Как подключить лампу дневного света
При выборе современного способа освещения помещения, необходимо знать, как подключить лампу дневного света самостоятельно.
Большая площадь поверхности свечения способствует получению ровного и рассеянного освещения.
Поэтому именно такой вариант стал в последние годы очень популярным и востребованным.
Принцип работы
Лампы люминесцентные относятся к газоразрядным источникам освещения, характеризующимся образованием ультрафиолетового излучения под воздействием электрического разряда в ртутных парах с последующим преобразованием в высокую видимую светоотдачу.
Появление света обусловлено наличием на внутренней поверхности лампы особого вещества под названием люминофор, поглощающего УФ-излучение. Изменение состава люминофора позволяет менять оттеночную гамму свечения. Люминофор может быть представлен галофосфатами кальция и ортофосфатами кальция-цинка.
Принцип работы люминесцентной лампочки
Поддержка дугового разряда происходит посредством термоэлектронной эмиссии электронов на поверхности катодов, которые разогреваются при пропускании тока, ограничивающегося балластом.
Недостаток ламп дневного света представлен отсутствием возможности выполнить прямое подключение к электрической сети, что обусловлено физической природой лампового свечения.
Значительная часть светильников, предназначенных для установки ламп дневного света, имеет встроенные механизмы свечения или дроссели.
Подключение лампы дневного света
Чтобы грамотно осуществить самостоятельное подключение, необходимо правильно выбрать лампу дневного света.
Такая продукция маркируется трёх-цифровым кодом, содержащим всю информацию о качестве света или индекса цветопередачи и температуры цвета.
Первой цифрой маркировки обозначается уровень цветовой передачи, и чем выше являются эти показатели, тем более достоверную цветопередачу удаётся получить в процессе освещения.
Обозначение температуры свечения лампы представлено цифровыми показатели второго и третьего порядка.
Наибольшее распространение получило экономичное и высокоэффективное подключение на основе электромагнитного балласта, дополненного неоновым стартером, а также схемой со стандартным балластом электронного типа.
Блок 1
Схемы подключения лампы дневного света со стартером
Самостоятельно подключить лампу накаливания достаточно просто, что обусловлено наличием в комплекте всех необходимых элементов и схемы стандартной сборки.
Две трубки и два дросселя
Технология и особенности самостоятельного последовательного подключения таким способом следующие:
- подача фазного провода на балластный вход;
- подключение дроссельного выхода на первую контактную группу лампы;
- подсоединение второй контактной группы на первый стартер;
- подключение с первого стартера на вторую ламповую контактную группу;
- соединение свободного контакта с проводом на ноль.
Аналогичным способом производится подключение второй трубки. С балласта идёт подключение на первый ламповый контакт, после чего второй контакт с этой группы переходит на второй стартер. Затем осуществляется соединение стартерного выхода со второй ламповой парой контактов и соединение свободной контактной группы с нулевым вводным проводом.
Такой способ подключения, по мнению специалистов, является оптимальным при наличии пары источников освещения и пары соединительных комплектов.
Схема подключения двух ламп от одного дросселя
Самостоятельное подключение от одного дросселя – менее распространённый, но совершенно несложный вариант. Такое двухламповое последовательное подключение отличается экономичностью и требует приобретения индукционного дросселя, а также пары стартеров:
- к лампам посредством параллельного подсоединения присоединяется стартер на штыревой выход с торцов;
- последовательное присоединение свободных контактов к электрической сети при помощи дросселя;
- присоединение конденсаторов параллельно к контактной группе осветительного устройства.
Две лампы и один дроссель
Стандартные выключатели, относящиеся к категории бюджетных моделей, часто характеризуются залипанием контактов в результате повышения стартовых токов, поэтому целесообразно применять специальные высококачественные варианты контактных коммутационных аппаратов.
Как подключить лампу дневного света без дросселя?
Рассмотрим, как происходит подключение люминесцентных ламп дневного света. Простейшая схема бездроссельного подключения применяется даже на сгоревших трубках ламп дневного света и отличается отсутствием использования нити накаливания.
В этом случае питание трубки осветительного прибора обусловлено наличием повышенного постоянного напряжения посредством диодного моста.
Схема включения лампы без дросселя
Такая схема характеризуется присутствием токопроводящего провода или широкой полоски фольгированной бумаги, одной стороной присоединенной к выводу электродов лампы. Для фиксации на концах колбы применяются металлические хомутики, аналогичного с лампой диаметра.
Электронный балласт
Принцип функционирования осветительного прибора с электронным балластом заключается в прохождении электрического тока через выпрямитель, с последующим поступлением в буферную зону конденсатора.
В электронном балласте, наряду с классическими пусковыми регулирующими устройствами, осуществление старта и стабилизации происходит посредством дросселя. Питание зависит от высокочастотного тока.
Электронный балласт
Естественное усложнение схемы сопровождается целым рядом преимуществ по сравнению с низкочастотным вариантом:
- повышение показателей эффективности;
- устранение эффекта мерцания;
- снижение веса и габаритов;
- отсутствие шумности в процессе работы;
- повышение надежности;
- продолжительный эксплуатационный срок.
В любом случае следует учитывать тот факт, что электронные балласты относятся к категории импульсных устройств, поэтому их включение без достаточной нагрузки является основной причиной выхода из строя.
Проверка работоспособности энергосберегающей лампы
Несложное тестирование позволяет своевременно выявить поломку и правильно определить основную причину неисправности, а иногда и выполнить самостоятельно наиболее простые ремонтные работы:
- Демонтаж рассеивателя и внимательный осмотр люминесцентной трубки с целью обнаружения участков выраженного почернения. Очень быстрое почернение концов колбы свидетельствует о перегорании спирали.
- Проверка нитей накала на предмет отсутствия разрывов при помощи стандартного мультиметра. При отсутствии повреждений нитей – показатели сопротивления могут варьироваться в пределах 9,5-9,2Om.
Если проверка лампы не показала сбоев в работе, то отсутствие функционирование может быть обусловлено поломкой дополнительных элементов, включая электронный балласт и контактную группу, которая достаточно часто подвергается окислению и нуждается в зачистке.
Проверка работоспособности дросселя осуществляется отключением стартера и замыканием на патрон. После этого нужно накоротко замкнуть патроны лампы и замерить дроссельное сопротивление. Если заменой стартера не удаётся получить желаемый результат, то основная неисправность, как правило, кроется в конденсаторе.
Блок 2
Что вызывает опасность в энергосберегающей лампе?
Ставшие относительно недавно очень популярными и модными различные энергосберегающие осветительные приборы, по мнению некоторых ученых, способны нанести достаточно серьезный вред не только окружающей среде, но и здоровью человека:
- отравление ртутьсодержащими парами;
- поражения кожных покровов с образованием выраженной аллергической реакции;
- повышение риска развития злокачественных опухолей.
Мерцающие лампы часто становятся причиной бессонницы, хронической усталости, снижения иммунитета и развития невротических состояний.
Важно знать, что из разбитой колбы люминесцентной лампы высвобождается ртуть, поэтому эксплуатация и дальнейшая утилизация должны осуществляться с соблюдением всех правил и мер предосторожности.
Значительное сокращение срока службы лампы люминесцентной, как правило, бывает спровоцировано нестабильностью напряжения или неисправностями балластного сопротивления, поэтому при недостаточно качественной работе электросети предполагается использование обычных ламп накаливания.
Видео на тему
Как подключить лампу дневного света?
Ремонт квартиры
Люминесцентные лампы достаточно часто стали применяться в быту, и на данный момент обладают высокой популярностью, поскольку тарифы на электроэнергию с каждым разом растут выше и выше, и в связи с этим применение стандартных ламп накаливания превращается в достаточно недешевое решение. А покупка энергосберегающих ламп требует большого стартового вложения денежных средств, да и ультрамодные люстры диктуют применение большого числа данных изделий, что практически лишает данный процесс экономической целесообразности. В связи с этим в своих жилищах люди часто подключают люминесцентные лампы.
Конструкция лампы дневного света
Для того чтобы разобраться, как функционирует люминесцентная лампа, необходимо хотя бы поверхностно изучить ее конструкцию. В состав лампы входит тончайшая цилиндрическая колба из стекла, которая обладает разным диаметром и формой.
Разновидности ламп:
- прямые;
- кольцевые;
- U-образные;
- компактные (с цоколем Е14 и Е27).
Несмотря на то, что все они различаются по своему облику, в них всех есть внутри люминесцентное покрытие, электроды и заполнено это все инертным газом, в котором присутствует ртуть в парообразном состоянии. Электроды внешне похожи на маленькие спирали, которые приобретают высокую температуру на несколько секунд и поджигают газ. С помощью данного газа люминофор (которым обработана колба лампы), начинает светиться. Поскольку спирали для розжига обладают небольшими габаритами, то обычное напряжение, из квартирной электросети для них непригодно. Для этого используют специализированные изделия – дроссели, которые позволяют регулировать силу тока до нужного значения, с помощью индуктивного сопротивления. Кроме этого, чтобы спираль загоралась лишь на миг и не перегорела раньше срока, применяют еще один прибор – стартер, который позволяет после поджигания газа в колбе лампы, выключить накал электродов.
Как работают люминесцентные лампы?
На контакты нашей конструкции подается электрический ток 220 вольт, который идет через дроссель на стартовую нить лампы. Затем ток поступает на стартер, который включается и доставляет напряжение на следующую нить, подсоединенную к сетевому контакту.
Довольно часто на входных контактах ставят «емкость», которая выполняет функции сетевого фильтра. Благодаря ей часть большой мощности, поставляемой дросселем, гасится, и лампа «съедает» меньше энергии.
Как подключить люминесцентную лампу?
Схема подключения ламп дневного света, которую вы видели выше, относится к элементарной и справедлива для подключения одной лампы. Для организации работы двух люминесцентных ламп, нужно слегка модифицировать схему, следуя тому же правилу последовательного подключения всех приборов.
В нашем варианте применяется пара стартеров, по одному на каждую лампу. При подсоединении двух ламп к единственному дросселю необходимо брать в расчет его заявленную мощность, которая написана на его кожухе. К примеру, если он обладает мощность 60 Вт, то к нему, возможно подключить две идентичные лампы, обладающие нагрузкой не выше 30 Вт.
Кроме этого есть схема подключения люминесцентной лампы без применения стартеров. С помощью установки электронных балластных изделий «поджиг» ламп производится моментально, без свойственного «мерцания» со стартерным вариантом электроуправления.
Подсоединить лампу к подобным изделиям достаточно несложно: на их кожухе нанесен полный порядок действий при установке, какие клеммы лампы нужно подключить к соответствующим контактам. Однако чтобы стало абсолютно ясно, как сделать подсоединение люминесцентной лампы к электронному балласту, надо рассмотреть несложную схемку:
К достоинству подобного электроуправления относится отсутствие вспомогательных узлов, требуемых для стартерного варианта подключения ламп. Кроме этого, с адаптацией проекта повышается надежность функционирования осветительного изделия, поскольку убираются вспомогательные подключения кабелей со стартерами, которые как показывает практика, являются еще и достаточно ненадежными приборами.
Кроме этого есть проект подсоединения двух ламп дневного света к электронному балласту.
Обычно, в наборе с электронным балластным устройством уже есть все требуемые кабеля для установки, в связи с этим нет надобности, что-то выдумывать и производить лишние траты на приобретение отсутствующих элементов.
Как проверить лампу дневного света?
В случае если лампа перестала гореть, то, скорее всего, произошел разрыв вольфрамовой нити, с помощью которой подогревается газ, тем самым провоцируя свечение люминофора. В течении своей жизни вольфрам потихоньку испаряется, накапливаясь на внутренней поверхности лампы. Вместе с этим на концах колбы из стекла образуется темный слой, говорящий о том, что в ближайшее время лампа перегорит.
Как узнать, работоспособна ли вольфрамовая нить? Для этого, нужно взять стандартный тестер, с помощь которого возможно замерить сопротивление проводника и дотронуться его клеймами до выводных контактов лампы.
Если мультиметр отражает сопротивление примерно 10 Ом, то это лучше всех слов сигнализирует нам, о том, что нить работоспособна.
Если же прибор показывает абсолютный 0, то эта лампа обладает обрывом спирали, вследствие чего не загорается.
Разрыв нити случается из-за того, что с течением времени спираль становится тоньше и потихоньку нарастает напряжение, идущее по ней. В связи с увеличением напряжения в первую очередь ломается стартер – это заметно по свойственному «мерцанию» ламп. После смены вышедших из строя ламп и стартеров конструкция обязана функционировать как часы.
Если при включении люминесцентных ламп слышны не характерные шумы или чувствуется смрад гари, необходимо срочно отключить осветительный прибор и изучить дееспособность всех его узлов. Есть вариант того, что контактные зоны ослабли, и происходит нагревание подсоединенных кабелей. Помимо того, если низкокачественно произведен дроссель, возможно замыкание обмоток с последующей поломкой люминесцентных ламп.
