф. монтаж)
Уложите армирующую сетку и закрепите систему Enerpia Daewoo Enertec XL PIPE.

Установите распределительную коробку

В распределительной коробке  трубы закрепляются начало и конец трубы. Размер коробки 18 х 18 х 4 см.

  • Установите распределительную коробку так, чтобы ее крышка была на одном уровне с поверхностью стяжки. Отступайте от стен на 10-15 см.
  • Прочно закрепите распределительную коробку на месте.

Установите трубы

  • Закрепите трубы. Для крепления в пенобетон используйте U образные зажимы. Для крепления на арматурной сетке — пластиковые хомуты (не закрепляйте трубы с помощью стальной проволоки).
  • Также можно использовать специальные зажимы для крепления пластиковых труб на рейке.
  • Расстояние между трубами 20-25-30 см. Зависит от типа помещения и других условий.
  • Оставляйте место для сгибов, чтобы трубы сильно не перегибались.  Длина сгиба —  80 см, диаметр сгиба — 20 см.
  • Соблюдайте одинаковое расстояние между трубами.
  • Закрепляйте трубы зажимами или хомутами через каждые 0,5- 0,8 м.
  • В месте сгибов прочно фиксируйте трубу несколькими креплениями.
  • Прочно закрепляйте трубы, чтобы они не отошли во время заливки стяжки.
  • Отступайте от стены на 25-30 см.

Подключите систему к терморегулятору
Подсоедините провода от системы X-L PIPE к терморегулятору, а терморегулятор к выключенной сети питания.

Установите датчик температуры
Установите температурный датчик на полу  к греющей трубе. Это необходимо чтобы точнее контролировать температуру нагрева.
Датчик необходимо установить в гофрированную трубку чтобы в случае неисправности его можно было заменить. 

Изолируйте распределительную коробку
Изолируйте распределительную коробку с помощью обыкновенного скотча, чтобы при заливке стяжки жидкость не попала внутрь. Закрепите коробку на месте с помощью цементного раствора.

Залейте стяжку
При заливке стяжки не заливайте распределительную коробку. Следите, чтобы уровень распределительной коробки совпадал с уровнем стяжки.
По краям стяжки по всему периметру необходимо установить демпферную ленту. Тогда при нагреве, когда стяжка будет расширяться, демпферная лента заберет на себя часть нагрузки.

Толщина стяжки рекомендованная заводом – 4-8 см

Установите терморегулятор

  • Установите терморегулятор на высоте 0,8-1 м.
  • Максимально допустимая расчетная мощность терморегулятора должна быть на 15-20% больше максимальной мощности самой системы.
  • К одному терморегулятору может быть подсоединено не более 84 м труб теплого пола и не более одной системы.

Проведите пробный запуск

После того, как стяжка полностью высохла (25-35 дней), проверьте работоспособность еще раз.

Определите расчетным методом возможные максимальные нагрузки на имеющуюся электрическую сеть с учетом одновременного подключения всех приборов в данной комнате. Уточните у специалиста пропускную способность внутреннего сетевого кабеля и номинальную мощность предохранительных автоматов.

Нагревательные системы с мощностью равной или свыше 2 кВт рекомендуется подключать к сети через дополнительное устройство отключения электроэнергии УЗО для дополнительной безопасности. 

Для подбора необходимой системы теплого пола следует воспользоваться таблицей:










Модель

Длина трубы

Мощность

Площадь покрытия

м

Вт

150 Вт/м2

140 Вт/м2

110 Вт/м2

DW-010

14

560

3,7

4,0

5,1

DW-015

21

840

5,6

6,0

7,6

DW-020

28

1120

7,5

8,0

10,2

DW-025

35

1400

9,3

10,0

12,7

DW-030

42

1680

11,2

12,0

15,3

DW-040

56

2240

14,9

16,0

20,4

DW-050

70

2800

18,7

20,0

25,5

Среднее потребление электроэнергии системой (основное отопление) – 25 Вт/м2.
Максимальная мощность 1 пог.м – 40 Вт.

Расчёт денежных затрат на отопление помещений электрическая система водяного отопления X-L PIPE .

(A*B*C(Cн)*D*M/1000)*E(Eн)=F

A — Квадратные метры системы X-L PIPE

B –Потребление электроэнергии из расчёта 25Вт на 1м2 системы X-L PIPE

C—  День16 часов)

Cн-Ночь( 8 часов)

D—  Количество дней в месяце

E—  Цена за кВт/ч(дневной тариф)

Eн- Цена за кВт/ч(ночной тариф)

F  Требуемые денежные средства на отопление.

* учтите что площадь укладки теплого пола обычно 50 — 95 % от общей площади помещения. (закажите расчет по системам у профессионалов для более точных вычислений)








модельдлинаплощадьэнергопотребление
DW-1014м3.3 м²14m X 0.04 кВ = 0.5кВ/ч (0.25 кВ/ч)
DW-1521м4.95 м²21m X 0.04 кВ = 0.84 кВ/ч (0.35 кВ/ч)
DW-2028м6.6 м²28m X 0.04 кВ = 1.12 кВ/ч (0.50 кВ/ч)
DW-2535м8.25 м²35m X 0.04 кВ = 1.40 кВ/ч (0.65 кВ/ч)
DW-3042м9.9 м²42m X 0.04 кВ = 1.68 кВ/ч (0.75 кВ/ч)
DW-4056м13.2 м²56m X 0.04 кВ = 2.24 кВ/ч (1.00 кВ/ч)

* Данные расчеты равны исследованию Института Теплофизики РФ (Сибирь).

Тёплый пол: мифы и реальные факты


Содержание:




Мифы о тёплых полах


Тёплые полы обрели широкую популярность благодаря высокой эффективности и способности экономить энергию. В статье рассматриваются распространенные мифы об этой системе обогрева и проанализирована их справедливость.

Электрические тёплые полы самой распространенной конструкции состоят из отдельных элементов — нагревательных кабельных двухжильных матов, которые монтируются в пол помещения. Элементы выполнены в форме сетки, на которой размещён нагревательный кабель. Такая особенность позволяет экономить пространство.

Миф №1: «Нагревательные маты потребляют слишком много электричества»


Нагревательные маты, как и любой другой электрический прибор, имеют определенную мощность, от которой зависит степень потребления электрического тока. Но в любом случае для их работы требуется меньше энергии, по сравнению с бойлером или электрическим котлом. Это объясняется наличием терморегулятора — нагревательный кабель работает не постоянно, а только при падении температуры пола. Плитка и стяжка хорошо аккумулируют тепло, поэтому нагревательный элемент чаще находится в отключенном состоянии. К тому же, ежегодная тенденция совершенствования систем обогрева полов привела к тому, что появились экономичные маты, потребляющие до 75 Вт на квадратный метр.


Как рассчитать количество электроэнергии, потребленной тёплым полом? 


Для расчёта следует воспользоваться формулой:


W = SхPх0,4


Здесь: S – площадь отапливаемого помещения; Р – мощность прибора; 0,4 – коэффициент, показывающий сколько поверхности пола закрыто напольным покрытием, иными словами – полезная площадь обогрева.


К примеру, если вы взялись подсчитать количество энергии, потреблённой тёплым полом с номинальной мощностью в 130 Вт/м2 в помещении площадью в 20 м2, формула будет иметь вид:


W = 20х130х0,4 = 1040 Вт


Это означает, что тёплый пол при работе потребляет 1,04 кВт в час. Обращаем внимание, что подсчёты очень грубые. Фактическое потребление будет меньше примерно в два раза. Связано это с возможностью применения оптимизированных терморегуляторов, снижающих расход энергии примерно на 40%. Таким образом, потребление энергии в месяц будет не 250 кВт, а 125. И к расчёту ещё был взят кабель мощностью в 130 кВт — существуют тёплые маты и на 110 кВт и на 90 кВт, чего вполне хватает для большинства жилых помещений.

