Найти мощность зная ток и напряжение: Расчет мощности по току и напряжению

Содержание

Как узнать ток зная мощность и напряжение

Особенности расчета мощности по току и напряжению

Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Формулы для расчета тока в трехфазной сети

Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.

Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Как найти мощность тока — формулы с примерами расчетов

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U 2 /R

Также можно выполнить расчет, зная ток и сопротивление:

P=I 2 *R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.

Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:

S=UI

Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.

P=UIcosФ

Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.

Q=UIsinФ

Или выразить из этого выражения:

И отсюда вычислить искомую величину.

Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:

А зная Uлинейное:

1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.

Тогда по аналогии чтобы найти P активную:

Определить реактивную мощность можно:

На этом теоретические сведения заканчиваются и мы перейдём к практике.

Пример расчёта полной мощности для электродвигателя

Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.

Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:

Тогда найти активную электрическую мощность можно по формуле:

P=Pна валу/n=160000/0,94=170213 Вт

Теперь можно найти S:

Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

И выделяется на каждом по:

Или через общее сопротивление, тогда:

Все расчёты совпали, значит найденные значения верны.

Заключение

Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Также читают:

{SOURCE}

Вы спрашивали: Как определить мощность формула?

Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.

Как определить мощность?

Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.

Как определить мощность тока формула?

P = A t = U ⋅ I ⋅ t t = U ⋅ I . Таким образом: Мощность электрического тока равна произведению напряжения на силу тока: P = U ⋅ I . Из этой формулы можно определить и другие физические величины.

Как определить мощность на участке цепи?

Мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участках: P=P1+P2+… +Pn+… 6.

Как рассчитать мощность если известно напряжение и сила тока?

МОЩНОСТЬ = СИЛА ТОКА * НАПРЯЖЕНИЕ, то есть ВАТТЫ = АМПЕРЫ * ВОЛЬТЫ.

Как рассчитать мощность ватт?

Мощность равна произведению силы тока на напряжение, то есть 1 Вт = 1 А х 1 В. Формула: Р = I х V. Например, если сила тока равна 3 А, а напряжение равно 110 В, то мощность равна: 3 х 110 = 330 Вт. (Формула: Р = I х V, где Р – мощность).

Как определить электрическую мощность?

Для измерения мощности электрического тока принята единица, называемая ватт (Вт). Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В. Для вычисления мощности постоянного тока в ваттах нужно силу тока в амперах умножить на напряжение в вольтах.

Какую формулу удобнее всего использовать для вычисления мощности тока на участке цепи на котором проводники соединены последовательно?

Формулу Q = I2Rt удобно применять, когда сила тока в проводниках одинакова, то есть когда они соединены последовательно (рис. 58.1).

Как определить мощность двигателя формула?

Мощность (N) определяют по формуле: N = A t . Единицей измерения мощности в системе СИ является Ватт (русское обозначение — Вт, международное — W). Для определения мощности двигателя автомобилей и других транспортных средств используют исторически более древнюю единицу измерения — лошадиная сила (л.

Как найти мощность зная силу тока и сопротивление?

P = U*I. Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R.

Как определить мощность насоса?

Q=P, где Q — расход теплоносителя через котел, л/мин; Р — мощность котла, кВт. Например, для котла мощностью 20 кВт расход воды составляет примерно 20 л/мин.

Как найти силу тока через мощность?

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U. Данное выражение вытекает из формулы для расчета мощности: P = IU.

Какие меры принимаются Чтобы увеличить коэффициент мощности?

Увеличения коэффициента мощности (уменьшения угла φ — сдвига фаз тока и напряжения) можно добиться следующими способами:

  • заменой мало загруженных двигателей двигателями меньшей мощности,
  • понижением напряжения
  • выключением двигателей и трансформаторов, работающих на холостом ходу,

Как найти эдс если есть напряжение?

I=U/R, где U – напряжение, а в рассмотренном примере — ЭДС.

Чем отличается мощность и сила тока?

Таким образом, сила тока это, потребление тока нагрузкой или необходимое количества тока, для получения выработки мощности нагрузки. Мощность тока, это работа нагрузки за единицу времени.

Как рассчитать мощность электрического тока?

Особенности расчета мощности по току и напряжению

Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.

Что такое мощность и как ее измерить?

Мощность – это мера того, сколько работы можно выполнить за определенный промежуток времени. Работа обычно определяется как поднятие груза против силы тяжести. Чем больше масса, и/или чем выше она поднимается, тем больше работы должно быть выполнено. Мощность – это мера того, насколько быстро выполняется стандартный объем работы.

Для американских автомобилей мощность двигателя оценивается в единицах, называемых «лошадиные силы», которые изначально были придуманы производителями паровых двигателей для количественной оценки работоспособности своих машин с точки зрения самого распространенного в их время источника энергии: лошадей. Одна лошадиная сила определяется в британских единицах как 550 фут·фунтов работы в секунду. Мощность двигателя автомобиля не будет указывать на высоту холма, на которую он может подняться, или какую массу он может тащить, но она указывает, насколько быстро он может подняться на определенный холм или протащить определенную массу.

Мощность механического двигателя зависит как от скорости двигателя, так и от его крутящего момента на выходном валу. Скорость выходного вала двигателя измеряется в оборотах в минуту или об/мин (RPM). Крутящий момент – это величина вращательной силы, создаваемой двигателем, и обычно измеряется в ньютон-метрах (или в фунт-футах). Ни скорость, ни крутящий момент сами по себе не являются мерой мощности двигателя.

Дизельный тракторный двигатель мощностью 100 лошадиных сил вращает вал относительно медленно, но обеспечивает большой крутящий момент. Двигатель мотоцикла мощностью 100 лошадиных сил вращает вал очень быстро, но обеспечивает относительно небольшой крутящий момент. Оба будут производить 100 лошадиных сил, но с разной скоростью и разным крутящим моментом. Уравнение для мощности на валу простое:

\[\text{Лошадиная сила} = \frac{2 \pi ST}{33 000}\]

где

  • S – скорость вращения вала в об/мин;
  • T – крутящий момент в фунт-футах.

Обратите внимание на то, что в правой части уравнения есть только две переменных, S и T. Все остальные члены в этой части постоянны: 2, π и 33 000 – константы (они не меняют своего значения). Мощность в лошадиных силах меняется только при изменении скорости и крутящего момента, больше ничего. Мы можем переписать уравнение, чтобы показать эту взаимосвязь:

Лошадинная сила ∝ ST

∝ – означает «пропорциональна»

Поскольку единица «лошадиных сил» не совпадает в точности со скоростью в оборотах в минуту, умноженной на крутящий момент в фунт-футах, мы не можем сказать, что мощность равна ST. Однако они пропорциональны друг другу. По мере изменения математического произведения ST значение мощности изменится в той же пропорции.

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Принцип действия

Когда заряд движется по проводнику, то электромагнитное полевыполняет над ним работу. Данная величина характеризуется напряжением.

Заряды направляются в сторону снижения потенциалов, однако для поддержания указанного процесса необходим некоторый источник энергии. Напряжение по своему показателю соответствует работе поля, которое необходимо для перемещения единичного заряда Кулона на рассматриваемом участке. При перемещении заряда возникают явления, при которых электроэнергия может приходить в другие виды энергии.

Для доставки электроэнергии от электростанции до конечного потребителя необходимо выполнить определенную работу. Для создания требуемого напряжения, то есть возможности выполнения работы электротока по перемещению заряда, применяется трансформатор. Данное устройство производит увеличение показателя напряжения.

Полученный ток под высоким напряжением, иногда достилающим 10 тысяч Вольт, движется по высоковольтным проводам. При достижении места назначения, он попадает на трансформатор, который уменьшает напряжение до промышленных или бытовых показателей. Далее ток направляется на производства, в квартиры и дома.

Единицы измерения мощности тока

Основной единицей измерения мощности тока (как и мощности вообще) в системе СИ является: [P]=Вт=Дж/с.

В СГС: [P]=эрг/с.

1 Вт=107 эрг/( с).

Выражение (4) применяют в системе СИ для того, чтобы дать определение единицы напряжения. Так, единицей напряжения (U) является вольт (В), который равен: 1 В= (1 Вт)/(1 А).

Вольтом называют электрическое напряжение, которое порождает в электроцепи постоянный ток силы 1 А при мощности 1 Вт.

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

Видео о законах электротехники

Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Потеря энергии в переменной цепи обусловлена наличием реактивного сопротивления, которое подразделяют на индуктивное и емкостное. В процессе работы оборудования часть энергии передается формируемым электрическим или магнитным полям.

Это приводит к уменьшению полезной работы, потере электроэнергии и превышению силовых нагрузок устройств.

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Подбор номинала автоматического выключателя

Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.

При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.

Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.

У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.

Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.

Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.

Преобразование тока

Поскольку электрическая мощность выражается произведением напряжения на силу тока, то из закона сохранения энергии следует: если при передаче одной и той же мощности напряжение повысить, сила тока пропорционально уменьшится, и наоборот.

Преобразованием напряжения переменного тока занимается специальное устройство — трансформатор. В самом простом виде он состоит из двух обмоток, надетых на магнитопровод.

Магнитное поле, возбуждаемое в первичной обмотке, наводит ЭДС во вторичной (закон электромагнитной индукции) и величина ее соотносится с напряжением на выводах первичной обмотки так же, как число витков в обмотках.

Если, к примеру, первичная обмотка содержит 300 витков, и на нее подается переменное напряжение с действующим значением 220 В, то в цепи вторичной обмотки со 150-ю витками возникнет ЭДС в 110 В, то есть в 2 раза меньшая. Поскольку мощность останется практически постоянной (потерями на нагрев и перемагничивание сердечника пренебрегаем), то сила тока в цепи вторичной катушки окажется, наоборот, вдвое выше тока в первичной катушке.

Потому вторичные обмотки понижающих трансформаторов наматывают проводом большего сечения, чем первичные. С повышающим трансформатором все происходит с точностью до наоборот. Снижение силы тока за счет увеличения напряжения применяется при передаче электроэнергии на значительные расстояния.

Сгенерированный электростанцией ток напряжением 10-20 кВ преобразуют находящейся тут же подстанцией, поднимая напряжение до сотен кВ.

В населенных пунктах напряжение снова понижают местными трансформаторными подстанциями, уже до 220 В, и в таком виде электроэнергия поступает в распределительную сеть.

Наибольшей величины этот параметр достигает на ЛЭП «Экибастуз — Кокчетав» — 1,15 МВ (мегавольт). При этом многократно падает сила тока, а поскольку работа тока в проводнике, состоящая в его нагреве, выражается формулой W = I2 * R (R — сопротивление проводника), то и потери значительно сокращаются.

Как работает схема трехфазного электроснабжения

Принцип работы трехфазной схемы электроснабжения заключается в одновременном задействовании четырех питающих кабелей, один из которых нулевой. Ток одинаковой частоты вырабатывается одним генератором и сдвинут по отношению друг к другу по времени на фазовый угол равный 120 градусам.

Как определить максимальную мощность тока

Полезная мощность обладает наибольшим значением в случае, когда нагрузочное сопротивление — R равняется сопротивлению внутри источника — r.

R = r.

Pmax=E2 /4r

Где: E — электродвижущая сила (ЭДС) источника.

Можно рассчитать максимальную токовую нагрузку, которую будет использовать электрическое устройство, исходя из номинальной нагрузки и входного напряжения переменного тока. Номинальная энергонагрузка будет указана в технических характеристиках устройства, руководстве или на маркировке.

Так, например, если номинальное энергопотребление электрического устройства (P) составляет 12 Вт, максимальное потребление тока при различных напряжениях U= 120 В переменной сети будет:

I = 12/120 = 0,100 А или 100 мА

В переменной сети 220 В:

I = 12 / 220= 0,055A или 55 мА

Мощность электрического тока

Для того, чтобы это показать что к чему, мы возьмем две лампы на 12 Вольт, но разной мощности. На блоке питания выставляю также 12 Вольт и собираю все это дело по схеме, которая мелькала в начале статьи

Мой блок питания может выдать в нагрузку 150 Ватт, не парясь. Беру лампочку от мопеда и цепляю ее к блоку питания

Смотрим потребление тока. 0,71 Ампер

Высчитываем сопротивление раскаленной нити лампочки из закона Ома I=U/R, отсюда R=U/I=12/0,71=16,9 Ом.

Беру галогенную лампу от фары авто и также цепляю ее к блоку питания

Смотрим потребление. 4,42 Ампера

Аналогично высчитываем сопротивление нити лампы. R=U/I=12/4,42=2,7 Ом.

А теперь давайте посчитаем, какая лампочка больше всех Ватт “отбирает”  у источника питания. Вспоминаем школьную формулу P=UI. Итак, для маленькой лампочки мощность составит P=12×0,71=8,52 Ватта. А для большой лампочки мощность  будет Р=12х4,42=53 Ватта. Ого! У нас получилось, что лампочка, которая обладала меньшим сопротивлением, на самом деле очень даже прожорливая.

Итак, если кто не помнит, что такое мощность, могу напомнить. Мощность – это отношение какой-то полезной работы к времени, в течение которого эта работа совершалась. Например, надо вскопать яму определенных размеров. Вы с лопатой, а ваш друг – на экскаваторе:

Кто быстрее справится  с задачей за  одинаковый промежуток времени? Разумеется экскаватор. В этом случае, можно сказать, что его мощность намного больше, чем мощность человека с лопатой.