Вы можете пропустить чтение записи и оставить комментарий. Размещение ссылок запрещено.
Схема Подключения Лампы Дневного Света
Эти ЛДС неприхотливы к потреблению электроэнергии, а также благодаря трансформаторным преобразователям эти лампы способны работать от 12 вольт, что дает возможность запустить лампу подсоединением к авто аккумулятору в условиях отсутствия электроснабжения.
Схема подключения двух ламп от одного дросселя При необходимости в подключении двух люминесцентных ламп к одному дросселю необходимо к торцевым штырям источников света подключить параллельно стартеры. По такой схеме источник света сможет проработать еще какое-то время.
В данном случае используется не сетевая частота 50 Гц , а высокие частоты 20 — 60 кГц. В современных люминесцентных светильниках применяют бездроссельную и безстартерную схему.
Подключение двух люминесцентных ламп через один дроссель.
В результате была разработана схема электронного балласта. Но эти приборы тяжелые, для включения светильника требуется 3 секунды, дроссель достаточно шумный, потребляет сравнительно большое количество энергии, эффективность работы снижается при минусовой температуре, светильник мерцает, что оказывает отрицательное воздействие на .
Внутри находится одна печатная плата, на которой собрана вся схема. Он предназначен для защиты лампы дневного света от перегрева.
Имеется стробоскопический эффект мигания лампочки.
В одной из веток может ставиться фазосдвигающий конденсатор для уменьшения общего мерцания — лампы мерцают поочередно и суммарно имеем более стабильное свечение.
Один из электронных балластов — ЭПРА Выглядит электронный балласт как небольшой блок с выведенными клеммами. Ее установка производится в патроны, через которые подается напряжение на электроды.
как подключить люминесцентный светильник (ЛБ -20, 40, 60, 80)
Принцип работы
Нагрузкой служит тороидальный трансформатор с обмотками W1 , W2 , W3 , две из них включены противофазно. По мере износа устройства звук нарастает. Если знать, как подключить люминесцентную лампу с перегоревшими нитями накала, ее можно использовать в схеме ЭмПРА после небольшого изменения самой схемы. Устройства ЛЛ и схемы их включения постоянно развиваются в направлении улучшения технических характеристик.
Компактные лампы Представляют собой светильники дневного света с изогнутой трубкой.
Колба всегда выполняется в виде цилиндра с диаметром см.
На вход подают электропитание.
Через осветительный прибор идет ток, который уменьшается вдвое, так как напряжение на дросселе сокращается.
Эти параметры отображены трехзначным значением на колбе устройства. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки.
Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. Оставшийся контакт следует подсоединить к нулю ввода.
Схема включения люминесцентных ламп дневного света через электромагнитный дроссель и стартер.
Как работает экономка
Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему.
Цилиндр не всегда прямой может иметь различную форму , но всегда имеет на концах стеклянные ножки с электродами, изготовленными из вольфрама.
Чтобы составить схему включения двух лампочек, установленных в одном осветительном приборе, необходим общий дроссель. Используется повышающий трансформатор Т1 и конденсатор С1, ограничивающий ток, идущий через лампочку от вольтной сети. Лампу дневного света без дросселя невозможно запустить.
К лампочкам параллельно подключаются конденсаторы. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются.
На эти штырьки подается напряжение. Термоэлектронная эмиссия электродов с катода создает поддержку электрической дуги в ЛДС.
Как работает люминесцентная лампа
Оно превращается в видимое люминофорами. Кроме того, светильники мерцают из-за низкой частоты напряжения питания. Запуск происходит быстро и мягко, что увеличивает срок службы лампы. Контакты должны выйти через отверстия в держателях.
Соответственно, схемы отличаются. Третий шаг. Лампа работает.
На вход подают электропитание. В западных странах в последние годы стали преобладать лампы с трубкой последнего поколения Т5 диаметром 16 мм. Один из электронных балластов — ЭПРА Выглядит электронный балласт как небольшой блок с выведенными клеммами.
Подключение сгоревшей лампы дневного света. Вторая жизнь люминесцентных ламп. Схема подключения
Устройство люминесцентных ламп
От качества света и цветовой температуры зависит качество освещения. После того как электроды стартера размыкаются, дроссель выдает накопленную ЭДС импульсом на концы лампы.
Термоэлектронная эмиссия электродов с катода создает поддержку электрической дуги в ЛДС. Часть тока начинает течь по цепи: В — дроссель — 1-й электрод — 2-й электрод — В. Второй контакт группы направляется на второй стартер.
Можно избежать включения, как балласта, так и стартера. О том, как реализовать схему, рассказывается в видео.
Варианты схем подключения Лампы дневного света требуют установки в цепочку устройства для запуска. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети. В дальнейшем подсоединенный в линию дроссель обеспечивает низкий уровень силы тока, протекающего через электроды. Когда трубка повернута на 90 градусов, опускаем ее вниз.
Эти ЛДС неприхотливы к потреблению электроэнергии, а также благодаря трансформаторным преобразователям эти лампы способны работать от 12 вольт, что дает возможность запустить лампу подсоединением к авто аккумулятору в условиях отсутствия электроснабжения. Ток подается на стартер, где напряжения достаточно для появления тлеющего разряда. При подсоединении двух ламп до одного дросселя, к работе нужно отнестись повнимательнее.
На картинке внизу показано бездроссельное подключение. Схема используется в случае перегорания у ламп нитей накала. Вы ознакомились с особенностями разных схем подключения ламп люминесцентного типа и теперь сможете самостоятельно справиться с установкой и заменой таких осветительных приборов. Газовая смесь внутри колбы подобрана таким образом, чтобы снижать затраты энергии, необходимые на поддержку процесса ионизации. Для работы больше никаких устройств не надо.
Запрещено включать ЭПРА без нагрузки в виде люминесцентных ламп. А энергосберегающие компактные лампы не всем могут быть по карману, да и современные люстры требуют большого их количества, что ставит под сомнение экономию средств. Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет.
Что позволяет добиться нестандартный вариант соединения Изменение обычного способа соединения компонентов электросети в люминесцентных светильниках проводится для того, чтобы минимизировать риск поломки прибора. Через некоторое время ртуть собирается вокруг одного из электродов, и яркость свечения падает.
Лампа дневного света без дросселя
Схема подключения лампы дневного света
Люминесцентные лампы, называемые также лампами дневного света, нашли свое широкое применение, благодаря большому количеству преимуществ перед обычными лампочками накаливания. Их основное преимущество заключается в экономичности, поскольку в отличие от стандартных лампочек накаливания, они практически не нагреваются.
Варианты подключения ламп
Известно, что в обычных лампах огромное количество энергии превращается в тепло, которое никому не нужно. Одним из достоинств люминесцентных лампочек является возможность самостоятельного выбора цветового спектра. Наибольшей популярностью пользуются лампы белого цвета, которые носят название холодного цвета. Однако, очень многим нравятся теплые тона, приближающиеся по своим качествам к солнечному свету.
Схема подключения лампы дневного света напрямую связана с ее устройством. Основными составляющими частями классической люминесцентной лампочки являются непосредственно сам светящийся элемент, пусковой элемент – стартер и, наконец, дроссель. В состав светильника входит колба, заполненная парами ртути. По краям, с обеих сторон, расположены нити накаливания, изготовленные из вольфрама. Внутренняя поверхность стеклянной колбы покрыта специальным веществом – люминофором.
Функции элементов лампы
Функция дросселя состоит в образовании высокого импульса напряжения в самом начале зажигания лампочки. Основным назначением стартера является разрыв и соединение цепи. Он состоит из конденсатора и колбы, заполненной инертным газом. Внутри колбы расположены два контакта – биметаллический и металлический. Подведенное напряжение, воздействуя на биметаллический контакт, нагревает его. В результате, происходит изменение формы и последующее соприкосновение с металлическим контактом. В конечном итоге, происходит замыкание цепи и включение света. Все эти процессы тесно взаимосвязаны между собой.
При замыкании цепи выключателем, происходит подача напряжения на стартер. После замыкания, в самой лампочке происходит нагрев вольфрамовых спиралей. После нагрева и начала фотоэлектронной эмиссии, стартер приходит в отключенное состояние. В момент отключения стартера, в действие вступает дроссель, после чего, в результате импульса, внутри образуется разряд электрической дуги. Таким образом, лампа оказывается включенной. Люминофор, в свою очередь, превращает невидимый ультрафиолет в видимую часть спектра.
Дроссельная схема подключения лампы дневного света, самая простая и наиболее распространенная. Тем не менее, в настоящее время разработано много вариантов схем без применения дросселя. Схемы люминесцентных ламп постоянно развиваются и совершенствуются.
Подключение двух ламп через один дроссель
как собрать, как установить, с дросселем и без
Люминесцентные лампы остаются востребованными приборами освещения несмотря на распространение светодиодных светильников. Это обусловлено их мощностью, эффективностью и отличными показателями цветопередачи. При подключении люминесцентных приборов важно учитывать особенности оборудования.
Устройство люминесцентных ламп
Схема подключения обычной люминесцентной лампы значительно отличается от аналогичной схемы приборов накаливания. Они состоят из основных компонентов:
- плата управления, регулирующая поступление тока;
- электроды;
- стеклянная трубка или колба, покрытая люминофором.
Внутри колбы находится смесь паров ртути и инертных газов, и электроды. Входное напряжение вызывает движение частиц, порождая ультрафиолетовое излучение. Однако оно невидимо человеческому глазу. В видимый свет его переводит люминофор, которым покрывается внутренняя поверхность колбы. Изменение состава люминофора меняет оттенок и цветовую температуру освещения.
Устройство люминесцентных осветительных приборов.
Процессами управляют стартер и пускорегулирующий аппарат, стабилизирующие напряжение и обеспечивающие равномерное свечение без пульсаций и мерцаний.
Читайте также
Описание люминесцентной лампы
Как подключить лампу
Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.
Подключение с использованием электромагнитного балласта
Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.
Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.
Подключение при помощи ЭмПРА.
Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:
- значительный расход электроэнергии;
- длительный запуск, который может занимать 3 с;
- схема не способна функционировать в условиях пониженных температур;
- нежелательное стробоскопическое мигание, негативно влияющее на зрение;
- дроссельные пластинки по мере износа могут издавать гудение.
Схема включает один дроссель на две лампочки, для одноламповой системы метод не подойдет.
Две трубки и два дросселя
В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.
Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.
Схема с двумя трубками и двумя дросселями.
От стартера контакт идет к лампе, а свободный полюс — к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.
Схема подключения двух ламп от одного дросселя
Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.
Схема подключения двух светильников от одного дросселя.
Электронный балласт
Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.
Такие аппараты не гудят во время работы и потребляют значительно меньше электроэнергии. Мерцаний не появляется даже при низких частотах напряжения.
Поступающий на нагрузку ток выпрямляется через диодный мост. При этом напряжение сглаживается, а конденсаторы гарантируют стабильную подачу электроэнергии.
Подключение с помощью электронного балласта.
Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.
Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.
Использование умножителей напряжения
Использование умножителей напряжения.
Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.
Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для его стабилизации используются конденсаторы.
Тематическое видео: Подробно про умножитель напряжения
Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость. Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.
Подключение без стартера
Схема подключения без стартера.
Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.
В продаже можно найти аппараты с маркировкой RS, которая говорит о возможности подключения без стартера. Установка такого элемента в осветительный прибор помогает значительно сократить время зажигания.
Последовательное подключение двух лампочек
Метод предполагает работу двух ламп с одним балластом. Для реализации требуется индукционный дроссель и стартеры.
Необходимо к каждой лампе подключить стартер, соблюдая параллельность соединения. Свободные контакты схемы направляются в сеть через дроссель. К контактам подсоединяются конденсаторы, снижающие помехи и стабилизирующие напряжение.
Высокие стартовые токи в схеме нередко вызывают залипание контактов в переключателях, поэтому подбирайте качественные модели, на которые показатели сети не сильно влияют.
Как проверить работоспособность лампы
После подключения проверьте работоспособность схемы тестером. Сопротивление катодных нитей не должно превышать 10 Ом.
Проверка работоспособности схемы.
Иногда тестер показывает бесконечное сопротивление. Это не значит, что лампу пора выбрасывать. Прибор можно включать холодным запуском. Обычно контакты стартера разомкнуты, а конденсатор не пропускает постоянный ток. Однако после нескольких прикосновений щупами показатель стабилизируется и опустится до нескольких десятков Ом.
Замена лампы
Как и другие источники света, люминесцентные приборы выходят из строя. Единственным выходом будет замена основного элемента.
Замена лампы дневного света.
Процесс замены на примере потолочного светильника Армстронг:
- Осторожно разбирается светильник. С учетом указанных на корпусе стрелочек колба поворачивается по оси.
- Повернув колбу на 90 градусов, можно опустить ее вниз. Контакты сместятся и выйдут через отверстия.
