Пример расчета тока трехфазного к.з. в сети 0,4 кВ
Содержание
В данном примере будет рассматриваться расчет тока трехфазного короткого замыкания в сети 0,4 кВ для схемы представленной на рис.1.
Исходные данные:
1. Ток короткого замыкания на зажимах ВН трансформатора 6/0,4 кВ составляет — 11 кА.
2. Питающий трансформатор типа ТМ — 400, основные технические характеристики принимаются по тех. информации на трансформатор:
- номинальная мощностью Sн.т — 400 кВА;
- номинальное напряжение обмотки ВН Uн.т.ВН – 6 кВ;
- номинальное напряжение обмотки НН Uн.т.НН – 0,4 кВ;
- напряжение КЗ тр-ра Uк – 4,5%;
- мощность потерь КЗ в трансформаторе Рк – 5,5 кВт;
- группа соединений обмоток по ГОСТ 11677-75 – Y/Yн-0;
3. Трансформатор соединен со сборкой 400 В, алюминиевыми шинами типа АД31Т по ГОСТ 15176-89 сечением 50х5 мм. Шины расположены в одной плоскости — вертикально, расстояние между ними 200 мм. Общая длина шин от выводов трансформатора до вводного автомата QF1 составляет 15 м.
4. На стороне 0,4 кВ установлен вводной автомат типа XS1250CE1000
на 1000 А (фирмы SOCOMEC), на отходящих линиях установлены автоматические выключатели типа E250SCF200 на 200 А (фирмы SOCOMEC) и трансформаторы тока типа ТСА 22 200/5 с классом точности 1 (фирмы SOCOMEC).
5. Кабельная линия выполнена алюминиевым кабелем марки АВВГнг сечением 3х70+1х35.
Решение
Для того, чтобы рассчитать токи КЗ, мы сначала должны составить схему замещения, которая состоит из всех сопротивлений цепи КЗ, после этого, определяем все сопротивления входящие в цепь КЗ. Активные и индуктивные сопротивления всех элементов схемы замещения выражаются в миллиомах (мОм).
В практических расчетах для упрощения расчетов токов к.з. учитывается только индуктивное сопротивление энергосистемы, которое равно полному. Активное сопротивление не учитывается, данные упрощения на точность расчетов – не влияют!
1. 1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]:
1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]:
2.1 Определяем полное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-8 [Л1. с. 28]:
2.2 Определяем активное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-9 [Л1. с. 28]:
2.3 Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-10 [Л1. с. 28]:
Для упрощения расчетов можно воспользоваться таблицей 2.4 [Л1. с. 28], как видно из результатов расчетов, активные и индуктивные сопротивления совпадают со значениями таблицы 2.4.
3.1 Определяем индуктивное сопротивление алюминиевых прямоугольных шин типа АД31Т сечением 50х5 по выражению 2-12 [Л1. с. 29]:
3.1.1 Определяем среднее геометрическое расстояние между фазами 1, 2 и 3:
3. 2 По таблице 2.6 определяем активное погонное сопротивление для алюминиевой шины сечением 50х5, где rуд. = 0,142 мОм/м.
Для упрощения расчетов, значения сопротивлений шин и шинопроводов, можно применять из таблицы 2.6 и 2.7 [Л1. с. 31].
3.3 Определяем сопротивление шин, учитывая длину от трансформатора ТМ-400 до РУ-0,4 кВ:
4.1 Определяем активное и индуктивное сопротивление кабелей по выражению 2-11 [Л1. с. 29]:
Значения активных и индуктивных сопротивлений обмоток для одного трансформатора тока типа ТСА 22 200/5 с классом точности 1, определяем по приложению 5 таблица 20 ГОСТ 28249-93, соответственно rта = 0,67 мОм, хта = 0,42 мОм.
Активным и индуктивным сопротивлением одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.
Согласно [Л1. с. 32] для упрощения расчетов, сопротивления трансформаторов тока не учитывают ввиду почти незаметного влияния на токи КЗ.
Определяем активное сопротивление контактов по приложению 4 таблица 19 ГОСТ 28249-93:
- для рубильника на ток 1000 А – rав1 = 0,12 мОм;
- для автоматического выключателя на ток 200 А — rав2 = 0,60 мОм.
Для упрощения расчетов, сопротивления контактных соединений кабелей и шинопроводов, я пренебрегаю, ввиду почти незаметного влияния на токи КЗ.
Если же вы будете использовать в своем расчете ТКЗ значения сопротивления контактных соединений кабелей и шинопроводов, то они принимаются по приложению 4 таблицы 17,18 ГОСТ 28249-93.
При приближенном учете сопротивлений контактов принимают:
- rк = 0,1 мОм — для контактных соединений кабелей;
- rк = 0,01 мОм — для шинопроводов.
8.1 Определяем ток трехфазного к.з. в конце кабельной линии:
1. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
2. Голубев М. Л. Расчет токов короткого замыкания в электросетях 0,4 — 35 кВ. 2-e изд. 1980 г.
3. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
Всего наилучшего! До новых встреч на сайте Raschet.info.
Поделиться в социальных сетях
Расчет токов короткого замыкания (КЗ), пример, методические пособия
В этой статье мы ниже рассмотривает пример расчет из курсового проекта тока КЗ. Скажем сразу, расчетов токов КЗ целое исскуство, и если Вам необходимо рассчитать токи КЗ для реальных электроустановок, то лучше скачать следующие методические пособия разработанные Петербурским энергетическим университетом повышения квалификации и всё сделать по ним.
И так:
1. И.Л. Небрат. Расчеты токов короткого замыкания в сетях 0,4 кв — скачать;
2.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 1 — скачать;
3.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 2 — скачать.
Так же полезно будет иметь под рукой программы, которые помогут Вам точно расчитать токи КЗ. Данных программ в настоящее время много и Вы можете найти большое количество различного софта в интернете, на который Вы можете потратить от часа до нескольких дней, чтобы разобраться как в нём работать. Ниже я выложу перечень программ в файле ворд, в котором указаны производители программ и как и где их можно получить (ссылок на скачивание в файле нет). А также выложу одну программу для расчета токов КЗ в сетях 0.4кВ. Данная программа очень древняя, но и такая же надежная как весь совеский аэрофлот. Работает из под DOSa. Эмулятор в файле скачивания. И так:
1. Переченьпрограмм расчетов ТКЗ и уставок РЗ (если Вы знаете какие-то другие программы, то пишите на pue8(г а в)mail.ru). Мы их включим в перечень.;
2. Программа для расчета токов КЗ в сетях 0.4 кВ.
Если Вам необходим расчет для курсового проекта или учебного задания, то ниже приведен не большой расчет, который в этом Вам поможет.
В задании к курсовому проекту приводятся данные об эквивалентных параметрах сети со стороны высшего напряжения рабочих трансформаторов СН (ТСН) и со стороны высшего напряжения резервных трансформаторов СН (РТСН). В соответствии с рис.2.1, приводятся: ток КЗ на ответвлении к ТСН (3) по I , кА при номинальном напряжении генератора Uгн, кВ или эквивалентное сопротивление сети со стороны ВН ТСН ТСН э X , Ом. Имеет место следующая зависимость:
Рис.2.1. Расчетная схема для определения токов КЗ при расположении точек КЗ на секциях СН 6(10) кВ и 0,4(0,69) кВ.
Для резервных трансформаторов СН задается ток к.з. на шинах ОРУ в точке включения РТСН (3) по I , кА при среднеэксплуатационном напряжении ОРУ ср U , кВ или эквивалентное сопротивление системы в точке включения РТСН РТСН э Х , Ом:
Учитывается возможность секционирования с помощью токоограничивающих реакторов секций РУСН-6 кВ. Это дает возможность применить на секциях за реактором более дешевые ячейки КРУ с меньшими токами термической и электродинамической стойкости и меньшим номинальным током отключения, чем на секциях до реактора, и кабели с меньшим сечением токопроводящих жил.
Расчет ведется по среднеэксплуатационным напряжениям, равным в зависимости от номинального напряжения 1150; 750; 515; 340; 230; 154; 115; 37; 24; 20; 18; 15,75; 13,8; 10,5; 6,3; 3,15; 0,66; 0,525; 0,4; 0,23, и среднеэксплуатационным коэффициентам трансформации. В учебном пособии расчеты по определению токов КЗ в относительных (базисных) единицах применительно к схеме Ленинградской АЭС с тремя системами напряжения (750, 330, 110 кВ) и напряжением 6,3 кВ проводились с учетом как действительных, так и среднеэксплуатационных коэффициентов трансформации трансформаторов и автотрансформаторов.
Показано, что расчет по среднеэксплуатационным напряжениям не вносит существенных корректировок в уровни токов КЗ. В то же время требуется серьезная вычислительная работа методом последовательных приближений, чтобы связать уровни напряжения генераторов, значения их реактивных мощностей с учетом коэффициента трансформации АТ связи, рабочих и резервных ТСН и напряжений на приёмных концах линий. При сокращении числа переключений трансформаторов и АТ связи с РПН из соображений надежности работы блоков задача выбора отпаек РПН становится менее актуальной.
Схемы замещения для точек КЗ на напряжениях 6,3 и 0,4 кВ приведены на рис.2.2.
Все сопротивления приводятся к базисным условиям и выражаются либо в относительных единицах (о. е.) либо в именованных (Ом). В начале расчета необходимо определиться, в каких единицах будут производиться вычисления, и сохранять данную систему единиц до конца расчетов. Методики определения токов КЗ с использованием относительных и именованных единиц равноправны.
В работе приводятся методики расчетов в относительных и в именованных единицах, как с учетом действительных коэффициентов трансформации, так и по среднеэксплуатационным напряжениям.
В работе приводятся расчеты как в относительных, так и в именованных единицах для простейших схем 0,4 кВ, где нужно учесть не только индуктивное, но и активное сопротивления.
Рис.2.2. Схема замещения в случае наличия реактора при питании секций 6(10) кВ СН: а – от рабочего ТСН; б – от резервного ТСН Для расчета в относительных единицах задают базисную мощность Sбаз, базисное напряжение Uбаз и вычисляют базисные токи Iбаз. В качестве базисной целесообразно принять номинальную мощность трансформатора СН: Sбаз = SТСН, МВА. Базисное напряжение принимают, как правило, равным для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ. Заметим, что при расчете в относительных единицах можно выбрать любые другие значения Sбаз, Uбаз.
Базисные токи в точках короткого замыкания К1 – К4, кА:
При расчетах в именованных единицах задают только базисное напряжение Uбаз – напряжение той точки, для которой рассчитываются токи КЗ: для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ.
Сопротивления сети в точках включения рабочего хсист1 и резервного хсист2 трансформаторов СН приводятся к базисным условиям по формулам:
в относительных единицах:
где uкв-н – напряжение короткого замыкания ТСН между обмоткой ВН и обмотками НН, включенными параллельно, о.е.;
uкн-н – напряжение короткого замыкания ТСН между обмотками НН, приведенное к половинной мощности ТСН, о.е.;
SТСН – номинальная мощность ТСН, МВА.
При использовании справочников для определения напряжения короткого замыкания uкн-н следует обращать внимание на указанный в примечаниях смысл каталожных обозначений. Если напряжение короткого замыкания uк НН1-НН2 отнесено в каталоге к номинальной мощности трансформатора, то данное uк НН1-НН2 необходимо пересчитать для половинной мощности, разделив на 2. В случае неверной подстановки в формулы (2.5), (2.5′) зачастую сопротивление хв получается отрицательным. Например, для ТСН марки ТРДНС-63000/35 в табл.3.5 справочника uкв-н = 12,7% и uкн-н = 40% отнесены к полной мощности трансформатора – см. примечание к таблице.
В этом случае в скобках формул (2.5), (2.5′) должно стоять выражение (0,127 – 20,2 ). Например, для РТСН марки ТРДН-32000/150 в табл.3.7 справочника uкв-н = 10,5% и uкн-н = 16,5% отнесены к половинной мощности трансформатора. При этом в скобках формул (2.5), (2.5′) должно быть (0,105 – 20,165 ). На блоках мощностью до 120 МВт используются двухобмоточные трансформаторы собственных нужд без расщепления. В этом случае сопротивление ТСН или РТСН вычисляется по формулам:
в относительных единицах:
где uкв-н – напряжение короткого замыкания трансформатора между обмотками высшего и низшего напряжений, о.е.;
Sбаз, SТСН, SРТСН имеют тот же смысл, что и в формулах (2.5), (2.5′), (2.6),(2.6′).