А теперь представьте, что нам надо полностью под ноль сточить эту железяку:

Подумайте вот над таким вопросом… У нас есть в запасе 5 мин и нам надо сточить железяку по-максимому. В каком случае железяка сточится быстрее всего: если прижимать ее к абразивному кругу со всей дури, прижимать слегка, либо прижимать в полсилы? Не забывайте, что у нас абразивный круг подцеплен к валу, который крутит поток воды в трубе. И да, труба у нас небольшого диаметра.

Кто ответил, что если прижимать в полсилы, то оказался прав. Железяка в этом случае сточится быстрее.  Если прижимать ее со всей дури, то можно вообще остановить круг. Еще раз, что у нас такое мощность? Полезная работа, совершаемая за какой-то промежуток времени. А в нашем опыте полезная работа это и есть стачивание железяки по максималке. Также не забывайте и  тот момент, что если мы будем слегка прижимать железяку, то мы будем ее стачивать пол дня. Поэтому, золотая середина  – это давить железяку в полсилы.

Ну вот мы и снова переходим к электронике 😉

Поток воды – сила тока, давление в трубе – напряжение, давление железяки на круг – сопротивление.  И что в результате мы получили? А то, что лампочка с меньшим сопротивлением обладает большей мощностью, чем лампочка с большим сопротивлением. Не трудно догадаться, если просто посмотреть на фото, но вживую эффект лучше

Но обязательно ли то, что чем меньше сопротивление, тем больше мощности выделяется на нагрузке? Конечно же нет. Во всем нужен расчет, как  и в прошлом опыте, где мы стачивали железяку за определенное время.

И еще один фактор, конечно, тоже надо учитывать. Это давление в трубе. Прикиньте, точим-точим мы железяку, и вдруг давление в трубе стало повышаться. Может быть переполнилась башня, или кто-то открыл краник на полную катушку. Что станет с наждаком? Его обороты ускорятся,  так как сила потока воды в трубе увеличится,  а следовательно, мы еще быстрее сточим нашу железку.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Задачи

Решение:

Запишем выражение для мощности:

И для сопротивления:

Теперь выразим из этих двух формул удельное сопротивление проводника:

Сравнив это значения с табличными значениями удельного сопротивления, узнаем, что проводник изготовлен из олова.

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение
. Как мы знаем, ток через конденсатор опережает по фазе напряжение на
:

Для мгновенной мощности получаем:

График зависимости мгновенной мощности от времени.

 Мощность переменного тока через конденсатор.

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний.

Напряжение на конденсаторе и сила тока через него.

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть,
. Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть,
. Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть,
. Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть,
. Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

Прибор для измерения

Мощность тока измеряют ваттметром, существует три разновидности таких приборов:

  1. низкочастотные;
  2. радиочастотные;
  3. оптические.

Низкочастотные применяются для измерения W постоянного тока и переменного промышленной частоты (50 Гц), они делятся на две разновидности:

  • однофазные;
  • трехфазные.

Для измерения реактивной мощности применяют другой прибор — варметр.

По принципу действия ваттметры делятся на:

  • аналоговые;
  • цифровые.

Почти все цифровые ваттметры включают в себя варметр, то есть могут измерять W активную и реактивную. Аналоговые приборы (Д8002, Ц301, Д5071 и др.) определяют мощность тока посредством двух катушек: одна подключена последовательно с нагрузкой, другая — параллельно.

Протекающий в катушках ток инициирует возникновение магнитных полей. А те, взаимодействуя друг с другом, создают вращающий момент, воздействующий на стрелку.

Цифровой ваттметр

Величина момента зависит от:

  • силы тока;
  • напряжения;
  • cosϕ (при изменении активной мощности) или sinϕ (реактивной).

Цифровые ваттметры (MI 2010А, ЩВ02, СР3010 и пр.) оснащены парой датчиков включенных:

  • по току — последовательно с нагрузкой;
  • по напряжению — параллельно.

Контроллер по показаниям с датчиков делает вычисления и выводит их на табло.

Похожие темы:

Обычно электрический токсравнивают с течением жид­кости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.

В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В усло­виях свободного падения эта энергия растрачивается беспо­лезно для человека. Если же направить падающий поток во­ды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.

Работа, производимая потоком воды в течение определен­ного промежутка времени, например, в течение одной секун­ды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.

Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше рабо­ты, чем больше разность потенциалов и чем большее количе­ство электричества ежесекундно проходит через поперечное сечение цепи.

Мощность электрического токаэто количество работы, совершаемой за одну секунду времени, или скорость совершения работы.

Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (на­пряжению) и силе тока в цепи.

Для измерения мощности электрического тока принята еди­ница, называемая ватт(Вт).

Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.

Для вычисления мощности постоянного тока в ваттах нуж­но силу тока в амперах умножить на напряжение в вольтах.

Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы

P = I*U. (1)

Воспользуемся этой формулой для решения числового при­мера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА

Определим мощность электрического тока, поглощаемую нитью лампы:

Р= 0,075 А*4 В = 0,3 Вт.

Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.

В этом случае мы воспользуемся знакомым нам соотноше­нием из закона Ома:

U=IR

и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.

Тогда формула (1) примет вид:

P = I*U =I*IR

или

Р = I2*R. (2)

Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:

P= I2*R = (0,5)2*5 =0,25*5 = 1,25 Вт.

Наконец, мощность электрического тока может быть вычислена и в том слу­чае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:

Р = I*U=U2/R (3)

Например, при 2,5 В падения напряжения на реостате сопро­тивлением в 5 Ом поглощаемая реостатом мощность будет равна:

Р = U2/R=(2,5)2/5=1,25 Вт

Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.

Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.

P = A/t

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Теги

МощностьОбучениеРассеиваемая мощностьСхемотехникаЭлектрический токЭлектрическое напряжениеЭлектричество

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Тест по теме

Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 15.

Не понравилось? — Напиши в комментариях, чего не хватает.

Похожие материалы:

Содержание:

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие.

Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это различные понятия, хотя и находящиеся в определенной зависимости между собой.

Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с).

Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Мощность некоторых электрических приборов

При оснащении современной квартиры часто приходится решать задачи по согласованию нагрузок в отдельных линиях. Необходимо правильно встраивать защитный автомат, чтобы предотвратить аварийные ситуации. Начинают с уточнения параметров проводки. Далее проверяют группы подсоединенной бытовой техники. Типичные параметры потребляемой мощности (Вт):

  • персональный компьютер – 170-1 250;
  • ноутбук – 40-280;
  • ЖКИ телевизор – 120-265;
  • утюг – 450-1850;
  • кондиционер – 1 200 – 2 500.

Какой автомат подойдет, определяют с учетом всех значимых факторов. Особое внимание уделяют нагрузкам с высокими значениями реактивной составляющей мощности.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U 2 /R

Также можно выполнить расчет, зная ток и сопротивление:

P=I 2 *R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Пример расчёта полной мощности для электродвигателя

Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.

Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:

Тогда найти активную электрическую мощность можно по формуле:

P=Pна валу/n=160000/0,94=170213 Вт

Теперь можно найти S:

Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

И выделяется на каждом по:

Или через общее сопротивление, тогда:

Все расчёты совпали, значит найденные значения верны.

Мощность тока?. Формула мощности ? электрического тока. Как найти мощность?

Благосостояние и комфорт современного общества зависит всецело от высокотехнологичных гаджетов. Люди уже не представляют жизни без «умных» устройств. Микроэлектроника поглотила наш быт дома и на работе. Функционирует оборудование исключительно от электричества. Такие устройства обладают рядом преимуществ, как и недостатков — чувствительность к перепадам эл. напряжения.

Если в офисе компании эту проблему способен устранить штат квалифицированных сотрудников, то дома часто приходится рассчитывать исключительно на собственные силы. Покупая новое оборудование в дом, необходимо учитывать технические характеристики устройства. Производитель указывает такую информацию для покупателей на шильдике, расположенном на задней стенке гаджета.

Формула мощности представляет собой произведение силы тока на напряжение. Если знать этот параметр, то для пользователя складывается четкое представление, сколько электричество девайс будет потреблять и не вызовет ли проблем с электроснабжением.

Что такое мощность в электричестве: просто о сложном

Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.

Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.

Мощность электрического тока

Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.

Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.

Наука подразделяет электрическую мощность на:

  • активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
  • реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.

Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.

Работа электрического тока

Проходя по цепи, ток совершает работу. Как например, водный поток направить течь, на лопасти генератора, то пон будет совершать работу, вращая лопасти. Так же и ток совершает работу, двигаясь по проводнику. И эта работа тем выше, чем больше величина сила тока и напряжения. Работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока, напряжению и времени действия тока. Работа электрического тока обозначается латинским символом A. Так как, произведение I×U есть мощность, то формулу работы электрического тока можно записать: A = P×t

Будет интересно➡ Что такое статическое электричество и как от него избавиться

Единицей измерения работы электрического тока, является ватт в секундах или в джоулях. Поэтому, если мы хотим вычислить, какую работу осуществил ток, идя по цепи в течение временного интервала, мы должны умножить мощность на время Рассмотрим практический пример, через реостат с сопротивлением 5 Ом идет ток силой 0,5 А. Нужно вычислить, какую работу совершит ток в течение четырех часов. Работа в течение одной секунды будет: P=I2R = 0,52×5= 0,25×5 =1,25 Вт,

Тогда за 4 часа t=14400 секунд. Следовательно: А = Р×t= 1,25×14 400= 18 000 вт-сек. Ватт-секунда или один джоуль считаетсяя слишком малой велечиной для измерения работы. Поэтому на практике применяют единицу, называемую ватт-час (втч). Один ватт-час это эквивалентно 3 600 Дж. В электротехнике используются и еще большие единицы, гектоваттчас (гвтч) и киловаттчас (квтч): 1 квтч =10 гвтч =1000 втч = 3600000 Дж, 1 гвтч =100 втч = 360 000 Дж, 1 втч = 3 600 Дж.

Мощность электрического тока

Как рассчитать сопротивление и мощность

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом. На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой Р=24х0,5=12 Вт.

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит. Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

Интересно почитать: все о законе Ома.

Как рассчитать электрическую мощность в быту

Теоретическая электротехника рассматривает показатели как мгновенные величины, которые зафиксированы в некоторый временной отрезок. Если мгновенная мощность постоянной сети остается неизменной в любой точке цепи и во всех интервалах времени, то для переменной этот показатель будет всегда неодинаковым.

Отсюда получим формулы для расчета мощности (P):

В интернете сейчас есть онлайн-калькуляторы, которые сами посчитают и выдадут результат. Пользователю нужно лишь подставить значения характеристик, которые находятся на шильдике устройства.

Как измерить электрическую мощность дома

Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрофикации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.

Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.

Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах.

Ваттметр

Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.

Как узнать напряжение, зная силу тока

Для расчета напряжения используют формулы:

U=P/I – постоянный ток;

U=P/(I*cos(фи)) — однофазная сеть;

U=P/(1,73*I*cos(фи)) — трехфазная сеть.

Из выражения видно, что напряжение прямо пропорционально напряжению и обратно пропорционально силе тока.

Как рассчитать мощность, зная силу тока и напряжение

Силовую характеристику электроустановок рассчитывают по формуле:

P=U*I – постоянный ток;

P=U*I*cos(фи) – переменный ток однофазной сети.

P=1,73*U*I*cos(фи) — трехфазная сеть.

В статье приведены упрощенные формулы расчета активной мощности электросети, которые дают приблизительные результаты.

Для получения точных результатов, необходимо учитывать также реактивное и обычное сопротивление, а также потери.

Особенности определения мощности сети

Вообще электрическая сеть сконструирована так, чтобы для ее эксплуатации не требовались специальные знания. Достаточно соблюдать некоторые правила, главной из которых — не допустить перегрузки.

Вам это будет интересно Что такое фаза и нуль в электричестве

Важно! Несоблюдение правил пользования электросетью может привести к отказу в работе и даже к пожару.

Важно отметить, что технические характеристики розетки и бытового прибора различаются между собой:

  • В розетках максимально допустимый переменный ток измеряется в Амперах: в старом жилом фонде России он равен 6 А, в Европе — 10 или 16 А;
  • Мощность подключаемых приборов измеряется в Ваттах.

Информация на электроприборе может быть обозначена по-разному
Как высчитать мощность электричества? Для вычисления потребуется формула:

Р = U*I, где:

P — мощность,

U — напряжение в Вольтах,

I — сила тока в Амперах.

Напряжение исправной розетки составляет 220-230 Вольт, силу тока можно измерить мультиметром.

Для определения силы тока в розетке стоит использовать мультиметр

Интересная инфа по теме

Трехфазную схему электроснабжения используют в производстве. Суммарный вольтаж такой сети равен 380 В. Также такую проводку устанавливают на многоэтажные дома, а затем раздают по квартирам. Но есть один нюанс, который влияет на конечное напряжение в сети — соединение жилы под напряжение в результате дает 220 В. Трехфазная в отличие от однофазной не дает перекосы при подключении силового оборудования, так как нагрузка распределяется в щитке. Но для подведения трехфазной сети к частному дому требуется специальное разрешение, поэтому широко распространена схема с двумя жилами, одна их которых нулевая.