Миф №2: «Системы нагрева полов вредны, так как излучают электромагнитное поле»  


Из школьного курса физики известно, что при протекании электрического тока через проводник, вокруг него образуется электромагнитное «излучение» или «поле». Разница между этими терминами состоит в длине волны. Слово «излучение» целесообразно применять в том случае, когда длину волны можно сопоставить с её воздействием на окружающие предметы. Рентгеновское излучение, излучение микроволновой печи и т.д. Такие волны могут проникать в тело человека и менять структуру ДНК в клетках. Частота опасной волны измеряется в миллионах герц. В тёплых полах же это значение достигает всего 50 Гц. Для такого явления более применим термин «поле». Оно не способно проникать в организм человека и оказывать какое-либо негативное воздействие.


Производители тёплых полов оснащают изделия специальными вставками из меди или тонкой фольги. Они экранируют электромагнитное излучение и сводят на нет и без того низкие показатели.


 

Миф №3: «Тёплый пол трудно подлежит ремонту»


Тёплые полы от надёжных производителей исправно функционируют в течение десятков лет. Если поломка всё-таки случилась, следует найти её причину. Для начала нужно осмотреть терморегулятор и термодатчик. Если они работают нормально, значит причина кроется в механическом обрыве кабеля.


  Стандартные процедуры при обнаружении неисправностей:


  • Отключение устройства от сети;
  • Отсоединение кабеля от терморегулятора;
  • Измерение сопротивления кабеля и его изоляции (допускаются погрешности в 5%).



При высоких показателях сопротивления можно с уверенностью говорить о поломке кабеля. Для обнаружения обрыва применяется высоковольтный генератор или аудиодетектор.


Когда место обрыва найдено, проводятся следующие этапы ремонта:


  • Демонтаж участка напольного покрытия;

  • Вскрытие стяжки;

  • Соединение концов оборванного провод гильзами с помощью пресс-клещей;

  • Изоляция восстановленного участка провода с применением термоусадочной муфты;

  • Проведение стяжки и монтажа напольного покрытия.



Длительность данной процедуры не занимает больше двух-трёх часов. При наличии необходимого инструмента провести ремонт можно самостоятельно. Если его нет – многие ремонтные мастерские предлагают услуги устранения неполадок тёплых полов.

Ремонт терморегулятора


Если причина неисправности заключается в поломке терморегулятора, ремонт выглядит следующим образом:



  • Проводится тестирование клемм соединения всех узлов;

  • Измеряется сопротивление термодатчика;

  • Проводится зачистка клемм и замена термодатчика, если проблема в нем.



Ремонт термодатчика


Термодатчик – устройство, контролирующее температуру пола и отключающее питание при достижении нужных тепловых показателей. При поломке данного элемента конструкции питание на кабель подаётся без перерывов. Это приводит к высокому потреблению энергии и чрезмерному прогревы помещения. Для проверки работоспособности датчика проводятся следующие мероприятия:


  • Отключение устройства от терморегулятора;
  • Измерение сопротивления;
  • Сверка полученных данных с исходными показателями.



При разнице показателей сначала зачищают контакты. Если это не помогло, датчик подлежит замене. Установленный в гофрированную трубу элемент теплого пола заменяется без трудностей, но если он вмонтирован в стяжку, придётся разбирать участок напольного заполнения.


Проблема с низким напряжением питания


Перепады силы тока в сети могут влиять на стабильную работу электрического мата. Для защиты устройства следует использовать стабилизаторы напряжения. Если пол установлен аккуратно с соблюдением всех рекомендаций — срок его непрерывной эксплуатации исчисляется годами.

Миф №4: «Конструкция требует много строительного клея при монтаже»


Перед установкой тёплых матов нужно провести расчёт количества клея. В случае, когда на уложенные нагревательные элементы планируется укладка кафеля, слой клея между ними должен составлять порядка одного сантиметра. Это делается для создания своеобразной подушки между напольным покрытием и электрическими элементами. Равномерно нанесенный клей способствует выравниванию плитки и предотвращению механических повреждений кабеля.


Как рассчитать расход клея?


Для расчёта нужного количества монтажного материала нужно объём клея, необходимый для укладки одного квадратного метра, умножить на площадь помещения. К полученному результату прибавить еще 10% для компенсирования погрешностей. 


Толщина нагревательного мата находится в пределах 5 мм. Слой клея – 10 мм. Практика показывает: при установке теплых полов требуется на 20-25% больше клея, чем при обычной укладке плитки. В денежном эквиваленте это несоизмеримо малая цена по сравнению с преимуществами, которыми обладает система обогрева пола.

Миф №5: «Тёплый пол опасен ударом электрического тока»




При разработке нагревающих матов большое внимание отводится безопасности. Практически 85% конструкции пола предназначены для предотвращения электрических пробоев, и лишь оставшиеся 15% – для обогрева пола. Жилы нагревательного кабеля находятся под толстым слоем полимерных оболочек, не проводящих электрический ток. Оболочки выполнены из теплостойкого поливинилхлорида, способного выдерживать температуру до 180 Со. Это значительно выше максимальной температуры нагревательного кабеля. На оболочки накладывается защитная фольга, после чего всё это покрывается еще одним слоем ПВХ. Положение кабеля надёжно фиксируется в полу, что исключает возможность повреждений. Совокупность плотной изоляции в несколько слоёв и невозможности повреждений кабеля, позволяет монтировать пол в комнатах с высокой влажностью – ванной, кухне и т.д.


На практике это означает, что ни пролитая воду, ни сырость, ни паровая влага не могут поспособствовать удару электрического тока. Изделие полностью безопасно.


«Тёплый пол сушит воздух и поднимает пыль» – температура нагревателя находится в пределах 45 Со, температура поверхности пола – около 27 Со. Таких показателей не достаточно для осушения воздуха в помещении. Поток тёплого воздуха, поднимающийся от пола вверх, также не достаточно плотный для поднятия частиц пыли. Таким образом, использование тёплого пола никак не нарушает домашний микроклимат.


Распространённые мифы о тёплых полах не подтверждаются реальными фактами, а польза от их использования действительно высока. Не нужно отказывать себе в покупке такого элемента обогрева только на основании ничем не подтвержденной информации.

Типы нагревательных полов


Существует два основных типа электрических нагревательных матов – одножильные и двужильные. В первом варианте в качестве нагревательного элемента выступает специальный кабель. При укладке оба конца кабеля нужно подсоединить к терморегулятору, то есть начало и конец подключить к одному месту. Особенность данного типа в том, что при работе он излучает электромагнитное поле. Оно не опасно для человека, поэтому нагревательные маты размещают в жилых помещениях. Одножильный пол стоит дешевле двужильного аналога. Он часто размещается на кухне или в ванной.


Двужильный мат – более совершенный вариант тёплого пола. В нём, помимо нагревательного кабеля, присутствует также изолированный электрический провод. С одной стороны они соединены и размещены в муфту, со второй подсоединены к терморегулятору. Такое решение позволяет гасить электромагнитное поле. Двужильный мат более прост в монтаже, так как его установку можно закончить в любом месте в помещении – второй конец не нужно подсоединять к термостату.


Другой критерий, по которому различают нагревательные системы – мощность. От неё зависит количество потребляемой энергии, площадь обогрева помещений, время достижения оптимальной температуры поверхности напольного материала. Чем больше площадь комнаты, тем более мощные маты следует выбирать.