Сопротивление участка магистрали резервного питания:
в относительных единицах:
где Худ – удельное сопротивление МРП, Ом/км;
МРП – длина МРП, км;
Uср – среднеэксплуатационное напряжение на первой ступени трансформации, кВ.
Сопротивление трансформатора собственных нужд 6/0,4 кВ:
в относительных единицах:
где SТ 6/0,4 – номинальная мощность трансформатора, МВА.
Аналогично рассчитывается сопротивление трансформатора 10,5/0,69 кВ.
Сопротивление одинарных токоограничивающих реакторов Хр задается в Омах и для приведения к базисным условиям используют формулы:
в относительных единицах:
В некоторых каталогах сопротивление токоограничивающих реакторов Хр приводится в процентах и для приведения к базисным условиям используют формулы:
в относительных единицах:
где Iрн – номинальный ток реактора, кА, определяемый по мощности тех электродвигателей, которые предполагается включить за реактором.
Индуктивное сопротивление реактора Хр определяют по допустимому току КЗ за реактором Iп0доп. Значение Iп0доп связано с номинальным током отключения предполагаемых к установке за реактором выключателей (Iп0доп — Iоткл.н).
Одновременно происходит и снижение теплового импульса тока КЗ за реактором Вдоп, что благоприятно для выбора сечения кабелей по условиям термической стойкости и невозгорания. При определении Iп0доп и Вдоп следует учитывать, что реактор не в состоянии ограничить подпитку точки КЗ от двигателей за реактором Iпд0 и ухудшает условия их пуска и самозапуска, т.е.
где Iпс – периодическая составляющая тока подпитки точки КЗ от ветви, в которую предполагается включить реактор;
Iпд0 – ток подпитки от двигателей за реактором.
Потеря напряжения U в одинарном реакторе при протекании токов рабочего режима I:
Сопротивление эквивалентного двигателя на каждой секции определяется через его мощность или через коэффициент загрузки Кзгр и номинальную мощность трансформатора СН. При отсутствии токоограничивающего секционного реактора и использовании на первой ступени трансформатора с расщепленными обмотками имеем:
В случае различия расчетных мощностей двигательной нагрузки Sд1, Sд2, в дальнейшем расчете сопротивления эквивалентного двигателя будет участвовать максимальная из них, вне зависимости от способа питания секций 6,3 кВ (от рабочего и резервного ТСН).
При использовании секционного токоограничивающего реактора определяется его проходная мощность Sр по формуле (2.12) и далее – мощности двигателей:
при использовании РТСН для замены рабочего ТСН энергоблока, работающего на мощности. Наличие предварительной нагрузки РТСН характерно для блоков генератор-трансформатор без генераторных выключателей. При наличии выключателя в цепи генераторного токопровода, что предусмотрено действующими нормами технологического проектирования, пуск и останов энергоблока обычно осуществляется от рабочего ТСН и надобности в использовании РТСН в этих режимах не возникает. Поэтому для схем с генераторными выключателями можно принимать ТСН згр к = РТСН згр к = 0,7. При отсутствии выключателей в цепи генераторного токопровода РТСН згр к возрастает.
Наличие секционного токоограничивающего реактора приводит к изменению распределения двигателей по сравнению с вариантом без реактора и к изменению доли подпитки ими точек КЗ до и после реактора. При КЗ в точке К2 не следует учитывать подпитку от двигателей, включенных до реактора, а при КЗ в точке К1 не следует учитывать подпитку от двигателей, включенных за реактором.
По вычисленным мощностям двигателей Sд определяют приведенные сопротивления двигательной нагрузки в вариантах при отсутствии реактора и при его наличии:
в относительных единицах:
Расчет токов короткого замыкания | Заметки электрика
Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».
У меня на сайте есть статья про короткое замыкание и его последствия. Я в ней приводил случаи из своей практики.
Так вот чтобы минимизировать последствия от подобных аварий и инцидентов, необходимо правильно выбирать электрооборудование. Но чтобы его правильно выбрать, нужно уметь рассчитывать токи короткого замыкания.
В сегодняшней статье я покажу Вам как можно самостоятельно рассчитать ток короткого замыкания, или сокращенно ток к. з., на реальном примере.
Я понимаю, что многим из Вас нет необходимости производить расчеты, т.к. обычно этим занимаются, либо проектанты в организациях (фирмах), имеющих лицензию, либо студенты, которые пишут очередной курсовой или дипломный проект. Особенно понимаю последних, т.к. сам будучи студентом (в далеком двух тысячном году), очень жалел, что в сети не было подобных сайтов. Также данная публикация будет полезна энергетикам и электрикам для поднятия уровня саморазвития, или чтобы освежить в памяти когда-то прошедший материал.
Кстати, я уже приводил пример расчета защиты асинхронного двигателя. Кому интересно, то переходите по ссылочке и читайте.
Итак, перейдем к делу. Несколько дней назад у нас на предприятии случился пожар на кабельной трассе около цеховой сборки №10. Выгорел практически полностью кабельный лоток со всеми там идущими силовыми и контрольными кабелями. Вот фото с места происшествия.
Сильно вдаваться в «разбор полетов» я не буду, но у моего руководства возник вопрос о срабатывании вводного автоматического выключателя и соответствие его номинального тока для защищаемой линии. Простыми словами скажу, что их интересовала величина тока короткого замыкания в конце вводной силовой кабельной линии, т.е. в том месте, где случился пожар.
Естественно, что никакой проектной документации у цеховых электриков по расчетам токов к.з. на эту линию не нашлось, и мне пришлось самому производить весь расчет, который я выкладываю в общий доступ.
Сбор данных для расчета токов короткого замыкания
Силовая сборка №10, около которой случился пожар, питается через автоматический выключатель А3144 600 (А) медным кабелем СБГ (3х150) от понижающего трансформатора №1 10/0,5 (кВ) мощностью 1000 (кВА).
В скобках около марки кабеля указано количество жил и их сечение (как рассчитать сечение кабеля).
Не удивляйтесь, у нас на предприятии еще много действующих подстанций с изолированной нейтралью на 500 (В) и даже на 220 (В).
Скоро буду писать статью о том, как в сеть 220 (В) и 500 (В) с изолированной нейтралью установить счетчик. Не пропустите выход новой статьи — подпишитесь на получение новостей.
Понижающий трансформатор 10/0,5 (кВ) питается силовым кабелем ААШв (3х35) с высоковольтной распределительной подстанции № 20.
Некоторые уточнения для расчета тока короткого замыкания
Несколько слов хотелось бы сказать про сам процесс короткого замыкания. Во время короткого замыкания в цепи возникают переходные процессы, связанные с наличием в ней индуктивностей, препятствующих резкому изменению тока. В связи с этим ток к.з. во время переходного процесса можно разделить на 2 составляющие:
- периодическая (появляется в начальный момент и не снижается, пока электроустановка не отключится от защиты)
- апериодическая (появляется в начальный момент и быстро снижается до нуля после завершения переходного процесса)
Ток к.з. я буду расчитывать по РД 153-34.0-20.527-98.
В этом нормативном документе сказано, что расчет тока короткого замыкания допускается проводить приближенно, но при условии, что погрешность расчетов не составит больше 10%.
Расчет токов короткого замыкания я буду проводить в относительных единицах. Значения элементов схемы приближенно приведу к базисным условиям с учетом коэффициента трансформации силового трансформатора.
Цель — это проверить вводной автоматический выключатель А3144 с номинальным током 600 (А) на коммутационную способность. Для этого мне нужно определить ток трехфазного и двухфазного короткого замыкания в конце силовой кабельной линии.
Пример расчета токов короткого замыкания
Принимаем за основную ступень напряжение 10,5 (кВ) и задаемся базисной мощностью энергосистемы:
базисная мощность энергосистемы Sб = 100 (МВА)
базисное напряжение Uб1 = 10,5 (кВ)
ток короткого замыкания на сборных шинах подстанции №20 (по проекту) Iкз = 9,037 (кА)
Составляем расчетную схему электроснабжения.
На этой схеме указываем все элементы электрической цепи и их параметры. Также не забываем указать точку, в которой нам нужно найти ток короткого замыкания. На рисунке выше я ее забыл указать, поэтому объясню словами. Она находится сразу же после низковольтного кабеля СБГ (3х150) перед сборкой №10.
Затем составим схему замещения, заменив все элементы вышеприведенной схемы на активные и реактивные сопротивления.
При расчете периодической составляющей тока короткого замыкания допускается активное сопротивление кабельных и воздушных линий не учитывать. Для более точного расчета активное сопротивление на кабельных линиях я учту.
Зная, базисные мощности и напряжения, найдем базисные токи для каждой ступени трансформации:
Теперь нам нужно найти реактивное и активное сопротивление каждого элемента цепи в относительных единицах и вычислить общее эквивалентное сопротивление схемы замещения от источника питания (энергосистемы) до точки к.з. (выделена красной стрелкой).
Определим реактивное сопротивление эквивалентного источника (системы):
Определим реактивное сопротивление кабельной линии 10 (кВ):
- Хо — удельное индуктивное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А. А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
- l — длина кабельной линии (в километрах)
Определим активное сопротивление кабельной линии 10 (кВ):
- Rо — удельное активное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
- l — длина кабельной линии (в километрах)
Определим реактивное сопротивление двухобмоточного трансформатора 10/0,5 (кВ):
- uк% — напряжение короткого замыкания трансформатора 10/0,5 (кВ) мощностью 1000 (кВА), берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 27.6
Активным сопротивлением трансформатора я пренебрегаю, т.к. оно несоизмеримо мало по отношению к реактивному.
Определим реактивное сопротивление кабельной линии 0,5 (кВ):
- Хо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А. А. Федорова, табл. 61.11 (измеряется в Ом/км)
- l — длина кабельной линии (в километрах)
Определим активное сопротивление кабельной линии 0,5 (кВ):
- Rо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
- l — длина кабельной линии (в километрах)
Определим общее эквивалентное сопротивление от источника питания (энергосистемы) до точки к.з.:
Найдем периодическую составляющую тока трехфазного короткого замыкания:
Найдем периодическую составляющую тока двухфазного короткого замыкания:
Результаты расчета токов короткого замыкания
Итак, мы рассчитали ток двухфазного короткого замыкания в конце силовой кабельной линии напряжением 500 (В). Он составляет 10,766 (кА).
Вводной автоматический выключатель А3144 имеет номинальный ток 600 (А). Уставка электромагнитного расцепителя у него выставлена на 6000 (А) или 6 (кА). Поэтому можно сделать вывод, что при коротком замыкании в конце вводной кабельной линии (в моем примере по причине пожара) автомат уверенно сработал и отключил поврежденный участок цепи.
Еще полученные значения трехфазного и двухфазного токов можно применить для выбора уставок релейной защиты и автоматики.
В этой статье я не выполнил расчет на ударный ток при к.з.
P.S. Вышеприведенный расчет был отправлен моему руководству. Для приближенного расчета он вполне сгодится. Конечно же низкую сторону можно было рассчитать более подробно, учитывая сопротивление контактов автоматического выключателя, контактных соединений кабельных наконечников к шинам, сопротивление дуги в месте замыкания и т.п. Об этом я как-нибудь напишу в другой раз.
Если Вам нужен более точный расчет, то можете воспользоваться специальными программами на ПК. Их в интернете множество.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Расчет токов короткого замыкания: особенности процесса
Короткое замыкание между проводниками является опаснейшим явлением, как в электрической сети частного домовладения, так и в сложных разводках подстанций и питающих цепей мощного производственного оборудования. Короткое замыкание может стать причиной пожара и выхода из строя дорогостоящих электроприборов, поэтому расчёт токов короткого замыкания, является обязательным этапом перед осуществлением прокладки кабелей для различных потребителей электричества.
Кто занимается вычислением КЗ
Расчёт КЗ, производится квалифицированными специалистами, которые не только производят необходимые вычисления, но и несут ответственность за дальнейшую эксплуатацию электрического оборудования.
Домашние электрики также могут осуществить данные вычисления, но только при наличии начальных знаний о природе электричества, свойствах проводников и о роли диэлектриков, в их надёжной изоляции друг от друга.
При этом, полученный результат значения короткого замыкания, перед проведением электротехнических работ, необходимо перепроверить самостоятельно, либо воспользоваться услугами специализированных фирм, которые осуществляют данные вычисления на платной основе.
Как рассчитать ток короткого замыкания используя специальные формулы, будет подробно описано далее.
Особенности расчёта
Расчёт токов трёхфазного оборудования производится с применением специальных формул.
Если расчёт тока трёхфазного короткого замыкания, необходимо сделать для электрических сетей напряжением до 1000 В, то необходимо учитывать следующие нюансы при проведении расчётов:
- Трёхфазная система должна считаться симметричной.