Мощность тока

Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Будет интересно➡ Что такое короткое замыкание

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».

Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

Расчетные формулы мощности тока

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.

Мгновенная мощность

В отличие от цепей постоянного тока, где мощность в течение определенного промежутка времени остается неизменной, в цепях переменного тока дело обстоит иначе. Так как ток и напряжение постоянно меняют своё значение, то и мощность соответственно будет меняться в каждый момент времени. Такая мощность называется мгновенной.

Мгновенной мощностью p(t) называют произведение приложенного к цепи мгновенного напряжения u(t) на мгновенное значение тока i(t) в этой цепи. 

График мгновенной мощности представлен на рисунке ниже

 

Мощность обозначена заштрихованной областью. Знак мощности зависит от сдвига фаз между током и напряжением. В данном случае в цепи присутствуют только активные сопротивления, которые не создают сдвига фаз, поэтому мощность имеет только положительные значения.

Рассмотрим другой график

На данном графике имеются области отрицательных значений мгновенной мощности. Такой график может соответствовать цепи, в которой присутствуют конденсатор или катушка, причем положительные участки — это мощность, которая пошла в цепь и рассеялась на сопротивлении, либо запаслась в качестве энергии полей конденсаторов или катушек, а отрицательные участки это мощность, которая была возвращена обратно источнику.

Активная мощность

Чтобы понять какое количество энергии потребляет источник, целесообразнее взять среднюю мощность за период. Для этого вернемся к первому графику.

На графике мгновенной мощности выделяют прямоугольник со сторонами T и Pm/2. Часть графика, которая находится выше линии Pm/2 точно укладывается в незаштрихованную часть прямоугольника. Таким образом, с помощью линии Pm/2 мы можем определить среднюю мощность за период, которая называется активной мощностью. Активная мощность – это полезная мощность, которая идет на преобразование в другие виды энергии. 

В нашем случае сдвиг фаз равен нулю, поэтому коэффициент мощности равен единице, но в случаях с реактивными элементами нужно этот момент учитывать.

Активная мощность измеряется в ваттах – Вт.

cosφ – коэффициент мощности, который показывает отношение активной мощности к полной мощности. 

 

Реактивная мощность

Реактивная мощность – это энергия, которая периодически циркулирует между источником и приемником. Реактивная мощность возникает потому, что конденсатор и катушка способны накапливать энергию, а затем снова отдавать её в сеть. На практике от реактивной мощности зачастую стараются избавиться.

Реактивная мощность измеряется в вольт амперах реактивных – ВАр.

Полная мощность

Полная мощность — это максимальное значение активной мощности.

 

Полная мощность измеряется в вольт-амперах — ВА.

Для наглядного представления существует треугольник мощностей, в котором гипотенузой является полная мощность, а катетами – активная и реактивная составляющие.

 

Читайте также — Последовательная RL-цепь 

  • Просмотров: 23398
  • Расчет мощности электических ТЭНов

    Оптимальным источником энергии, для нагрева испарительной емкости, является квартирная электрическая сеть, напряжением 220 В. Можно просто использовать для этих целей бытовую электроплиту. Но, при нагреве на электроплите, много энергии расходуется на бесполезный нагрев самой плиты, а также излучается во внешнюю среду, от нагревательного элемента, не совершая при этом, полезной работы. Эта, понапрасну затрачиваемая энергия, может достигать приличных значений — до 30-50 %, от общей затраченной мощности на нагрев куба. Поэтому использование обычных электроплит, является нерациональным с точки зрения экономии. Ведь за каждый лишний киловатт энергии, приходится платить. Наиболее эффективно использовать врезанные в испарительную емкость эл. ТЭНы. При таком исполнении, вся энергия расходуется только на нагрев куба + излучение от его стенок вовне. Стенки куба, для уменьшения тепловых потерь, необходимо теплоизолировать. Ведь затраты на излучение тепла, от стенок самого куба могут так же, составлять до 20 и более процентов, от всей затрачиваемой мощности, в зависимости от его размеров. Для использования в качестве нагревательных элементов врезанных в емкость, вполне подходят ТЭНы, от бытовых эл.чайников, или другие подходящие по размерам. Мощность таких ТЭНов, бывает разная. Наиболее часто применяются ТЭНы с выбитой на корпусе мощностью 1.0 кВт и 1.25 кВт. Но есть и другие.

    Поэтому мощность 1-го ТЭНа, может не соответствовать по параметрам, для нагрева куба и быть больше или меньше. В таких случаях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, соединенных последовательно или последовательно-параллельно. Коммутируя различные комбинации соединения ТЭНов, переключателем от бытовой эл. плиты, можно получать различную мощность. Например имея восемь врезанных ТЭНов, по 1.25 кВт каждый, в зависимости от комбинации включения, можно получить следующую мощность.

    1. 625 Вт
    2. 933 Вт
    3. 1,25 кВт
    4. 1,6 кВт
    5. 1,8 кВт
    6. 2,5 кВт

    Такого диапазона вполне хватит для регулировки и поддержания нужной температуры при перегонке и ректификации. Но можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

    Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

    Рассчитать можно по следующей формуле.

    Мы знаем напряжение, действующее в сети, это 220В. Далее мы так же знаем мощность ТЭН, выбитую на его поверхности допустим это 1,25 кВт, значит, нам нужно узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

    Сила тока = мощность, деленная на напряжение в сети.

    Записывается она так: I = P / U.

    Где I — сила тока в амперах.

    P — мощность в ваттах.

    U — напряжение в вольтах.

    При подсчете нужно мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.

    1,25 кВт = 1250Вт. Подставляем известные значения в эту формулу и получаем силу тока.

    I = 1250Вт / 220 = 5,681 А

    Далее зная силу тока подсчитываем сопротивление ТЭНа, по следующей формуле.

    R = U / I, где

    R — сопротивление в Омах

    U — напряжение в вольтах

    I — сила тока в амперах

    Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

    R = 220 / 5.681 = 38,725 Ом.

    Далее подсчитываем общее сопротивление всех последовательно соединенных ТЭНов. Общее сопротивление равно сумме всех сопротивлений, соединенных последовательно ТЭНов

    Rобщ = R1+ R2 + R3 и т.д.

    Таким образом, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Теперь нетрудно подсчитать мощность выделяемую этими двумя ТЭНами.

    P = U2 / R где,

    P — мощность в ваттах

    U2— напряжение в квадрате, в вольтах

    R — общее сопротивление всех посл. соед. ТЭНов

    P = 624,919 Вт, округляем до значения 625 Вт.

    Далее при необходимости можно подсчитать мощность любого количества последовательно соединенных ТЭНов, или ориентироваться на таблицу.

    Таблица 1.1. Значения для последовательного соединения ТЭНов при напряжении 220В.

    Кол-во ТЭНМощность (Вт)Сопротивление (Ом)Сила тока (А)
    1125038,85,7
    262577,52,8
    3416116,21,9
    4312154,91,4
    5250193,61,1
    6208232,40,9
    71782710,8
    8156309,80,7

    Таблица 1.2. Значения для параллельного соединения ТЭНов при напряжении 220В.

    Кол-во ТЭНМощность (Вт)Сопротивление (Ом)Сила тока (А)
    2250019,411,4
    3375012,917
    450009,722,7
    562507,728,4
    675006,534
    787505,539,8
    8100004,845,5

    Еще один немаловажный плюс, который дает последовательное соединение ТЭНов, это уменьшенный в несколько раз протекающий через них ток, и соответственно малый нагрев корпуса нагревательного элемента, тем самым не допускается пригорание браги во время перегонки и не привносит неприятного дополнительного вкуса и запаха в конечный продукт. Так же ресурс работы ТЭНов, при таком включении, будет практически вечным.

    Расчеты выполнены для ТЭНов, мощностью 1.25 кВт. Для ТЭНов другой мощности, общую мощность нужно пересчитать согласно закона Ома, пользуясь выше приведенными формулами.

    Электроэнергия — Электроэнергия — National 5 Physics Revision

    Электроэнергия легко перемещается с места на место с помощью проводов или кабелей. Однако электрическая энергия должна быть преобразована в другие формы энергии, прежде чем мы сможем ее использовать.

    Скорость передачи (или изменения) энергии называется мощностью — сколько энергии используется в секунду.

    \ [Power = \ frac {{Energy}} {{time}} \]

    \ [P = \ frac {E} {t} \]

    Обозначение мощности : \ (P \) , измеряется в Вт (\ (Вт \)).

    Обозначение энергии — \ (E \), оно измеряется в Джоулях (\ (Дж \)).

    Символ для времени — \ (t \), он измеряется в секундах (\ (s \)).

    Электрическая энергия, передаваемая каждую секунду, определяется умножением напряжения на ток.

    \ [Мощность = напряжение \ умножить на ток \]

    \ [P = V \ умножить на I \]

    Обозначение мощности — \ (P \), оно измеряется в Вт (\ (Вт \)).

    Обозначение для напряжения — \ (В \), оно измеряется в Вольтах (\ (В \)).

    Обозначение тока — \ (I \), оно измеряется в Ампер (\ (A \)).

    Иногда мы не знаем ток или напряжение, поэтому \ (P = IV \) нельзя использовать для расчета мощности. 2}}} {R} \]

    Обозначение мощности — \ (P \), оно измеряется в Вт. (\ (W \)).2} R \]

    Обозначение для мощности — \ (P \), оно измеряется в Вт (\ (Вт \)).

    Обозначение для тока — \ (I \), оно измеряется в Ампер (\ (A \)).

    Обозначение сопротивления — \ (R \), оно измеряется в Ом (\ (Ом \)).

    Мощность и энергия | Электрические схемы

    Начнем с расчета эквивалентного сопротивления резисторов. Мы знаем общую мощность и общее напряжение, поэтому мы используем их, чтобы найти полное сопротивление.{2}} {\ text {9,8}} \\
    & = \ текст {3,67} \ текст {Ω}
    \ end {выровнять *}

    Теперь мы можем найти неизвестное сопротивление, сначала вычислив эквивалентное параллельное сопротивление:

    \ begin {align *}
    \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} \\
    & = \ frac {1} {1} + \ frac {1} {5} + \ frac {1} {3} \\
    & = \ frac {23} {15} \\
    R_ {p} & = \ text {0,65} \ text {Ω}
    \ end {выровнять *}
    \ begin {align *}
    R_ {s} & = R_ {4} + R_ {p} \\
    R_ {4} & = R_ {s} — R_ {p} \\
    & = \ text {3,67} — \ text {0,65} \\
    & = \ текст {3,02} \ текст {Ω}
    \ end {выровнять *}

    Теперь мы можем рассчитать общий ток:

    \ begin {align *}
    I & = \ frac {V} {R} \\
    & = \ frac {6} {\ text {3,67}} \\
    & = \ текст {1,63} \ текст {А}
    \ end {выровнять *}

    Это ток в последовательном резисторе и во всем параллельном соединении.{2} (\ text {3,02}) \\
    & = \ текст {0,89} \ текст {W}
    \ end {выровнять *}

    Затем мы находим напряжение на этих резисторах и используем его, чтобы найти напряжение на параллельной комбинации:

    \ begin {align *}
    V & = IR \\
    & = (\ текст {1,63}) (\ текст {3,02}) \\
    & = \ текст {4,92} \ текст {V}
    \ end {выровнять *}
    \ begin {align *}
    V_ {T} & = V_ {1} + V_ {p} \\
    V_ {p} & = V_ {T} — V_ {1} \\
    & = \ text {6} — \ text {4,92} \\
    & = \ текст {1,08} \ текст {V}
    \ end {выровнять *}

    Это напряжение на каждом из параллельных резисторов.{2}} {\ text {3}} \\
    & = \ текст {3,5} \ текст {W}
    \ end {выровнять *}

    19,4 Электроэнергия | Texas Gateway

    Задачи обучения

    К концу этого раздела вы сможете сделать следующее:

    • Определить электрическую мощность и описать уравнение электрической мощности
    • Расчет электрической мощности в цепях резисторов в последовательном, параллельном и сложном расположении
    Основные термины раздела
    электроэнергия

    Власть ассоциируется у многих с электричеством.Каждый день мы используем электроэнергию для работы наших современных приборов. Линии электропередачи являются наглядным примером того, как электроэнергия обеспечивает электроэнергию. Мы также используем электроэнергию для запуска автомобилей, работы компьютеров или освещения дома. Мощность — это скорость передачи энергии любого типа; электрическая мощность — это скорость, с которой электрическая энергия передается в цепи. В этом разделе мы узнаем не только, что это означает, но и какие факторы определяют электрическую мощность.

    Для начала представим себе лампочки, которые часто характеризуются номинальной мощностью в ваттах.Давайте сравним лампочку мощностью 25 Вт с лампой мощностью 60 Вт (см. Рисунок 19.23). Хотя обе работают при одинаковом напряжении, лампа мощностью 60 Вт излучает больше света, чем лампа мощностью 25 Вт. Это говорит нам о том, что выходную мощность электрической цепи определяет нечто иное, чем напряжение.