Надёжность полов от одного производителя не зависит от типа нагревательных матов.

Виды тёплых полов


Помимо электрических нагревательных матов, существует и другой вид обогревательных систем – водяной. По сути, он представляет собой радиатор водяного отопления, размещенный под напольным покрытием. Такая система встречается довольно часто – в коттеджах, загородных домах, квартирах жилых комплексов и кладовых помещениях. Радиаторы могут подключаться как к центральному отоплению, так и к автономной системе отопления. Каждый хозяин самостоятельно выбирает тип подключения, исходя из особенностей дома и финансовых возможностей. К достоинствам водяного тёплого пола можно отнести равномерное распределение тепла по квартире, в отличие от установленных вертикально по отношению к стенам радиаторов.

Преимущества системы «тёплый пол»


  • Размещение систем «тёплый пол» не занимает свободное пространство в доме. Для их монтажа требуется всего несколько сантиметров пола. Нагревательные элементы размещают под плитку или другое напольное покрытие.


  • Простота монтажа – любой человек, не обладающий специальными навыками, может быстро понять принцип работы системы и особенности её установки.


  • Экономия электричества – нагревательные маты равномерно распределяются по всей площади дома, что позволяет быстро прогреть пол. При этом требуется много энергии, по сравнению с альтернативными нагревательными приборами.

Сфера применения


Благодаря описанным выше преимуществам нагревательные маты находят широкое применение в жилых помещениях, загородных домах, коттеджах. Особенно востребованы они в тех комнатах дома, где полы всегда холодные — ванные комнаты, кухни, спальни, технические помещения и т.д. Установленные нагревательные системы не только повышать комфорт проживания в доме, но также предотвращают простудные заболевания, связанные с хождением по холодному полу.


Читайте также:





Руководство по температуре и теплопроизводительности теплого пола

Знание тепловой мощности системы теплого пола очень важно для обеспечения того, чтобы ваша комната нагрелась до желаемой температуры. Меньше всего вам нужно, чтобы после установки системы было холодно, поэтому, чтобы точно сказать, сколько тепла вам нужно для обогрева комнаты, вам нужно знать потери тепла, а затем выбрать систему теплого пола с тепловая мощность соответствует.

Прочтите советы экспертов по теплопроизводительности и факторам, влияющим на тепловую мощность системы теплого пола.Как всегда, если у вас есть какие-либо вопросы, наша дружелюбная служба поддержки клиентов доступна по телефону 0345 345 2288 .

РАЗМЕР ПОЛА

Размер отапливаемого пола напрямую связан с теплопроизводительностью, поскольку чем больше отапливаемая площадь, тем выше максимальная тепловая мощность системы. Однако размер отапливаемого пола по отношению к общему размеру помещения также влияет на мощность, поскольку чем больше становится комната, тем выше становятся потери тепла.Если отапливаемая площадь значительно меньше, чем общий размер пола или комнаты (

ТЕМПЕРАТУРА ПОЛА И ТИП ПОЛА

Температура пола также напрямую влияет на тепловую мощность, причем чем выше температура пола, тем выше тепловая мощность пола Однако не все виды отделки пола можно нагреть до высокой температуры, поэтому важно отметить, что, хотя повышение температуры пола увеличивает тепловую мощность, это также зависит от выбранной вами отделки пола.

Плотные и твердые материалы, такие как плитка и камень, обладают хорошей теплопроводностью, что означает, что тепло может лучше передаваться от нагревательного элемента к поверхности пола. Плитку и камень также можно нагревать до 29 + ° C для повышения производительности. Материалы мягкого пола, такие как дерево, ламинат, линолеум, имеют сравнительно низкую проводимость и могут быть нагреты только до 27 ° C, что означает определенную максимальную тепловую мощность в зависимости от размера отапливаемой площади. Опять же, если выбранная вами отделка пола допускает температуру пола только 27 ° C, а требования к теплопроизводительности выше, чем та, которую можно достичь с полом 27 ° C, вы можете подумать о смене материала пола, чтобы использовать пол с подогревом. система работать как единственный источник тепла.

Чем выше температура пола, тем выше тепловая мощность, но некоторые виды отделки пола имеют ограничение по максимальной температуре. Всегда лучше проконсультироваться с производителем напольного покрытия.

ВЫБОР ТЕРМОСТАТА И ТЕМПЕРАТУРЫ ВОЗДУХА

Большинство современных термостатов регулируют температуру пола на основе температуры воздуха или пола и используют для ее измерения датчик воздуха или пола. Поскольку термостат включает или выключает нагрев, его точность, а также точность датчика могут иметь значительное влияние на тепловую мощность.Кроме того, чем выше желаемая температура в помещении, тем больше тепла необходимо для достижения этой температуры.

Это особенно актуально в ванных комнатах, где желаемая температура воздуха в помещении относительно высока, скажем, 23 ° C (по сравнению с обычной комнатной температурой в гостиной 21 ° C). Плохое управление или неправильно размещенные датчики термостата могут привести к при перегреве помещений и в тяжелых условиях может даже повредить отделку пола, поэтому рекомендуется приобретать высококачественный термостат.Термостат 4iE Smart WiFi обеспечивает точный контроль температуры и может сэкономить до 200 фунтов стерлингов на энергопотреблении, найдя более разумные способы обогрева вашего дома.

Точный контроль температуры в помещении важен для обеспечения правильной тепловой мощности. Умный термостат не только обеспечивает точное управление, но и позволяет сэкономить на счетах за отопление.

ИЗОЛЯЦИЯ ПОЛА ПОВЫШАЕТ ТЕПЛОИЗВОД.

Тепловой выход на поверхность пола можно значительно увеличить, используя изоляцию, такую ​​как изоляционные плиты Warmup, под отоплением.Это может быть непосредственно под нагревательными элементами, трубами или под стяжкой или средой, в которую встроено отопление. Если изоляция не используется, выделяемое тепло будет перемещаться не только вверх, но и вниз, а в худшем случае даже нагревать землю под конструкцией, тратя энергию, деньги и необходимое тепло.

Изоляционные плиты Warmup бывают разной толщины, предлагая различные уровни изоляции.

Если вы не хотите менять отделку пола или не можете изменить размер площади обогреваемого пола, увеличение общей теплоизоляции — хороший способ уменьшить теплопотери и снизить требования к теплопроизводительности.Добавление полой стены, крыши и дополнительной изоляции пола — все это хорошие способы сохранить тепло и снизить требования к теплопроизводительности любой системы отопления.

МОЩНОСТЬ СИСТЕМЫ НАПОЛЬНОГО ОТОПЛЕНИЯ

Максимальная мощность системы обычно указывается в ваттах на квадратный метр. Если ваш пол хорошо изолирован и у вас достаточно современный дом, мощность системы теплого пола обычно должна составлять 65-85 Вт / м², чтобы обеспечить требуемую мощность. Когда дело доходит до выбора теплого пола, обычно указывается система 150-200 Вт / м², чтобы сократить время нагрева, поскольку система не будет работать постоянно.Когда система работает только половину времени, в течение которого комната используется, предоставляемая мощность составляет половину от мощности системы. То есть система 150 Вт / м² обычно обеспечивает 65-85 Вт / м² в час.

ВАННЫЕ И ДРУГИЕ КОМНАТЫ С ПОСТОЯННЫМ ОБОРУДОВАНИЕМ

В некоторых комнатах, например, в ванных комнатах, большие части комнаты закрыты постоянными приспособлениями, такими как ванна, туалет или раковина. Поскольку пол с подогревом нельзя укладывать под стационарную арматуру, в этом случае можно обогревать только небольшие части поверхности пола.Это может существенно повлиять на тепловую мощность.