- Питание трансформатора принимается за неизменяемую величину, равную его номинальному значению.
- Момент возникновения КЗ принято считать при максимальном значении силы тока.
- ЭДС источников питания, удалённых на значительное расстояния от участка электрической сети, где происходит КЗ.
Также при вычислении параметров КЗ необходимо правильно посчитать результирующее сопротивление проводника, но делать это необходимо через приведение единого значения мощности.
Если производить расчёт сопротивления стандартными формулами известными из курса физики, то можно допустить ошибки, по причине неодинакового номинального напряжения в момент возникновения короткого замыкания для различных участков электрической цепи. Выбор такой базисной мощности позволяет значительно упростить расчёты, и значительно повысить их точность.
Напряжение, при вычислении тока короткого замыкания также принято выбирать не исходя из номинального значения, а с превышением данного показателя на 5%. Например для электрической сети 380 В, базисное напряжение для расчёта токов короткого замыкания составит 0,4 кВ.
Для сети переменного тока наприряжением 220 В, базисное напряжение будет равно 231 В.
Формулы вычисления трёхфазного замыкания
Расчёт токов коротких замыканий в электроэнергетических системах трёхфазного электричества производится с учётом особенности возникновения данного процесса.
Из-за проявления индуктивности проводника, в котором происходит короткое замыкание, сила КЗ изменяется не мгновенно, а происходит нарастание данной величины по определённым законам. Чтобы методика расчёта токов короткого замыкания позволила произвести высокоточные вычисления, необходимо высчитать все основные величины вносимые в расчётные формулы.
Часто для этой цели требуется воспользоваться дополнительными формулами или специальным программным обеспечением. Современные возможности вычислительной техники, позволяют осуществлять сложнейшие операций в считанные секунды.
Методы расчёта токов короткого замыкания могут быть расширены применением специального программного обеспечения. В данном случае, может быть использована компьютерная программа, которая может быть написана любым квалифицированным программистом.
Если вычисление параметров КЗ в трёхфазной сети осуществляется вручную, то в для получения точного результата этого значения применяется формула:
где:
Хвн — сопротивление между точкой короткого замыкания и шинами.
Хсист — сопротивление всей системы по отношению к шинам источника.
Uс — напряжение на шинах системы.
Если какой-либо показатель отсутствует при проведении расчётов, то его можно высчитать применив для этого дополнительные формулы, или следует применить специальные программы для компьютера.
В том случае, когда расчёт КЗ, необходимо произвести для сложной разветвлённой сети, производится преобразование схемы замещения. Для максимально упрощения вычислений схема представляется с одним сопротивлением и источником электричества.
Для упрощения схемы необходимо:
- Сложить все показатели параллельно подключённого сопротивления электрических цепей.
- Сложить последовательно подключённые сопротивления.
- Вычислить результирующее сопротивлению, путём сложения всех параллельно и последовательно подключённых сопротивлений.
Расчёт однофазной сети
Расчет токов коротких замыканий в электроэнергетических системах однофазного напряжения допускает проведение упрощённых вычислений. Обычно, электроприборы тока однофазного не потребляют много электричества, и для надёжной защиты квартиры или дома от возникновения короткого замыкания, достаточно установить автоматический выключатель рассчитанный на величину срабатывания, равную 25 А.
Если требуется осуществить приблизительный расчёт однофазного короткого замыкания, то его производят по формуле:
где
Uf — напряжение фазы.
Zt — сопротивление трансформатора, при возникновении КЗ.
Zc — сопротивление между фазным и нулевым проводником.
Ik — однофазный ток короткого замыкания.
Вычисление параметров КЗ в однофазной цепи с использованием данной формулы производится с погрешностью до 10%, но в большинстве случаев этого достаточно для осуществления правильной защиты электрической сети.
Основным затруднением для получения данных рассчитанных по этой формуле, является сложность в получении значения Zc.
Если параметры проводника известны и переходные сопротивления также определены, то сопротивление между фазным и нулевым проводником рассчитывается по формуле:
где:
rf — активное сопротивление фазного провода, Ом;
rn — активное сопротивление нулевого провода, Ом;
ra — суммарное активное сопротивление контактов цепи фаза-нуль, Ом;
xf» — внутреннее индуктивное сопротивление фазного провода, Ом;
xn» — внутреннее индуктивное сопротивление нулевого провода, Ом;
x’ — внешнее индуктивное сопротивление цепи фаза-нуль, Ом.
Таким образом подставляя известные значения в формулы приведённые выше, легко найдём ток короткого замыкания для однофазной сети.
Вычисление параметров КЗ в однофазной сети осуществляется в такой последовательности:
- Выяснится параметры питающего трансформатора или реактора.
- Определяются параметры используемого проводника.
- Если электрическая схема слишком разветвлена, то её следует упростить.
- Определяется полное сопротивление можду «фазой» и «0».
- Вычисляется полное сопротивление трансформатора или реактора, если данное значение нельзя получить из документации к источнику питания.
- Значения подставляются в формулу.
Если вся последовательность действий была проведена верно, то таким образом можно рассчитать силу тока при возникновении КЗ в однофазной сети.
Вычисление КЗ по паспортным данным
Значительно упрощается задача по расчёту КЗ, если имеются паспортные данные реактора или трансформатора. В этом случае достаточно номинальные значения электричества и напряжения подставить в расчётные формулы, чтобы получить значение тока КЗ.
Сила и мощность КЗ могут быть определены по следующим формулам:
В данной формуле значение Iном равно номинальному току электрического трансформатора или реактора.
Определение тока КЗ в сети неограниченной мощности
Если необходимо рассчитать КЗ в системе, где мощность источника электричества несоизмеримо выше суммарной мощности потребителей электричества, то величину напряжения можно условно считать неизменной.
В таких условиях мощность электричества будет равна бесконечности, а сопротивление проводника — нулю. Данные условия могут быть применены только к таким расчётным условиям, когда точка короткого замыкания удалена на значительное расстояние от источника электричества, а результирующее сопротивление цепи в десятки раз превышает сопротивление системы.
Для электрической сети неограниченной мощности сила электрической напряжённости рассчитывается по формуле:
Ik=Ib/Xрез
где:
Ik — сила тока короткого замыкания;
Ib — базисный ток;
Хрез — результирующее напряжения сети.
Подставив значение в формулу можно получить значение параметров КЗ в сети неограниченной мощности.
Руководящие указания по расчёту токов короткого замыкания, изложенные в данной статье, содержат основные принципы, по которым определяется сила тока в проводнике в момент образования этого опасного явления.
Если возникает сложность в проведении данных расчётов самостоятельно, то можно воспользоваться услугами профессиональных инженеров-электриков, которые проведут все необходимые вычисления.
Расчёт токов короткого замыкания и выбор электрооборудования по совету профессионалов позволит гарантировать бесперебойное и безопасное использование электрических сетей в частном доме или на производстве.
Расчёт трёхфазного короткого замыкания
а) Изменение тока при коротком замыкании
Рассчитать трёхфазное короткое замыкание — это значит определить токи и напряжения, имеющие место при этом виде повреждения как в точке к. з., так и в отдельных ветвях схемы.
Ток в процессе короткого замыкания не остаётся постоянным, а изменяется, как показано на рис. 1-23. Из этого рисунка видно, что ток, увеличившийся в первый момент времени, затухает до некоторой величины, а затем под действием автоматического регулятора возбуждения (АРВ) достигает установившегося значения.
Промежуток времени, в течение которого происходит изменение величины тока к. з., называется переходным процессом. После того как изменение величины тока прекращается и до момента отключения короткого замыкания продолжается установившийся режим к. з. В зависимости от того, производится ли выбор уставок релейной защиты или проверка электрооборудования на термическую и динамическую устойчивость, могут интересовать значения тока в разные моменты времени к. з.
Поскольку всякая сеть имеет определённые индуктивные сопротивления, препятствующие мгновенному изменению тока при возникновении короткого замыкания, величина его не изменяется скачком, а нарастает по определённому закону от нормального до аварийного значения.
Для упрощения расчёта и анализа ток, проходящий во время переходного процесса к. з., рассматривают как состоящий из двух составляющих: апериодической и периодической.
Апериодической называется постоянная по знаку составляющая тока ia, которая возникает в момент короткого замыкания и сравнительно быстро затухает до нуля (рис. 1-23).
Периодическая составляющая тока к. з. в начальный момент времени Inmo называется начальным током короткого замыкания. Величину начального тока к. з. используют, как правило, для выбора уставок и проверки чувствительности релейной защиты. Начальный ток короткого замыкания называют также сверхпереходным, так как для его подсчёта в схему замещения вводится так называемое сверхпереходное сопротивление генератора и сверхпереходная э. д. с.
Установившийся ток к. з. представляет собой периодический ток после окончания переходного процесса, обусловленного как затуханием апериодической составляющей, так и действием АРВ. Полный ток к. з. представляет собой сумму периодической и апериодической составляющих в любой момент переходного процесса. Максимальное мгновенное значение полного тока называется ударным током к. з. и вычисляется при проверке электротехнического оборудования на динамическую устойчивость.
Как уже отмечалось выше, для выбора уставок и проверки чувствительности релейной защиты используется обычно начальный или сверхпереходный ток к. з., расчёт величины которого производится наиболее просто. Используя начальный ток при анализе быстродействующих защит и защит, имеющих небольшие выдержки времени, пренебрегают апериодической составляющей. Допустимость этого очевидна, так как апериодическая составляющая в сетях высокого напряжения затухает очень быстро, за время 0,05—0,2 с, что обычно меньше времени действия рассматриваемых защит.
При к. з. в сети, питающейся от мощной энергосистемы, генераторы которой оснащены АРВ, поддерживающими постоянным напряжение на её шинах, периодическая составляющая тока в процессе к. з. не меняется (рис. 1-23, б). Поэтому расчётное значение начального тока к. з. в этом случае можно использовать для анализа поведения релейной защиты, действующей с любой выдержкой времени.
В сетях же, питающихся от генератора или системы определённой ограниченной мощности, напряжение на шинах которой в процессе к. з. не остаётся постоянным, а изменяется в значительных пределах, начальный и установившийся ток к. з. не равны (рис. 1-23, а). При этом для расчёта защит, имеющих выдержку времени порядка 1—2 с и более, следовало бы использовать установившийся ток к. з. Однако поскольку расчёт установившегося тока к. з. сравнительно сложен, допустимо в большинстве случаев использовать начальный ток к. з. Такое допущение, как правило, не приводит к большой погрешности. Объясняется это следующим. На величину установившегося тока к. з. значительно большее влияние, чем на величину начального тока, оказывают увеличение переходного сопротивления в месте повреждения, токи нагрузки и другие факторы, не учитываемые обычно при расчёте токов к. з. Поэтому расчёт установившегося тока к. з. может иметь весьма большую погрешность.
Принимая во внимание всё сказанное выше, можно считать целесообразным и в большинстве случаев вполне допустимым использование для анализа релейных защит, действующих с любой выдержкой времени, начального тока к. з. При этом возможное снижение тока в течение короткого замыкания следует учитывать для защит, имеющих выдержку времени, введением в расчёт повышенных коэффициентов надёжности по сравнению с быстродействующими защитами.
б) Определение начального тока к. з. в простой схеме
Поскольку при трёхфазном к. з. (рис. 1-24) э. д. с. и сопротивления во всех фазах равны, все три фазы находятся в одинаковых условиях. Векторная диаграмма для такого короткого замыкания, которое, как известно, называется симметричным, приведена на рис. 1-18, б. Расчёт симметричной цепи может быть существенно упрощён. Действительно, так как все три фазы находятся в одинаковых условиях, достаточно произвести расчёт для одной фазы и результаты его затем распространить на две другие. Расчётная схема при этом будет иметь вид, показанный на рис. 1-24, б. Совершенно очевидно, что даже в рассматриваемом простейшем случае последняя схема значительно проще, чем показанная на рис. 1-24, а.
В сложных же электрических цепях, имеющих много параллельных и последовательных ветвей, разница будет ещё более очевидной.
Итак, в симметричной системе расчёт токов и напряжений можно производить только для одной фазы. Расчёт начинается с составления схемы замещения, в которой отдельные элементы расчётной схемы заменяются соответствующими сопротивлениями, а для источников питания указывается их э. д. с. или напряжение на зажимах. Каждый элемент вводится в схему замещения своими активным и реактивным сопротивлениями. Сопротивления генераторов, трансформаторов, реакторов определяются на основании паспортных данных и вводятся в расчёт, как указано ниже.