- Новую колбу поместить в паз, следя за попаданием контактов в соответствующие отверстия. Установленную трубку повернуть в противоположную сторону. Фиксация сопровождается щелчком.
- Включить осветительный прибор и проверить работоспособность.
- Собрать корпус и установить рассеивающий плафон.
Читайте также
Как заменить лампу дневного света
Если недавно установленная колба снова перегорела, имеет смысл проверить дроссель. Возможно, именно он подает на прибор слишком большое напряжение.
устройство, принцип работы и схемы подключения ламп дневного света
Автор Aluarius На чтение 5 мин. Просмотров 513 Опубликовано
Люминесцентные лампы от сети напряжением 220 вольт напрямую не включаются. Для них нужен специальный блок, который называется пускорегулирующая аппаратура, укорочено ПРА. Этот блок состоит из трех элементов: дроссель, конденсатор и стартёр. Нас в этой статье будет интересовать стартер для ламп дневного света (ЛДС), что он собой представляет, какие функции на него возложены.
По сути, стартёр – это стеклянная колба, заполненная газом (обычно используется или неон, или смесь гелий с водородом). То есть, это газоразрядная лампа миниатюрного типа, внутри которой тлеет разряд. Здесь же расположены электроды, поддерживающие данный разряд. Существует стартеры двух типов: симметричные и несимметричные. В первом все электроды являются подвижными, во втором – один стационарный. Электроды изготавливаются из биметалла. Чаще всего в люминесцентных светильниках используются конструкции симметричные.
Газоразрядная лампа помещается в металлический или пластмассовый корпус. Крепится она на специальной панели диэлектрического типа, где установлены два контакта. Здесь же устанавливается и конденсатор, который подсоединен к газоразрядной лампе параллельно.
Как работает
Когда в схему, где установлен стартер, подается напряжение, оно попадает на его электроды, между которыми появляется тлеющий разряд. Сила тока разряда незначительная, в пределах от 20 до 50 мА. Именно этот разряд начинает нагревать электроды, которые под действием тепла изгибаются и через какое-то время соприкасаются друг с другом. То есть, электрическая цепочка замыкается, и ток подается далее на дроссель, конденсатор и на лампы дневного света. При этом тлеющий разряд прекращается.
Обратите внимание, что напряжение включение стартера должно быть чуть меньше номинального сети, то есть, 220 вольт, но при этом оно должно быть больше, чем напряжения включения самих ламп дневного света.
Итак, электроды соприкоснулись между собой, что дальше? Так как между ними нет тлеющего разряда, соответственно нет температуры, которая их нагревает. Происходит их остывание, что в конечном итоге приведет к размыканию электродов и цепочки. Именно в этот момент появляется так называемое импульсное напряжение высокой величины внутри дросселя. От него и происходит зажигание люминесцентного осветительного устройства. В процессе работы самой лампы дневного света в цепочке ток имеет значение, равное силе тока источника света. Падение же напряжения, а соответственно и силы тока, делится между самой осветительным прибором и дросселем на равные части.
Зажигание
Как происходит зажигание стартера для лампы? Необходимо отметить, что на эффективность зажигания влияют две позиции:
- величина силы тока на катодах лампы в момент размыкания электродов;
- продолжительность нагрева катодов.
Электромагнитная сила внутри дросселя зависит от силы тока в нем. Понятно, что недостаточность силы тока не приведет к зажиганию люминесцентного устройства. А сила тока напрямую зависит от напряжения в цепи. И если последний показатель ниже номинального, то есть большая вероятность, что лампа сразу не зажжется. Поэтому стартер будет в автоматическом режиме пытаться снова и снова проделать ту же операцию, пока она не загорится. Периодичность попыток стандартная – 10 секунд.
Если в питающей сети напряжение падает ниже 80% от номинального, то этого недостаточно, чтобы электроды нагрелись до необходимой температуры. То есть, при таком падении осветительное устройство просто не зажигается.
Конденсатор
Конденсатор в системе ПРА устанавливается параллельно стартеру. Эти два прибора взаимосвязаны. Основное назначение конденсатора:
- снижение помех в процессе замыкания и размыкание электродов стартера;
- увеличения длительности действия импульса при размыкании электродов;
- предотвращение спаивания электродов за счет высокого импульсного напряжения.
Чаще всего в ПРА используются конденсаторы емкостью 0,003-0,1 мкФ.
Как долго работает
Со временем эксплуатации стартера напряжение, создающее тлеющий разряд, снижается. Это может привести к обратному эффекту, когда при работающем люминесцентном светильнике электроды стартера вдруг начнут самопроизвольно замыкаться, что приведет к гашению самой лампы. Тут же будет происходить размыкание электродов, а соответственно и зажигание светильника. Оба процесса моментальные, что приводит к миганию светильника. Это не только влияет на эффективность его работы, но и снижает срок эксплуатации дросселя, потому что при такой работе он будет просто перегреваться.
Поэтому совет – периодически проверять стартер, и при необходимости менять его на новый. Как только увидели, что светильник замигал, не откладывайте замену в долгий ящик.
Схема подключения люминесцентного светильника
Схема подключения лампы дневного света – это несколько вариантов, зависящих от количества ламп дневного света в светильнике. Вот самая простейшая из них на рисунке ниже:
Здесь четко видно, что две спирали лампы дневного света подключаются: одна через дроссель, вторая через стартер. Такое соединение чаще всего применяется, когда необходимо подключить один источник света. Если, к примеру, есть необходимость подключить светильник с двумя лампами дневного света, то приходится устанавливать два стартера на каждую, как это хорошо видно на рисунке схемы ниже (вариант номер два):
При этом необходимо учитывать, что мощность дросселя не должна быть меньше мощности двух источников света. К примеру, если у него мощность 40 Вт (этот показатель наносится на корпус элемента), то две лампы в сумме должны иметь мощность не больше 40 Вт (к примеру, по 20 Вт).
Одной из ярких представителей этой категории осветительных приборов является марка ЛВО 4х18. То есть, это металлический прибор с четырьмя лампами, мощностью каждой по 18 Вт. ЛВО 4х18 чаще всего используются в качестве встраиваемых осветительных устройств. Их обычно монтируют в потолках Армстронг, в гипсокартонных потолочных конструкциях и в других видах потолков. Причины популярности марки ЛВО 4х18 – это невысокая цена от отечественного производителя, простота установки, эффективное свечение и простая схема подключения.
Схема подключения лампы дневного света со стартером
Осветительные приборы, независимо от их конструктивных особенностей, оформления и производителя, оснащены всем необходимым. В том числе, и устройством, называемым стартером. Но для того, чтобы найти причину, по которой не включается лампа, или заменить ею обычную, с нитью накаливания (к примеру, в том же гараже, сарае), нужно знать, как работает вся схема подключения лампы дневного света со стартером.
Сортамент ламп ДС значительный. Наиболее известны в быту такие модификации:
С ними проблема стартера как таковая не существует. Достаточно изделие вкрутить в патрон, щелкнуть выключателем, и оно загорается. И если причина находится внутри корпуса (в цокольной части, где расположена электронная схема – балласт), то такая лампа дневного света, как правило, просто утилизируется. Хотя, в принципе, она подлежит ремонту своими руками, но учитывая стоимость изделия, желающих тратить время на восстановление ее работоспособности немного. Тот, кого данный вопрос интересует, без труда найдет в Сети соответствующий материал.
А вот с изделиями самых первых модификаций ламп дневного света несколько сложнее.
Устройство лампы ДС
Она представляет собой герметичную колбу с нанесенным на внутренние стенки люминофором и заполненную инертным газом. В большинстве случаев это аргон. В стеклянном сосуде также располагаются нити накаливания (катоды) и находится немного ртути. Поэтому стартер для таких осветителей устанавливается отдельно и работает совместно с дросселем. Схема их подключения хорошо видна на рисунке.
Принцип лампы ДС
Он основан на том, что под воздействием ЭМП (а проще говоря, электричества) пары ртути способны испускать лучи инфракрасного спектра (ИК), которые вызывают свечение люминофора. Вот его мы визуально и наблюдаем. То есть, при подаче на прибор напряжения он начинает светиться, так как эл/ток разогревает вольфрамовые электроды, что и инициирует испарение металла (Hg по таблице Менделеева) при повышении температуры в колбе. Варианты и схемы подключения люминесцентных приборов описаны здесь.
Казалось бы, в чем сложность, и зачем, собственно, нужен стартер? Дело в том, что весь процесс можно рассматривать как 2 взаимосвязанных «технологических» этапа. На первом, в момент «пуска», необходимо обеспечить парообразование ртути. Для этого стандартного напряжения пром/сети (220/50) явно недостаточно. Нужен определенный скачок; кратковременный, но значительный. А вот на втором этапе, в процессе свечения лампы ДС, ток необходимо не только ограничить, но и стабилизировать по номиналу. Все эти задачи и решают стартер и дроссель, но только совместно.
Описание физических процессов в лампе ДС
Стартер на схеме как таковой не обозначен. Он состоит из миниатюрной платы с расположенными на ней конденсатором и тиратроном (лампочка, замыкающая/размыкающая при определенных условиях), которая закрывается цилиндрическим корпусом. Но это относится к старым модификациям изделия; в них «цилиндр» из мягкого металла.
Сейчас они в продаже практически не встречаются. В современных стартерах корпус из пластика, и его внутреннее устройство несколько иное. Это, по сути, та же мини-колба, в которой или газовая смесь, или неон. То есть новые виды стартеров являются самостоятельными миниатюрными газоразрядными лампами.
- При подаче напряжения ток протекает по цепи и производит предварительный разогрев электродов лампы ДС и контактов стартера (изначально разомкнутых). Повышение температуры обеспечивается тлеющим разрядом, который возникает между пластинками. Одна из них постоянно неподвижна, а вот вторая выполнена из биметалла. При прохождении эл/тока этот контакт, нагреваясь, начинает выгибаться. При достижении температурой определенного значения он касается второго; тем самым замыкается цепь. Это о работе несимметричного стартера. В симметричном аналоге (более распространены в бытовых светильниках) оба контакта подвижны, но принцип функционирования приборов полностью идентичен.
- Номинал тока резко увеличивается; до 2,5 – 3 раз, в зависимости от особенностей схемы и ее составных элементов.
- Это инициирует быстрый разогрев вольфрамовых электродов лампы ДС. Одновременно контакты остывают, так как при их замыкании исчезает тлеющий разряд и температура падает. В результате – очередной изгиб (уже в противоположную сторону) и разрыв цепи.
- На такое изменение в схеме тут же реагирует дроссель. В нем резко появляется высокое напряжение (за счет эффекта самоиндукции), которое и обеспечивает «розжиг» ЛДС.
Что влияет на работу схемы
- Напряжение в домовой эл/сети. Если его номинал ниже стандартного значения, то у дросселя просто «не хватит сил», чтобы разжечь лампу дневного света. И стартер здесь уже не при чем. Кстати, если осветительный прибор отказывается включаться, начать ремонт нужно именно с проверки напряжения в розетке.
- Неисправность стартера. При чуть заниженном напряжении он будет пытаться разжечь лампу, так как его контакты могут на короткое время и замкнуться. Таких попыток может быть несколько, с интервалом в 8 – 10 секунд. При этом иногда слышны характерные щелчки (для старых модификаций). Но если результата нет, а напряжение в норме, следует поменять стартер. У хорошего хозяина всегда есть резерв, потому такая диагностика схемы много времени не займет.
Совет. Если лампа ДС стала периодически мигать в процессе работы, то желательно сразу же поменять стартер. Иначе из-за перегрева дроссель довольно быстро выйдет из строя. А его купить гораздо сложнее, так как модификаций много, и нужного варианта может и не быть. Особенно если осветительный прибор старой сборки.
Схемы включений ламп ДС
В статье рассмотрен самый простой вариант. Но их достаточно много, тем более что в светильниках нередко бывает не одна, а две, а то и больше ламп дневного света. Да и схемы бытовых осветительных приборов порою сильно отличаются – одновременное включение ЛДС, раздельное, ступенчатое. Вместо стартера и дросселя в некоторых устройствах используется электронный балласт. Перечисление всех вариантов не имеет смысла. Вот наиболее распространенные схемы подключения ЛДС, которые помогут решить проблему с неработающим светильником:
Вариант с двумя ЛДС. На рисунке видно, чем такие схемы отличаются от аналогичных с одной лампой.
Получается, что ничего сложного в подключении лампы дневного света нет. Зная схему светильника, несложно произвести диагностику и устранить неисправность.
Принцип работы люминесцентной лампы и схема подключения
Привет, на этой странице мы обсудим люминесцентные лампы. Люминесцентная лампа — это тип лампы, работающей на явлении люминесценции. Люминесцентные лампы дают большой световой поток по сравнению с лампами накаливания. он возник в 19 веке. Эти лампы дают свет белого цвета за счет фосфорного покрытия на внутренней поверхности стеклянной трубки.