Размер отапливаемого пола напрямую зависит от тепловой мощности, поэтому вам следует стремиться обогреть как можно большую площадь пола.

ПРЕОДОЛЕНИЕ ОГРАНИЧЕНИЙ ПОМЕЩЕНИЙ

Если вы устанавливаете пол с подогревом в небольшом помещении с относительно небольшой площадью, на которую можно проложить провод или трубу, лучше всего выбрать покрытие пола с высокой проводимостью. Выбирайте пол из плитки и камня, которые можно нагреть до высокой температуры пола, обеспечивая более высокую теплоотдачу и комнатную температуру, чем при использовании мягкой отделки пола.В зависимости от теплопотерь помещения, может также потребоваться использование вторичного обогрева для увеличения тепловой мощности. В ванных комнатах полотенцесушители и настенные обогреватели являются идеальным вариантом, поскольку они способствуют достижению необходимой тепловой мощности.

Этот тепловой поток во многом зависит от структуры материала и молекул внутри него. Например, тепло будет проходить гораздо быстрее через плотную структуру, такую ​​как плитка; чем более пористая структура, такая как дерево. В обоих случаях тепло в конечном итоге будет распространяться по всему материалу, пока не достигнет теплового равновесия (сбалансированной температуры).

ЗАКЛЮЧИТЕЛЬНОЕ РАССМОТРЕНИЕ… ТЕПЛОВАЯ БЛОКИРОВКА

В заключение, имейте в виду, что после того, как вы приложили все усилия, чтобы ваша система теплого пола обеспечивала достаточное количество тепла, очень важно, чтобы вы не блокировали поступление тепла. испускается с пола. Изоляционные и теплоизоляционные материалы, такие как коврики, мебель (особенно кресла-мешки!), Значительно ухудшают работу системы.

Если вы знаете свои теплопотери и хотите обсудить тепловую мощность системы теплого пола и обеспечит ли она достаточно тепла в вашей комнате, свяжитесь с нами , и мы поможем вам оценить тепловую мощность.

Ознакомьтесь с ассортиментом нашей продукции и найдите идеальную систему теплого пола для вашей установки.

Эффективен ли теплый пол? | Viessmann

Количество и тип энергии, потребляемой вашим UFH, будет зависеть от типа установленной вами системы. Вы можете выбрать две системы: влажную и сухую.

Мокрая система работает аналогично радиатору. Вода нагревается котлом или тепловым насосом и подается по трубам, проложенным под полом.Напротив, сухая система использует электричество для нагрева проводов. В обоих случаях поверх заливается слой стяжки, чтобы получить ровную поверхность для укладки пола. Это означает, что влажная система нагревается через вашу текущую систему отопления (газовый котел, тепловой насос и т. Д.), А сухая система будет использовать электричество, поэтому каждая конфигурация может использовать разное количество энергии и, следовательно, будет различаться по стоимости. Также учитываются другие факторы, в том числе размер комнаты, в которой установлен UFH, качество вашей изоляции и высота ваших потолков.

Из-за этих переменных трудно определить, сколько энергии используют системы UFH.

Для сухого UFH мощность указывается в ваттах (Вт) на квадратный метр (Вт / м2). На этом рисунке показано, сколько электроэнергии будет потребляться в час, если система будет постоянно работать. Системы 100-150 Вт / м2 должно быть более чем достаточно для современного среднего домашнего семейного дома. Это означает, что система потребляет до 150 Вт на квадратный метр. Если UFH включен только половину времени, то используется половина электроэнергии.Например, если система работает 12 часов в день (а не 24), вы эффективно будете использовать около 75 Вт / м2. Таким образом, спальня площадью 12 м2 будет потреблять около 900 Вт (или 0,9 кВт) в час. Это основано на том, что ваша изоляция соответствует нормативам, а также необходима правильная изоляция пола вокруг проводки.

Wet UFH питается от вашей системы центрального отопления, поэтому количество потребляемой энергии будет зависеть от размера вашего отопительного прибора. Если ваш газовый котел рассчитан на 24 кВт, он будет потреблять около 24 кВт в час.Следовательно, если ваш котел работает пять часов в день, он будет потреблять около 120 кВтч. Это обеспечит отоплением и горячей водой весь ваш дом, а не только UFH.

Тепловые насосы имеют несколько другие размеры. Они используют измерение коэффициента полезного действия (CoP), которое определяет, сколько энергии необходимо ввести для получения определенного выхода. Например, тепловой насос с ЦС, равным четырем, может производить четыре кВт тепла из одного кВт электроэнергии. Если среднему домашнему хозяйству требуется 12 000 кВтч в год для отопления, то тепловой насос с ПС, равным четырем, будет использовать около 3 000 кВтч электроэнергии.

UFH, вероятно, будет потреблять меньше энергии, чем стандартные радиаторы. Это связано с тем, что эти системы более эффективны в циркуляции тепла вокруг вашего дома, и поэтому они могут работать при более низкой температуре. В то время как для радиаторов может потребоваться нагрев воды примерно до 70 ℃, UFH может работать при температурах до 30 ℃.

(PDF) О коэффициентах теплопередачи между обогреваемым / охлаждаемым лучистым полом и помещением

19

[15] Р. Карадаг, И. Теке, Исследование числа Нуссельта пола в системе теплого пола 460

для условий изолированного потолка , Преобразование энергии и управление 48 (2007) 967–461

976.462

[16] Р. Карадаг, И. Теке, Новый подход, относящийся к этажу Число Нуссельта в системе отопления этажа 463

, Преобразование энергии и управление 49 (2008) 1134–1140. 464

[17] Р. Карадаг, Исследование связи между радиационным и конвективным теплом 465

коэффициентов передачи на потолке в комнате с охлаждаемым потолком, Energy Conversion и 466

Management 50 (2009) 1–5. 467

[18] М. Де Карли, Р. Томази, Критический обзор коэффициентов теплообмена между 468

обогреваемых и охлаждаемых горизонтальных поверхностей и помещения, в: Труды 11-й Международной конференции Roomvent 469

, май 2009 г.470

[19] Т. Холева, М. Росинский, Теплопередача в помещениях с системами панельного отопления, in: 471

Труды 41-го Международного Конгресса по HVAC & R, Белград, 1-3 декабря 2010 г. 472

[20 ] М. Тай-Гинграс, Л. Госселин, Исследование допущений при моделировании теплопередачи 473

для излучающих панелей с змеевидным расположением, Энергия и здания 43 (2011) 1598–1608. 474

[21] Ф. Каусоне, С.П. Корнати, М. Филиппи, Б.В. Олесен, Солнечное излучение и охлаждение 475

Расчет нагрузки для излучающих систем: Определение и оценка прямой солнечной нагрузки, 476

Энергия и здания 42 (2010) 305–314.477

[22] L. Zhang, X.H. Лю, Ю. Цзян, Упрощенный расчет мощности охлаждения / обогрева, 478

Распределение температуры поверхности лучистого пола, Энергия и здания 55 (2012) 397–479

404. 480

[23] Ф. Хаджабдоллахи, З. Хаджабдоллахи, Х. Хаджабдоллахи, Термоэкономическое моделирование и 481

оптимизация теплых полов с использованием эволюционных алгоритмов, Энергетика и строительство 482

47 (2012) 91–97. 483

[24] Т.Cholewa, M. Rosiński, Z. Spik, A. Siuta-Olcha, MR Dudzińska, Тепловая мощность 484

, управление системой напольного отопления, в: Материалы 43-го Международного Конгресса 485

HVAC & R, Белград, 5-7 декабря, 2012. 486

[25] F. Causone, SP Corgnati, M. Filippi, BW Олесен, Экспериментальная оценка 487