Реактивные сопротивления линий электропередачи рассчитываются по специальным формулам или могут приниматься приближенно по следующему выражению:
где l — длина участка линии, км; худ — удельное реактивное сопротивление линии, Ом/км, которое можно принимать равным:
Активные сопротивления медных и алюминиевых проводов могут быть подсчитаны по известному выражению
Допускается при расчётах токов к. з. не учитывать активного сопротивления и вводить в схему замещения только реактивные сопротивления элементов, если суммарное реактивное сопротивление больше чем в 3 раза превышает суммарное активное сопротивление
В дальнейшем для упрощения рассуждений будем считать, что условие (1-23), которое, как правило, выполняется для сетей напряжением 110 кВ и выше, действительно, и в расчёты будем вводить только реактивные сопротивления расчётной схемы.
Определение тока к. з. при питании от системы неограниченной мощности. Ток к. з. в расчётной схеме (рис. 1-25) определится согласно следующему выражению, кА:
где xрез — результирующее сопротивление до точки к. з., равное в рассматриваемом случае сумме сопротивлений трансформатора и линии, Ом;
Uс — междуфазное напряжение на шинах системы неограниченной мощности, кВ.
Под определением система неограниченной мощнoсти подразумевается мощный источник питания, напряжение на шинах которого остаётся постоянным независимо от места к. з. во внешней сети. Сопротивление системы неограниченной мощности принимается равным нулю. Хотя в действительности системы неограниченной мощности быть не может, это понятие широко используют при расчетах коротких замыканий. Можно считать, что рассматриваемая система имеет неограниченную мощность в тех случаях, когда её внутреннее сопротивление много меньше сопротивления внешних элементов, включенных между шинами системы и точкой к. з.
Пример 1-1. Определить ток. проходящий при трёхфазном к. з. за реактором сопротивлением 0,4 Ом, который подключен к шинам генераторного напряжения 10,5 кВ мощной электростанции.
Решение. Поскольку сопротивление реактора значительно больше, чем сопротивление системы, можно считать, что он подключен к шинам неограниченной мощности.
Тогда
Определение тока к. з. при питании от системы ограниченной мощности. Если сопротивление системы, питающей точку короткого замыкания, сравнительно велико, его необходимо учитывать при определении тока к. з. В этом случае в схему замещения вводится дополнительное сопротивление хспст и принимается, что за этим сопротивлением находятся шины неограниченной мощности.
Величина тока к. з. определяется по следующему выражению (рис. 1-26):
где xвн — сопротивление цепи короткого замыкания между шинами и точкой к. з.; хсист — сопротивление системы, приведенное к шинам источника.
Сопротивление системы можно определить, если задан ток трёхфазного к. з. на её шинах Iк.з.зад.:
Пример 1-2. Определить ток трёхфазного к. з. за сопротивлением 15 Ом линии 110 кВ, питающейся от шин подстанции. Ток трёхфазного к. з. на шинах подстанции, приведенный к напряжению 115 кВ, равен 8 кА.
Решение. Согласно (1-26) определяется хсист:
Определяется ток в месте к. з. в соответствии с (1-25):
Сопротивление системы при расчётах к. з. может быть задано не током, а мощностью короткого замыкания на шинах подстанции. Мощность короткого замыкания — условная величина, равная
где Iк.з. — ток короткого замыкания; Ucp — среднее расчётное напряжение на той ступени трансформации, где вычисляется ток короткого замыкания.
Пример 1-3. Определить ток трёхфазного к. з. за реактором сопротивлением 0,5 Ом. Реактор питается от шин 6,3 кВ подстанции, мощность к. з. на которых равна 300 MB • А.
Решение. Определим сопротивление системы:
в) Определение остаточного напряжения
В схеме, приведенной на рис. 1-26, величина остаточного напряжения на шинах определяется согласно следующим выражениям:
где x к.з. — сопротивление от шин подстанции, на которых определяется остаточное напряжение, до места к. з., или
х — сопротивление от шин источника питания до точки, в которой определяется остаточное напряжение.
Поскольку сопротивление рассматриваемой цепи принято чисто реактивным, в выражения (1-27) и (1-28) входят абсолютные величины, а не векторы.
Пример 1-4. Определить остаточное междуфазное напряжение на шинах подстанции в примере 1-2.
Решение. По первому выражению (1-27):
г) Расчёты токов короткого замыкания и напряжений в разветвлённой сети
В сложной разветвлённой сети, для того чтобы определить ток в месте к. з., необходимо предварительно преобразовать схему замещения так, чтобы она имела простой вид, по возможности с одним источником питания и одной ветвью сопротивления. С этой целью производится сложение последовательно и параллельно включенных ветвей, треугольник сопротивлений преобразуется в звезду и наоборот.
Пример 1-5. Преобразовать схему замещения, приведенную на рис. 1-27, определить результирующее сопротивление и ток в месте к. з. Значения сопротивлений указаны на рис. 1-27.
Решение. Преобразование схемы замещения производим в следующей последовательности.
Для распределения тока к. з. по ветвям схемы можно воспользоваться формулами, приведенными в табл. 1-1. Распределение токов производится последовательно в обратном порядке начиная с последнего этапа преобразования схемы замещения.
Пример 1-6. Распределить ток к. з. по ветвям схемы, приведенной на рис. 1-27.
Решение. Определим токи в параллельных ветвях 4 и 7 в соответствии с формулами (табл. 1-1):
Ток I7 проходит по сопротивлению х5 и затем разветвляется по параллельным ветвям х2 и х3:
Остаточное напряжение в любой точке разветвлённой схемы может быть определёно путём последовательного суммирования и вычитания падений напряжения в её ветвях.
Пример 1-7. Определить остаточное напряжение в точках а и б схемы, приведенной на рис. 1-27. Решение.
Если в схему замещения входят две или несколько э. д. с, точки их приложения объединяются и они заменяются одной эквивалентной э. д. с. (рис. 1-28).
Если э. д. с. источников равны по величине, то эквивалентная э. д. с. будет иметь такую же величину
Если же э. д. с. не равны, эквивалентная э. д. с. подсчитывается по следующей формуле:
д) Расчёт токов короткого замыкания по паспортным данным реакторов и трансформаторов
Во всех примерах, рассмотренных выше, сопротивления отдельных элементов схемы задавались в омах. Сопротивления же реакторов и трансформаторов в паспортах и каталогах не задаются в омах.
Параметры реактора обычно задаются в процентах как относительная величина падения напряжения в нём при прохождении номинального тока хP, %.
Сопротивление реактора (Ом) можно определить по следующему выражению:
гле UHOM и IHOM — номинальное напряжение и ток реактора.
Сопротивление трансформатора также задаётся в процентах как относительная величина падения напряжения в его обмотках при прохождении тока, равного номинальному, uK, %.
Для двухобмоточного трансформатора можно записать сопротивление (Ом):
где uK, %, и UHOM, кВ, — указаны выше, а S HOM — номинальная мощность трансформатора, MB• А.
При коротком замыкании за реактором или трансформатором подключенными, к шинам системы неограниченной мощности, ток и мощность к. з. определяются по следующим выражениям:
где IHOM — номинальный ток соответствующего реактора или трансформатора.
Пример 1-8. Вычислить максимально возможный ток трёхфазного к. з. за реактором РБA-6-600-4. Реактор имеет следующие параметры: UH = 6 кВ, IH = 600 А, хP = 4%.
Решение. Поскольку требуется определить максимально возможный ток к. з., считаем, что реактор подключен к шинам системы неограниченной мощности.
В соответствии с (1-33) ток к. з. за реактором определится как
Пример 1-9. Определить максимально возможный ток и мощность трёхфазного к. з. за понизительным трансформатором: SH = 31,5MB • А, UН1= 115 кВ, UН2 = 6,3 кВ, uK = 10,5%
Решение. Принимая, как и в предыдущем примере, что трансформатор подключен со стороны 115 кВ к шинам системы неограниченной мощности, определяем ток к. з.
Номинальный ток обмотки 6,3 кВ трансформатора равен:
Расчет токов короткого замыкания
Расчет токов короткого замыкания производится согласно ГОСТ 14794-79 (п.2.12.2-2.12.3), а именно:
Допустимое действующее значение периодической составляющей тока короткого замыкания Iк, доп кА, определяется по формуле:
(при расчете Iк, доп для сдвоенного реактора в формул}’ (1) вместо X подставляется Xo,s, а в случаях использования сдвоенного реактора с последовательно соединенными ветвями подставляется Хс),
где U — класс напряжения реактора, кВ;
X — номинальное индуктивное сопротивление одинарного реактора, Ом;
Х0,5 — номинальное индуктивное сопротивление сдвоенного реактора (сопротивление ветви сдвоенного реактора). Ом;
Хс — индуктивное сопротивление сдвоенного реактора, Ом;
Iн — номинальный ток реактора, кА;
Iс — установившийся условный ток короткого замыкания в сети без реактора в том месте, где реактор должен устанавливаться, при номинальном напряжении сети, соответствующем классу напряжения реактора, кА. Значение Iс должно быть принято следующее: 125 кА — для всех реакторов с горизонтальным расположением фаз и для всех реакторов с номинальным током, равным или больше 1000 А, при номинальном индуктивном сопротивлении, равном или превышающем 0,25 Ом.
90 кА — для реакторов с вертикальным и ступенчатым расположением фаз с номинальным током меньше 1000 А, при номинальном индуктивном сопротивлении, равном или превышающем 0,40 Ом.
70 кА — для всех остальных реакторов.
Максимальное мгновенное значение тока электродинамической стойкости, применительно к которому выполняются расчеты и проводятся испытания на электродинамическую стойкость, определяется по формуле:
где Iдин— максимальное мгновенное значение тока электродинамической стойкости для одинарных реакторов, а также для сдвоенных реакторов при протекании тока в одной ветви или в обоих ветвях в согласном направлении, кА.
Например:
Определение токов короткого замыкания для реактора РТСТ-10-1600-0,4 У3.
U = 10 кВ;
Х = 0,4 Ом;
Подставим значения в формулу расчета тока термической стойкости:
Полученное значения тока подставим в формулу расчета тока динамической стойкости (ударн. ток.кз):
Расчет токов короткого замыкания в Microsoft Excel
Для тех кто не имеет программы расчета токов короткого замыкания и не собирается ее разрабатывать с применением алгоритмических языков программирования, можем предложить способ разработки программы расчета с применением типовой программы Microsoft Excel. Табличный процессор Microsoft Excel выбран, исходя из следующих возможностей, представ- ляемых программой для не слишком сложных но объемных обычных расчетов ТКЗ в распред- сетях:
- Вводимые данные и результаты расчетов представляются в табличной форме, занимающей
- мало места, которая легко вводится в текстовую программу Microsoft Word или Adobe Acrobat.
- Excel оперирует с адресами ячеек, в которые вводятся данные, формула расчета вводится в
- ячейку а записывается в таблицу результат расчета.
- Относительная адресация позволяет производить расчеты с другими данными используя
- одну и ту же формулу, занесенную в предыдущую ячейку.
Расчет ТКЗ с применением Microsoft Excel
1.1 На рис. 1. представлена схема подстанции, питающейся по двум линиям 110кВ, включенным параллельно на шины 110кВ ПС. Любая ВЛ-110 может быть отключена.
1.2 Токи короткого замыкания на шинах подстанции:
− Обе ВЛ в работе, максимальный режим: ток трехфазного КЗ — 6кА, однофазного – 4 кА.
− В работе ВЛ-1, минимальный режим 1: ток трехфазного КЗ — 5кА, однофазного – 3 кА.
− В работе ВЛ-2, минимальный режим 2: ток трехфазного КЗ — 3кА, однофазного – 2 кА.
1.3 Нейтрали стороны 110кВ трансформаторов не заземлены.
1.4 Параметры трансформаторов ТДТН-25/110 взяты в соответствии с ГОСТ 12965-74:
− номинальная мощность стороны ВН – 25МВт, НН — 12.5МВт;
− номинальное напряжение стороны ВН — 115 кВ, регулирование 9 ступеней по 1.78%;
− номинальное напряжение расщепленной обмотки НН — 11кВ;
− напряжение Uк с учетом регулирования: 9.84%, 10.5%, 11.72% для минимального, средне-го и максимального положения переключателя РПН соответственно.
1.5 На стороне 6кВ четыре секции с АВР на СВ-I-III, и СВ II-IV.
Расчет токов короткого замыкания.
Расчет проводится в именованных величинах, активным сопротивлением пренебрегаем.