Принципиальная схема
Эти лампы состоят из нескольких основных частей:
- Балласт или (электрический дроссель)
- Стартер
- Электроды
- Лампа
Балласт — магнитный балласт (электрический дроссель) содержит катушку с медным проводом.Магнитное поле, создаваемое проволокой, улавливает большую часть тока, поэтому флуоресцентный свет проникает только в нужном количестве. Это количество может колебаться в зависимости от толщины и длины медного провода.
Стартер — в системе люминесцентного освещения балласт регулирует ток, подаваемый на лампы, и обеспечивает напряжение, достаточное для запуска ламп. Без балласта, ограничивающего ток, люминесцентная лампа, подключенная непосредственно к источнику питания высокого напряжения, быстро и неконтролируемо увеличивает потребление тока.Через секунду лампа перегреется и перегорит.
Электроды — люминесцентная лампа состоит из стеклянной трубки, заполненной смесью аргона и паров ртути. Металлические электроды на каждом конце покрыты оксидом щелочноземельного металла, который легко испускает электроны.
Лампа — Люминесцентная лампа состоит из длинного стержня трубки, заполненного смесью газа под низким давлением.
рабочая схема
При включении питания переменного тока (переменного тока). Эти источники питания достигли электродов, но это мгновенное питание также поступает к пускателю через электрический дроссель (балласт).Этот стартер содержит биметаллический контакт. Когда напряжение достигает стартера, он вызывает короткое замыкание и нагревает биметаллическую полосу. Из-за нагрева биметаллическая полоса изгибается в сторону контакта и замыкает цепь. Напряжение на пускателе уменьшается, поскольку ток вызывает падение напряжения на катушке индуктивности (балласт). При пониженном или нулевом напряжении на пускателе больше не происходит газового разряда, и, таким образом, биметаллическая полоса охлаждается и размыкает контакт. В момент размыкания контактов пускателя ток прерывается, и, следовательно, большой скачок напряжения проходит через индуктор (балласт).Это высокое напряжение создает в трубке смесь газов. Смесь аргона и ртути создает ультрафиолетовый свет, невидимый человеческим глазом. Из-за покрытия порошка фосфора на внутренней поверхности трубки. Этот ультрафиолетовый свет излучает белый свет, видимый человеческим глазом.
Связанные
Электропроводка балласта — электрическая 101
Для работы люминесцентных ламп требуется балласт.Схема люминесцентной лампы включает балласт, провода, патроны и лампы.
Лампа против лампы
Электрики обычно называют лампочку лампой. Производители лампочек используют термин «лампа», когда относятся к люминесцентным лампам. На этой странице мы будем называть люминесцентную лампу лампой или трубкой.
Индивидуальные и обычные балластные провода
Каждый отдельный балластный провод подключается к патрону на одной стороне каждой трубки.Общий провод (а) подключается ко всем патронам на другой стороне трубок.
Цвета проводов балласта
Цвета проводов для отдельных и общих соединений на люминесцентных балластах будут различаться в зависимости от типа балласта, марки и количества поддерживаемых ламп. Балласты имеют определенные цвета для отдельных проводов к патронам и другие цвета для общих проводов к патронам.
Магнитные балласты и электронные балласты
Старые магнитно-люминесцентные балласты обычно быстро запускаются и подключаются последовательно.Более новые электронные балласты — это мгновенный запуск (подключенные параллельно), быстрый запуск (подключенные последовательно), запрограммированный запуск (подключенные последовательно —
Быстрый запуск против балластов мгновенного запуска
Когда балласт быстрого запуска (соединенный последовательно) работает с несколькими лампами и одна лампа выходит из строя, цепь размыкается, и другие лампы не загораются.
Когда балласт мгновенного пуска (включенный параллельно) управляет несколькими лампами в цепи, лампы работают независимо друг от друга.Если одна лампа выходит из строя, другие могут продолжать работать, поскольку цепь между ними и балластом остается непрерывной.
С некоторыми пусковыми балластами с 3 и 4 лампами
- ПРА для быстрого пуска можно подключать только последовательно в соответствии со схемой на пускорегулирующем аппарате.
- ПРА с мгновенным запуском можно подключать параллельно только в соответствии со схемой на ПРА.
- Изменение проводки люминесцентного светильника с быстрого запуска на мгновенное включает изменение проводки с последовательного на параллельное.
1 Схема балласта для быстрого запуска лампы
1 Схема балласта для быстрого запуска 1 лампы
Заземление балласта
Заземление балласта очень важно. Заземление обычно происходит автоматически, если светильник заземлен должным образом.
Заземляющий провод от источника питания должен быть подключен к осветительной арматуре.Металлический балласт, установленный на металлической осветительной арматуре, автоматически заземляет балласт.
Если балласт имеет клемму заземления, к ней должен быть подключен заземляющий провод.
Start it Up — Как работают люминесцентные лампы
В классической конструкции люминесцентных ламп, которая по большей части пришла на второй план, для зажигания лампы использовался специальный механизм включения стартера. Вы можете увидеть, как эта система работает, на схеме ниже.
При первом включении лампы путь наименьшего сопротивления проходит через байпасную цепь и через переключатель стартера .В этой цепи ток проходит через электроды на обоих концах трубки. Эти электроды представляют собой простые нити , как в лампе накаливания. Когда ток проходит через байпасную цепь, электричество нагревает нити. Это отрывает электроны от поверхности металла, отправляя их в газовую трубку, ионизируя газ.
В то же время электрический ток вызывает интересную последовательность событий в переключателе стартера. Обычный выключатель стартера представляет собой небольшую газоразрядную лампу, содержащую неон или другой газ.Колба имеет два электрода, расположенных рядом друг с другом. Когда электричество первоначально пропускается через байпасную цепь, электрическая дуга (по сути, поток заряженных частиц) прыгает между этими электродами, чтобы установить соединение. Эта дуга зажигает лампочку так же, как большая дуга зажигает люминесцентную лампу.
Один из электродов представляет собой биметаллическую полосу , которая изгибается при нагревании. Небольшое количество тепла от зажженной лампы сгибает биметаллическую полосу, так что она входит в контакт с другим электродом.Поскольку два электрода соприкасаются друг с другом, току больше не нужно прыгать по дуге. Следовательно, через газ не протекают заряженные частицы, и свет гаснет. Без тепла от света биметаллическая полоса охлаждается, отклоняясь от другого электрода. Это размыкает цепь.
К тому времени, когда это произойдет, нити уже ионизировали газ в люминесцентной лампе, создав электропроводящую среду. Для возникновения электрической дуги трубке просто нужен скачок напряжения на электродах.Этот толчок обеспечивается балластом лампы, специальным трансформатором, включенным в цепь.
Когда ток течет через байпасную цепь, он создает магнитное поле в части балласта. Это магнитное поле поддерживается протекающим током. При размыкании переключателя стартера ток кратковременно отключается от балласта. Магнитное поле схлопывается, что вызывает внезапный скачок тока — балласт высвобождает накопленную энергию.
Этот выброс тока помогает создать начальное напряжение, необходимое для образования электрической дуги в газе. Вместо того, чтобы проходить через байпасную цепь и прыгать через зазор в выключателе стартера, электрический ток течет через трубку. Свободные электроны сталкиваются с атомами, выбивая другие электроны, что создает ионы. В результате получилась плазма , газ, состоящий в основном из ионов и свободных электронов, движущихся свободно. Это создает путь для электрического тока.
Удар летящих электронов сохраняет две нити теплыми, поэтому они продолжают испускать новые электроны в плазму. Пока есть переменный ток и нити не изношены, ток будет продолжать течь через трубку.
Проблема с такой лампой в том, что она загорается через несколько секунд. В наши дни большинство люминесцентных ламп рассчитаны на то, чтобы загораться почти мгновенно. В следующем разделе мы увидим, как работают эти современные конструкции.
Схема люминесцентной лампы.
Контекст 1
… люминесцентные лампы больше, их цвет иногда может быть холоднее и менее приятным, чем теплый цвет лампы накаливания, а их удлиненные формы могут создавать неоптимальные узоры освещения. 7 Хотя многие из этих проблем были решены с помощью новых моделей, генерация высших гармоник балластом люминесцентных ламп остается лишь частично изученной и требует дальнейшего изучения. Лампы с чрезмерно высокими гармоническими искажениями демонстрируют пониженную интенсивность света, дополнительное мерцание лампы и проблемы совместимости с другими устройствами, подключенными к электрической сети или работающими поблизости.Кроме того, возможность неблагоприятных воздействий в здании зависит от величины нагрузки, создаваемой лампами, генерирующими гармоники, как доли от общей нагрузки на здание. Несмотря на то, что системы электроснабжения предназначены для обеспечения пользователей чистыми и стабильными синусоидальными напряжениями, уровни гармонических искажений формы сигналов напряжения и тока в энергосистемах неуклонно возрастают из-за постоянно растущего спроса на электроэнергию. 7 Гармонические искажения влияют на чувствительное оборудование, подключенное к электросетям, и особенно проблематичны для компактных люминесцентных ламп.Недавние испытания показывают, что гармонические искажения из-за энергосистем усугубляются генерацией высших гармоник люминесцентными лампами. Далее мы рассмотрим высшие гармоники, генерируемые в этих лампах. Эти гармоники в значительной степени зависят от типа используемого балласта электромагнитного или электронного и напрямую влияют на светоотдачу лампы. 7,9 Температура также влияет на светоотдачу лампы, особенно на время достижения светового равновесия. Краткая аналогия между люминесцентными лампами и акустическими инструментами показывает, как более высокие гармоники синусоидального входного напряжения могут генерировать более высокие гармоники в лампах.Типичные частотные спектры кларнета и люминесцентной лампы показаны на рис. 1 и 2. На рис. 1 зависимость ͑ от основной интенсивности звука для кларнета представлена в зависимости от соответствующих гармоник; 10 первая и 25-я гармоники соответствуют 148,5 Гц (D 3 note и 3712,5 Гц, соответственно. На рис. 2 отношение к основной интенсивности напряжения люминесцентной лампы нанесено относительно соответствующих гармоник; первая и 50-я гармоники соответствуют 60 Гц и 3000 Гц соответственно.Несмотря на заметные различия в частотных спектрах, люминесцентные лампы и кларнеты имеют некоторые сходные физические характеристики. Например, и балласт люминесцентной лампы, и трость кларнета предназначены для запуска, контроля и уменьшения генерации гармоник в соответствующих устройствах. Они также разработаны как механизмы связи для правильного согласования импеданса. Когда простой звонок добавляется к обычной звуковой трубке, генерирование более высоких частот в звуковом спектре значительно сокращается.Добавление колокола сжимает резонансные пики ближе друг к другу и позволяет более эффективно выводить звук на более высоких частотах. Аналогия с проблемой передачи электроэнергии от источника к люминесцентной лампе с максимальной эффективностью очевидна, и правильное согласование импеданса имеет огромное практическое значение. Соответственно, тот факт, что рис. 2 содержит большее количество высших гармоник, чем рис. 1, указывает на то, что улучшение балластных сопротивлений имеет первостепенное значение. Кроме того, нелинейные явления в лампе и кларнете также способствуют возникновению и затуханию колебаний, амплитуде установившегося состояния и содержанию гармоник в соответствующих устройствах.Из-за своей относительной простоты кларнет изучен более широко, чем любые другие деревянные духовые инструменты. 10 Кларнет — это, по сути, инструмент с цилиндрическим отверстием и одной тростью ͑ см. Рис. 3. Тон кларнета, как и люминесцентных ламп, богат гармониками. Трость кларнета генерирует звук в широком диапазоне частот. Эта генерация сложных колебаний в воздушном столбе достигается за счет вихрей, образующихся вдоль потока воздуха в устройстве.В случае люминесцентных ламп электрический ток аналогичен потоку воздуха, а балласт — к язычку, который аналогичным образом генерирует широкий диапазон нелинейных колебаний. В общем, эти нелинейности и множественные резонансы в устройстве резко изменяют выходной сигнал. Канал кларнета, хотя и имеет цилиндрическую форму на большей части своей длины, значительно отличается формой мундштука и расширяющимся раструбом у его основания. Неравномерность потока воздуха через колокол оказывает значительное влияние на частотный спектр, особенно для низких нот, и, конечно же, вариации формы возле язычка влияют на относительную частоту всех нот и гармоник.Точно так же длина и форма трубки, а также конструкция электродов оказывают поразительное влияние на частотный спектр люминесцентных ламп ͑ см. Рис. 4 ͒. Поведение балласта в условиях различных высших гармоник напряжения влияет на гармоники, производимые в лампе, особенно в высокочастотном диапазоне, и, следовательно, на характеристики лампы. 7,8 Одним из наиболее важных аспектов язычков и балластов является то, что они нелинейны, и почти для всех нелинейных систем амплитуда n-й гармоники зависит от амплитуды основной гармоники.Таким образом, увеличение громкости связано с увеличением гармонического развития. В случае люминесцентных ламп гармонические искажения постоянно измерялись до 50-й гармоники. 7 Еще одно важное сходство между язычком и балластом заключается в аналогичных соотношениях между давлением P и акустическим потоком U (P ϭ ZU) и напряжением V в зависимости от тока I (V ϭ ZI), где Z представляет сопротивление язычка относительно отверстие кларнета и сопротивление балласта к лампе люминесцентной лампы.В обоих случаях импеданс может существенно зависеть от амплитуды и частоты срабатывания. Когда частота приближается к резонансной, поведение устройства становится более сложным, так как могут генерироваться более высокие гармоники. Существование верхнего и нижнего пороговых значений давления и напряжения, при превышении которых язычок и балласт неэффективны, представляет собой еще одну важную особенность, которую объединяет два устройства. Мы рассмотрели некоторые важные сходства между люминесцентными лампами и кларнетами.Хотя технические документы представляют собой обширный сравнительный анализ различных люминесцентных ламп в различных условиях, эти статьи не касаются фундаментальной физики высших гармоник, генерируемых самими лампами. Кроме того, в литературе редко встречаются дискуссии об этих лампах на вводном уровне физики. Проблема гармоник впервые возникла в 1980-х годах, когда крупные коммунальные компании потребовали, чтобы электронные балласты имели полное гармоническое искажение менее 20% от основной гармоники, чтобы претендовать на программу скидок коммунального предприятия.Однако уровни гармонических искажений формы волны напряжения и тока в энергосистемах неуклонно возрастают из-за растущего спроса на электроэнергию в последние годы. Ток должен регулироваться балластом, чтобы подавать нужное количество энергии, необходимое для генерации дуги в лампе. Большинство результатов испытаний показали, что электрические характеристики люминесцентных ламп в этих условиях во многом зависят от типа используемого балласта электромагнитного или электронного.7–9 Проведенная в этой статье аналогия между акустикой и электричеством предназначена для того, чтобы пролить свет на проблемы высших гармоник, генерируемых люминесцентными лампами, и предложить дальнейшее изучение этого явления для минимизации потенциала …
Флуоресцентный драйвер с батареей 6 В, 12 В и схемами мигающего света
Флуоресцентные лампы — это разновидность лампочек, которые становятся все более популярными для использования в доме. Но иногда нужно использовать его с батареей на 6В или 12В. Не может загореться.