коэффициентов теплопередачи между лучистым потолком и помещением, Энергетика и здания 41 488

(2009) 622–628. 489

[26] ISO 7730: 2005, Эргономика тепловой среды — аналитика 490

Определение и интерпретация теплового комфорта с использованием расчета PMV 491

и индексов PPD и локальных критериев теплового комфорта.492

[27] ISO 7726: 1998, Эргономика тепловой среды — Инструменты для измерения физических величин 493

. 494

[28] Стандарт ASHRAE 55: 2004, Тепловые условия окружающей среды для человека 495

Занятие. 496

[29] Справочник по системам и оборудованию ASHRAE HVAC, Глава 6: Панельное отопление 497

и охлаждение, Американское общество отопления, охлаждения и кондиционирования воздуха 498

Engineers, USA, 2000. 499

[30] L.Фонтана, Тепловые характеристики теплых полов в меблированных закрытых помещениях 500

, Прикладная теплотехника 31 (2011) 1547-1555. 501

[31] M. Corcione, L. Fontana, G. Moncada Lo Giudice, Параметрический анализ 502

эффектов мебели на работу систем лучистого панельного отопления, in: 503

Proceedings of the Международный конгресс Clima 2000, Неаполь, 2001 г., стр. 59-68. 504

[32] T.C. Мин, Л. Шутрум, Г.Пармели, Дж. Вурис, Естественная конвекция и излучение 505

в комнате с панельным отоплением, Трубопроводы отопления и кондиционирование воздуха (HPAC) (1956) 153–160. 506

[33] A. Odyjas, A. Górka, Моделирование производительности системы охлаждения пола, Прикладное 507

Тепловая инженерия 51 (2013) 84-90. 508

509

Конвертер коэффициента теплопередачи • Термодинамика — Тепло • Компактный калькулятор • Онлайн-конвертеры единиц

Конвертер длины и расстояния Конвертер массы Конвертер сухого объема и общих измерений при варке КонвертерВремяКонвертер линейной скорости и скоростиКонвертер угловой эффективности, расхода топлива и экономии топливаКонвертер единиц информации и хранения данныхКурсы валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер удельного ускорения Конвертер угловой силы Преобразователь крутящего момента Преобразователь удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на объем) КонвертерТемпературный интервалКонвертерКонвертер теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачи Конвертер объёмного расходаПреобразователь массового расходаМолярный расход раствора в конвертере массового потока Конвертер массового расхода Конвертер вязкостиПреобразователь кинематической вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиКонвертер световой интенсивностиПреобразователь яркости в цифровое преобразование разрешения световых волн Конвертер длины: оптическая сила (диоптрия) в увеличение (X) преобразовательПреобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь уровня объёмного зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимостиПреобразователь электрической проводимости в дБм, дБВ, ваттах и ​​других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема древесиныКалькулятор молярной массыПериодическая таблица

Теплообменник испарителя оконного кондиционера изготовлен из алюминия с медными трубками.

Обзор

Когда два объекта или вещества имеют разную температуру, тепло перетекает от более горячего объекта к более холодному.Если есть разница температур в окружающей среде или веществе, происходит то же явление. Этот теплообмен называется теплопередачей и описывается вторым законом термодинамики. Степень теплопередачи в данном материале равна коэффициенту теплопередачи . Это влияет на общую скорость теплопередачи объекта или вещества. Коэффициент теплопередачи измеряется в системе СИ в ваттах на квадратный метр по Кельвину или Вт / (м² · K), а иногда и в эквивалентных единицах ватт на квадратный метр градусов Цельсия или Вт / (м² · ° C).

Фазовое изменение: при воздействии тепла на лед он переходит из твердого состояния в жидкое, превращаясь в воду.

Обычно эта теплопередача происходит, когда вещество меняет свое состояние, например, при переходе из твердого состояния в жидкое. Этот процесс также известен как фазовый переход . Тепло — одно из условий, необходимых для фазовых переходов. Например, повышение температуры заставит лед таять и разжижаться, а вода — испаряться и превращаться в газ. В этом случае внешнее тепло, например тепловое излучение от огня, передается льду или воде, и энергия заставляет молекулы двигаться быстрее, пока они не начнут двигаться так быстро, что они изменят состояние вещества.Коэффициент теплопередачи рассчитывается в контексте этой теплопередачи.

Конвекционный эксперимент. Небольшую емкость с горячей цветной водой опускают в стакан с холодной водой. Молекулы горячей воды поднимаются вверх и смешиваются с холодной водой.

Теплообмен может также происходить посредством конвекции в жидкости или газе — движение тела теплых молекул в более холодную окружающую среду. Некоторые примеры конвекции включают движение горячей воды в кастрюле от нагревательного элемента вверх.Это движение заставляет холодную воду опускаться к нагревательному элементу, заставляя его нагреваться и двигаться вверх. Результатом этого движения является циркуляция воды в горшке, что способствует нагреванию воды во всем горшке. В условиях невесомости вода не циркулирует таким образом, и ее необходимо перемешивать мешалкой.

Надувание воздушного шара. Поскольку температура горячего воздуха в воздушном шаре понижается в холодном воздухе, его необходимо часто повторно нагревать с горелкой, расположенной под открытой оболочкой воздушного шара.Воспроизведено с разрешения автора.

Воздух в помещении ведет себя аналогичным образом: горячий воздух циркулирует по комнате вдали от обогревателя. Это позволяет горячему воздуху смешиваться с холодным. Циркуляция также заставляет холодный воздух проходить рядом с обогревателем и нагреваться, что еще больше способствует перемешиванию воздуха.

Движение горячего воздуха вверх также позволяет пожарным работать в горящем помещении. Тепло от огня поднимается вверх, и пожарные могут заползти в комнату, чтобы спасти людей, которые там оказались в ловушке.

Чтобы воздушный шар парил в воздухе, воздух внутри воздушного шара (называемый оболочкой) должен быть горячим. Он очень быстро остывает, потому что тонкий нейлон, из которого сделан конверт, действительно хорошо проводит тепло. Было бы полезно иметь изоляцию, но тогда воздушный шар имел бы гораздо больший объем и его было бы трудно транспортировать в спущенном состоянии. Если расходы на транспортировку увеличатся, то увеличатся и расходы на полет на воздушном шаре, что может привести к потере прибыли операторами.

Коэффициенты теплопередачи для различных материалов

Высокий коэффициент теплопередачи материала показывает, что теплопередача в этом материале происходит с большей скоростью по сравнению с материалами с низким коэффициентом.Расчет коэффициента теплопередачи зависит от свойств материала, температуры, площади поверхности, передающей тепло, и других условий.

Этот оконный кондиционер является типичным примером машины, в которой используются два очень эффективных теплообменника. В кондиционерах используется функция фазового преобразования. Когда жидкость превращается из жидкой фазы в газовую, она поглощает огромное количество тепла. Когда хладагент испаряется, он забирает тепло из охлаждаемого помещения.

На коэффициент теплопередачи может повлиять накопление нежелательных остатков на поверхности объекта, называемое засорением . Загрязнение труб и теплообменников часто происходит, когда протекающие вещества содержат инородные биологические, органические или неорганические материалы, и эти материалы прикрепляются к поверхности объекта. К ним относятся водоросли, коррозия, мелкие частицы твердых частиц, растворенных в жидкостях, и т. Д. В некоторых случаях эти материалы не являются посторонними, а представляют собой ингредиенты, содержащиеся в жидкости, например соли, смешанные с водой.