2.1 Реактанс прямой последовательности на шинах 110кВ:
− максимальный режим: Х1max = U/ (3 * Iкз) = 115/ (1.73 *6) = 11 Ом;
− минимальный режим: X1min = 115/ (1.73*3)= 22 ом.
2.2 Реактанс нулевой последовательности:
Дальнейшие расчеты выполняем в таблице Excel см. таблицу 1.1.
В первой строке таблицы в ячейке B1 записываем № таблицы, С1 – название таблицы.
Во второй строке в ячейке С2 записываем заголовок расчета.
В строке 3 будем записывать название колонки, а в колонке А название строки.
Колонка В. Выполняем расчет напряжений при крайних положениях РПН.
Ячейка В5. =G10/10,5*B4 записываем величину напряжения в среднем положении 115кВ.
Ячейка В4 – формулу для расчета напряжения в 1 положении РПН — =115+0.16*115 — после пе-рехода в другую ячейку или нажатия Enter в ячейке получается результат: 133,4. Если вернуться в эту ячейку снова, то в ней результат остается, а в строке формул появляется формула, по ко-торой производился расчет.
Ячейка В6 – формулу для расчета напряжения в 19 положении РПН — =115-0.16*115 — получается результат: 96,6.
В колонке С выполняем расчет номинального тока ВН для этих положений РПН:
В ячейку С4 записываем формулу: 25000/(1,73*B4), где 25000 – номинальная мощность трансформатора, 1,73 = 3, в ячейке В4 расположено вычисленное ранее напряжение в верхнем положении РПН. Следует учитывать, что табличный процессор распознает десятичную дробь только в том случае, если дробная часть отделяется запятой. При использовании десятичной точки, как в большинстве случаев в данной книге, Excel воспринимает число как текст и вычис-ления производиться не будут.
Установим мышью курсор в левый нижний угол ячейки — появится малый крест. После этого при помощи мыши перетащим выделенное на 2 ячейки вниз. В этих ячейках появятся вычисленные значения токов для других положений РПН. В данном случае мы имеем дело с относительной адресацией ячеек: при увеличении номера данной ячейки на единицу – одновременно происхо-дит увеличение на единицу номера ячейки, которая входит в формулу и производится необходимый расчет.
В ячейке D4 выполняем расчет тока НН. Заносим формулу — =12500/(1,73*10,5) – 12500 –номинальная мощность обмотки НН, 10.5 ее напряжение в кВ. получаем результат расчета: 688.14А. Копируем результат в другие ячейки – он будет одинаковым для всех положений РПН. Для копирования помещаем мышью курсор в середину ячейки – появляется большой крест и передвигаем указатель в другие 2 ячейки – в них появляется такой же результат.
В колонку Е ячейки Е4 – Е6 заносим величину напряжения короткого замыкания для разных по-ложений РПН.
В колонке F произведем расчет реактансов трансформатора для этих положений РПН приве-денный к напряжению ВН – заносим формулу: =B4/(1,73*C4/1000)*E4. В ячейке В4 находится напряжение ВН в кВ, в ячейке С4 – ток ВН в амперах – делим на 1000 чтобы получить кА. в ячейке Е4. Переносим формулу в другие ячейки колонки с относительной адресацией: Устано-вим указатель мыши в левый нижний угол ячейки — появится малый крест. После этого перета-щим его на 2 ячейки вниз, появятся результаты расчета в ячейках.
В колонке G выполним расчет реактанса приведенный к напряжению НН. Вводим формулу: 10.5*E4/(1,73*(D4/1000)) – в ячейке Е4 — величина напряжения короткого замыкания, D4 номи-нальный ток стороны 10кВ. Переносим формулу в другие ячейки колонки с относительной адресацией. Появятся результаты расчета в ячейках.
В колонке G выполним расчет реактанса приведенный к напряжению НН. Вводим формулу: 10.5*E4/(1,73*(D4/1000)) – в ячейке Е4 — величина напряжения короткого замыкания, D4 номи-нальный ток стороны 10кВ. Переносим формулу в другие ячейки колонки с относительной адре-сацией. Появятся результаты расчета в ячейках.
Рассчитанные реактансы относятся к режиму короткого замыкания сразу на 2 сторонах НН – данные Uк даются для параллельной работы. Трансформатор работает раздельно, поэтому полученные параметры должны быть пересчитаны для режима раздельной обмотки. Для этого умножим полученный результат на 1,875. Введем формулу =F4*1,875 для ячейки Н4. Перено-сим формулу в другие ячейки колонки с относительной адресацией. Появятся результаты расчета в ячейках.
Введем формулу =F4*1,875 для ячейки Н4. Переносим формулу в другие ячейки колонки с от-носительной адресацией. Появятся результаты расчета в ячейках.
Введем формулу =G4*1,875 для ячейки I4. Переносим формулу в другие ячейки колонки с отно-сительной адресацией. Появятся результаты расчета в ячейках.
Расчет параметров закончен и перейдем к расчету ТКЗ на стороне НН. Продолжаем ту же таб-лицу.
В ячейку С7 заносим заголовок: 2.Расчет токов короткого замыкания.
В ячейку В8 — заголовок: 1. Максимальный режим. В ячейку F8 — заголовок: Минимальный режим.
В ячейки А9-А12 копируем заголовки из ячеек А3-А6.
Колонка В10 – В12. Расчет реактанса КЗ на стороне НН в максимальном режиме. К реактансу трансформатора добавляется реактанс системы в максимальном режиме.
Введем формулу =11+h5 для ячейки В10. Переносим формулу в другие ячейки колонки с относительной адресацией. Появятся результаты расчета в ячейках.
Колонка С10 – С12. Расчет ТКЗ на стороне НН в максимальном режиме. Введем формулу =115/(1,73*B10) для ячейки С10. Переносим формулу в другие ячейки колонки с относительной адресацией. Появятся результаты расчета в ячейках.
Колонка D10 –D13. Расчет реактанса КЗ на стороне НН в максимальном режиме приведенный к стороне НН. Реактанс пересчитывается через отношение квадратов напряжение сторон НН и ВН трансформатора. Введем формулу =B10*СТЕПЕНЬ(10,5;2)/СТЕПЕНЬ(B4;2) для ячейки D10. Переносим формулу в другие ячейки колонки с относительной адресацией. Появятся результаты расчета в ячейках.
Колонка E10 – E12. Расчет ТКЗ на стороне НН в максимальном режиме. приведенный к стороне НН. Ток ВН пересчитывается через отношение напряжений ВН и НН. Введем формулу =C10/10,5*B4 для ячейки С10. Переносим формулу в другие ячейки колонки с относительной адресацией. Появятся результаты расчета в ячейках.
Повторяем результаты расчета для минимального режима. Для этого копируем колонки интер-вала (В10 — В12) — (Е10 –E12) в колонки интервала (F9 – F12) – (I9 – I12).
После этого в ряду 10 изменяем формулы в ячейках F10 (=22+B10), G10 (=115/(1,73*F10), h20 (F10*СТЕПЕНЬ(10,5;2)/СТЕПЕНЬ(B4;2), I10 (=G10/10,5*B4). Для того чтобы изменить реактанс максимального режима на минимальный и восстановить измененные в результате переноса адреса. Переносим формулы в другие ячейки колонки с относительной адресацией. Появятся результаты расчета в ячейках.
Вместо копирования и изменения формул можно заполнить эти графы формулами самостоя-тельно, при этом время работы увеличится.
После окончания расчетов производится оформление таблицы — устанавливаются границы в ячейках, объединяются ячейки там, где размещаются надписи.
Полученную таблицу можно сохранить, при следующих однотипных расчетах с другими пара-метрами трансформатора можно сделать копию таблицы, ввести в нужные ячейки параметры нового трансформатора и параметры системы после этого автоматически будет выполнен расчет с новыми данными.
Полученную таблицу можно через буфер перенести в текстовый редактор Word или Adobe Acrobat.
Внимание! Весь материал на сайте защищен от копирования. Частичное или полное копировании материала разрешается только с сылкой на наш первоисточник!
Автор: Nikolay Matvienko
Дата обновления информации: 21/05/15
Подробный расчет токов и мощности в соответствии с типом нагрузки
Расчет токов и мощности
Анализ токов и мощности являются ключевыми факторами при любом проектировании или перепроектировании установки, они позволят подобрать источник (источники) в соответствии с цель установки, предполагаемое использование цепей и питающих приемников.
Детальный расчет токов и мощности в соответствии с типом нагрузки
Потребляемый ток Ia соответствует номинальному току, потребляемому приемником независимо от коэффициента использования и коэффициента совпадения, но с учетом аспектов эффективности ( η коэффициент ), коэффициент смещения или фазовый сдвиг ( cos φ ) для двигателей или других индуктивных или емкостных нагрузок.
Для нелинейных (или искажающих) нагрузок необходимо вычислить квадратичную сумму основного тока и гармонических токов , чтобы получить фактический среднеквадратичный ток .
Разобьем расчет мощности на несколько частей, чтобы легко проследить:
- Чисто резистивная нагрузка
- Неискажающая нагрузка, которая не является чисто резистивной
- Расчет тока
- Перегрузки на проводниках в соответствии с к общему гармоническому искажению
- Искажающая нагрузка, которая не является чисто резистивной
1.Чисто резистивная нагрузка
Ток , потребляемый Ia чисто резистивной нагрузки, рассчитывается простым применением формул. Для однофазного:
и для трехфазного:
Но будьте осторожны, очень немногие нагрузки являются полностью резистивными. Лампы накаливания уступают место решениям, предлагающим более высокие уровни производительности, но, с другой стороны, менее «чистым» с электрической точки зрения.
Вернуться к расчетам токов и мощности ↑
2.Нагрузка без искажений, которая не является чисто резистивной
Номинальная мощность (Pn) двигателя соответствует механической мощности на его валу. Фактическая потребляемая мощность (Па) соответствует активной мощности, передаваемой по линии.
Зависит от КПД двигателя:
Потребляемый ток (Ia) рассчитывается по следующим формулам. Для однофазного:
и для трехфазного:
Где:
- Ia — потребляемый среднеквадратичный ток (в А)
- Pn — номинальная мощность (в Вт; это полезная мощность)
- U — напряжение между фазами в трехфазном и между фазой и нейтралью в однофазном (В)
- η — КПД
- cosφ — коэффициент смещения
Go назад к расчетам токов и мощностей ↑
3.Расчет тока, потребляемого несколькими приемниками
Пример, описанный ниже, показывает, что расчет тока и мощности должен выполняться в соответствии с точными математическими правилами, чтобы четко различать различные компоненты.
Пример асинхронных двигателей
Группа цепей состоит из двух трехфазных асинхронных двигателей M 1 и M 2 , подключенных к одной панели (питание от сети: 400 В переменного тока — 50 Гц).Номинальная мощность двигателей соответственно: Pn 1 = 22 кВт и Pn 2 = 37 кВт .
Коэффициенты смещения: cosφ 1 = 0,92 для M 1 и cosφ 2 = 0,72 для M 2 КПД составляет η 1 = 0,91 и 901 = 0,93 соответственно.
Расчет потребляемой мощности:
В этом случае реактивная мощность может быть рассчитана путем определения значения tanφ из cosφ .связь с касательной задается формулой:
Расчет реактивной мощности :
Расчет полной мощности :
Расчет общего потребления тока для M1, M2, M1 + M2 и соответствующий коэффициент мощности:
Активную мощность (в Вт) и реактивную мощность (в ВАр) можно сложить вместе алгебраически , тогда как полную мощность и токи можно сложить только вместе геометрически .
Вернуться к расчетам токов и мощности ↑
Представление результатов
Все анализы мощности должны показывать, как в таблице ниже, по крайней мере, для каждой группы:
- Активная мощность цепей, которая соответствует ( ближайший КПД) к подаваемой энергии,
- Реактивная мощность , чтобы можно было подобрать размер компенсирующих устройств (конденсаторов),
- Полная мощность , чтобы можно было определить мощность источника, и
- Потребляемый ток чтобы можно было рассчитать устройства шинопровода и защиты.