Вот 3 схемы флуоресцентного драйвера. У вас могут появиться идеи по исправлению ваших проектов или обучения.
Приступим.
Примечание. Я не тестировал эти схемы. Итак, я не могу подтвердить, что это сработало. Пожалуйста, примите решение, прежде чем приступить к его созданию.
Драйвер люминесцентной лампы 4 Вт с использованием 555
Это схема драйвера люминесцентной лампы 4 Вт 12 В. Использование таймера 555 в качестве основных частей. При использовании аккумулятора 12 В имеет ток потребления около 300 мА.
Вы можете использовать его с адаптером переменного тока 12 В или аккумулятором 12 В.
Преимущество этой схемы — большая яркость при меньшем потреблении энергии.
Как это работает
На схеме ниже.
Рисунок 1: Принципиальная схема драйвера люминесцентной лампы 4 Вт
Модель 555 работает в режиме нестабильного мультивибратора. Какой выходной ток будет увеличиваться транзистором Q1.
Затем он будет управлять трансформатором с большим током на коллекторе Q1. Он должен быть установлен с достаточным количеством радиатора.
Трансформатор преобразует низкое напряжение переменного тока в высокое для включения люминесцентного света.
Настройка
Прежде всего, подключите источник питания к цепи. Нам нужно настроить ВР1-5К. Используйте мультиметр в диапазоне амперметра. Для измерения тока, протекающего в цепи.
Затем частично отрегулируйте VR1, чтобы получить ток около 300 мА. Которая именно люминесцентная лампа горит по максимуму.
Будьте осторожны
Будьте осторожны с высоким напряжением на трансформаторе.Если вы прикоснетесь к нему, вы можете погибнуть. Итак, он должен быть установлен в герметичном ящике.
Детали, которые вам понадобятся
R1, R2: резисторы 1,5 кОм 0,5 Вт
VR1: потенциометр 5 кОм
C1: 100 нФ (0,1 мкФ) 50 В Керамический
IC1: Таймер NE555P
Q1: Транзистор BD243C
T1: Трансформатор 6- 0-6 / 220V
4Вт флуоресцентный 6 дюймов
Рекомендуется: катушка индуктивности DIY из компактного люминесцентного светильника
Рисунок 2 компоновка компонентов на паяемой макетной плате ПК
Читайте также: диммер переменного тока для светодиодов Лампы с использованием IC-555 и TRIAC
Схема драйвера флуоресцентных ламп 6 В
Это небольшая схема, несколько компонентов и свет.Вы можете получить его портативным, чтобы получить люминесцентный свет.
Которые используют источник питания только с четырьмя батареями AA 1,5 В (6 В).
Как это работает
См. Схему ниже.
При нажатии на переключатель-S1. Затем конденсатор C1 полностью заряжается через R1 и R2. Пока С1 зарядится полностью. Это заставляет напряжение смещать Q2.
Далее, Q2 смещен, и Q1 также работает со смещением Q1.
После этого большой ток от батареи может течь к первичной обмотке (6V-0V) трансформатора-T1 через работу Q1.
Пока Q1 работает. Падение напряжения на C2 низкое. Далее Q2 будет остановлен. C2 будет постепенно разряжаться через R1 и R2. Полностью, Q2 снова заработает.
При такой работе напряжение на первичной обмотке T1 становится переменным. И наведенный ток на вторичную катушку составляет высокое напряжение около 220 В. Это заставляет флуоресцентный свет светиться.
См .: Многие простые схемы источника питания 6 В
Эквивалентные транзисторы
Я ищу другие транзисторы, которые вы можете получить.
Q1: 2SD234 NPN транзистор 60 В, 3 А, 25 Вт, 3 МГц. Эквиваленты: BD241A, BD535, BD935, 2SC3179.
Q2: 2SA733 PNP-транзистор 60 В, 0,1 А, 0,25 Вт, 180 МГц. Эквиваленты: BC212, BC257, BC307, BC557, BC212L 2N4061 KT3107K
T1: Трансформатор 6 В, 300 мА
Флуоресцентный мигающий свет 12 В
Вот мигающий свет для аккумулятора 12 В. Он может питать небольшую люминесцентную лампочку. См. Схему ниже.
Использует реле. Преобразует постоянное напряжение батареи в переменное.Эта форма представляет собой механическую технику без каких-либо полупроводников, транзисторов, IC, диодов.
Реле будет включать и выключать автомобильный аккумулятор 12 В. Каждый раз реле размыкается. Индукция происходит на катушке реле.
Также это индукция от низкого напряжения на первичной обмотке до высокого напряжения на вторичной обмотке трансформатора.
Это высокое напряжение может заставить светиться 24-дюймовую люминесцентную лампу. И он мигает как аварийная ситуация, когда у вашего автомобиля возникла проблема.
Даже схема эта простая и старая. Но иногда может потребоваться его использование.
Вам тоже могут понравиться эти схемы.
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Компактная люминесцентная лампа
Компактная люминесцентная лампа (КЛЛ)
Меню
Введение
Компактные люминесцентные лампы имеют ряд преимуществ по сравнению с классическими лампами накаливания.Это меньшее энергопотребление (до 80%) и гораздо больший срок службы (от 5 до 15 раз).
Недостатки — более длительный запуск в основном у более дорогих типов, невозможность использования.
темнее и цена.
Люминесцентные лампы обычно доступны в следующих цветовых температурах:
- Теплый белый (2700K)
- Холодный белый (4000K)
- Дневной свет (6000K)
Чаще всего встречается «теплый белый», близкий к классической лампочке и который
людям больше всего нравится.Компактная люминесцентная лампа использует вакуумную трубку, аналогичную классической ленточной лампе, и
Принцип преобразования энергии в свет такой же. Трубка имеет на обоих концах
два электрода покрыты барием. Катод имеет высокую температуру около
900 градусов Цельсия и генерирует много электронов, которые ускоряются
напряжение между электродами и удары атомов аргона и ртути.
Возникает низкотемпературная плазма.
Избыточная энергия ртути излучается в форме ультрафиолета. Внутренняя сторона трубки
облицован люминофором, который преобразует ультрафиолетовый свет в видимый свет.Трубка питается от переменного тока, поэтому электроды работают нормально.
(катод и анод) все еще меняются.
Потому что здесь используется переключаемый преобразователь, который работает на десятки килогерц,
эта лампа CFL не «мигает» по сравнению с классической лампой с ленточной трубкой.
Преобразователь, который присутствует в навинчивающейся крышке, заменяет классический балласт
со стартером.
Электротехническое строительство
Мы объясним принцип действия лампы LUXAR 11W.
Схема содержит секцию питания, в которую входит подавитель помех L2,
предохранитель F1, мостовой выпрямитель из диодов 1N4007 и фильтрующий конденсатор С4.Начальный раздел включает D1, C2, R6 и diac.
D2, D3, R1, R3 имеют функцию защиты.
Другие части имеют нормальную работу.
Пуск лампы
R6, C2 и DIAC создают первый импульс на базе транзистора Q2 и вызывают
его открытие. После запуска блокируется этот участок диодом D1. После каждого
открытие Q2 разряжается C2.
Невозможно собрать достаточно энергии для повторного открытия диак.
Далее идут транзисторы, возбуждаемые очень маленьким трансформатором TR1.
Он состоит из ферритового кольца с тремя обмотками (от 5 до 10 витков).Теперь накаливания питаются через конденсатор C3 от скачков напряжения от
резонансный контур от L1, TR1, C3 и C6.
Чем загорается трубка, это резонансная частота, заданная емкостью C3,
потому что у него емкость намного меньше, чем у С6.
В этот момент напряжение на C3 превышает 600 В по отношению к использованной лампе.
Во время пуска пиковый ток коллектора примерно в 3-5 раз больше, чем
во время нормальной работы. Когда трубка повреждена, возникает опасность
разрушения транзистора.
Нормальный режим работы
Когда газ ионизируется в трубе, C3 будет практически закорочен и спасибо
до этой частоты понижается и чейнджер теперь управляется только С6 и чейнджером
генерирует гораздо более низкое напряжение, но достаточное, чтобы свет оставался включенным.В нормальной ситуации, когда транзистор открывается, ток на TR1 увеличивается.
пока его ядро не будет насыщено, а затем его обратная связь с базой не исчезнет и
транзистор закрывается. Теперь открывается второй транзистор, который возбуждается
обратно подключил обмотку TR1 и весь процесс повторяется.
Отказы
Обычная неисправность — это обрыв конденсатора С3. можно в основном у дешевых ламп,
где используются более дешевые компоненты для более низкого напряжения. Точить трубу не надо
загорается вовремя, есть риск вывести из строя транзисторы Q1 и Q2 и следующие
резисторы R1, R2, R3 и R5.При включении лампы монетоприемник сильно перегружен
а транзисторы обычно не выдерживают более длительных температурных перегрузок.
Когда труба выходит из строя, обычно разрушается и электроника.
Когда труба старая, одна из нитей может перегореть, а лампа не перегорела.
загорается больше. Электроника обычно выживает.
Иногда может произойти разрыв трубы из-за внутреннего напряжения и перепада температур.
Чаще всего лампа выходит из строя при включении.
Ремонт электроники
Ремонт электроники обычно подразумевает замену конденсатора С3, если он сломан.При сгорании предохранителя, вероятно, выйдут из строя транзисторы Q1, Q2 и
резисторы R1, R2, R3, R5. Вы можете заменить предохранитель резистором 0R5.
Неудачи можно умножить. Например, при коротком замыкании конденсатора может произойти
будут термически перегружены транзисторы и будут разрушены.
Лучшими транзисторами для замены оригинальных типов являются MJE13003, но это не так.
их легко найти. Я заменил их на BD129, но их сейчас нет в наличии.
Существуют и другие варианты, такие как 2SC2611, 2SC2482, BD128, BD127, но я
не уверен, будут ли они долговечными.Оригинальных транзисторов на нашем рынке нет. Если не имеет значения размер
В корпусе TO220 можно использовать транзисторы MJE13007.
Механическая конструкция
Лампа обычно состоит из двух частей.
Один из них — пластиковая крышка с отверстиями для трубки и купюр.
К нему прилипает трубка.
Вторая, гораздо более крупная деталь, с внутренней стороны имеет прорези для купюр.
Внутри находится печатная плата с компонентами и проводами от трубки.
С верхней стороны печатной платы проходят провода к верхней части лампы, где припаиваются
или проштампованный к контакту.Обе пластиковые детали защелкиваются на себе и иногда приклеиваются.
Обычно вы можете осторожно использовать небольшую отвертку, чтобы закруглить
в зазор между двумя пластиковыми деталями для выхода клея.