    Лампы накаливания, такие как две, показанные на рисунке 19.23, по сути являются резисторами, которые нагреваются, когда через них протекает ток, и становятся настолько горячими, что излучают видимый и невидимый свет. Таким образом, две лампочки на фото можно рассматривать как два разных резистора.В простой цепи, такой как электрическая лампочка с приложенным к ней напряжением, сопротивление определяет ток по закону Ома, поэтому мы можем видеть, что ток, а также напряжение должны определять мощность.

    Рис. 19.23 Слева находится лампочка мощностью 25 Вт, а справа — лампочка мощностью 60 Вт. Почему их выходная мощность различается, несмотря на то, что они работают при одинаковом напряжении?

    Формулу мощности можно найти путем анализа размеров. Рассмотрим единицы мощности. В системе СИ мощность указывается в ваттах (Вт), которые представляют собой энергию в единицу времени, или Дж / с.

    Напомним, что напряжение — это потенциальная энергия на единицу заряда, что означает, что напряжение имеет единицы Дж / Кл.

    Мы можем переписать это уравнение как J = V × CJ = V × C и подставить его в уравнение для ватт, чтобы получить

    W = Js = V × Cs = V × Cs.W = Js = V × Cs = V × Cs.

    Но кулон в секунду (Кл / с) — это электрический ток, который мы можем видеть из определения электрического тока, I = ΔQΔtI = ΔQΔt, где ΔΔ Q — заряд в кулонах, а ΔΔ t — время в секундах. Таким образом, приведенное выше уравнение говорит нам, что электрическая мощность равна напряжению, умноженному на ток, или

    Это уравнение дает электрическую мощность, потребляемую цепью с падением напряжения В и током I .

    Например, рассмотрим схему на рисунке 19.24. Согласно закону Ома, ток, протекающий по цепи, равен

    19,49I = VR = 12 В 100 Ом = 0,12 AI = VR = 12 В 100 Ом = 0,12 А.

    Таким образом, мощность, потребляемая цепью, составляет

    19,50P = VI. = (12 В) (0,12 А) = 1,4 WP = VI = (12 В) (0,12 А) = 1,4 Вт.

    Куда уходит эта мощность? В этой схеме мощность в основном идет на нагрев резистора в этой цепи.

    Рисунок 19.24 Простая схема, потребляющая электроэнергию.

    При вычислении мощности в цепи, показанной на рисунке 19.24, мы использовали сопротивление и закон Ома, чтобы найти ток.Закон Ома дает ток: I = V / RI = V / R, который мы можем вставить в уравнение для электроэнергии, чтобы получить

    P = IV = (VR) V = V2R.P = IV = (VR) V = V2R.

    Это дает мощность с точки зрения только напряжения и сопротивления.

    Мы также можем использовать закон Ома, чтобы исключить напряжение из уравнения для электрической мощности и получить выражение для мощности, выраженное только через ток и сопротивление. Если мы запишем закон Ома как V = IRV = IR
    и используем это, чтобы исключить V в уравнении P = IVP = IV, мы получим

    P = IV = I (IR) = I2R.P = IV = I (IR) = I2R.

    Это дает мощность только по току и сопротивлению.

    Таким образом, комбинируя закон Ома с уравнением P = IVP = IV для электроэнергии, мы получаем еще два выражения для мощности: одно через напряжение и сопротивление, а другое через ток и сопротивление. Обратите внимание, что в выражения для электрической мощности входят только сопротивление (не емкость или что-либо еще), ток и напряжение. Это означает, что физической характеристикой схемы, определяющей, сколько мощности она рассеивает, является ее сопротивление.Любые конденсаторы в цепи не рассеивают электроэнергию — напротив, конденсаторы либо накапливают электрическую энергию, либо отдают ее обратно в цепь.

    Чтобы прояснить связь между напряжением, сопротивлением, током и мощностью, рассмотрим рисунок 19.25, на котором показано колесо формулы . Количества в центральной четверти круга равны количествам в соответствующей внешней четверти круга. Например, чтобы выразить потенциал V через мощность и ток, мы видим из колеса формул, что V = P / IV = P / I.

    Рис. 19.25 Колесо формул показывает, как связаны между собой вольт, сопротивление, ток и мощность. Количества во внутренней четверти окружности равны количеству в соответствующей внешней четверти окружности.

    Рабочий пример

    Найдите сопротивление лампочки

    Типичная старая лампа накаливания имела мощность 60 Вт. Если предположить, что к лампочке приложено 120 В, какой ток через лампочку?

    СТРАТЕГИЯ

    Нам даны напряжение и выходная мощность простой схемы, содержащей лампочку, поэтому мы можем использовать уравнение P = IVP = IV, чтобы найти ток I , протекающий через лампочку.

    Решение

    Решение P = IVP = IV для тока и вставка данных значений для напряжения и мощности дает

    19,51 P = IVI = PV = 60 Вт 120 V = 0,50 А. P = IVI = PV = 60 Вт 120 В = 0,50 А.

    Таким образом, половина ампера проходит через лампочку, когда к ней приложено 120 В.

    Обсуждение

    Это значительный ток. Напомним, что в быту используется переменный, а не постоянный ток, поэтому 120 В, подаваемое от бытовых розеток, — это переменная, а не постоянная мощность. Фактически, 120 В — это усредненная по времени мощность, обеспечиваемая такими розетками.Таким образом, средний ток, протекающий через лампочку за период времени, превышающий несколько секунд, составляет 0,50 А.

    Рабочий пример

    Подогреватели ботинок

    Чтобы согреть ботинки в холодные дни, вы решили вшить цепь с некоторыми резисторами в стельку ботинок. Вам нужно 10 Вт тепла от резисторов в каждой стельке, и вы хотите, чтобы они работали от двух 9-вольтовых батарей (соединенных последовательно). Какое общее сопротивление вы должны приложить к каждой стельке?

    СТРАТЕГИЯ

    Нам известны требуемая мощность и напряжение (18 В, потому что у нас есть две батареи 9 В, соединенные последовательно), поэтому мы можем использовать уравнение P = V2 / RP = V2 / R, чтобы найти необходимое сопротивление.

    Решение

    Решая P = V2 / RP = V2 / R для сопротивления и вставляя заданные напряжение и мощность, получаем

    19,52P = V2RR = V2P = (18 В) 210 Вт = 32 Ом. P = V2RR = V2P = (18 В) 210 Вт = 32 Ом.

    Таким образом, общее сопротивление в каждой стельке должно составлять 32 Ом · Ом.

    Обсуждение

    Давайте посмотрим, сколько тока пройдет по этой цепи. У нас есть 18 В, приложенное к сопротивлению 32 Ом, поэтому закон Ома дает

    19,53 I = VR = 18 В 32 Ом = 0,56 А. I = VR = 18 В 32 Ом = 0,56 А.

    На всех батареях есть этикетки, на которых указано, сколько заряда они могут обеспечить (в единицах тока, умноженных на время).Типичная щелочная батарея 9 В может обеспечить заряд 565 мА · ч · мА · ч.
    (так что две батареи 9 В обеспечивают 1130 мА · ч · мА · ч), поэтому эта система обогрева проработает в течение

    19,54t = 1130 × 10−3 A⋅h0,56 A = 2,0 h.t = 1130 × 10−3 A⋅h0,56 A = 2,0 час.

    Рабочий пример

    Питание через ответвление цепи

    Каждый резистор в приведенной ниже схеме имеет сопротивление 30 Ом. Какая мощность рассеивается средней ветвью схемы?

    СТРАТЕГИЯ

    Средняя ветвь схемы содержит последовательно включенные резисторы R3 и R5R3 и R5.Напряжение на этой ветви составляет 12 В. Сначала мы найдем эквивалентное сопротивление в этой ветви, а затем используем P = V2 / RP = V2 / R, чтобы найти мощность, рассеиваемую в ветви.

    Решение

    Эквивалентное сопротивление: R среднее = R3 + R5 = 30 Ом + 30 Ом = 60 Ом R среднее = R3 + R5 = 30 Ом + 30 Ом = 60 Ом. Мощность, рассеиваемая средней ветвью схемы, составляет

    .
    19,55P средний = V2R средний = (12 В) 260 Ом = 2,4 Вт. Средний = V2R средний = (12 В) 260 Ом = 2,4 Вт.

    Обсуждение

    Давайте посмотрим, сохраняется ли энергия в этой цепи, сравнив мощность, рассеиваемую в цепи, с мощностью, обеспечиваемой батареей.Во-первых, эквивалентное сопротивление левой ветви равно

    .
    19,56 Влево = 11 / R1 + 1 / R2 + R4 = 11/30 Ом + 1/30 Ом + 30 Ом = 45 Ом. Влево = 11 / R1 + 1 / R2 + R4 = 11/30 Ом + 1/30 Ом +30 Ом = 45 Ом.

    Мощность через левую ветвь

    19,57, слева = V2R, слева = (12 В) 245 Ом = 3,2 Вт, слева = V2R, слева = (12 В) 245 Ом = 3,2 Вт.

    Правая ветвь содержит только R6R6, поэтому эквивалентное сопротивление Rright = R6 = 30 ΩRright = R6 = 30 Ω. Мощность через правую ветку

    19,58 Правый = V2 Правый = (12 В) 230 Ом = 4,8 Вт. Правый = V2 Правый = (12 В) 230 Ом = 4,8 Вт.

    Полная мощность, рассеиваемая схемой, представляет собой сумму мощностей, рассеиваемых в каждой ветви.

    19,59P = складка + середина + прядь = 2,4 Вт + 3,2 Вт + 4,8 Вт = 10,4 WP = складка + середина + прядь = 2,4 Вт + 3,2 Вт + 4,8 Вт = 10,4 Вт

    Мощность, обеспечиваемая аккумулятором, составляет

    .

    , где I — полный ток, протекающий через батарею. Поэтому мы должны сложить токи, проходящие через каждую ветвь, чтобы получить I . Ветви дают токи

    19,61 слева = VR слева = 12 В 45 Ом = 0.2667 AIсредний = VR средний = 12 В 60 Ом = 0.20 AIright = VRright = 12 В 30 Ом = 0,40 A. Левый = VR Левый = 12 В 45 Ом = 0,2667 AI Средний = VR средний = 12 В 60 Ом = 0,20 AIright = VRright = 12 В 30 Ом = 0,40 А.

    Суммарный ток

    19,62 I = слева + Imiddle + I right = 0,2667 A + 0,20 A + 0,40 A = 0,87 A. I = I слева + Imiddle + I right = 0,2667 A + 0,20 A + 0,40 A = 0,87 A.

    , а мощность, обеспечиваемая аккумулятором, составляет

    19,63P = IV = (0,87 A) (12 В) = 10,4 Вт. P = IV = (0,87 A) (12 В) = 10,4 Вт.

    Это та же мощность, которая рассеивается на резисторах цепи, что показывает, что в этой цепи сохраняется энергия.

    Напряжение, энергия и мощность — MCAT Physical

    Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает
    или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
    в
    информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на
    ан
    Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
    средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

    Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
    в виде
    ChillingEffects.org.

    Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно
    искажать информацию о том, что продукт или действие нарушает ваши авторские права. Таким образом, если вы не уверены, что контент находится
    на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

    Чтобы отправить уведомление, выполните следующие действия:

    Вы должны включить следующее:

    Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
    Идентификация авторских прав, которые, как утверждается, были нарушены;
    Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
    достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется
    а
    ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
    к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
    Ваше имя, адрес, номер телефона и адрес электронной почты; и
    Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает
    ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
    информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
    либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

    Отправьте жалобу нашему уполномоченному агенту по адресу:

    Чарльз Кон
    Varsity Tutors LLC
    101 S. Hanley Rd, Suite 300
    St. Louis, MO 63105

    Или заполните форму ниже:

    Электроэнергия, работа и мощность

    Чтобы понять, как работают устойчивые технологии, важно усвоить определенные основные принципы. Знать, как фотоэлектрические элементы преобразуют солнечную энергию в электричество, означает понимать основы электричества и света.Понимание того, как ветряные турбины производят электричество, означает понимание кое-чего о власти, работе и электромагнетизме. В этом модуле будут представлены основные концепции, необходимые для понимания технологий, обсуждаемых в этом курсе. Хотя формулы иногда используются для объяснения фундаментальных принципов, суть не в том, чтобы уметь решать количественные задачи. Формулы помогут вам увидеть взаимосвязь.

    Цели обучения: Учащиеся смогут:

    1. Выделите разницу между энергией, работой и мощностью и приведите примеры каждого из них с использованием соответствующих единиц.
    2. Дайте соответствующие определения для следующих электрических терминов: электрон, электрический заряд, электрический потенциал, сопротивление, ток, мощность, проводник, полупроводник и изолятор.

      Учащийся сможет сопоставить электрические величины / свойства с различными единицами измерения, используемыми в электротехнике (например, вольты, амперы, ватты, омы, ампер-часы, киловатт-часы и т. Д.).