Материалы для компонентов теплообменников, которые должны либо проводить, либо противостоять теплу, часто выбираются на основе их теплопроводности. Однако иногда выбираются менее эффективные материалы из-за других важных соображений, таких как цена материалов и технологичность компонентов, для которых они используются. Например, алюминий имеет более низкую теплопроводность по сравнению с медью, но первый дешевле, и в настоящее время он широко используется для изготовления автомобильных радиаторов.Так было не всегда — старые автомобили имели медные радиаторы, и некоторые компании до сих пор их производят.

Конденсаторный теплообменник оконного кондиционера. Когда этот конденсатор охлаждается вентилятором, газообразный хладагент конденсируется и меняет свою фазу на жидкую. Теплообмен в этом случае происходит с внешней средой.

Еще одним недостатком использования меди, помимо ее цены, является то, что она тяжелее по сравнению с алюминием, что может быть или не иметь значения, в зависимости от ряда факторов, например, от того, нужна ли водителю машина для гонок.Принимая решение о том, какие материалы выбрать, для автомобильных радиаторов или других, важно учитывать все плюсы и минусы использования данного материала, а не только его теплопроводность.

Приложения

Иногда полезно определить общий коэффициент теплопередачи данного объекта и проверить, увеличивает ли это значение изменение материалов, из которых он сделан. Например, можно проверить, обеспечивает ли труба, сделанная из меди, лучший или более низкий коэффициент теплопередачи, чем труба из стали, при использовании горячего воздуха, проталкиваемого через трубу, или, например, при использовании с горячей водой.

Теплообменники

Коэффициент теплопередачи важен в теплообменниках . Это устройства, которые обеспечивают среду для передачи тепла между двумя разными веществами или материалами. Некоторые распространенные примеры — обогреватели и радиаторы, такие как автомобильные радиаторы. Их свойства определяются их формой. Они могут состоять из нескольких пластин, системы труб или иметь другую форму. Хорошим примером применяемого в быту теплообменника является домовой радиатор отопителя .Он состоит из трубы, многократно изогнутой, а иногда и с насосом. Окружающий воздух нагревается горячей водой, которая проходит через него, хотя в некоторых случаях вместо него используется пар. С паром легче работать, потому что в отличие от воды он не требует насоса, а в высоких зданиях также проще использовать пар, чем водяные радиаторы. Однако в паровых радиаторах потери тепла выше.

Радиатор обычно крепится к стене или помещается внутри пола. Последний тип известен как теплый пол .Часто это более эффективно, но, возможно, и более затратно, и его нелегко установить в уже построенных домах. Как правило, он устанавливается по мере строительства дома. Такие системы распространены в Центральной и Северной Европе, а также в некоторых странах Азии, особенно в Корее, но очень немногие строители в Северной Америке используют полы с подогревом.

Изоляция обычно размещается под системами теплого пола, чтобы свести к минимуму утечку тепла. Дом также должен быть хорошо изолирован.Поверх утеплителя часто заливают бетон или специальную смесь цемента и песка, называемую стяжкой (Великобритания). В системах подпольного покрытия обычно используется только вода, а не пар, а в некоторых случаях также используются незамерзающие смеси. Эти системы также можно использовать для охлаждения.

Хотя настенный радиатор не зависит от типа напольного покрытия, используемого в комнате, напольные обогреватели могут работать не так эффективно с некоторыми видами деревянных и виниловых полов. Каменный или керамический пол предпочтителен, хотя некоторые производители делают винил и дерево, которые эффективны и безопасны для использования с полом с подогревом.

Утверждается, что пол с подогревом является энергоэффективным, поскольку он позволяет горячему воздуху естественным образом подниматься с пола через комнату, а температуры, которые обычно необходимы для обеспечения комфорта, на несколько градусов ниже, чем те, которые необходимы для помещений, отапливаемых настенными радиаторами. Более высокие температуры на уровне пола, особенно коврового покрытия, убивают некоторые бактерии, клещей и плесень. Одним из недостатков этого типа нагрева является то, что для достижения желаемой температуры требуется больше времени по сравнению с некоторыми другими формами нагрева.

Температура кипения жидкого азота (77 K или −196 ° C, или −321 ° F) является предпочтительной температурой для хранения образцов в криоконсервации

Криоконсервация

Наука о сохранении тканей человека, криоконсервация, также использует тепло расчет коэффициента передачи, чтобы гарантировать, что клеточные мембраны не будут повреждены льдом во время процесса замораживания. Ученые, которые замораживают ткани, постоянно ищут способы создать идеальные условия, обеспечивающие высокую теплопередачу и быстрое охлаждение, чтобы предотвратить образование льда внутри и между клетками.Чтобы добиться этого, исследователи манипулируют охлаждающими материалами и методами охлаждения, например, используя смесь твердых и жидких охлаждающих агентов. Один из методов консервации, называемый стеклованием, превращает жидкости в аморфный лед, полужидкий лед, который не кристаллизируется и может изменять свою форму легче, чем твердый лед. Благодаря этому свойству он не повреждает клетки механически. Криоконсервация представляет особый интерес для медицинских работников, которые сохраняют женские репродуктивные клетки, сперму и эмбрионы, которые впоследствии могут быть использованы для оплодотворения in vitro .

Наконец, информация о коэффициенте теплопередачи материалов помогает при оценке общей теплопередачи для электронных компонентов и устройств, используемых для их охлаждения. Важно убедиться, что используются правильные данные о коэффициенте теплопередачи, чтобы избежать ошибок в расчетах, которые могут привести к перегреву и сбоям в работе таких устройств.

В строительстве

Желтые гипсовые панели, покрытые стекловолоконными матами, используются в этом здании пекарни для изоляции.На правой стороне здания панель покрыта полистиролом и, вероятно, позже будет декорирована, чтобы напоминать камень.

Деревянный каркасный дом в стадии строительства в Миссиссаге, Онтарио

При строительстве, как правило, важно ограничить теплопередачу между внешней средой и внутренней частью дома, и материалы выбираются с учетом этой потребности. Материалы с низкой теплопередачей называются изоляторами. Их широко используют при строительстве домов.Исторически природные материалы, такие как камень, использовались и используются до сих пор, но во многих странах более популярны такие промышленные материалы, как гипсовые панели, покрытые матами из стекловолокна. В частности, эти панели широко используются при строительстве домов на каркасной основе. Этот метод известен как обрамление и популярен в Северной Америке и некоторых странах Северной Европы.

Такие панели обычно покрывают полистиролом, а под ним добавляют дополнительную изоляцию, например, минеральной или стекловатой.Эта конструкция хорошо изолирует дом, поскольку ее теплоизоляционные свойства не уступают каменным или даже лучше. В холодном и жарком климате деревянные каркасные дома требуют отопления зимой и кондиционирования летом, в то время как каменные дома удобны для людей в аналогичных условиях без кондиционера. Однако для того, чтобы камень остыл или нагрелся, требуется больше времени, поэтому, если в каменном доме требуется охлаждение или обогрев, то для обогрева или охлаждения такого дома требуется намного больше времени, чем для деревянного каркаса. .

Крыльцо дома из фанеры в стадии строительства

К преимуществам использования таких материалов можно отнести невысокую стоимость, а также малый вес. Небольшой вес дома предотвращает проблемы, вызванные более тяжелыми каменными домами, такие как давление и смещение неровной почвы под ним и вызывающая оседание фундамента. Обратной стороной является то, что если здание подвергается воздействию шторма, более сильного, чем позволяет проект, то эта изоляция будет повреждена, и ее изоляционные качества ухудшатся.

Та же фанерная веранда, отделанная и похожая на каменную

Список литературы

Эту статью написала Екатерина Юрий

У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Температура поверхности пола при установке теплого пола

При установке теплого пола температура поверхности пола будет изменяться.В этой статье мы рассмотрим некоторую статистику для вашей пользы.