Затем вы должны усилить открывающуюся лампу.
Для закрытия лампы достаточно защелкнуть обе пластмассовые детали к себе.
Посмотрите фото раскрытой лампы.
Рассмотрение
В большинстве этих компактных люминесцентных ламп используется такая же или очень похожая проводка.
в более дорогих лампах используется немного сложная разводка с подогревом электродов
и благодаря этому они имеют более длительный срок службы.Ремонт этих ламп не окупается, потому что цены на более дешевые модели слишком высоки.
сейчас очень низко, а цена человеческого труда намного выше.
Электросхемы возникают при ремонте ламп и они только
для учебы или ремонта.
Информация взята из поиска ламп и из источников в разделе ссылок.
Ссылки
Схемы и фото
Биглуз 20Вт
В компактной люминесцентной лампе Bigluz 20W используется классическая схема подключения с небольшими изменениями.
Значения деталей изменены для большей мощности.
Фото вскрытой лампы Биглуз 20Вт.
Изотроник 11Вт
В лампе Isotronic 11W используется немного измененная проводка, там, где нет запуска
схема с диак. Лампа заводится наверное благодаря конденсатору С1.
Luxtek 8 Вт
В лампе Luxtek 8W используется классическая проводка с небольшими изменениями.
Интересен только термистор, который, вероятно, запускает зажигание и нить накаливания.
предварительный нагрев.
Фотография платы с электроникой и верхней стороны крышки.
Maway 11 Вт
Лампа Maway 11W также использует другую проводку, как и лампа Isotronic.
Maxilux 15 Вт
В лампе Maxilux 15W используется классическая проводка.
Polaris 11W
Лампа Polaris 11W имеет небольшую резьбу и меняет некоторые значения компонентов.
Электропроводка классическая.
BrownieX 20 Вт
Лампа BrownieX 20W имеет упрощенную схему подключения, как у лампы Isotronic.
PHILIPS ECOTONE 11 Вт
Лампа PHILIPS ECOTONE 11W снова использует упрощенную схему подключения, как у лампы Isotronic.Эта лампа по сравнению с другими имеет правильные размеры компонентов, что электроника
наверное проживет дольше. Электропроводка менее обманчива, чем у других. Имеет катушку L2
для блокировки ВЧ помех и конденсатор С1 на напряжение 1200В, что
очень сильно подчеркнул. Трубка превосходит безымянные типы.
Цвет свечения «теплый белый» дает свет классической лампочки и не имеет маленькой
розовый тон как у других. Трубка немного длиннее и намного светлее по сравнению
к другим типам 11W. Все эти лампы, которые у меня есть из нескольких серий, имеют
идентичный цветовой тон и яркость.По сравнению с лампами MAWAY, где каждый элемент имеет разный цветовой тон, некоторые
уничтожили электронику, у некоторых есть труба с пропавшим вакуумом и т. д.
Видно, что лампы от отмеченных производителей имеют гарантию
параметры и качество лучше, чем безымянный.
Фотография раскрытой лампы Philips.
ИКЕА 7Вт
Лампа IKEA 7W имеет классическую схему подключения, как у Luxar 11W.
Значения компонентов изменены на более низкую степень.
Детали имеют достаточно габаритное напряжение.Отказ перегорел одной из нитей.
Лампа проработала непрерывно один год, то есть более 8500 часов.
Срок службы соответствует данным на этикетке.
Фотография раскрытой лампы IKEA 7W
OSRAM DULUX EL 11W
Лампа OSRAM DULUX EL 11W снова имеет классическую схему подключения с небольшими изменениями.
Она небольшая нить и была полностью работоспособна.
OSRAM DULUX EL 21W
Лампа OSRAM DULUX EL 21W имеет классическую схему подключения.В отличие от предыдущего
Лампа OSRAM не имеет термистора для медленного запуска. Она сожгла одного
нить.
ЕВРОЛИТ 23Вт
Лампа EUROLITE 23W имеет классическую схему подключения. За схемы спасибо Марду.
SINECAN 5 2x 26-30 Вт
Электронный балласт SINECAN 5 для двух люминесцентных ламп имеет идентичную схему
как и большинство компактных люминесцентных ламп. Небольшая разница в питании
лампы перед диодом D6 и разводка пусковых конденсаторов C10 и C11 около ламп.Я не понимаю, почему это так устроено. Балласт не имеет
предохранитель, но только из тонкой проволоки. Балласт сломался из-за продувки электролита.
конденсаторы. Он ломает транзисторы и резисторы R3, R4, R5 и R6.
Фотосъемка открытого балласта.
НЕМЕДЛЕННО 25Вт
Эта лампочка интересна только мощностью 25Вт. Схема классическая.
PHILIPS GENIE 11W
Лампы Philips Genie я использую уже много лет.Я ими доволен.
Их преимущество — очень компактный размер трубки, позволяющий устанавливать
в лампу с небольшим пространством для лампы. Загорается сразу после включения.
Никакого негативного влияния на их продолжительность жизни я не заметил.
Разобрал лампочку.
PHILIPS GENIE 14 Вт
Эта лампа имеет почти такую же схему, что и их вариант 11 Вт. Имеет два
дополнительная защита диодные D6 и D7. Значения нескольких компонентов немного
измененный.Транзисторы более мощные типа 13003.
Пусковой балласт Landlite EBCF-127-120V-LPF 27W
Нуно Сусена Алмейда успешно отремонтировал электронный балласт и прислал мне свой
схемы, которые я вам сейчас показываю. Схема очень похожа на многие другие
балласты для ламп. Интересным для меня является использование удвоителя напряжения, т.к. лампа
рассчитан на 120 В, но электроника рассчитана на 230 В. Вот оригинальная авторская статья:
http://slug.blog.aeminium.org/2012/03/01/electronic-ballast-repair/
OSRAM DULUX STAR MINI TWIST 11W
Следующая лампа с классическим дизайном.Интересна только его миниатюрная конструкция.
Оборвалась одна тепловая нить.
Лампа OSRAM в разобранном виде.
Как работают люминесцентные лампы
Как работают люминесцентные лампы
Elliott Sound Products | Как работают люминесцентные лампы |
© 2007 Род Эллиотт (ESP)
Лампы и энергетический индекс
Основной указатель
Содержание
1 Введение
Статья «Традиционные люминесцентные ламповые лампы и их альтернативы» рассматривает работу люминесцентных ламп в довольно простых терминах, но здесь мы рассмотрим лампы и их балласты (как «традиционные» магнитные, так и электронные) и немного углубимся в их внутреннюю часть. выработки.Используются альтернативные схемы балласта (например, схема «опережение / запаздывание»), и это показано в предыдущей статье. Здесь это не рассматривается, потому что речь идет о том, как они работают, а не о способе подключения фитингов.
Принцип работы люминесцентной лампы сильно отличается от простой лампы накаливания, и современные люминесцентные лампы (особенно компактные люминесцентные лампы или КЛЛ) используют электронные балласты для регулирования напряжения на лампе и тока через нее.При первом запуске необходимо обеспечить значительно более высокое напряжение, чем обычно, чтобы вызвать возникновение внутренней дуги, а после запуска ток должен быть ограничен до безопасного значения для трубки.
В этой статье показаны некоторые способы достижения этих целей, начиная с базового индуктивного балласта, который был основой производства люминесцентных ламп на протяжении многих лет.
Обратите внимание, что показанные здесь формы сигналов представляют собой комбинацию моделирования и реальных измерений.При необходимости смоделированные формы сигналов корректируются для соответствия измеренным. Причина этого подхода проста … симулятор не может представить нагрузку с отрицательным импедансом с соответствующими напряжениями удара и другими характеристиками, которые представляет люминесцентная лампа. Точно так же очень сложно (и потенциально смертельно) пытаться уловить все напряжения и токи, которые существуют в цепях реальных люминесцентных ламп.
Хотя принятый подход действительно вносит некоторые незначительные ошибки в показанные формы сигналов, они относительно незначительны, а конечный результат находится в пределах любого традиционного производственного допуска для балластов, ламп и других компонентов.
2 Индуктивный балласт
Для объяснения индуктивного балласта я использовал старую «компактную» люминесцентную лампу, которая идеально подходит для тестирования. Хотя он по-прежнему работает, световой поток несколько ниже, чем должен быть, но это лишь немного меняет некоторые измеренные значения. Принципы не меняются.
Сама лампа имеет следующие характеристики …
Диаметр трубки 11,3 мм (нестандартный) Длина 533 мм (21 дюйм) Сопротивление нити (в холодном состоянии) 12.8 Ом Сопротивление нити (горячее) 23 Ом Балластное сопротивление 105 Ом Балластная индуктивность Звезда 2,11 H 904 Starter 2,11 H 904 904 Starter Starter 1,2 нФ
Диаметр люминесцентных ламп обычно обозначается как T8 (например). Это означает, что диаметр равен 8 x 1/8 дюйма, что составляет 1 дюйм (25.4 мм). Ранние лампы были T12 (1½ дюйма или 38 мм в диаметре), но они были уменьшены в размерах до T8, когда были представлены (тогда) «новые» высокоэффективные типы. Стандартная 4-футовая трубка (1200 мм) раньше рассчитывалась на 40 Вт, но их замена была 36 Вт, а светоотдача была улучшена. Последнее воплощение — T5 (диаметр 16 мм), в котором используется меньшее расстояние между выводами и другой фитинг надгробной плиты. Они также короче (1163 мм) и не подходят для стандартного светильника. разработан для более ранних ламп.
В случае моего тестового образца диаметр трубки намного меньше обычного, потому что лампа обозначена как компактная, поэтому ее складывают, чтобы уменьшить общую длину.Упоминается сопротивление нити, потому что оно будет упомянуто позже в этой статье. Схема представлена ниже и является стандартной во всех отношениях.
Рисунок 1 — Схема люминесцентной лампы
Индуктор — это балласт, и на самом деле это гораздо более важный компонент, чем он может показаться. Он не только ограничивает максимальный ток трубки, но и используется для генерации импульсов высокого напряжения, необходимых для запуска плазменной дуги внутри трубки. Сама люминесцентная лампа имеет на каждом конце нагреватель, небольшое количество ртути и инертный газ (обычно аргон).Стенка трубки покрыта люминофором, излучающим видимый свет при возбуждении интенсивным коротковолновым ультрафиолетовым светом, излучаемым ртутным дуговым разрядом. Дополнительный конденсатор (C2) предназначен для коррекции коэффициента мощности — подробнее об этом позже.
Маленькая лампочка — стартер. Биметаллическая полоса запечатана в стеклянную оболочку с (обычно) неоновым газом внутри. При подаче питания напряжения более чем достаточно, чтобы вызвать дугу в неоновом пускателе, но не настолько, чтобы вызвать дугу в самой лампе.Тепло от неоновой дуги заставляет биметаллическую полосу изгибаться, пока она не замыкает контакты. Затем дуга в неоновом стартере прекращается, и сеть подключается через балласт и нити на каждом конце трубки через выключатель стартера.
Когда в пускателе нет дуги (или накаливания), биметаллическая полоса охлаждается, и примерно через секунду выключатель размыкается. Прерывание тока через катушку индуктивности вызывает возврат напряжения — импульс высокого напряжения, который (будем надеяться) зажжет дугу в трубке.Если дуга не запускается с первого раза, процесс повторяется до тех пор, пока не начнется. Вот почему стандартные люминесцентные лампы при включении несколько раз мигают. Нити — это нагреватели, которые действуют как катоды (эмиттеры электронов) и необходимы для обеспечения достаточного количества тепла для испарения ртути и обеспечения хорошего потока электронов для возбуждения плазмы. Когда лампа работает нормально, потока электронов достаточно для поддержания приемлемой рабочей температуры нити накала. Обе нити действуют как катоды и аноды поочередно, потому что полярность меняется 50 (или 60) раз в секунду.
Плазма имеет интересную характеристику … отрицательное сопротивление! Как только начинается дуга, более высокий рабочий ток вызывает падение сопротивления и меньшее напряжение появляется на трубке. Если бы это продолжалось, трубка очень быстро разрушилась бы. Балласт предотвращает это, потому что он вводит последовательный импеданс для ограничения тока. Сопротивление не сработает, потому что оно слишком расточительно и не обеспечивает накопления энергии для генерации всплеска обратного напряжения для повторного зажигания дуги при каждом изменении полярности.
Рисунок 2 — Рабочие кривые
На Рисунке 2 вы можете видеть, что когда ток трубки (зеленая кривая) максимален, напряжение (красная кривая) на трубке минимально. Эффект можно увидеть сразу после каждого скачка напряжения. По мере увеличения тока напряжение падает (для этой трубки минимум составлял ± 126 В). Пик в точке пересечения нуля формы волны тока генерируется балластом, и именно он повторно зажигает дугу для каждого полупериода подключенной сети.На рисунке 3 показано напряжение на балласте — быстрые переходы соответствуют пикам, приложенным к лампе, и происходят около пика напряжения, где ток прерывается, когда проходит через ноль.