    3. Укажите элементы электрической цепи.
    4. Укажите различия между параллельными и последовательными цепями и отметьте влияние на электрический потенциал (измеренный в вольтах) и ток (измеренный в амперах).
    5. Объясните взаимосвязь между потоком тока и магнетизмом и покажите, как это лежит в основе электродвигателей и генераторов.
    6. Различайте электричество переменного и постоянного тока, определите полезные качества каждого из них, отметьте, какие устройства связаны с каждым из них, и опишите роль силовых инверторов.

    Энергия, работа и власть

    Перейти к: Force | Работа | Мощность

    Проще говоря, Вселенная состоит из четырех вещей: пространства, времени, массы и энергии.Первый закон термодинамики гласит, что энергия не может быть ни создана, ни разрушена. Но Эйнштейн показал нам, что энергию можно превратить в массу и наоборот. Второй закон термодинамики гласит, что каждый раз, когда энергия меняет форму, часть ее превращается в тепло. Энергия бывает разных форм. Самая полезная энергия или энергия высочайшего качества — это то, что мы можем использовать для работы. Например, энергия движения (кинетическая энергия) воды, падающей через плотину, может быть использована для вращения водяного колеса для измельчения зерна или выработки электричества.

    Потенциальная и кинетическая энергия

    Provenance: Первоисточник: Environment Canada (https://www.ec.gc.ca/eau-water/default.asp?lang=en&n=00EEE0E6-1), доступ через USGS: https://water.usgs .gov / edu / wuhy.html Это воспроизведение является копией официальной работы, опубликованной правительством Канады, и воспроизведение не было произведено в сотрудничестве или с одобрения правительства Канады.
    Повторное использование: Информация на этом веб-сайте была размещена с намерением сделать ее доступной для личного или публичного некоммерческого использования и может быть воспроизведена частично или полностью и любыми средствами без взимания платы или дополнительного разрешения, если не указано иное.Пользователи должны: проявлять должную осмотрительность для обеспечения точности воспроизводимых материалов; Укажите как полное название воспроизводимых материалов, так и организацию автора; и Укажите, что воспроизведение является копией официального произведения, опубликованного Правительством Канады, и что воспроизведение не было произведено при участии или с одобрения Правительства Канады.

    Самая низкая форма энергии с точки зрения полезности — тепло.Да, тепло можно использовать для производства пара и привода электрических турбин. Но для этого требуется много тепла, и это тепло должно исходить от какого-то другого источника энергии, например, горящего угля или солнечного света. Физики используют термин энтропия, чтобы описать изменение полезной энергии на менее полезное тепло.

    Проще говоря, вселенная состоит из четырех вещей; пространство, время, масса и энергия. Первый закон термодинамики гласит, что энергия не может быть ни создана, ни разрушена. (Хотя позже Эйнштейн показал, что для ядерных реакций энергию можно превратить в массу и наоборот).Энергия бывает разных форм. Когда энергия передается от одного объекта к другому или когда она преобразуется из одного типа в другой, ее можно использовать для выполнения работы. Например, энергия движения (кинетическая энергия) воды, падающей через плотину, может быть использована для вращения водяного колеса для измельчения зерна или выработки электричества.

    Энтропия — это мера распределения энергии. Концентрированные формы энергии, такие как энергия, хранящаяся в ядре атома, в химических связях или в высоковольтных электрических устройствах, очень полезны для выполнения работы.С другой стороны, менее концентрированные формы энергии, такие как низкотемпературное тепло, вибрации или звуковые волны, гораздо менее полезны. Второй закон термодинамики гласит, что всякий раз, когда энергия используется для выполнения работы, часть энергии превращается из концентрированной формы в менее полезную. Физики говорят, что по мере того, как энергия распространяется или рассеивается, энтропия увеличивается. Одним из результатов второго закона термодинамики является то, что ни один процесс не может преобразовать 100% энергии в полезную работу.

    Что такое энергия? Полезно разделить энергию на два списка. Кинетическая энергия — это энергия движущегося объекта. Падающая вода (реагирующая на силу тяжести), солнечный свет, электроны, протекающие по проводу (электричество), велосипед в движении, использование мышц для движения глаз во время чтения — все это примеры кинетической энергии. Потенциальная энергия — это то, что сохраняется и готово к преобразованию в кинетическую энергию. Это включает воду, удерживаемую плотиной, электрический заряд, хранящийся в батарее, химическую энергию, хранящуюся в жирах и сахарах, и химическую энергию, хранящуюся в бензине и угле.

    На схеме гидроэлектростанции вода, текущая по напорному штоку, имеет кинетическую энергию. Эта кинетическая энергия используется для вращения турбины, соединенной с электрическим генератором. Вода, хранящаяся за плотиной, имеет потенциальную энергию или запасенную энергию. Обратите внимание, что сила тяжести, действующая на воду, в каждом случае обеспечивает энергию.

    Сила

    Когда к объекту прикладывается энергия, мы думаем об этом как о силе .Некоторые силы требуют контакта между двумя объектами, а другие действуют на расстоянии. Силы, которые требует контакта , включают толкание, тянущее усилие (натяжение) и трение. Силы, которые действуют без прямого контакта между объектами, включают гравитацию, магнетизм и электрическую силу. Стандартная единица силы названа в честь сэра Исаака Ньютона, отца физики. Один Ньютон (1 Н) = количество силы для ускорения 1 кг массы на один метр в секунду 2 . Или 1 Н = (1 кг x 1 м) / с 2 .

    Аппарат Джоуля для демонстрации эквивалентности работы и тепла

    Provenance: Изображение из нового ежемесячного журнала Harper’s, № 231, август 1869 г. Доступно по: https://commons.wikimedia.org/wiki/File:Joule%27s_Apparatus_(Harper%27s_Scan).png
    Повторное использование: Этот элемент является общественным достоянием и может использоваться повторно без ограничений.

    Работа

    Мы используем энергию для работы. Самый простой способ думать о работе — это перемещать объект.Когда к объекту прикладывается сила (масса, умноженная на ускорение), которая заставляет этот объект перемещаться, пройденное расстояние — это уже выполненная работа. Но мы используем энергию для выполнения большего количества работ, чем перемещение мебели или автомобилей. Работа также выполняется, когда мы используем солнечный свет или природный газ для обогрева наших домов, когда мы используем электричество для освещения наших комнат или когда мы используем бутерброд с арахисовым маслом и желе для питания клеток нашего мозга.

    Поскольку энергия бывает разных форм, неудивительно, что существуют разные способы ее измерения.Трудно отслеживать все различные единицы энергии. Посмотрите на таблицу ниже, чтобы увидеть некоторые единицы и отношение к джоулям, который является золотым стандартом измерения энергии. Он назван в честь Джеймса Джоуля, пивовара 19-го века, который показал эквивалентность механической работы и тепла. Один джоуль примерно равен количеству энергии, необходимому для поднятия 100-граммового яблока на 1 метр (3,3 фута).

    Изображенный аппарат был использован Джеймсом Джоулем для демонстрации эквивалентности механической работы и тепла.Он рассчитал работу, выполняемую силой тяжести на гирю. Эта тяга повернула лопаточные колеса, которые смешали воду в изолированном контейнере. Вода нагревается при перемешивании, показывая, что тепло = работа.

    Паровая машина Ватта

    Происхождение: Wikicommons: https://commons.wikimedia.org/wiki/File:SteamEngine_Boulton%26Watt_1784.png
    Повторное использование: Этот элемент находится в общественном достоянии и может использоваться повторно без ограничений.

    Мощность

    Мощность — это мера того, сколько энергии используется за определенный период времени. Для этого мы можем использовать ватт. Джеймс Ватт был пионером в понимании физики энергии и разработал один из первых успешных паровых двигателей. Он одолжил нам свою фамилию для этого подразделения.

    Показано изображение паровой машины, разработанной совместно Джеймсом Ваттом для откачки воды из затопленных угольных шахт в Англии.

    Ватт — это один джоуль энергии, затрачиваемый за одну секунду. Таким образом, ватт включает в себя как затраченную энергию, так и время, в течение которого она была затрачена.По аналогии, вы можете получить один галлон воды из капающего крана за час или из открытого крана за 15 секунд. В конце концов, вы все равно получите галлон воды, но во втором случае вода течет в ведро намного быстрее. Так что аспект времени важен. Мы используем термин мощность для обозначения количества энергии и скорости ее доставки. Джоуль — это член энергии, а ватт — член мощности.

    Насколько велик ватт мощности? Подбрасывание 100 г яблока в воздух на 1 м (3.3 фута) потребляет 1 ватт мощности. Ноутбук, который вы можете использовать для чтения, потребляет около 5 & acirc; & # 128; & # 147; 50 ватт, в зависимости от того, работает ли у вас в фоновом режиме музыка или работают другие приложения. Старомодная лампа накаливания мощностью 100 Вт потребляет 1 киловатт-час электроэнергии, если оставить ее включенной на 10 часов. Киловатт — это 1000 ватт, сокращенно кВт. 10 часов x 100 Вт = 1000 кВтч. Обратите внимание на разницу между кВт и кВтч. КВт — это мера мощности, а кВт-ч — мера того, сколько энергии было использовано в целом.

    Яблоко, падающее на метр, делает это с мощностью 1 ватт.

    Происхождение: Эван-Амос Автор изображения
    Повторное использование: Лицо, связавшее произведение с этим документом, посвятило произведение общественному достоянию, отказавшись от всех своих прав на произведение во всем мире в соответствии с законом об авторском праве, включая все смежные и смежные права в пределах, разрешенных законом. Вы можете копировать, изменять, распространять и выполнять работу даже в коммерческих целях, не спрашивая разрешения

    Вы не уверены в киловатт-часах и киловатт-часах? Это уловка.Помните, что ватт — это джоуль / сек. Значит, в ватт или киловатт уже заложено время. Это энергия / время. Это мощность, скорость использования энергии. Но мощность не сообщает вам, сколько энергии было использовано за определенный период времени. Чтобы получить это, вам нужно умножить мощность на время. Затем единицы времени должны быть зачеркнуты. Увы, принято оставлять час на месте — глупо, но так оно и делается. 1 кВтч = 1 кВт x 1 час.

    Вот пример. В моем доме есть фотоэлектрическая система (солнечная электроэнергия), которая в идеальных условиях приятного солнечного прохладного дня рассчитана на выработку 4 кВт.За 4 часа это составит:

    4 кВт x 4 часа = 16 кВт · ч электроэнергии. В частично пасмурный день система может работать на половинной мощности или на 2 кВт выходной мощности. При такой скорости мне потребуется 8 часов, чтобы выработать те же 16 кВт · ч, что я сделал в солнечный день; 2кВт x 8 часов = 16 кВтч.

    В состоянии покоя типичный человек использует энергию мощностью 80 Вт для обеспечения жизненных функций организма (так называемый метаболизм в состоянии покоя). Взрослый мужчина может съедать около 2000 килокалорий в день. Одна ккал = 1,163 Вт · ч. Таким образом, диета в 2000 ккал обеспечит 2326 Втч или 2 Втч.326 кВтч. Если бы человек просто пролежал в постели 24 часа, он бы сжег 80 Вт x 24 часа = 1920 Вт · ч или 1 920 кВт · ч. Если этот парень останется в постели и продолжит так есть, он в конечном итоге потребляет 2,326 кВтч & acirc; & # 128; & # 147; 1,920 кВтч = 0,406 кВтч больше, чем он использует, и это будет храниться в виде жира. Фунт жира равен примерно 3500 ккал (4 070,5 кВтч). Так что через десять дней он может прибавить еще фунт. Активная поездка на велосипеде использует энергию в размере 200 Вт. Поэтому ему следует подумать о двухчасовой поездке на велосипеде, чтобы оставаться в форме (0.2 кВт для езды на велосипеде x 2 часа = 4,0 кВтч).

    Сводка силы, работы и мощности

    Сила = Энергия, приложенная к объекту (измеряется в ньютонах).

    Работа = Сила X Расстояние или количество переданного тепла (Измеряется в Джоулях или калориях) .

    Мощность = Работа / Время (Измеряется в ваттах с)

    Различные блоки энергии

    1 калория (термохимическая) = 4.184 Дж

    1 британская тепловая единица = 251,9958

    калорий

    1 БТЕ (термохимический) = 1054,35 Дж

    1 киловатт-час (кВтч) = 3,6 x 106 Дж

    1 киловатт-час (кВтч) = 3412 британских тепловых единиц (IT)

    1 терм = 100 000 британских тепловых единиц

    1 электрон-вольт = 1,6022 x 10-19 Дж

    Электричество и магнетизм

    Изолированные провода

    Происхождение: Chatama размещено на Викискладе https://commons.wikimedia.org/wiki/File:600V_CV_5.5sqmm.jpg
    Повторное использование: Этот файл находится под лицензией Creative Commons Attribution-Share Alike 3.0 Непортированная лицензия. Вы можете: делиться — копировать, распространять и передавать произведение для ремикса — адаптировать произведение При следующих условиях: приписывание — вы должны указать произведение в порядке, указанном автором или лицензиаром (но ни в коем случае не предполагает, что они одобряют вас или ваше использование произведения). совместно использовать — если вы изменяете, трансформируете или расширяете эту работу, вы можете распространять полученную работу только по той же или аналогичной лицензии, что и эта.