M 1 | M 2 | M 1 + M 2 (Всего т) | |||||||||||||||||||||||||||||||||||||||
Активная мощность: P [кВт] 10008 | Па 2 = 39,78 | P t = 63,96 | |||||||||||||||||||||||||||||||||||||||
Реактивная мощность: Q [кВАр] | Q 1 = 10,30 2 902 902 Q10 Q т = 48.65 | ||||||||||||||||||||||||||||||||||||||||
Полная мощность: S [кВА] | S 1 = 26,28 | S 2 = 55,26 | S t = 80,36 | ||||||||||||||||||||||||||||||||||||||
потребляемый ток: 9000a | Ia 1 = 38 | Ia 2 = 80 | Ia t = 116 | ||||||||||||||||||||||||||||||||||||||
cosφ | 0,92 | 0,721 | назад | 0,72 | 902 902 902 902 9030 назад и расчет мощности ↑4.Перегрузки на проводниках в соответствии с полным гармоническим искажениемТок, циркулирующий в каждой фазе, равен квадратичной сумме основного тока (называемого 1-м порядком гармоники) и всех гармонических токов (следующих порядков): THDi (Total Harmonic Distortion) выражает отношение между долей всех гармонических токов и общим током в процентах. I 1 — действующее значение основной гармоники, а в I n — среднеквадратичное значение гармоники n-го порядка.Принцип заключается в применении коэффициента уменьшения тока, который можно рассчитать на основе THDi. Для допустимого значения THDi , равного 33% , теоретически ток должен быть уменьшен в каждой фазе на коэффициент K: Если коэффициент не применяется, ток будет увеличен на: Это остается приемлемым и объясняет, почему стандарт не рекомендует какое-либо снижение номинальных характеристик или увеличение поперечного сечения до 33% THDi. Более 33%.стандарт рекомендует увеличить ток IB , что приведет к необходимому завышению номинального диаметра нейтрального проводника. Для фазных проводов также может потребоваться снижение тока или увеличение размера многожильных кабелей. Следует отметить , что стандарт рекомендует коэффициент уменьшения 0,84 . что на самом деле соответствует пессимистическому THDi 65% . В отношении нейтрального проводника считается, что если все гармоники имеют 3-й порядок и его кратные, они будут сложены вместе, и тогда ток из-за гармоник в нейтрали будет I N = 3 × I ph , что может быть выражено с использованием эквивалентной записи: THDn = 3 THDi . Устройства с нелинейной нагрузкой не потребляют ток, который является отражением приложенного напряжения . Это приводит к ненужному потреблению энергии: искажающей мощности, которая генерирует дополнительный ток, последствия которого нельзя упускать из виду. Но этот ток никогда не выражается напрямую, потому что он включает в себя довольно сложный математический расчет , преобразование Фурье, чтобы определить его относительную общую часть (THDi: полное гармоническое искажение) или порядок значений по порядку: ih 2 , ih 3 , ih 4 , ih 5 ,..ih № . При отсутствии точных измерений трудно точно узнать уровень тока, соответствующий каждому порядку гармоник. Поэтому предпочтительно просто увеличить поперечное сечение нейтрального проводника в качестве меры предосторожности, поскольку известно, что основные гармоники 3-го порядка -го порядка и их кратные составляющие складываются в нейтрали. и адаптировать защиту этого проводника.
В принципе, нейтраль должна быть того же поперечного сечения, что и фазный провод во всех однофазных цепях. В трехфазных цепях с поперечным сечением более 16 мм 2 [25 мм 2 алюминий]. Сечение нейтрали можно уменьшить до сечения / 2. Однако это уменьшение не допускается, если:
Если эта сумма превышает 33%, поперечное сечение активных проводников многожильных кабелей выбирается путем увеличения тока In на фиксированный коэффициент умножения, равный 1.65. У одножильных кабелей увеличивается только сечение нейтрали. На практике увеличение тока Ia в нейтрали компенсируется увеличением ее поперечного сечения. Когда нейтраль нагружена, к допустимому току кабелей 3 или 1 применяется понижающий коэффициент 0,86 . Коэффициент уменьшения тока K N или, скорее, его обратная величина, которая будет использоваться для увеличения размера нейтрального проводника, тогда будет: При общем гармоническом искажении порядка 3 rd 65% ток фазные проводники должны быть увеличены на 119% , а в нейтральном проводе — на 163% .Если THDi достигнет 100%, 1 / кН теоретически достигнет 2,12 . Достичь этого значения было бы невозможно, так как это означало бы, что гармоника полностью заменила основную. Теоретический предел перегрузки по току для нейтрали по отношению к фазам составляет: Эти расчеты показывают, что гармонические токи, прежде всего, не должны игнорироваться как с точки зрения «скрытой» потребляемой мощности , так и с точки зрения определение размеров проводов, которые могут быть перегружены.Относительная сложность расчетов приводит к использованию общих значений снижения номинальных характеристик, которые обычно охватывают большинство случаев, так же как программное обеспечение используется в других местах. Вернуться к расчетам токов и мощности ↑ Пример выполнения стандартов для определения защитного устройства с нейтралью, перегруженной гармоникамиДля цепи 3P + N, рассчитанной на 170 А, с системой TNS, всего 3-го порядка гармонические искажения более 33%. При выборе размеров фазных кабелей коэффициент уменьшения 0.84 (нагруженная нейтраль, см. Выше) должен быть включен.
Поэтому необходимо выбрать автоматический выключатель, способный выдерживать ток, который может пересечь нейтраль: В устройстве ≥ IB нейтраль ⇒ In = 250 A Но устройство должно быть настроено в соответствии с током, который могут протекать по фазам: Ir ≥ IB фазы ⇒ Ir ≥ 170 A (и <206 A, предел кабеля) A 250 A автоматический выключатель с отключенной нейтралью без защиты, установлен на 0.7 поэтому подходит для этого приложения . Вернуться к расчетам токов и мощности ↑ 5. Искажающая нагрузка, не являющаяся чисто резистивнойПотребляемый ток (Ia) определяется по следующим формулам: где:
Вернуться к расчетам токов и мощности ↑ Пример люминесцентного светильника и электронного балластаНоминальная активная мощность, потребляемая светильником составляет 9 Вт , а измеренная полная мощность 16 ВА .Измеренный коэффициент смещения составляет cosφ = 0,845 , а коэффициент мощности PF = 0,56 . Измеренный потребляемый ток Ia составляет 0,07 A . Поскольку cosφ и коэффициент мощности различны, невозможно рассчитать значение tanφ или реактивной мощности Q (VAR) для рассматриваемого приемника. Измеренные cosφ и мощность Q, которые должны быть рассчитаны, могут быть рассчитаны только для части реактивной мощности, связанной с синусоидальной составляющей сигнала, фактически для тока основной гармоники при 50 Гц: 0.045 А, в данном случае . Мощности относительно этой линейной и синусоидальной части нагрузки можно рассчитать следующим образом:
Следовательно, не вся потребляемая полная мощность равна линейно, поскольку существует значительная разница между измеренной полной полной мощностью S (16 ВА) и расчетной теоретической синусоидальной мощностью (10.3 ВА). Также видно, что синусоидальная активная мощность устройства 8,7 Вт очень похожа на измеренную полную активную мощность 9 Вт. Следовательно, можно сделать вывод, что большая часть мощности S (16-10,3 = 5,7 ВА ) потребляется без выработки активной мощности. Люминесцентный светильник и электронный балласт в этом примере потребляют непроизводительную мощность в виде гармонических токов. Общее гармоническое искажение легко вычислить и представить в виде коэффициента. Спектральное разложение сигнала, выполненное на этом светильнике, показывает, что основная гармоника имеет 3-й порядок (34 мА) , но все следующие гармоники нечетного порядка присутствуют и затухают. Основная цель приведенного выше примера — продемонстрировать, что информация об активной мощности (в Вт) только для нелинейного приемника очень неадекватна. cosφ не имеет реального значения или значения , поскольку он применим только к основному сигналу.Только информация о полной мощности и коэффициенте мощности (PF или? \.,) Действительно может количественно определить и определить мощность, которая должна подаваться источником. В приведенном примере видно, что активная мощность приблизительно 9 Вт соответствует потребляемой мощности 16 ВА . Многие современные устройства (лампочки, компьютерное оборудование, бытовая техника и электронное оборудование) обладают этой особенностью потребления нелинейных токов. Для домашнего использования, где выставляется счет только за мощность в Вт (sic), экономия энергии, показанная для этих продуктов, является привлекательной.На практике потребляемые токи выше, чем кажется, и распределитель энергии тратит впустую энергию.
Важно: в отличие от линейных нагрузок (стр.29), для нелинейных нагрузок активные мощности (в Вт) могут складываться алгебраически, полные мощности должны складываться только геометрически , а также токи, которые должны быть в том же порядке. Реактивные мощности Q не должны суммироваться, за исключением определенной относительной части мощности, связанной с синусоидальным основным сигналом, и части, связанной с гармоническими сигналами. Вернуться к расчетам токов и мощности ↑ Ссылка // Баланс мощности и выбор решений для источников питания Legrand Расчеты напряжения и тока | Постоянные времени RC и L / RСуществует надежный способ рассчитать любое из значений в реактивной цепи постоянного тока с течением времени. Расчет значений в реактивной цепи постоянного токаПервым шагом является определение начального и конечного значений для любого количества конденсатора или катушки индуктивности, которое препятствует изменению; то есть, какое бы количество реактивный компонент ни пытался поддерживать постоянным. Для конденсаторов это количество составляет , напряжение ; для индукторов это количество составляет , ток . Когда переключатель в цепи замкнут (или разомкнут), реактивный компонент будет пытаться поддерживать это количество на том же уровне, что и до переключения переключателя, так что это значение должно использоваться в качестве «начального» значения. Окончательное значение этого количества будет тем, каким оно будет по прошествии бесконечного времени. Это может быть определено путем анализа емкостной цепи, как если бы конденсатор был разомкнутой цепью, и индуктивной цепи, как если бы индуктор был коротким замыканием, потому что именно так ведут себя эти компоненты, когда они достигли «полного заряда», через бесконечное количество времени. Следующий шаг — вычислить постоянную времени цепи: количество времени, которое требуется для изменения значений напряжения или тока примерно на 63 процента от их начальных значений до их конечных значений в переходной ситуации. В последовательной RC-цепи постоянная времени равна полному сопротивлению в омах, умноженному на общую емкость в фарадах. Для последовательной цепи L / R это общая индуктивность в генри, деленная на общее сопротивление в омах. В любом случае постоянная времени выражается в единицах секунд и обозначается греческой буквой «тау» (τ): Повышение и понижение таких значений схемы, как напряжение и ток, в ответ на переходный процесс, как упоминалось ранее, являются асимптотикой .При этом значения начинают быстро меняться вскоре после переходного процесса и со временем стабилизируются. При нанесении на график приближение к конечным значениям напряжения и тока образуют экспоненциальные кривые. Как было сказано ранее, одна постоянная времени — это время, необходимое для того, чтобы любое из этих значений изменилось примерно на 63 процента от их начальных значений до их (конечных) конечных значений. Для каждой постоянной времени эти значения приближаются (приблизительно) на 63 процента к их конечной цели. Математическая формула для определения точного процента довольно проста: Буква e обозначает постоянную Эйлера, которая приблизительно равна 2.7182818. Он получен из методов исчисления после математического анализа асимптотического подхода значений схемы. По прошествии времени, равного одной постоянной времени, процент изменения от начального значения до конечного значения составляет: После двух постоянных времени процент изменения от начального значения до конечного значения: После десяти постоянных времени, это процентное значение: Чем больше времени проходит с момента подачи кратковременного напряжения от батареи, тем больше значение знаменателя дроби, что дает меньшее значение для всей дроби, что дает общий итог (1 минус дробь) приближается к 1 или 100 процентам. Формула универсальной постоянной времениИз этой формулы мы можем составить более универсальную формулу для определения значений напряжения и тока в переходных цепях, умножив эту величину на разницу между конечным и пусковым значениями цепи: Давайте проанализируем рост напряжения в цепи последовательного резистора-конденсатора, показанной в начале главы. Обратите внимание, что мы решили анализировать напряжение, потому что это количество конденсаторов, как правило, остается постоянным.Хотя формула довольно хорошо работает для тока, начальные и конечные значения тока фактически выводятся из напряжения конденсатора, поэтому расчет напряжения является более прямым методом. Сопротивление составляет 10 кОм, а емкость — 100 мкФ (микрофарад). Поскольку постоянная времени (τ) для RC-цепи является произведением сопротивления и емкости, мы получаем значение в 1 секунду: Если конденсатор запускается в полностью разряженном состоянии (0 вольт), то мы можем использовать это значение напряжения в качестве «начального» значения.