Макс.температура поверхности пола, ° C Расчетная температура в помещении ° C Тепловыделение (мощность пола) Вт / м 2
Занятая
Площадь
29 20 100
Периферийное устройство
Площадь
35 20 175
Ванная комната
Влажная зона
33 24 10

Таблица 1 — Температура поверхности пола

4.1 Керамическая напольная плитка

Керамика хорошо сочетается с полом с подогревом. У них нулевое или очень низкое значение TOG и очень низкое тепловое сопротивление теплопередаче.
Во избежание растрескивания плитки следует использовать эластичный клей и раствор. Убедитесь, что клей и затирка подходят для полов с подогревом.

4.2 Коврики

Ковры и подложка имеют более высокое значение TOG. Чем толще ковер и ниже значение TOG, тем выше сопротивление теплопередаче.
Будьте осторожны при выборе подложки, поскольку ее изоляционные свойства снижают тепловую мощность
пола. Убедитесь, что подложка подходит для полов с подогревом.
Если будет использоваться ковровый клей, убедитесь, что он подходит для температур до 40 ° C. Если используются поручни, убедитесь, что вы не прибиваете слишком глубоко и не прокалываете трубы!

4.3 Пластиковые / виниловые плитки

Пластиковые напольные плитки и покрытия обычно хорошо работают. Они имеют низкое значение TOG, а
обладают очень низким тепловым сопротивлением теплопередаче.
Важно уточнить у продавца или производителя, подходят ли покрытие и клеи для использования с полами с подогревом

4.4 Деревянные / деревянные полы

Деревянные напольные покрытия хорошо сочетаются с полом с подогревом. Важно следовать рекомендациям производителя пола относительно установки и первого запуска. Влажность деревянных полов обычно не должна превышать 10%.
При укладке стяжного пола перед укладкой покрытия стяжка должна быть полностью затвердела.После отверждения систему следует проработать примерно 2 недели с материалами в зоне перед установкой. Это снижает влажность в помещении и позволяет материалу акклиматизироваться.
Мы советуем получить конкретную информацию от предлагаемого поставщика или производителя покрытия, чтобы оценить пригодность покрытия для полов с подогревом.

Таблица 3 Керамическая плитка

R-значение 0,00 м 2 K / W (0,0TOG)

Максимальная температура пола

Занятые площади = 290C

Ванные комнаты = 330C

Периферийные зоны = 350C

Таблицы мощности в соответствии со спецификацией BS EN1264 UFh2 16 мм OD PE -Трубки RT в стяжке пола 75 мм (покрытие 50 мм над трубами).

Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

35

18
20
22
24

104 27
92 28
79 29
66 30
89 26
79 27
68 28
57 29
77 25
68 26
59 27
49 29
59 23
52 25
45 26
38 28
Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

40

18
20
22
24

135 28
123 30
110 31
98 32
116 28
105 29
95 30
84 31
101 27
92 28
83 29
73 31
77 25
70 26
63 28
55 29
Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

35

18
20
22
24

166 30
154 31
141 32
129 33
143 30
132 32
121 33
111 34
124 29
114 30
105 31
96 33
94 26
87 28
80 29
73 31

Таблица 4 Паркетный пол

Значение R 0.05m 2 K / W (0.5TOG)

Максимальная температура пола

Занимаемые площади = 290C

Ванные комнаты = 330C

Периферийные области = 350C

Таблицы производительности в соответствии со спецификацией BS EN1264 UFh2 Трубы PE-RT с внешним диаметром 16 мм и диаметром 75 мм стяжка пола (покрытие 50 мм над трубами).

Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

35

18
20
22
24

78 25
69 26
59 28
50 29
68 24
60 26
52 27
44 28
61 24
54 25
46 26
39 28

48 22
42 24
37 26
31 27

Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

35

18
20
22
24

101 27
92 28
88 29
73 31
89 26
81 27
73 29
64 30
79 25
72 27
64 28
58 29
63 24
57 25
51 27
45 28
Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

35

18
20
22
24

124 29
115 30
105 31
96 33
109 28
101 29
93 30
85 32
97 27
90 28
83 29
76 31
86 25
77 26
72 28
65 29

Таблица 5 Ковровое покрытие

R-значение 0.10 м 2 K / Вт (1.0TOG)

Максимальная температура пола

Занимаемые площади = 290C

Ванные комнаты = 330C

Периферийные области = 350C

Таблицы производительности в соответствии со спецификацией BS EN1264 UFh2 Трубы PE-RT с внешним диаметром 16 мм и диаметром 75 мм стяжка пола (покрытие 50 мм над трубами).

Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

35

18
20
22
24

62 24
55 25
48 27
40 28
55 23
49 25
42 26
35 27
50 23
44 24
38 26
32 27
41 22
41 22
31 25
26 27
Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

40

18
20
22
24

80 25
73 27
66 29
58 30
72 25
65 26
59 28
52 29
65 24
59 26
53 27
47 28
53 23
48 25
43 26
38 28
Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

45

18
20
22
24

99 27
91 28
84 30
77 31
88 26
82 27
75 29
69 30
80 25
74 27
68 28
62 29
65 24
60 28
55 27
50 29

Таблица 6 Ковролин с глубоким ворсом, деревянный пол

Значение R 0.15 м 2 K / W (1.5TOG)

Занятые площади = 290C

Ванные комнаты = 330C

Периферийные области = 350C

Таблицы производительности в соответствии со спецификацией BS EN1264 UFh2 Трубы PE-RT с наружным диаметром 16 мм в стяжке пола 75 мм (покрытие 50 мм над трубами).

Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

35

18
20
22
24

52 23
45 24
39 26
33 27
47 22
41 24
36 25
30 27
43 22
38 24
37 25
28 27
36 22
32 23
28 25
23 26
Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

40

18
20
22
24

67 24
61 26
55 27
48 29
61 24
56 25
50 27
44 28
56 23
51 25
47 26
40 28
47 22
43 24
38 26
34 27
Средняя температура воды

MWT
(° C)

Целевая комната
Температура
TR
(° C)
Расстояние между трубками
100 мм

Вт / м 2 (° C)

Расстояние между трубками
150 мм

Вт / м 2 (° C)

Расстояние между трубками
200 мм

Вт / м 2 (° C)

Расстояние между трубками
300 мм

Вт / м 2 (° C)

45

18
20
22
24

82 25
76 27
70 29
64 30
75 25
70 26
64 28
58 29
69 24
64 26
58 27
54 29
58 23
54 25
49 27
45 28

За дополнительной информацией обращайтесь сегодня в компанию «Теплые полы 1».

Как выбрать тепловой насос подходящего размера »HPAC Energy Center

Чтобы получить максимальную отдачу от теплового насоса, важно выбрать эффективную модель и правильно ее использовать. Это означает наличие теплового насоса подходящего размера для комнаты, которую вы хотите отапливать. Если он слишком мал, он может обойтись вам дороже из-за того, что вы будете слишком много работать, чтобы обеспечить достаточно тепла. Если он будет слишком большим, он будет выделять слишком много тепла, которое будет потрачено зря.

Какие размеры бывают тепловые насосы?

Размер теплового насоса не означает его буквальный физический размер (хотя в этом отделе есть варианты), а скорее мощность нагрева (или охлаждения), которая указывается в кВт, например.3,5кВт. Мощность тепловых насосов может варьироваться от 1,2 кВт до 10 кВт и выше. Чем прохладнее климат, в котором вы живете, тем больше теплопроизводительности или более высокой мощности вам потребуется. Но это только одна вещь, которая повлияет на выбор теплового насоса подходящего размера; Здесь очень много!