    Теперь, когда у вас есть хорошее представление об энергии, работе и мощности, пора зарядиться и изучить электричество! Древние имели смутное представление об электричестве из-за своего жизненного опыта.Рыбаки, ловившие разного рода «электрическую рыбу», при обращении с ней подвергались шоку. Другие чувствовали воздействие статического электричества от своей шерстяной одежды. Египтяне видели связь между электрической рыбой и молнией. Но только около 1600 года начались серьезные научные исследования электричества. Усилиями многих исследователей к концу 19 века было разработано хорошее представление об электричестве и о том, как его использовать.

    Напомним, что вся материя состоит из атомов.А атомы состоят из нескольких основных частиц: электронов с отрицательным зарядом, протонов с положительным зарядом и нейтронов без заряда. Электричество можно представить как поток электронов через проводник, подобный медному проводу. На самом деле это не поток электронов, а импульс, который проходит по проводу.

    Хорошие проводники, как и металлы, легко пропускают электричество. У них есть электроны на внешних орбиталях, с которыми легко вступить в контакт. Плохие проводники называются изоляторами, и они не пропускают беспрепятственный ток электричества.Даже самые лучшие проводники оказывают некоторое сопротивление току электричества. Такое сопротивление измеряется в единицах, называемых Ом. Стекло — хороший изолятор и, следовательно, плохой проводник.

    Третий класс соединений — полупроводники. Они реагируют на изменение условий, чтобы включить или выключить подачу электричества. Полупроводники часто содержат смесь кремния и металлов. Пластины из этих полупроводников лежат в основе «микросхем» компьютера, а также являются основой для светодиодных ламп и фотоэлектрических (солнечных) элементов.

    Фотоэлектрические панели изготовлены из полупроводников.

    Происхождение: Фото Б. Кукера
    Повторное использование: бесплатно для повторного использования

    Панели фотоэлементов, используемых для производства электричества из солнечного света, сделаны из полупроводников.

    Для подачи электричества должна быть замкнутая цепь. Электроны должны начинать с состояния с высокой энергией и заканчиваться в состоянии с низкой энергией. Ниже представлена ​​схема простой схемы. Обратите внимание, что электричество течет от высокоэнергетического конца батареи через лампу, а затем обратно к низкоэнергетическому концу батареи.Когда выключатель разомкнут, подача электричества прекращается.

    Об электричестве просто думать как об электроне (или импульсе размером с электрон), протекающем по проводнику. Но на практике один электрон слишком мал и несет слишком мало энергии, чтобы выполнять какую-либо реальную работу. Тем не менее, стекающие вместе группы электронов могут вызвать большой толчок! Кулон равен 6,24 × 10 18 электронов. А amp — это поток в один кулон в секунду через проводник. Таким образом, усилители измеряют скорость потока электричества.Мы называем поток электричества током.

    Не все электричество течет с одинаковой силой. Чтобы понять это, подумайте о давлении или силе воды, выходящей из трубы. Если труба прикреплена к резервуару наверху высокого здания, вода будет иметь гораздо большее давление, чем если бы резервуар был на 30 см выше трубы. То же самое и с электричеством. «Давление» электричества — это электрический потенциал. Электрический потенциал — это количество энергии, доступное для проталкивания каждой единицы заряда через электрическую цепь.Единицей измерения электрического потенциала является вольт. Вольт равен джоуля на кулон. Таким образом, если автомобильный аккумулятор имеет электрический потенциал 12 вольт, он может обеспечить 12 джоулей энергии на каждый кулон заряда, который он подает на стартер. Точно так же, если розетка в вашем доме имеет электрический потенциал 120 вольт, то она может обеспечить 120 джоулей энергии на каждый кулон заряда, который доставляется на устройство, подключенное к стене. (Примечание: величина «электрический потенциал» иногда называется несколькими разными именами, включая напряжение, разность потенциалов и электродвижущую силу.Для ясности мы всегда будем ссылаться на электрический потенциал, который измеряется в вольтах). Электроны высокого напряжения возвращаются в «основное состояние» с большей энергией, чем электроны низкого напряжения.

    A вольт — это сила, необходимая для перемещения одного ампер через проводник с сопротивлением 1 Ом .

    Вы думаете: «Кажется, существует связь между усилителями, вольтами и омами» & acirc; & # 128; & # 148; и ты прав! Электрический потенциал = ток x сопротивление.Это закон Ома, который обычно записывается как: E = I x R . E — электрический потенциал, измеренный в вольтах, I — ток, измеренный в амперах, а R — сопротивление, измеренное в омах.

    Электроны, проходящие через сопротивление проволоки, совершают работу. Действительно полезны два вида работы, выполняемой током. Если в проводе имеется большое сопротивление, большая часть работы будет выполняться в виде тепла. Подумайте об электрическом тостере, феном или обогревателе.

    Второй действительно важный вид работы, выполняемой током, протекающим через провод, — это создание магнитного поля.Надеюсь, в детстве вы играли с постоянными магнитами. Вы знаете, что у магнитов два полюса: один называется северным, а другой — южным. Это название связано с использованием магнитов в компасах для определения направления. Вы знаете, что одинаковые концы магнитов отталкиваются друг от друга, а противоположные концы притягиваются. Теперь, когда электрический ток течет по проводу, он становится похож на магнит в том смысле, что у него есть магнитное поле. Однако, в отличие от постоянных магнитов, магнитное поле можно отключить, остановив ток.Это свойство лежит в основе работы электродвигателей. Ток, проходящий через обмотки проводов в электродвигателе, вызывает включение магнетизма. Затем это заставляет двигатели вращаться, притягиваясь и толкаясь притяжением и отталкиванием электромагнитов.

    Работа, совершаемая током во времени, называется мощностью. Мощность измеряется в ваттах. Но вы это уже знаете! Напомним, что выше вы узнали, что обычный человек в состоянии покоя сжигает 80 Вт.

    На электричество;

    1 Ватт = 1 А x 1 Вольт.

    Уравнение можно переформулировать для расчета производимого тока;

    1 ампер = 1 Вт / 1 об. т.

    Подводя итоги.

    Амперы измеряют количество электричества, протекающего с течением времени (ток).

    Ом измерить сопротивление потоку.

    Вольт измеряет количество энергии, доступной для проталкивания каждой единицы заряда.

    Ватт — это мера мощности или работы, которая выполняется с течением времени.

    Вы знаете, что закон Ома устанавливает связь между E, I и R. Но сколько работы уже сделано? Это выражается как Сила. Мощность = Электрический потенциал x Ток, или P = E x I. Эта формула указывает на то, что мощность зависит как от количества поставляемой электроэнергии, так и от силы, стоящей за ней. Например, небольшая солнечная панель может выдавать 18 вольт и 2 ампера. Его мощность составит 18 вольт x 2 ампера = 36 ватт. Теперь можно построить еще одну солнечную панель для выработки 9 вольт и 4 ампер.Его мощность составит 9 вольт x 4 ампера = 36 ватт. Так же, как и другой!

    Цепи

    Простая схема

    Происхождение: Бенджамин Кукер, Университет Хэмптона
    Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей, если вы указываете авторство и предлагаете производные работы по аналогичной лицензии.

    Пересмотр простой схемы

    Происхождение: Бенджамин Кукер, Университет Хэмптона
    Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей, если вы указываете авторство и предлагаете производные работы по аналогичной лицензии.

    Оборудование, производящее и использующее электричество, подключено в электрическую цепь.Оборудование может быть установлено как последовательно, так и параллельно. Посмотрите на схемы ниже, чтобы увидеть последствия использования последовательной и параллельной схем. Для фотоэлементов (PV) каждая ячейка может производить только около 0,6 вольт. Поскольку для большинства приложений требуется более высокое напряжение, фотоэлементы должны быть подключены последовательно для получения желаемых результатов.

    Последовательная схема

    Происхождение: Бенджамин Кукер, Университет Хэмптона
    Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http: // creativecommons.org / licenses / by-nc-sa / 3.0 / Вы можете повторно использовать этот элемент в некоммерческих целях при условии указания авторства и предложения любых производных работ по аналогичной лицензии.

    Параллельная схема

    Происхождение: Бенджамин Кукер, Университет Хэмптона
    Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей, если вы указываете авторство и предлагаете производные работы по аналогичной лицензии.

    Электродвигатели и генераторы

    Магнитное поле вокруг провода, по которому течет ток

    Происхождение: Бенджамин Кукер, Университет Хэмптона
    Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей, если вы указываете авторство и предлагаете производные работы по аналогичной лицензии.

    Напомним, что часть работы, совершаемой электричеством, происходит, когда оно проходит через провод для создания магнитного поля.Ганс Кристиан Эрстед обнаружил это в 1820 году. Годом позже Майкл Фарадей показал, что магнитное поле вокруг провода можно использовать для создания электромагнитов, которые могут быть хитроумно скомпонованы для создания электродвигателя.

    Электромагнит

    Происхождение: Оригинальное фото Джины Клиффорд: https://www.flickr.com/photos/cobalt_grrl/2256696466
    Повторное использование: Attribution-ShareAlike 2.0 Generic (CC BY-SA 2.0) Бесплатно: Совместное использование — копирование и распространение материал на любом носителе или в любом формате. Адаптировать — ремикшировать, преобразовывать и дополнять материал для любых целей, даже для коммерческих целей.

    Обратите внимание на изображение электромагнита, полученное путем наматывания изолированного провода на железный гвоздь. Железный гвоздь концентрирует магнитное поле, создаваемое током в изолированном проводе. Изоляция предотвращает короткое замыкание цепи железным гвоздем.

    На схемах ниже показано, как работает электродвигатель. Обратите внимание, что при каждом половинном обороте контакты в коммутаторе меняют направление тока, чтобы двигатель вращался в том же направлении.

    Простой электродвигатель

    Происхождение: Изображения созданы или предоставлены для изучения.com защищены авторским правом © Chris Woodford (Объясните, что stuff.com) и опубликованы под этой лицензией Creative Commons. http://www.explainthatstuff.com/electricmotors.html
    Повторное использование: Per Creative Commons License: Share — копирование и распространение материала на любом носителе или в любом формате. Адаптация — ремикс, преобразование и создание материала

    .

    Простой электродвигатель

    Происхождение: Создано Авинашем Синха в виде оригинального DIY-файла по лицензии Creative Commons на следующем веб-сайте: http: // www.Instructables.com/file/FW079IPGGC2UDG3/
    Повторное использование: При лицензировании CC разрешается следующее: Совместное использование — копирование и распространение материала на любом носителе или любом формате. Адаптация — ремикс, преобразование и создание материала

    .

    Генератор постоянного тока

    Происхождение: Изображение с сайта www.alternative-energy-tutorials.com, используется с разрешения
    Повторное использование: Все учебные пособия и материалы, опубликованные и представленные на веб-сайте учебных пособий по альтернативным источникам энергии, включая текст, графику и изображения, являются собственностью авторских прав или аналогичных права Учебников по альтернативной энергии, представляющих www.Alternative-energy-tutorials.com, если прямо не указано иное. Согласно веб-мастеру AET: Как вы любезно спросили, я не возражаю против того, чтобы вы использовали это изображение как часть своего веб-курса по энергетике бесплатно. Тем не менее, я должен попросить вас правильно ссылаться на мои учебные пособия, изображения и сайт: www.alternative-energy-tutorials.com соответственно в своих презентациях.

    Майкл Фарадей не усовершенствовал электродвигатель, но он обнаружил важное свойство электромагнетизма, которое привело к другому великому изобретению — электрическому генератору.Фарадей открыл в 1831 году принцип магнитной индукции. Он обнаружил, что, проводя магнит по проводу, он вызывает электрический ток в замкнутой цепи. Это привело к разработке электрических генераторов. Первые успешные коммерческие разработки появились примерно в 1860 году. Электрогенератор — это, по сути, электродвигатель, который вращается под действием некоторой внешней силы и в ответ производит индуцированный ток. Гибридные электромобили, такие как Toyota Prius, делают именно это. Электродвигатель питается от аккумулятора при нажатии педали акселератора.Когда педаль отпускается, инерция автомобиля действует через вращающиеся колеса, вращая двигатель, заставляя двигатель работать в качестве генератора, создавая электричество для подзарядки аккумулятора.

    Электричество переменного и постоянного тока

    Генератор переменного тока

    Происхождение: Автор: Федеральное управление гражданской авиации http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_handbook/media/FAA-8083-30_Ch20.pdf
    Повторное использование: Это изображение или файл являются работой Сотрудник Федерального управления гражданской авиации, взятый на работу или взятый на работу в рамках служебных обязанностей этого человека.Это произведение федерального правительства США, изображение находится в общественном достоянии США.

    До сих пор мы рассматривали только один вид электричества — постоянный ток (DC). Это то, что производят батареи, солнечные панели и генераторы постоянного тока. Для электричества постоянного тока ток всегда течет в одном и том же направлении. Другой вид электричества — это переменный ток (AC). Как видно из названия, ток переключает направление в проводе с регулярным циклом. Электроэнергия переменного тока — это то, что приходит в наши дома через электросеть.Производится генераторами переменного тока. Генератор переменного тока устроен иначе, чем генератор постоянного тока. Помните, что в генераторе постоянного тока или двигателе есть коммутатор или выпрямитель, который переключает направление тока в катушках якоря (той части, которая вращается). В генераторе переменного тока вместо реверсивного коммутатора используются контактные кольца. Таким образом, с каждой половиной оборота генератора индуцированный ток меняет направление.