Конечным значением, конечно же, будет напряжение аккумулятора (15 вольт). Наша универсальная формула для напряжения конденсатора в этой схеме выглядит так: Итак, после 7,25 секунды подачи напряжения через замкнутый переключатель, напряжение конденсатора увеличится на: Поскольку мы начали с напряжения конденсатора 0 вольт, это увеличение на 14,989 вольт означает, что у нас будет 14,989 вольт после 7.25 секунд. Эта же формула будет работать и для определения тока в этой цепи. Поскольку мы знаем, что разряженный конденсатор изначально действует как короткое замыкание, пусковой ток будет максимально возможным: 15 вольт (от батареи), разделенные на 10 кОм (единственное противодействие току в цепи в начале): Мы также знаем, что конечный ток будет равен нулю, поскольку конденсатор в конечном итоге будет вести себя как разомкнутая цепь, а это означает, что в конечном итоге электроны не будут течь в цепи.Теперь, когда мы знаем как начальное, так и конечное значения тока, мы можем использовать нашу универсальную формулу для определения тока через 7,25 секунды замыкания переключателя в той же RC-цепи: Обратите внимание, что полученное значение изменения отрицательное, а не положительное! Это говорит нам о том, что сила тока уменьшилась, а с течением времени не увеличилась. Поскольку мы начали с тока 1,5 мА, это уменьшение (-1,4989 мА) означает, что у нас 0.001065 мА (1,065 мкА) через 7,25 секунды. Мы также могли бы определить ток цепи в момент времени = 7,25 секунды, вычтя напряжение конденсатора (14,989 вольт) из напряжения батареи (15 вольт), чтобы получить падение напряжения на резисторе 10 кОм, а затем рассчитав ток через резистор (и всю последовательную цепь) по закону Ома (I = E / R). В любом случае мы должны получить тот же ответ: Использование формулы универсальной постоянной времени для анализа индуктивных цепейФормула универсальной постоянной времени также хорошо подходит для анализа индуктивных цепей.Давайте применим его к нашему примеру цепи L / R в начале главы: При индуктивности 1 генри и последовательном сопротивлении 1 Ом наша постоянная времени равна 1 секунде: Поскольку это индуктивная цепь, и мы знаем, что индукторы противодействуют изменению тока, мы создадим нашу формулу постоянной времени для начальных и конечных значений тока. Если мы начнем с переключателя в разомкнутом положении, ток будет равен нулю, поэтому ноль — это наше начальное значение тока. После того, как переключатель был оставлен замкнутым в течение длительного времени, ток стабилизируется до своего конечного значения, равного напряжению источника, деленному на полное сопротивление цепи (I = E / R), или 15 ампер в этом случае. схема. Если бы мы хотели определить значение тока через 3,5 секунды, мы бы применили универсальную формулу постоянной времени как таковую: Учитывая тот факт, что наш пусковой ток был равен нулю, мы получаем ток цепи равный 14.547 ампер за 3,5 секунды. Для определения напряжения в индуктивной цепи лучше всего сначала рассчитать ток в цепи, а затем вычислить падение напряжения на сопротивлениях, чтобы определить, что осталось упасть на катушке индуктивности. С одним резистором в нашей примерной схеме (имеющим значение 1 Ом) это довольно просто: Если вычесть из напряжения нашей батареи 15 вольт, на катушке индуктивности останется 0,453 вольт за время = 3,5 секунды. ОБЗОР:
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ: Ознакомьтесь с нашей коллекцией из вычислителей мощности в нашем разделе Инструменты . Расчет тока короткого замыкания — журнал IAEIВремя считывания: 11 минут Один из самых фундаментальных расчетов системы распределения электроэнергии — это вычисление доступного тока короткого замыкания.В выпуске журнала IAEI за сентябрь — октябрь 2012 г. была статья под названием «Основы, максимальный ток повреждения», в которой говорилось на эту тему, но не рассматривались математические выкладки. С тех пор я получил много просьб заняться математикой. Я надеюсь, что эта статья удовлетворит пытливые умы подробностями о вычислении доступного тока короткого замыкания и предоставит некоторые уравнения для изучения студентом. Доступный ток короткого замыканияМаксимальный доступный ток короткого замыкания является важным параметром для каждой системы распределения электроэнергии, поскольку он обеспечивает точку данных, необходимую для подтверждения того, что оборудование применяется в пределах его номинальных характеристик, а работа системы соответствует ожиданиям.Имеющийся ток короткого замыкания также используется во многих других приложениях. Национальный электротехнический кодекс требует эту точку данных для обеспечения соблюдения таких разделов, как 110.9 «Рейтинг прерывания»; 110.10. Полное сопротивление цепи, номинальные значения тока короткого замыкания и другие характеристики; и 110.24 Доступный ток повреждения. Независимо от того, являетесь ли вы проектировщиком, установщиком или инспектором, в какой-то момент вашей карьеры вы столкнетесь с расчетом доступного тока короткого замыкания. Понимание математики, лежащей в основе этого, и того, как используются расчетные токи короткого замыкания, может только расширить знания и понимание.Это также может помочь нам понять, что эти расчеты должен производить квалифицированный специалист. Итак, ради понимания, я предлагаю эту статью, чтобы вы встали на путь. Основы расчета тока короткого замыканияВсе, что вам нужно знать о вычислении токов короткого замыкания, вы узнали на курсах 101, тригонометрии и основных математических занятиях. На рисунке 1 показана простая однолинейная схема, которая вполне может быть вашим основным служебным входом для коммерческой или промышленной установки. Рисунок 1. Однолинейная схема Рисунок 2 — это базовая принципиальная схема того, что представлено на рисунке 1, и которая будет использоваться для расчета доступного тока короткого замыкания в любой точке приведенной выше простой однолинейной схемы. Инженеры назовут то, что вы видите на Рисунке 2, диаграммой импеданса, поскольку она в основном преобразует каждый компонент на Рисунке 1 выше в значения импеданса. Для тех из вас, кто разбирается в цепях 101, то, что вы видите ниже, когда все импедансы сложены вместе, представляет собой «эквивалент Теванина», который включает в себя импеданс и источник напряжения.Эта базовая схема будет использоваться в этой статье. Рис. 2. Диаграмма импеданса (схема) Для расчетов и упрощения нашей работы с этим документом необходимо сделать допущения. Предположения для трансформатора, который будет использоваться как часть примера для этой статьи, будут включать следующие. Эта информация должна быть доступна при чтении паспортной таблички трансформатора. Трансформатор кВА 1500 Предполагается для тока короткого замыкания, доступного для электросети. Для этого упражнения будет использовано 50 000 ампер. Перед проведением исследования с коммунальным предприятием связываются для получения этой информации. Они могут обеспечить доступный ток короткого замыкания одним из нескольких различных способов. Самыми простыми и, вероятно, наиболее заметными данными от электросети будут доступный ток короткого замыкания в кА. Некоторые утилиты могут вместо этого предоставлять данные в виде MVA короткого замыкания. В этой статье будут представлены уравнения для обеих форм ввода, но с учетом доступного тока короткого замыкания 50 кА. Что касается импеданса проводника, следующие расчеты будут игнорировать сопротивление проводника и использовать только реактивное сопротивление. Это сделает две вещи для этой статьи. Во-первых, это приведет к более высокому току повреждения, чем можно было бы рассчитать, если бы мы приняли во внимание как сопротивление, так и реактивное сопротивление. Во-вторых, это упростит математику. В последнем разделе этой статьи будут представлены результаты анализа, включающие сопротивление и реактивное сопротивление проводников и электросети.Используемые методы отражают методы, используемые в таких программах, как SKM Systems Analysis A-Fault. Эта статья также не предполагает участия двигателя. Максимальный доступный ток короткого замыкания должен включать все составляющие короткого замыкания. Мы не включаем этот вклад в эти усилия для простоты. Расчет основного трансформатораСамым первым шагом этого процесса является расчет ампер полной нагрузки (FLA) для трансформатора. Еще один базовый расчет, который электротехнику придется выполнять в какой-то момент своей карьеры, и который некоторые выполняют много раз в день.Уравнения для расчета FLA приведены ниже:
Этот трансформатор на 1500 кВА имеет FLA вторичной обмотки 1804 ампер. Этот параметр необходим для выбора вторичных проводов для этого трансформатора.Основываясь на этом FLA и использовании таблицы 310.15 (B) (16) из NEC 2014, проводники, используемые на вторичной обмотке трансформатора, будут иметь количество проводников 5-500 MCM на фазу. Расчет тока короткого замыкания на вторичной обмотке главного трансформатораЕсть два подхода к вычислению доступного тока короткого замыкания на вторичной обмотке трансформатора. Мы можем рассчитать максимальное количество, которое трансформатор пропустит, как если бы объект выработки электроэнергии был подключен непосредственно к линейной стороне трансформатора, или мы можем рассчитать доступный ток повреждения с учетом предоставленного доступного тока повреждения от электросети.Первый подход, который приводит к максимальной величине тока повреждения, который пропускает трансформатор, называется расчетом «бесконечной шины». Схема на рисунке 2 может быть перерисована, чтобы включить нулевой импеданс для электросети, что снизит общий импеданс цепи и, таким образом, увеличит значение расчетного тока короткого замыкания. На рис. 3 будет показан максимально допустимый ток короткого замыкания, который может подавать трансформатор. Рисунок 3. Эквивалентная схема бесконечной шины На рис. 3 показано только полное сопротивление трансформатора.Уравнение для расчета максимального доступного тока короткого замыкания, который может обеспечить трансформатор, выглядит следующим образом:
Используя информацию, указанную выше для примера трансформатора 1500 кВА для этого примера, максимальный доступный ток повреждения, который пропускает этот конкретный трансформатор, составляет 31 378 ампер и рассчитывается следующим образом:
Это говорит нам о том, что вторичная обмотка трансформатора не может видеть больше тока повреждения, чем мы рассчитали. На стороне электросети НИКАКИХ изменений, которые могут повлиять на этот доступный ток короткого замыкания до точки, где он превысит 31 378 ампер. Единственный способ получить более 31 378 ампер, если мы изменим трансформатор, и новый трансформатор, который предположительно будет таким же по всем другим характеристикам, будет иметь другой% импеданса.На рисунке 4 представлена таблица, которая включает результаты изменения импеданса исследуемого трансформатора +/- 20% с шагом 5% по сравнению со значением импеданса 5,75%, используемым в этом примере. Это показывает, как изменение импеданса трансформатора повлияет на максимально допустимый ток короткого замыкания, который он может пропустить. Как показано на рисунке 4, смена трансформатора и изменение его импеданса может существенно повлиять на систему. Если бы я рискнул предположить, я бы сказал, что в большинстве случаев коммунальное предприятие, меняющее служебный трансформатор, будет признано предприятием.Задача состоит в том, чтобы владелец объекта или постоянные сотрудники понимали, как это изменение может повлиять на их систему распределения электроэнергии. При внесении изменений следует обновить метки, подобные тем, которые включены в Раздел 110.24 NEC . Рис. 4. Влияние изменения импеданса (+ / — 20%) трансформатора на 1500 кВА В этом расчете не учитывается полное сопротивление источника электросети и не учитываются проводники на стороне нагрузки. Давайте теперь исследуем влияние добавления в сеть доступного тока короткого замыкания. Расчет тока короткого замыкания с учетом тока повреждения сетиКак и в большинстве ситуаций, мы используем консервативные ярлыки, консервативные в отношении безопасности, до тех пор, пока не возникнут ситуации, требующие углубления в детали. Вышеупомянутый ярлык для расчета тока повреждения является консервативным, поскольку он НЕ учитывает доступный ток повреждения сети, дающий максимальное значение. При рассмотрении прерывания и других аналогичных номиналов устройства и оборудование, которые могут выдерживать это консервативное значение тока короткого замыкания, не нуждаются в дополнительных исследованиях.Когда новое или существующее оборудование не может справиться с этим консервативно высоким доступным током короткого замыкания, может быть проведен дальнейший подробный анализ или оборудование может быть заменено или рассчитано соответствующим образом. Далее будет рассмотрен вопрос о добавлении полезности при наличии доступного тока короткого замыкания. В частности, 50 кА доступны в коммунальном хозяйстве. Это продемонстрирует, что таким образом можно уменьшить рассчитанные 31 378 ампер. Ниже приведены два уравнения, которые относятся к наличию кА и наличию MVA короткого замыкания.В этом примере мы будем использовать приведенное ниже уравнение, в котором предполагается, что электросеть предоставила вам доступный ток короткого замыкания в кА. Принципиальная схема теперь выглядит так, как показано на рисунке 5. Рис. 5. Принципиальная электрическая схема, которая включает импеданс трансформатора и сетевого источника. Первым необходимым шагом является преобразование предоставленной электросетью имеющейся информации о токе повреждения (50 кА) в полное сопротивление источника.