Рисунок 3 — Напряжение и ток в балласте
Форма волны напряжения на балласте по существу представляет собой разницу между приложенным сетевым напряжением и напряжением на лампе. Для работы на 120 В напряжение явно меньше, но лампе все еще нужно где-то между 300-400 В, чтобы зажигать (или повторно зажигать) дугу, поэтому балласт должен иметь возможность компенсировать разницу с помощью обратного импульса на каждом нуле. -пересечение тока.У меня нет люминесцентной лампы или балласта на 120 В, поэтому я не могу предоставить полную информацию. То, что люминесцентные лампы вообще работают с напряжением 120 В, несколько примечательно, но легко понять, почему электронные балласты так популярны в США. Многие балласты для стран с напряжением 120 В используют «балласт» автотрансформатора, который увеличивает доступное напряжение и действует как ограничитель тока.
3 Системные потери
В системе несколько потерь, причем балласт является одним из основных факторов.Балласт, использованный в моих тестах, имеет сопротивление постоянному току 105 Ом, поэтому расходуется почти 7 Вт. Потери на самом деле выше, потому что стальные листы очень быстро нагреваются, поэтому «потери в железе» значительны. Это можно уменьшить только за счет использования стали более высокого качества и более тонких листов. Оба значительно увеличат стоимость.
Каждая нить накала имеет горячее сопротивление 23 Ом, а напряжение почти 6 В присутствует на каждой нити во время работы лампы. Помните, что во время работы конец нити накала, идущий к стартеру, отключается (за исключением очень маленькой емкости на стартере).Измеренное напряжение представляет собой градиент, вызванный током плазмы, и каждая нить накала рассеивает около 1,5 Вт (всего 3 Вт). Только в этих компонентах люминесцентная лампа расходует 10 Вт подаваемой мощности в виде тепла (7 Вт для балласта, 3 Вт для нити накала).
Хотя отходы балласта можно уменьшить с помощью более качественного блока, потеря накала необходимы для работы лампы. Это относится ко всем люминесцентным лампам, кроме специализированных типов с холодным катодом, но для них требуется такой же специализированный электронный балласт.CCFL (люминесцентные лампы с холодным катодом) чаще всего встречаются в ЖК-мониторах и телевизорах, но теперь их заменяют светодиоды в новых моделях.
Есть еще одна потеря, которую пользователь не видит и даже не оплачивает. Эти потери являются результатом низкого коэффициента мощности люминесцентных ламп, и это вызвано преимущественно индуктивной нагрузкой. Индуктивная нагрузка вызывает запаздывающий коэффициент мощности, когда максимальный ток возникает после максимального напряжения. Вы также можете рассматривать это как точку, в которой нагрузка (лампа и индуктор) фактически возвращает некоторую мощность источнику питания.Для поставщика электроэнергии это означает, что трансформаторы, кабели и генераторы переменного тока должны выдерживать больший ток, чем должен быть. Это становится очень дорогостоящим, когда очень много нагрузок имеют низкий коэффициент мощности.
Рисунок 4 — Напряжение Vs. Текущие, нескорректированные и исправленные
На рисунке 4 вы можете видеть, что нескорректированная форма волны тока имеет видимые искажения около точки пересечения нуля. Как вы также можете видеть, среднеквадратичный ток также значительно выше, чем указано в номинальной мощности.Реактивные нагрузки имеют разные значения мощности и ВА, но для резистивной (или нереактивной) нагрузки они одинаковы.
В этом случае ток без C2 составляет 256 мА, а при добавлении C2 он падает до 162 мА. При приложенном напряжении 240 В это означает, что …
Без компенсации Общая мощность = 38 Вт ВА = 61,4 Коэффициент мощности = 0,62 Компенсированный Общая мощность = 38 Вт ВА =.9 Коэффициент мощности = 0,97
Коэффициент мощности можно рассчитать, используя фазовую задержку или разделив фактическую мощность на ВА (Вольт * Ампер). Для угла сдвига по фазе ток отстает от напряжения на 57,4 °, а коэффициент мощности рассчитывается путем взятия косинуса фазового угла — 0,53 в данном случае. Цифры разные, потому что форма волны тока не является чистой синусоидой — она имеет искажения. Добавление конденсатора сдвигает фазу искажения, так что форма сигнала компенсированного тока становится плоской (что-то вроде ограничения усилителя).Хотя это вносит гармоники в сеть, их влияние далеко не так плохо, как в некомпенсированной цепи, о чем свидетельствует скорректированный коэффициент мощности. Добавление конденсатора правильного номинала в чисто индуктивную цепь (без искажения формы сигнала) даст коэффициент мощности, равный единице — идеальный вариант.
Обратите внимание, что использование косинуса фазового угла (CosΦ) является сокращением, и можно использовать только , когда оба напряжение и ток являются синусоидальными волнами.Он вообще не работает для сигналов с сильно искаженными формами, например, генерируемых электронными нагрузками, и даст неверный результат. ответ для индуктивных нагрузок, которые включают искажения (например, люминесцентные лампы). Вы получите , всегда получите правильный ответ, если разделите реальную мощность на ВА. |
Также доступны пускорегулирующие аппараты с «быстрым пуском» и пускорегулирующие устройства без стартера. Они выходят за рамки данной статьи, которая предназначена для описания основных принципов, а не для подробного описания всех имеющихся балластов люминесцентного освещения.
4 электронных балласта
Электронные балласты становятся все более распространенными, потому что их можно сделать более эффективными, чем типичный магнитный балласт, и для них требуется гораздо меньше материала. Это делает их дешевле (в изготовлении, но не обязательно для покупки вами), чем люминесцентные лампы с обычным балластом. В частности, теперь во всех компактных люминесцентных лампах (КЛЛ) используется электронный балласт, который обычно поставляется вместе с самой лампой. Хотя это удобно, это ужасная трата ресурсов, потому что все электронные компоненты просто выбрасываются, когда лампа выходит из строя.Лампы T5 в настоящее время становятся стандартом для люминесцентного освещения, и для максимального срока службы электронный балласт является обязательным.
В некоторой степени повышение эффективности по сравнению с магнитным балластом может быть иллюзией — по крайней мере, частично. Поскольку они намного легче, есть реальная и определенная экономия на транспортных расходах, но магнитные балласты могут быть такими же эффективными, как и электронная версия, а может быть, даже больше. Как бы то ни было, переход к электронным балластам сейчас не остановить, и по мере того, как цена снизится, их использование будет продолжать расти.У электронных балластов есть и другие преимущества, о которых мы поговорим позже.
Типовая (более или менее) принципиальная схема электронного балласта, используемого в КЛЛ, показана ниже. Те, которые используются для обычных люминесцентных ламп, будут очень похожи, но, как правило, будут использовать обновленные компоненты. В то время как электроника в КЛЛ может прослужить всего 15000 часов, фиксированный электронный балласт, как ожидается, прослужит около 100000 часов или более (более 10 лет непрерывной работы).На самом деле электронный балласт должен быть в состоянии прослужить столько же, сколько и его магнитный аналог, поэтому срок службы 40 лет не так глуп, как может показаться.
Рисунок 5 — Схема электронного балласта [2]
Схема на Рисунке 5 является немного упрощенной версией схемы, показанной в листе данных Infineon. Он полностью скорректирован по коэффициенту мощности и имеет защиту для обнаружения неисправных (или отсутствующих) ламп. Характерным режимом отказа люминесцентных ламп является «выпрямление», когда одна нить накала (катод) становится значительно слабее другой.Если не обнаружено, смещение постоянного тока приведет к отказу коммутирующих устройств, что сделает балласт бесполезным (маловероятно, что кто-то отремонтирует их, когда они выйдут из строя).
Электронный балласт действительно имеет ряд преимуществ перед магнитной версией. Поскольку дуга полностью погаснет примерно через 1 мс, при использовании более высокой частоты, чем сеть 50 или 60 Гц, дуга останется. Его не нужно наносить повторно, а просто меняет направление [1]. Кроме того, светоотдача увеличивается примерно на 10% выше 20 кГц, поэтому улучшается световая отдача.
До тех пор, пока все эти электронные балласты не будут скорректированы по коэффициенту мощности, они будут вызывать проблемы с распределением. К сожалению, во многих странах не требуется, чтобы приборы малой мощности (обычно менее 75 Вт) имели коррекцию коэффициента мощности, но, учитывая распространение КЛЛ и электронных балластов в обычных люминесцентных лампах, это придется изменить. Поскольку освещение используется в каждом доме, проблема неисправленного коэффициента мощности выйдет из-под контроля, если что-то не будет сделано.
В отличие от магнитного балласта (индуктора), коэффициент мощности электронного балласта нельзя скорректировать простым добавлением конденсатора. Как видно на диаграмме выше (хотя это может быть не сразу очевидно), на выходе входного мостового выпрямителя имеется очень маленький конденсатор емкостью 220 нФ. Первый полевой МОП-транзистор работает как повышающий преобразователь и переключается на протяжении каждого полупериода. Таким образом, среднеквадратичный ток, потребляемый из сети, поддерживается в фазе с напряжением, а форма волны тока является приблизительно синусоидальной.Это дает очень хороший коэффициент мощности — возможно лучше 0,9. Чтобы предотвратить возвращение высокоскоростных коммутационных импульсов в сеть, необходима обширная фильтрация, на что указывает фильтр EMI (электромагнитные помехи) на входе.
Для компактных люминесцентных ламп (КЛЛ) используется несколько более простая схема, так как схемы предназначены для выбрасывания. Лично я считаю это бессмысленным расточительством и надеюсь, что это не будет продолжаться (или, по крайней мере, будет введена переработка, чтобы восстановить как можно больше).Типичный инвертор CFL показан ниже …
Рисунок 6 — Типовая схема электронного балласта CFL
Я говорю «достаточно типичный», потому что реальные схемы сильно различаются. Доступны специализированные микросхемы драйверов MOSFET, но большинство дешевых (потребительских) CFL будут использовать вариант вышеупомянутого. Обратите внимание, что резистор 0,47 Ом, показанный на входе, обычно представляет собой плавкий резистор, и он используется в первую очередь в качестве предохранителя. Почему бы не использовать настоящий предохранитель? Резисторы дешевле.Большинство деталей будет выбрано таким образом, чтобы выжить в течение указанного срока службы лампы, поэтому передовые методы проектирования обычно игнорируются, если можно ожидать, что деталь с более низким номиналом (и более дешевая) прослужит около 10 000 часов.
Трансформатор (T1) обеспечивает обратную связь с транзисторами и генерирует базовый ток, необходимый для надежного переключения. Цикл инициируется DIAC — двунаправленным устройством, которое имеет резкий переход из непроводящего состояния в проводящее.Поскольку он имеет характеристики, очень похожие на устройство с отрицательным импедансом, его часто используют в диммерах, люминесцентных балластах и даже в стробоскопах. Для получения дополнительной информации щелкните здесь, чтобы перейти к руководству по DIAC.
Обратите внимание, что схемы, показанные выше, предназначены только для информации и не должны быть построены так, как показано. Некоторым компонентам требуются очень специфические характеристики, трансформаторы и катушки индуктивности имеют решающее значение. В схемах нет ничего неправильного, им просто не хватает всей информации, необходимой для их построения.Речь идет о том, как эти вещи работают, а не о том, как их построить.
5 Коэффициент мощности
Коэффициент мощности
не совсем понятен большинству энтузиастов электроники, и это вполне понятно, потому что он мало востребован в электронных схемах общего назначения. Есть аспекты коэффициента мощности, которые даже не понимают многие инженеры, которым следует знать лучше. Когда создаются несинусоидальные формы волны тока, даже многие инженеры делают двойную попытку, потому что они не могут быть использованы для работы с электронными нагрузками.Я рассмотрю здесь оба случая, а также намереваюсь показать методы пассивной и активной коррекции коэффициента мощности. Хотя пассивный PFC (коррекция коэффициента мощности) привлекает своей простотой, на самом деле он оказывается более дорогим из-за необходимости в большой катушке индуктивности. Активный PFC кажется сложным (и это действительно так, если вам нужно его спроектировать), но однажды спроектированный использует относительно дешевые компоненты.
Самый простой случай — индуктивная нагрузка. Это относится ко многим электрическим машинам, включая двигатели, трансформаторы и (конечно) балласты люминесцентного освещения (магнитные типы).Когда двигатель или трансформатор полностью нагружены, он проявляет себя как резистивная нагрузка и имеет отличный коэффициент мощности. При малых нагрузках эта же часть оказывается индуктивной, и это приводит к отставанию тока от напряжения. Если нагрузка работает в этом режиме большую часть своего срока службы, необходимо применить поправку, чтобы вернуть PF как можно ближе к единице.