    Выходной сигнал генератора переменного тока создает синусоидальную волну при скачках напряжения в цепи.Реверсирование тока происходит быстро. В Соединенных Штатах стандарт для электросети составляет 60 Гц (переключение вперед и назад 60 раз в секунду).

    Синусоидальная волна от генератора переменного тока

    Provenance: Booyabazooka в английской Википедии
    Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете повторно использовать этот элемент для некоммерческих целей при условии, что вы указываете авторство и предлагаете любые производные работы по аналогичной лицензии.

    На диаграмме справа показана синусоида, генерируемая генератором переменного тока. При напряжении выше 0 вольт электричество течет в одном направлении, а при напряжении ниже 0 вольт — в другом. Ось Y — напряжение, а ось X — время.

    Короткое видео о разнице между генераторами и двигателями постоянного и переменного тока

    Преимущество использования переменного тока состоит в том, что можно легко повышать или понижать напряжение в различных частях сети системы доставки. Это делают трансформаторы. Трансформатор состоит из двух расположенных бок о бок катушек, большой и малой.Обе катушки имеют общий железный сердечник. Переменный ток, проходящий через небольшую первичную катушку, за счет магнитной индукции создает ток более высокого напряжения в большей вторичной катушке. И обратное также верно: если первичная обмотка больше, вторичная обмотка меньшего размера будет иметь более низкое выходное напряжение.

    Трансформатор, используемый для увеличения переменного напряжения

    Происхождение: BillC в англоязычной Википедии
    Повторное использование: Выпущено под лицензией GNU Free Documentation License.

    Зачем вообще увеличивать и уменьшать напряжение? Помните, что V = I x R. Передача электричества на большие расстояния приводит к потере энергии на тепло из-за сопротивления проводов. Чтобы предотвратить это, напряжение увеличивается, что требует меньшего тока и меньших тепловых потерь. Когда вы доберетесь до вашего дома, напряжение снова упадет. По высоковольтным линиям электропередачи может подаваться электроэнергия 765 кВ (то есть 765 000 вольт!). То, что получается от розетки, составляет 120 вольт.

    Переключение между переменным и постоянным током

    Инвертор для переключения с постоянного на переменный ток

    Происхождение: Фотография сделана Б.Cuker
    Повторное использование: Без копирования, можно использовать для любых целей.

    Поскольку мы используем электричество как переменного, так и постоянного тока, важно уметь преобразовывать одно в другое. Эту работу выполняет устройство, называемое инвертором мощности. Многие бытовые приборы работают от сети переменного тока. Холодильники, кондиционеры, лампы накаливания и люминесцентные лампы, пылесосы, фены и стиральные машины — все напрямую используют кондиционер. Электроника, такая как компьютеры, телевизоры и сотовые телефоны, требует постоянного тока.В устройствах обычно инвертор встроен в шнур питания переменного тока. По проводу, идущему от инвертора, проходит постоянный ток, необходимый устройству.
    Инверторы

    также полезны для преобразования постоянного тока в переменный. Такие устройства позволяют использовать 12 В постоянного тока автомобиля для питания портативного компьютера. Дома, которые используют фотоэлектрические панели для использования солнечной энергии для производства электроэнергии, также должны преобразовывать свою выработку в соответствии с переменным током, если системы подключены к электросети.

    Оба типа инверторов используют электронные схемы для преобразования электричества.Теория их действия выходит за рамки этого основного устройства. Но вы должны знать, что силовые инверторы подчиняются второму закону термодинамики. Таким образом, в процессе преобразования энергия теряется на тепло. Но современные инверторы могут достигать КПД 95%.

    Показан силовой инвертор, который преобразует постоянный ток солнечных панелей в переменный ток для фотоэлектрической системы, подключенной к сети.

    Хранение и производство электроэнергии с помощью батарей

    Схема свинцово-кислотной батареи

    Provenance: Ohiostandard в английской Википедии — перенесено с en.wikipedia в Commons от Burpelson AFB с использованием CommonsHelper.
    Повторное использование: Разрешено копировать, распространять и / или изменять этот документ в соответствии с условиями лицензии GNU Free Documentation License версии 1.2 или любой более поздней версии, опубликованной Free Software Foundation; без неизменяемых разделов, без текстов на лицевой обложке и без текстов на задней обложке. Копия лицензии включена в раздел под названием GNU Free Documentation License.

    Батареи преобразуют потенциальную энергию химических веществ в кинетическую энергию электричества.Бенджамин Франклин ввел термин «батарея» для описания стопки стеклянных пластин с металлическим покрытием, которые он использовал для хранения энергии. Но то, что у него было, сегодня мы назвали бы конденсаторами. Батареи работают за счет соединения двух химических материалов, которые имеют разное сродство к электронам. Материалы анода предпочитают терять электроны, а материалы катода — получать их. Электроды батареи погружены в раствор, содержащий положительно и отрицательно заряженные ионы, называемый электролитом. При включении в цепь электроны текут от анода к катоду.В то же время отрицательно заряженные ионы в электролите перемещаются от катода к аноду для поддержания нейтральности заряда и, таким образом, замыкают электрическую цепь.

    В перезаряжаемой батарее реакции на аноде и катоде можно обратить вспять, используя электрическую энергию для подачи тока, который толкает электроны в противоположном направлении — от катода к аноду. Это восстанавливает исходное состояние двух электродов. Ваш портативный компьютер, мобильный телефон и автомобильный аккумулятор — все это примеры аккумуляторных батарей.В современных батареях используются комбинации различных типов металлов и соединений оксидов металлов, образованные из таких элементов, как углерод, кадмий, кобальт, литий, марганец, никель, свинец и цинк для повышения производительности.

    Батарея из лимона

    Происхождение: Тереза ​​Нотт из Викимедиа: https://commons.wikimedia.org/wiki/File:Lemon_battery.png
    Повторное использование: Этот файл находится под лицензией Creative Commons Attribution-Share Alike 3.0 Unported.Вы можете: делиться — копировать, распространять и передавать произведение для ремикса — адаптировать произведение При следующих условиях: приписывание — вы должны указать произведение в порядке, указанном автором или лицензиаром (но ни в коем случае не предполагает, что они одобряют вас или ваше использование произведения). совместно использовать — если вы изменяете, трансформируете или расширяете эту работу, вы можете распространять полученную работу только по той же или аналогичной лицензии, что и эта.

    Простая батарея, использующая кислотные фрукты и два разных металла (бронза и стальные сплавы).

    Exercises Exercises for Module 1 (Microsoft Word 2007 (.docx) 17kB Jul12 17)

    1. Создайте цепь, используя две последовательно соединенные батареи и лампочку. Используйте цифровой мультиметр (DMM) для измерения электрического потенциала в вольтах между положительной и отрицательной клеммами в цепи. Теперь добавьте в цепь вторую лампочку последовательно с первой. Какая яркость каждой лампочки соотносится с яркостью, когда в цепи была только одна лампочка? С помощью вольтметра измерьте напряжение между положительной клеммой аккумулятора и проводом сразу после первой лампочки, а затем сразу после второй лампочки.Запишите результаты. Теперь создайте цепь с двумя параллельными лампочками. Запишите яркость и напряжение на каждой лампочке.

    Объясните свои результаты.

    Простая схема с одной лампочкой

    Цепь с двумя последовательно включенными лампочками

    Цепь с двумя параллельно включенными лампами

    2.Создайте пять магнитов для выборщиков, каждый с проволокой разной длины, намотанной вокруг железных гвоздей: 10 см, 20 см, 30 см, 40 см и 50 см. В каждом случае на каждом конце провода должно быть по 10 см, чтобы его можно было подключить к батарее. Таким образом, катушка «10 см» будет фактически сделана из проволоки длиной 30 см и так далее. Подключите каждый магнит к батарее и прикрепите как можно больше канцелярских скрепок к магнитной цепочке с кончика ногтя. Запишите максимальное количество скрепок в каждом случае. Затем нарисуйте график зависимости максимального количества удерживаемых скрепок от длины провода, из которого сделаны обмотки.Объясните, почему график выглядит именно так.

    3. Соберите простой двигатель из предоставленного набора. Обязательно обратите внимание на инструкции по удалению изоляции на противоположных сторонах провода, который контактирует с зажимами аккумулятора.Как только вы заставите свой мотор вращаться, проведите следующие эксперименты.

    а. Обратите внимание на направление вращения двигателя. Можете ли вы заставить его пойти в обратном направлении? Объяснять.

    г. Теперь снимите магнит и переверните. Затем перезапустите мотор. Поворачивает ли он в том же направлении, что и раньше? Почему?

    г. Теперь переверните аккумулятор и перезапустите двигатель. Направление вращения осталось прежним? Объяснить, почему.

    г. Подумайте об электродвигателе как о системе.Определите источник энергии и судьбу этой энергии во вращающейся двигательной системе. В своем ответе используйте следующие термины: электрохимическая энергия, кинетическая энергия (энергия движения) и тепло. Нарисуйте созданную вами схему для запуска электродвигателя. Наденьте шляпу системного мышления.

    • Определите каждый компонент системы.
    • Отследите поток энергии в системе. Обязательно покажите, где он переходит от электрического тока к магнитной энергии, кинетической энергии и теплу.
    • Сделайте снимок диаграммы и включите его в свой отчет.

    Является ли электродвигатель закрытой системой (вся энергия остается в системе) или это открытая система (некоторый обмен энергией с окружающей средой)?

    4. Из кусочка цитрусовых сделайте батарейку. Положите медный пенни с одной стороны фрукта и стальную скрепку с другой стороны. Измерьте напряжение с помощью цифрового мультиметра. Запишите результат: ______.

    Теперь попробуйте использовать фруктовый аккумулятор, чтобы зажечь светодиодную лампочку.Это работает? Объясните, что создает электричество.

    Список литературы

    Электромагниты и закон Фарадея

    Электродвигатель и генератор

    Асинхронный двигатель переменного тока

    Трансформаторы

    Преобразователи переменного / постоянного тока

    Как работают батареи

    Яркость лампы

    Падение напряжения (В)

    Первая лампочка

    Вторая лампа

    Яркость лампы

    Падение напряжения (В)

    Первая лампочка

    Вторая лампа

    Яркость лампы

    Падение напряжения (В)

    Длина провода в бухте (см)

    10

    20

    30

    40

    50

    Макс. нет. скрепок

    Анализ цепи

    — Как найти мощность, потребляемую независимым источником напряжения, если есть независимый источник тока

    Измерив ток через R1, теперь у вас достаточно информации, чтобы использовать KCL для определения тока через R2.И ток через V1 такой же, как ток через R2.

    Зная ток через R1, у вас также достаточно информации, чтобы найти напряжение на немаркированном узле, соединяющем R1, I2 и R2, и, таким образом, узнать напряжение на R1.

    Нет, вы просто используете \ $ P = IV \ $, чтобы найти мощность, потребляемую V1.

    мощность, потребляемая источником напряжения (которая, по моему мнению, должна быть отрицательной, учитывая, что источники напряжения выдают мощность, а не поглощают их)

    Мощность, потребляемая источником напряжения, может быть положительной или отрицательной.

    Например, если вы заряжаете аккумулятор, он будет поглощать энергию, а не отдавать ее.

    Или, если вы смоделируете диод с прямым смещением в качестве источника напряжения, он всегда будет поглощать энергию.

    Или, если вы просто спроектируете случайную схему с идеальными компонентами, в которой ток протекает через положительный вывод источника напряжения, он будет поглощать энергию.

    Пример

    Чтобы конкретизировать, я приведу пример. Но я выберу другой ток на счетчике, на случай, если значения, которые вы указали, были назначены вам для работы в качестве домашнего задания.

    Допустим, счетчик показывает 3 А.

    Тогда мы знаем, что должно быть 2 A, идущих слева направо через R2 (из-за KCL).

    И мы знаем, что напряжение на вершине R1 должно быть 90 В (из-за закона Ома).

    Тогда напряжение в верхней части источника напряжения должно быть

    .

    $$ V_1 = 90 \ {\ rm V} — (2 \ {\ rm A}) (10 \ {\ rm \ Omega}) = 70 \ {\ rm V} $$

    А мощность, потребляемая источником напряжения

    $$ P = (2 \ {\ rm A}) (70 \ {\ rm V}) = 140 \ {\ rm W} $$

    Обратите внимание, что это положительно, потому что источник тока вырабатывает более высокое напряжение, чем источник напряжения, и поэтому он посылает ток обратно к источнику напряжения.

    Основы: Рассеивание мощности и электронные компоненты

    Постоянно существующей проблемой в проектировании электронных схем является выбор подходящих компонентов, которые не только выполняют свои намеченные задачи, но и выживут в предсказуемых условиях эксплуатации. Большая часть этого процесса — убедиться, что ваши компоненты будут оставаться в пределах своих безопасных рабочих ограничений с точки зрения тока, напряжения и мощности. Из этих трех «силовая» часть часто является самой сложной (как для новичков, так и для экспертов), потому что безопасная рабочая зона может очень сильно зависеть от особенностей ситуации.