Какие факторы необходимо учитывать?

При выборе теплового насоса подходящего размера необходимо учитывать следующее:

  • Это в основном для отопления или охлаждения?

  • Какой у вас местный климат? (например.как правило, снег выпадает не реже одного раза в зиму или бывает жарко и влажно и т. д.)

  • Каковы средние сезонные высокие и низкие температуры?

  • Ваш дом старый и плохо изолирован, новый, хорошо изолирован и герметичен или что-то среднее между ними?

  • Вы хотите отапливать отдельные комнаты, несколько комнат или зону открытой планировки?

  • Насколько большие помещения вы хотите отапливать?

  • Насколько высоки потолки?

  • У вас одинарное или двойное остекление?

  • Сколько человек живет в вашем доме?

  • Помещение, которое вы хотите обогреть, получает много прямых солнечных лучей?

  • Есть ли в вашем доме солнечная энергия?

Расчет размера

Как вы можете понять из этого обширного списка выше, расчет точных требований к тепловому насосу — непростая задача и требует учета множества переменных.Всегда лучше поговорить со специалистом по отоплению, но если вы хотите разработать приблизительную идею, которая поможет вам подобрать подходящий тепловой насос, вы можете попробовать простой расчет с сайта consumer.org.nz.

Шаг 1. Рассчитайте объем помещения в кубических метрах.

Шаг 2 — Умножьте полученное значение на 44 Вт.

Шаг 2 — Добавьте 10% к большим оконным площадям и еще 10-20% для частичной изоляции или ее отсутствия.

Шаг 3 — Умножьте это число на 1,5 для жилых помещений, 1,2 для спальни и 0.8 для других областей.

Пример: частично изолированная гостиная, 4 м x 5 м x 2,4 м в высоту + 10% из-за отсутствия изоляции = 53 кубических метров объема помещения (округлено в большую сторону). Умножьте на 44 Вт = 2332, а теперь на 1,5, потому что это гостиная = 3498 Вт. Это означает, что вам понадобится тепловой насос мощностью 3,5 кВт.

Другие советы по обеспечению максимальной производительности теплового насоса

  • Проверьте этикетку с рейтингом энергопотребления — чем больше звездочек, тем выше энергоэффективность.

  • Спросите поставщика, хорошо ли он работает при низких температурах (некоторые тепловые насосы не справляются, когда на улице температура падает почти до нуля или ниже).

  • Убедитесь, что он установлен в правильном месте в комнате.

  • Выберите подходящий тип для обогреваемого помещения (например, одинарная или мульти сплит-система, высокая стена или пол и т. Д.).

  • Часто очищайте фильтры и отдавайте их в профессиональное обслуживание не реже одного раза в год.

Вы можете даже задаться вопросом, является ли тепловой насос правильным решением. Загрузите наше бесплатное руководство, которое поможет вам принять решение. Если вы хотите узнать больше о том, какой размер теплового насоса подходит для вашего дома, вы получите разумный совет, обратившись к нам.С 1986 года мы предоставляем широкий спектр решений для контроля микроклимата, помогая семьям чувствовать себя комфортно круглый год.

Passivhaus Institut

Требования к пассивному дому

Чтобы здание считалось пассивным домом, оно должно соответствовать следующим критериям (подробные критерии см. В разделе сертификации здания) :

1. Потребность в энергии для обогрева помещений не должна превышать 15 кВтч на квадратный метр чистой жилой площади (обработанной площади пола) в год или 10 Вт на квадратный метр пиковой потребности.

В климате, где необходимо активное охлаждение, требование Space Cooling Energy Demand примерно соответствует указанным выше требованиям к теплу с дополнительным допуском на осушение.

2. Возобновляемая энергия Спрос на возобновляемую первичную энергию (PER, в соответствии с методом PHI), общая энергия, которая будет использоваться для всех бытовых применений (отопление, горячее водоснабжение и бытовое электричество), не должна превышать 60 кВтч на квадратный метр обрабатываемой площади пола в год для пассивного дома Classic..

3. С точки зрения Герметичность , максимум 0,6 воздухообмена в час при давлении 50 Паскалей (ACH50), что подтверждено испытаниями под давлением на месте (как в герметизированном, так и в разгерметизированном состоянии).

4. Тепловой комфорт должен соблюдаться для всех жилых помещений как зимой, так и летом, не более 10% часов в данном году
25 ° С. Полный обзор общих требований к качеству (мягких критериев) см. В Passipedia.

Здания пассивного дома планируются, оптимизируются и проверяются с помощью пакета планирования пассивного дома (PHPP).

Все вышеперечисленные критерии достигаются за счет грамотного проектирования и реализации 5 принципов пассивного дома: конструкция без тепловых мостов, превосходные окна, вентиляция с рекуперацией тепла, качественная изоляция и герметичная конструкция.

Следующие пять основных принципов применяются при строительстве пассивных домов:

Теплоизоляция
Все непрозрачные строительные элементы внешней оболочки дома должны быть очень хорошо изолированы.Для большинства холодных климатических условий это означает, что коэффициент теплопередачи (значение U) составляет не более 0,15 Вт / (м²K), т. Е. Теряется максимум 0,15 Вт на градус перепада температур и на квадратный метр внешней поверхности.

Окна пассивного дома
Оконные рамы должны быть хорошо изолированы и оснащены низкоэмиссионным остеклением, заполненным аргоном или криптоном для предотвращения передачи тепла. Для наиболее прохладного климата это означает значение U 0,80 Вт / (м²K) или меньше, при этом значение g составляет около 50% (значение g = общий коэффициент пропускания солнечного света, доля солнечной энергии, доступная для комнаты).

Рекуперация тепла вентиляции
Эффективная вентиляция с рекуперацией тепла является ключевым фактором, обеспечивающим хорошее качество воздуха в помещении и экономию энергии. В пассивном доме не менее 75% тепла от отработанного воздуха снова передается свежему воздуху с помощью теплообменника.

Герметичность здания
Неконтролируемая утечка через зазоры должна составлять менее 0,6 от общего объема помещения в час во время испытания под давлением 50 Па (как под давлением, так и без давления).

Отсутствие мостов холода
Все кромки, углы, соединения и проходы должны быть спланированы и выполнены с большой осторожностью, чтобы можно было избежать тепловых мостов. Тепловые мосты, которых нельзя избежать, необходимо минимизировать, насколько это возможно.

Курсы экспертов по пассивному дому
Подробнее

Электронное обучение

iPHA Вебинар | Летний комфорт с пассивными мерами
2 июня 2021
подробнее

Часть 1: 10 — 12 сентября в Вуппертале И ОНЛАЙН
Часть 2: 14 и 15 сентября ОНЛАЙН

подробнее

Дни открытых дверей для пассивного дома
25 — 27 июня 2021 г. , по всему миру
5-7 ноября 2021 г., по всему миру
подробнее

Пассивный дом
База данных компонентов
Подробнее

подробнее

designPH
подробнее

PHPP 9 (2015)
Подробнее

Уплотнения для сертифицированных компонентов пассивного дома
подробнее

Классы пассивного дома,
Classic, Plus, Premium
Подробнее

ЭнерПХит —
Сертификат PHI для модернизации
Подробнее

Настенная табличка
для сертифицированных пассивных домов
подробнее

Последние пресс-релизы

Пассивные дома для разных климатических зон
подробнее

Модернизация с использованием компонентов пассивного дома —
Справочник планировщика EnerPHit
(на немецком языке)

Розничных магазинов пассивного дома уже нет
Обзор содержания
(на немецком языке)

PHI Литература

.