Коэффициент мощности резистивной нагрузки , всегда единица — это идеально. Каждый вольт и каждый ампер используются для выработки тепла.Распространенными примерами являются электрические обогреватели, тостеры, чайники и лампы накаливания. Не все нагрузки резистивные, поэтому давайте рассмотрим типичный пример (но упрощенный для простоты описания и понимания).
Электрическая машина обычно работает с половинной нагрузкой, но может потребоваться полная мощность при запуске или для работы с переходными нагрузками. Это может быть двигатель или трансформатор — две из наиболее распространенных используемых электрических машин (люминесцентная лампа с магнитным балластом немного сложнее).В каждом случае индуктивная и резистивная составляющие нагрузки будут равны (для половинной мощности), а формы сигналов напряжения, тока и мощности выглядят следующим образом …
Рисунок 7 — Электрическая машина на половинной мощности
Как и ожидалось, когда резистивная и индуктивная составляющие равны, наблюдается сдвиг фазы на 45 °, при этом ток отстает от напряжения (запаздывающий коэффициент мощности). Приложенное напряжение — 240 В, резистивная часть нагрузки — 120 Ом, индуктивное реактивное сопротивление — также 120 Ом, мощность — 240 Вт.Мы должны использовать 1 А от сети (240 В x 1 А = 240 Вт), а вместо этого потреблять 1,414 А. Дополнительный ток необходимо подавать, но он полностью расходуется впустую. Что ж, это не совсем так — его возвращают в сеть. Однако, если многие нагрузки делают то же самое, то оно просто рассеивается в виде тепла в трансформаторах, линиях электропередачи и генераторах электростанций. Очень мало реальных нагрузок являются емкостными, поэтому в схему добавляется конденсатор.
При фазовом сдвиге 45 ° коэффициент мощности равен 0.707, и мы получаем 1,42 А от сети вместо 1 А. Чтобы восстановить ток так, чтобы он был в фазе с напряжением, нам нужно добавить в схему конденсатор. Конденсатор фактически противоположен катушке индуктивности и (сам по себе) будет создавать ведущий коэффициент мощности — ток будет предшествовать напряжению. Добавив в схему конденсатор нужного номинала, коэффициент мощности можно восстановить до единицы, что приведет к значительному снижению тока, потребляемого из сети. Для этого примера 13 мкФ почти идеальны, но даже 10 мкФ уменьшат фазовый сдвиг запаздывания до 14.2 °, и это увеличивает коэффициент мощности до 0,96 — обычно считается максимально близким к идеальному.
Весь процесс несколько нелогичен. То, что нагрузка может потреблять больше тока, чем должно быть, достаточно легко понять, но то, что повторное прохождение большего тока через конденсатор уменьшит сетевой ток, кажется, не имеет никакого смысла. Все дело в относительной фазе двух токов, и это действительно работает. В противном случае наша энергосистема оказалась бы в крайне тяжелом положении.
Рисунок 8 — Флуоресцентный свет при нормальной работе
На несколько упрощенной диаграмме выше показаны формы сигналов напряжения и тока люминесцентной лампы. Упрощение состоит в том, что симуляторы не включают в себя нелинейные нагрузки с отрицательным сопротивлением, но на основной принцип (и результирующие формы сигналов) это существенно не влияет. Как видите, форма сигнала тока слегка искажена, и это влияет на форму сигнала после применения компенсации. Фактически, гармоники, генерируемые искажением, сдвинуты по фазе, поэтому окончательная форма волны тока выглядит как обрезанная синусоида.Однако после компенсации коэффициент мощности очень хороший, 0,98 — отличный результат.
Без компенсации потребляемый ток составляет 276,5 мА (что дает коэффициент мощности 0,57), а после компенсации он падает до 159,5 мА. Мощность в нагрузке (сама лампа) составляет 29,8 Вт, а резистивный компонент балласта (R1) рассеивает 7,8 Вт — это теряется в виде тепла. Все потраченное впустую тепло снижает общую эффективность, но это неизбежно, поскольку реальные компоненты имеют реальные потери.
Ситуация становится намного хуже, когда используется нелинейная (электронная) нагрузка.На рисунке 9 показаны эквивалентная схема и осциллограммы — ток протекает только на пике приложенного напряжения. Хотя этот ток находится в фазе с напряжением, коэффициент мощности ужасен, потому что форма волны тока не похожа на синусоиду. Резкие пики тока имеют сравнительно высокое среднеквадратичное значение, но мощность, подаваемая и передаваемая в нагрузку, намного меньше.
Рисунок 9 — Осциллограммы мощности электронной нагрузки
Скорректированный ток не показан по той простой причине, что для коррекции формы сигнала необходимы значительные дополнительные компоненты.В отличие от случая, когда ток нагрузки является синусоидальным (или близок к нему), простое добавление конденсатора ничего полезного не принесет. Пики тока таковы, что их можно удалить только с помощью фильтра, предназначенного для пропускания только частоты сети. Как показано, ток составляет 296 мА, но, как видно, пиковое значение составляет почти 2 А. Нагрузка рассеивает 28 Вт, но «полная мощность» (ВА) составляет 71,4 ВА. Это дает коэффициент мощности 0,39 — действительно очень плохо. Если вам интересно, куда пропала разница в 1 Вт между источником и нагрузкой, она теряется в диодах.
Добавив фильтр (пассивный PFC), состоящий из катушки индуктивности и пары конденсаторов, это можно улучшить, но требование относительно большой индуктивности значительно увеличивает вес и стоимость. Один Генри примерно настолько мал, насколько вы можете использовать для определения номинальной мощности нагрузки, и хотя большее значение будет работать лучше, оно также будет снова больше, а также будет иметь более высокие потери. По этим причинам пассивная коррекция коэффициента мощности обычно не используется с импульсными источниками питания.
Рисунок 10 — Пассивная коррекция коэффициента мощности
За счет добавления катушки индуктивности и конденсатора, как показано на рисунке, коэффициент мощности значительно повышается.Форма волны тока все еще не очень хорошая, но намного лучше, чем схема без коррекции. Среднеквадратичный ток снижен с 296 мА до 136 мА, что дает 32,6 ВА. Мощность нагрузки составляет 29 Вт, поэтому коэффициент мощности теперь составляет 0,88, что намного более достойно. Как показано на рисунке 9, электроника считается практически без потерь. Излишне говорить, что это не так, но речь идет скорее о PFC, чем о потерях в цепи.
Катушка индуктивности (L1) представляет собой относительно большой компонент, и из-за этого будет сравнительно дорогим.Для снижения стоимости и веса лучше использовать электронную схему коррекции коэффициента мощности, и она также будет более эффективной. Меньшие потери мощности означают меньше потерь тепла и более прохладную электронику.
Рисунок 11 — Схема активной коррекции коэффициента мощности
Схема, показанная здесь, почти идентична схеме на рисунке 5, но упрощена, чтобы ее было легче понять. Входящая сеть проходит через фильтр электромагнитных помех, состоящий из C1 и L1. Затем он идет на мостовой выпрямитель, но вместо большого электролитического конденсатора все, что нужно, — конденсатор 220 нФ (C2).Выходной сигнал является пульсирующим постоянным током и изменяется от почти нуля до полного пикового напряжения (340 В для источника питания 240 В RMS). Затем он передается на очень умный повышающий преобразователь режима переключения — L2, Q1 и D5. Это увеличивает любое мгновенное напряжение на его входе до пикового напряжения — в этом случае моделируемый преобразователь стабилизируется на уровне 446 В (несколько выше, чем обычно используется).
Время включения и выключения тщательно контролируется для поддержания тока, который пропорционален форме входящего переменного тока, поэтому рабочий цикл (отношение включения-выключения) постоянно изменяется для поддержания правильного повышенного напряжения и пропорционального тока.D6 включен для обеспечения быстрой зарядки крышки основного фильтра (C3) от сети, а также обеспечивает подзарядку крышки. Это позволяет упростить схему управления.
Выходное напряжение повышающего преобразователя (обычно) регулируется, но регулирование не обязательно должно быть прекрасным, что опять же в некоторой степени упрощает схему. В схеме, показанной на рисунке 5, вы видите, что катушка индуктивности повышающего преобразователя (1,58 мГн) имеет вторичную обмотку. Это используется, чтобы сообщить IC контроллера, когда был достигнут правильный ток.В упрощенной схеме, показанной на рисунке 11, это не используется — период переключения фиксирован (схема была смоделирована, чтобы я мог получить форму тока, показанную ниже). Хотя эта упрощенная версия не так хороша, как «настоящая», она работает довольно хорошо — по крайней мере, в симуляторе.
Рисунок 12 — Формы сигналов активной коррекции коэффициента мощности
Как видите, форма сигнала тока довольно искажена, но измеренные характеристики симулятора впечатляют, несмотря на его относительную простоту.При 60 Вт в нагрузке (балласт и люминесцентная лампа) фактическая мощность сети составляет 61 Вт (потери в диодах, как и раньше), а при сетевом токе 266 мА он потребляет 64 ВА. Таким образом, коэффициент мощности составляет 0,94 — действительно очень удовлетворительный результат. Это значительно лучше, чем схема пассивной коррекции коэффициента мощности, и этого следовало ожидать. Весь анализ, который я видел, показывает, что активная схема коррекции коэффициента мощности превосходит пассивную схему как с точки зрения общей эффективности, так и коэффициента мощности. Катушки индуктивности имеют небольшие размеры (электрически и физически), а потери будут намного ниже, чем в любой пассивной цепи PFC.
Если вам интересно, мощность лампы в два раза больше, чем в двух предыдущих примерах, из-за более высокого выходного напряжения повышающего преобразователя, чем желаемое. Мне очень не хотелось тратить много времени на попытки подобрать уровни мощности, а моя упрощенная версия не регулируется. Успешно запустить симуляцию для импульсного преобразователя было непросто, а симуляция требует много времени из-за высокочастотного переключения.
Сейчас довольно стандартно, что искажение формы волны обозначается как THD (полное гармоническое искажение), которое в случае активной схемы PFC равно 11.7%. Делайте из этого то, что хотите.
6 Температура
Для правильной работы всех ртутных люминесцентных ламп очень важна температура. Есть относительно узкая полоса над и под которой уменьшается дуга, что приводит к более низкому, чем ожидалось, светоотдаче. Когда трубка холодная, в ней остается меньше паров ртути, поэтому дуга не может достичь полной силы из-за недостатка молекул ртути для поддержания разряда на желаемом уровне.
Когда температура слишком высока, давление пара увеличивается, увеличивая эффективное сопротивление дуги и снова уменьшая ток разряда. Для большинства компактных ламп (а также, вероятно, большинства стандартных люминесцентных ламп) температура трубки должна быть около 40 ° C для максимальной светоотдачи. При 0 ° C светоотдача составляет всего 40% — действительно очень тусклая лампа. Более высокие температуры не так сильны, но слишком горячая лампа все равно будет сильно разряжена.
Рисунок 13 — Светоотдача в зависимости отТемпература
Когда температура приближается к -38,83 ° C, световой поток полностью прекращается. Это температура, при которой ртуть замерзает, поэтому пары ртути не могут поддерживать дугу и излучать УФ-излучение. Кроме того, при понижении температуры напряжение, необходимое для зажигания дуги, увеличивается, и при 0 ° C лампе для зажигания потребуется примерно на 40% больше напряжения по сравнению с напряжением зажигания при нормальной температуре окружающей среды.
Во многих частях света 0 ° C (или ниже) — это нормальная температура окружающей среды в течение многих месяцев в году, поэтому лампу будет труднее запустить, и она будет иметь низкую мощность, пока лампа не нагреется немного. .В таком климате трубку следует закрывать, чтобы защитить ее от ветра, который может значительно снизить температуру и светоотдачу.
Относительная светоотдача (RLO) [3] | ||
---|---|---|
Окружающая температура | Открытое приспособление | Закрытое приспособление * |
-10 ° C | 4 25% 50467 | |
0 ° C | 50% | 80% |
10 ° C | 80% | 100% |
25 ° C | 100% | 98% |
67
Светлый .Температура окружающей среды
* Примечание — закрытый светильник обеспечивает повышение температуры на + 10 ° C по сравнению с окружающей средой.
Как и все материалы по этой теме, существуют различия в способе подачи материала, и разные типы трубок могут существенно отличаться друг от друга. Цифры в основном согласуются с приведенным выше графиком, но небольшое примечание предполагает, что указанные температуры находятся в состоянии теплового равновесия. Для стабилизации может потребоваться некоторое время, поэтому исходная светоотдача при первом включении лампы будет одинаковой для открытых и закрытых светильников.Поскольку объем светильника по отношению к лампе не указан, будут большие отклонения, если размер корпуса больше или меньше (неустановленных) значений, используемых в таблице.
Ссылки
- Электронный балласт для люминесцентных ламп, учебный модуль для студентов — Цзинхай Чжоу, Политехнический институт и университет штата Вирджиния
- ICB1FL02G Интеллектуальная ИС управления балластом для балластов люминесцентных ламп, техническое описание, версия 1.