    Далее мы познакомим вас с некоторыми из основных концепций рассеивания мощности в электронных компонентах, чтобы понять, как выбирать компоненты для простых схем с учетом ограничений мощности.

    — НАЧАЛО ПРОСТОГО —

    Давайте начнем с одной из самых простых схем, которую только можно вообразить: батарея, подключенная к единственному резистору:

    Здесь у нас одна батарея на 9 В и одна батарея на 100? (100 Ом) резистор, соединенный проводами, чтобы сформировать полную цепь.

    Достаточно просто, правда? Но теперь вопрос: если вы действительно хотите построить эту схему, насколько «большой» из 100? резистор нужно ли использовать, чтобы убедиться, что он не перегревается? То есть, можем ли мы просто использовать «обычный» резистор ¼ W, как показано ниже, или нам нужно увеличить?

    Чтобы это выяснить, нам необходимо рассчитать мощность, рассеиваемую резистором.
    Вот общее правило расчета рассеиваемой мощности:

    Правило питания: P = I × V
    Если ток I протекает через данный элемент в вашей цепи, теряя при этом напряжение V , то мощность, рассеиваемая этой цепью Элемент является произведением этого тока и напряжения: P = I × V .

    В сторону :
    Каким образом ток, умноженный на напряжение, может дать нам измерение «мощности»?

    Чтобы понять это, нам нужно помнить, что физически представляют ток и напряжение.

    Электрический ток — это скорость протекания электрического заряда через цепь, обычно выражаемая в амперах, где 1 ампер = 1 кулон в секунду. (Кулон — это единица измерения электрического заряда в системе СИ.)

    Напряжение или, более формально, электрический потенциал — это потенциальная энергия на единицу электрического заряда через рассматриваемый элемент схемы.В большинстве случаев вы можете думать об этом как о количестве энергии, которое «расходуется» в элементе на единицу проходящего заряда. Электрический потенциал обычно измеряется в вольтах, где 1 вольт = 1 джоуль на кулон. (Джоуль — единица энергии в системе СИ.)

    Итак, если мы возьмем ток, умноженный на напряжение, это даст нам количество энергии, которое «израсходовано» в элементе на единицу заряда, умноженное на количество этих единиц заряда, проходящих через элемент в секунду. :

    1 ампер × 1 вольт =
    1 (кулон / секунда) × 1 (джоуль / кулон) =
    1 джоуль / секунда

    Результирующая величина выражается в единицах один джоуль в секунду: скорость потока энергии, более известная как мощность.Единица измерения мощности в системе СИ — ватт, где 1 ватт = 1 джоуль в секунду.

    Итак, у нас есть

    1 ампер × 1 вольт = 1 ватт

    Снова в нашу схему! Чтобы использовать правило мощности ( P = I × V ), нам нужно знать как ток через резистор, так и напряжение на резисторе.

    Во-первых, мы используем закон Ома ( В = I × R ), чтобы найти ток через резистор.
    • Напряжение на резисторе В = 9 В.
    • Сопротивление резистора R = 100 Ом.

    Следовательно, ток через резистор равен:

    I = В / R = 9 В / 100? = 90 мА

    Затем мы можем использовать правило мощности ( P = I × V ), чтобы найти мощность, рассеиваемую резистором.
    • Ток через резистор I = 90 мА.
    • Напряжение на резисторе В = 9 В.

    Следовательно, мощность, рассеиваемая в резисторе, составляет:

    P = I × В = 90 мА × 9 В = 0,81 Вт

    Так вы можете использовать резистор на 1/4 Вт?

    Нет, потому что он, скорее всего, выйдет из строя из-за перегрева.
    100? резистор в этой схеме должен быть рассчитан не менее чем на 0,81 Вт. Обычно выбирается следующий больший доступный размер, в данном случае 1 Вт.

    Резистор мощностью 1 Вт обычно поставляется в гораздо более крупном физическом корпусе, как показано здесь:

    (резистор 1 Вт, 51 Ом, для сравнения размеров.)

    Поскольку резистор на 1 Вт физически намного больше, он должен быть в состоянии справиться с рассеиванием большей мощности за счет большей площади поверхности и более широких выводов. (Он все еще может сильно нагреваться на ощупь, но не должен нагреваться настолько, чтобы выйти из строя.)

    Вот альтернативное расположение, которое работает с четырьмя 25? резисторы в серии (а в сумме все равно 100?).В этом случае ток через каждый резистор по-прежнему составляет 90 мА. Но, поскольку на каждом резисторе есть только четверть напряжения, на каждом резисторе рассеивается только четверть мощности. Для этой схемы достаточно, чтобы четыре резистора были рассчитаны на 1/4 Вт.

    В сторону: прорабатываем этот пример.

    Поскольку четыре резистора включены последовательно, мы можем сложить их значения, чтобы получить их общее сопротивление, равное 100 Ом. Использование закона Ома с этим общим сопротивлением снова дает нам ток 90 мА.И снова, поскольку резисторы включены последовательно, одинаковый ток (90 мА) должен протекать через каждый обратно к батарее. Напряжение через каждые 25? резистор тогда В = I × R , или 90 мА × 25? = 2,25 В. (Чтобы еще раз убедиться, что это разумно, обратите внимание, что напряжения на четырех резисторах в сумме составляют 4 × 2,25 В = 9 В.)

    Власть на каждого человека 25? резистор P = I × В = 90 мА × 2,25 В? 0,20 Вт, безопасный уровень для использования с резистором 1/4 Вт.Интуитивно понятно, что если разделить 100? резистор на четыре равные части, каждая из которых должна рассеивать четверть общей мощности.

    — ЗА РЕЗИСТОРАМИ —

    Для нашего следующего примера давайте рассмотрим следующую ситуацию: предположим, что у вас есть схема, которая принимает входной сигнал от источника питания 9 В и имеет встроенный линейный регулятор для понижения напряжения до 5 В, где все работает. Ваша нагрузка на конце 5 В может достигать 1 А.

    Как выглядит власть в этой ситуации?

    Регулятор, по сути, действует как большой переменный резистор, который регулирует свое сопротивление по мере необходимости для поддержания постоянного выходного напряжения 5 В. Когда выходная нагрузка составляет 1 А, выходная мощность, обеспечиваемая регулятором, составляет 5 В × 1 А = 5 Вт, а мощность, потребляемая в цепи источником питания 9 В, составляет 9 Вт. Напряжение, падающее на стабилизаторе. составляет 4 В, а при 1 А, это означает, что 4 Вт рассеивается линейным регулятором — также разница между входной и выходной мощностью.

    В каждой части этой схемы соотношение мощности задается следующим образом: P = I × V . Две части — регулятор и нагрузка — это места, где рассеивается мощность. А в части цепи, подключенной к источнику питания, P = I × V описывает подачу мощности в систему — напряжение увеличивается на по мере прохождения тока по источнику питания.

    Кроме того, стоит отметить, что мы, , не сказали , какая нагрузка тянет этот 1 А.Энергия потребляется, но это не обязательно означает, что она преобразуется в (просто) тепловую энергию — например, это может быть питание двигателя или набора зарядных устройств для аккумуляторов.

    Кроме того:
    Хотя такая установка линейного регулятора напряжения, как эта, является очень распространенной установкой для электроники, стоит отметить, что это также невероятно неэффективная схема : 4/9 входной мощности просто сгорает как тепло, даже при работе на более низких токах.

    — КОГДА НЕТ ПРОСТОЙ СПЕЦИФИКАЦИИ «МОЩНОСТЬ» —

    Далее, немного более сложная часть: убедиться, что ваш регулятор может справиться с мощностью. В то время как на резисторах четко указана их мощность, на линейных регуляторах это не всегда. В приведенном выше примере регулятора предположим, что мы используем регулятор L7805ABV от ST (техническое описание здесь).

    (Фото: типичный корпус TO-220, тип, который обычно используется для линейных регуляторов средней мощности)

    L7805ABV — линейный стабилизатор 5 В в корпусе TO-220 (аналогичный показанному выше), рассчитанный на 1.Выходной ток 5 А и входное напряжение до 35 В.

    Наивно, вы можете предположить, что вы можете подключить это прямо к входу 35 В и рассчитывать на выход 1,5 А, что означает, что регулятор будет излучать мощность 30 В * 1,5 А = 45 Вт. Но это крошечный пластиковый пакет; на самом деле он не может справиться с такой большой мощностью. Если вы посмотрите в таблицу в разделе «Абсолютные максимальные характеристики», чтобы попытаться определить, с какой мощностью он может справиться, все, что там написано, является «внутренним ограничением», что само по себе далеко не ясно.

    Оказывается, существует фактическая номинальная мощность, но она обычно несколько «скрыта» в таблице данных. Вы можете понять это, просмотрев пару связанных спецификаций:

    • T OP , Диапазон рабочих температур перехода: от -40 до 125 ° C

    • R thJA , Термическое сопротивление переход-окружающая среда: 50 ° C / Вт

    • R thJC , Тепловое сопротивление переходного корпуса: 5 ° C / Вт

    Рабочий диапазон температур перехода, T OP , определяет, насколько горячим может быть «переход» — активная часть интегральной схемы регулятора, прежде чем он перейдет в режим теплового отключения.(Тепловое отключение — это внутренний предел, который делает мощность регулятора «внутренне ограниченной».) Для нас это максимум 125 ° C.

    Тепловое сопротивление переход-окружающая среда R thJA (часто обозначается как? JA ), сообщает нам, насколько нагревается переход, когда (1) регулятор рассеивает заданное количество мощности и (2) регулятор находится внутри на открытом воздухе при заданной температуре окружающей среды. Предположим, что нам нужно спроектировать наш регулятор для работы только в скромных коммерческих условиях, температура которых не превышает 60 ° C.Если нам нужно поддерживать температуру перехода ниже 125 ° C, то максимальное повышение температуры, которое мы можем допустить, составляет 65 ° C. Если у нас есть R thJA 50 ° C / Вт, то максимальная рассеиваемая мощность, которую мы можем допустить, составляет 65/50 = 1,3 Вт, если мы хотим предотвратить отключение регулятора из-за перегрева. Это значительно ниже 4 Вт, которые можно было бы ожидать при токе нагрузки 1 А. Фактически, мы можем выдержать только 1,3 Вт / 4 В = 325 мА среднего выходного тока, не отправляя регулятор в состояние теплового отключения.

    Это, однако, относится к случаю, когда TO-220 излучает в окружающий воздух — почти наихудшая ситуация. Если мы сможем добавить радиатор или иным образом охладить регулятор, мы сможем добиться большего.

    Противоположный конец спектра представлен другой термической спецификацией: корпус с термическим сопротивлением, R thJC . Это указывает, какую разницу температур можно ожидать между переходом и внешней стороной корпуса TO-220: всего 5 ° C / Вт. Это соответствующий номер , если вы можете быстро отвести тепло от корпуса, например, если у вас есть очень хороший радиатор, подключенный к внешней стороне корпуса TO-220.С большим радиатором и идеальным соединением с этим радиатором при мощности 4 Вт температура перехода повысится всего на 20 ° C по сравнению с температурой вашего радиатора. Это представляет собой абсолютный минимум нагрева, который можно ожидать в идеальных условиях.

    В зависимости от технических требований вы можете начать с этого момента, чтобы построить полный бюджет мощности, чтобы учесть теплопроводность каждого элемента вашей системы, от самого регулятора до термоинтерфейса между ним и радиатором, к тепловой связи радиатора с окружающим воздухом.Затем вы можете проверить соединения и относительную температуру каждого компонента с помощью бесконтактного инфракрасного термометра с точечным считыванием. Но часто лучше переоценить ситуацию и посмотреть, есть ли лучший способ сделать это.

    В данной ситуации можно рассмотреть вопрос о переходе на стабилизатор для поверхностного монтажа, который обеспечивает лучшую управляемую мощность (за счет использования печатной платы в качестве радиатора), или, возможно, стоит подумать о добавлении силового резистора (или стабилитрона) до Регулятор понижает большую часть напряжения за пределами блока регулятора , уменьшая нагрузку на него.Или, что еще лучше, посмотрите, есть ли способ построить вашу схему без каскада линейного регулятора с потерями.

    — ПОСЛЕ СЛОВА —

    Мы рассмотрели основы понимания рассеяния мощности в нескольких простых схемах постоянного тока.

    Принципы, которые мы рассмотрели, являются довольно общими и могут быть использованы для понимания энергопотребления в большинстве типов пассивных элементов и даже в большинстве типов интегральных схем. Однако существуют реальные ограничения, и можно потратить всю жизнь на изучение нюансов энергопотребления, особенно при более низких токах или высоких частотах, когда малые потери, которыми мы пренебрегли, становятся важными.

    В цепях переменного тока многие вещи ведут себя по-разному, но правило мощности все еще сохраняется в большинстве случаев: P (t) = I (t) × В (t) для изменяющихся во времени тока и напряжения. И не все регуляторы работают с потерями: импульсные источники питания могут преобразовывать (например) 9 В постоянного тока в 5 В постоянного тока с КПД 90% или выше — это означает, что при хорошем дизайне может потребоваться всего около 0,6 А при 9 В для производят 5 В при 1 А.