При коротком замыкании MVA предоставляется коммунальным предприятием:
Для данного доступного тока короткого замыкания электросети 50 кА% Z электросети рассчитывается следующим образом:
На рисунке 6 показаны значения импеданса источника электросети для различных токов короткого замыкания, доступных для этого конкретного примера. Как отмечалось выше, трансформатор кВА и первичное напряжение будут играть ключевую роль в этих значениях. Рисунок 6. Значения импеданса сетевого источника для различных уровней доступного тока короткого замыкания в электросети Уравнение для расчета доступного тока короткого замыкания на вторичной обмотке трансформатора, которое включает полное сопротивление электросети, выглядит следующим образом:
После вставки всех известных переменных новый доступный ток повреждения рассчитывается следующим образом:
Если мы сравним расчет бесконечной шины и тот, который включал импеданс источника электросети (доступный ток короткого замыкания 50 000 ампер), мы увидим, что доступный ток короткого замыкания упал с 31 378 ампер до 29 259 ампер, что на 6,8% меньше. в доступном токе короткого замыкания (2119 ампер). Влияние изменяющегося тока короткого замыкания, доступного в электросети, показано на рисунке 7. В этой таблице показано, как изменяется расчетный доступный ток короткого замыкания при изменении значений тока повреждения источника электросети.Доступный ток короткого замыкания 50 кА используется в качестве значения, с которым сравниваются изменения. Интересно видеть, что увеличение доступного тока короткого замыкания от электросети, если исходная точка составляет 50 кА, не имеет такого большого влияния, как можно было бы подумать. Например, удвоение доступного тока повреждения в электросети с 50 кА до 100 кА увеличивает доступный ток повреждения вторичной обмотки трансформатора только на 3%, или на 1022 ампер. Для большинства устройств защиты от сверхтоков это изменение не должно быть значительным.Я слышал, что некоторые говорят, что мы не должны маркировать оборудование входа для обслуживания, потому что коммунальное предприятие может вносить изменения в коммутацию на стороне линии, что повлияет на номер на этикетке. Рисунок 7 — хороший пример, который показывает, что даже если бесконечная шина не использовалась, изменения на стороне электросети не имеют такого значительного влияния на ток короткого замыкания, как можно было бы подумать. Рис. 7. Влияние различных токов короткого замыкания, доступных в электросети, на систему распределения электроэнергии Чтобы напомнить, где мы находимся в этом обсуждении, доступные токи замыкания показаны на рисунке 7a. Следующее, что мы должны рассмотреть, — это провод на вторичной обмотке трансформатора. Это еще больше снизит доступный ток короткого замыкания. Расчет — после длины проводникаПроводники могут оказывать значительное влияние на доступный ток короткого замыкания. Давайте продолжим анализ этого примера трансформатора 1500 кВА, добавив параллельные проводники 500MCM на стороне нагрузки. Эквивалентная схема уже представлена как часть рисунка 1.Теперь давайте рассмотрим влияние длины проводника на доступный ток короткого замыкания. Нам понадобится следующее уравнение: Данные, необходимые для этого примера, взяты из Национального электротехнического кодекса . Из Таблицы 9 из NEC 2014 для проводника 500 MCM в стальном трубопроводе найдено, что Xl (реактивное сопротивление) составляет 0,048 Ом / 1000 футов. В этом примере, как указывалось ранее, мы используем только значение реактивного сопротивления, которое приведет к немного более высоким значениям тока короткого замыкания и сделает математические вычисления для этой публикации более приемлемыми.Для трансформатора мощностью 1500 кВА с током полной нагрузки 1804 нам потребуется 5-500 мкс проводов, включенных параллельно на каждую фазу. Расчет производится следующим образом: уравнение для расчета доступного тока короткого замыкания выглядит следующим образом: Подставив все известные переменные, мы вычислили ISC следующим образом: Тот же расчет, предполагающий бесконечную шину без полного сопротивления сети, выглядит следующим образом: Подводя итог еще раз, Как можно увидеть здесь, включение дополнительных деталей снижает доступный ток короткого замыкания.В этом случае ток короткого замыкания был снижен с 31 378 ампер до 26 566 ампер, примерно на 15,3%. Рисунок 8. Сводка расчетов и сравнение с другими инструментами для расчета доступного тока короткого замыкания. Окончательная калибровкаИтак, мы прошли через расчет доступного тока короткого замыкания для служебного входного оборудования. Мы показали, как короткие пути приводят к консервативным доступным токам короткого замыкания, которые в целях оценки отключающих характеристик и / или оценок SCCR обеспечивают коэффициент безопасности для конструкции.Мы также показали, как можно снизить доступные токи короткого замыкания с помощью более подробного анализа, но это требует больше усилий и опыта. Давайте посмотрим на приведенный выше пример и рассмотрим другие инструменты, которые могут быть доступны. В нашем распоряжении есть различные инструменты, когда мы рассматриваем возможность расчета доступного тока короткого замыкания. Некоторые из них довольно дороги и требуют использования обученных специалистов. К ним относятся такие программные приложения, как инструменты системного анализа SKM. Эти приложения действительно являются достаточно подробными и предоставляют очень подробные отчеты.Существуют также бесплатные инструменты, такие как калькулятор короткого замыкания Eaton Bussmann FC2. Рисунок 8 суммирует то, что мы сделали выше, И дает сравнение с SKM и с приложением Bussmann FC2. Калькулятор Bussmann FC2 является бесплатным и доступен в Интернете или для любого IPHONE или ANDROID через App Store любого продукта. Посетите www.cooperbussmann.com/fc2 для получения дополнительной информации. Вы заметите, что результат программного обеспечения SKM использует как реальную, так и реактивную составляющие проводника. Значения импеданса были взяты прямо из Таблицы 9 в NEC 2014 для медных проводников в стальном трубопроводе. Опять же, ни один из примеров, показанных выше и включенных в эту статью, не учитывает моторный вклад. Это было упражнение, призванное дать некоторую основу для обсуждения токов короткого замыкания, и поэтому простота была нашим другом. Вклад двигателя может быть очень важным для этих расчетов. С точки зрения математики и / или системной схемы, когда вы включаете вклад двигателя, импеданс параллелен импедансу сетевого источника, импедансу трансформатора и импедансу проводника.Это снижает общий импеданс в цепи, показанной на рисунке 2, и, следовательно, увеличивает расчетный ток короткого замыкания. Сброс остается на усмотрение учащегося. (Я всегда хотел это сказать.) Заключительное словоДоступный ток короткого замыкания — очень важный параметр, который следует учитывать при проектировании, установке и проверке. На рынке доступны инструменты, которые помогают рассчитать доступный ток короткого замыкания. Используйте эти ресурсы для удовлетворения требований NEC и приложений. Как всегда, поставьте безопасность на первое место в списке и убедитесь, что вы и окружающие доживете до следующего дня. расчетов тока повреждения | Графическая продукцияТок повреждения — это непреднамеренное неконтролируемое протекание большого тока через электрическую систему. Токи повреждения возникают из-за короткого замыкания с очень низким импедансом. Это может быть короткое замыкание на массу или между фазами. Возникающий в результате большой ток может привести к перегреву оборудования и проводов, чрезмерным усилиям, а иногда даже к серьезным дугам, взрывам и взрывам.Причины неисправностей включают в себя такие вещи, как удары молнии, животные, грязь и мусор, упавшие инструменты, коррозия и человеческий фактор. Расчет тока повреждения основан на законе Ома, в котором ток (I) равен напряжению (V), деленному на сопротивление (R). Формула I = V / R. Когда происходит короткое замыкание, сопротивление становится очень маленьким, а это означает, что ток становится очень большим. Если бы сопротивление было равно нулю, то расчетный ток повреждения увеличился бы до бесконечности.Однако даже медный провод имеет некоторое сопротивление; это не идеальный дирижер. Для определения тока повреждения необходимо знать полное сопротивление от источника питания до места повреждения. Требуется расчет тока поврежденияЗнание доступного тока короткого замыкания важно при выборе защитных устройств, но это также необходимо для кода. Национальный электрический кодекс (NEC) 110.24 (A) гласит: «Сервисное оборудование, не являющееся жилым помещением, должно иметь четкую маркировку в поле с максимальным доступным током короткого замыкания.Маркировка (и) поля должна включать дату выполнения расчета тока короткого замыкания и быть достаточно прочной, чтобы выдерживать воздействие окружающей среды ». Это означает, что на электрическом оборудовании, таком как служебное входное оборудование, должны быть установлены ярлыки, указывающие доступный ток короткого замыкания. Это позволяет легко сравнивать номинальный ток короткого замыкания (SCCR) оборудования с максимально доступным током короткого замыкания. Каждый раз при замене оборудования расчет тока короткого замыкания необходимо выполнять заново.Это указано в NEC 110.24 (B): . «При внесении изменений в электрическую установку, влияющих на максимальный доступный ток короткого замыкания в сервисе, максимальный доступный ток короткого замыкания должен быть проверен или пересчитан по мере необходимости, чтобы гарантировать, что номинальные характеристики вспомогательного оборудования достаточны для максимального доступного тока замыкания на линии. терминалы оборудования. Обязательная маркировка поля в 110.24 (A) должна быть скорректирована, чтобы отражать новый уровень максимального доступного тока короткого замыкания.” Типы неисправностейВ электрической системе возможны несколько типов неисправностей:
Четвертый тип неисправности, неисправность обрыва цепи, не приводит к возникновению тока короткого замыкания. Открытый отказ возникает из-за непреднамеренного прерывания тока. Защитные системы должны предотвращать повреждение оборудования и защищать людей во всех вышеперечисленных ситуациях. Это означает, что необходимо произвести расчеты тока короткого замыкания, чтобы можно было выбрать соответствующие защитные устройства. Замыкание на болтах и дуговое замыканиеЭлектрическая неисправность может быть либо замыканием на болтах, либо дуговым замыканием. В неисправности с болтовым креплением соединение прочное. Это позволяет току короткого замыкания течь через проводник. Этот тип неисправности может произойти, когда установщик подключает источник питания к земле, а не к точке, где он должен быть подключен. При включении питания немедленно возникает неисправность болтового соединения, которая срабатывает защитное устройство. Поскольку текущий поток был ограничен, ущерб обычно ограничен. Однако замыкание на болтах создает самые высокие токи замыкания. Дуговое короткое замыкание возникает, когда нет твердого соединения, но проводники подходят достаточно близко, так что ток прыгает через зазор, создавая дугу.Первоначальная дуга ионизирует воздух, создавая плазму, которая позволяет току быстро увеличиваться и поддерживаться, что приводит к вспышке дуги или возникновению дуги. Когда возможна вспышка дуги, необходимо произвести расчеты тока короткого замыкания, чтобы определить безопасные границы защиты и необходимые средства индивидуальной защиты, а также предоставить информацию, необходимую для этикеток вспышки дуги, которые должны быть установлены в дополнение к требуемым этикеткам тока короткого замыкания NEC 110.24. Трехфазные неисправностиIEC 60909 «Токи короткого замыкания в трехфазных системах» дает принятый метод расчета токов трехфазного замыкания. Повреждение трехфазной системы может быть симметричным (сбалансированным) или несимметричным (несимметричным). При симметричном КЗ все три фазы одинаково затронуты. Однако такое случается редко. Большинство трехфазных КЗ несимметричны, что затрудняет расчет тока КЗ. Источники содержанияПрежде чем можно будет выполнить расчет тока короткого замыкания, необходимо определить все возможные источники тока. Это может включать некоторые источники тока, которые, возможно, не были учтены.Существует четыре возможных источника тока короткого замыкания:
Асинхронные двигатели Для упрощения расчета тока повреждения предполагается, что все электрические генераторы в системе находятся в фазе и что они работают при номинальном напряжении системы. Трехфазное соединение с болтовым соединениемПроводится исследование короткого замыкания, чтобы можно было рассчитать ток короткого замыкания.Обычно это включает рассмотрение наихудшего сценария, которым является состояние трехфазного короткого замыкания с болтовым креплением. Основываясь на этой ситуации, можно приблизительно определить другое состояние неисправности. Вклад электродвигателя в ток короткого замыкания в системе важен. Во многих случаях электродвигатели могут давать в четыре-шесть раз больший ток нормальной полной нагрузки. Даже если ток непродолжительный, очень важно, чтобы он был включен в расчет тока короткого замыкания. Когда выполняется исследование вспышки дуги, расчет тока короткого замыкания по-прежнему должен производиться для максимального тока трехфазного короткого замыкания с болтовым соединением. Маркировка тока поврежденияПосле расчета тока короткого замыкания на оборудование должны быть нанесены метки с указанием доступного тока короткого замыкания. Если требуется этикетка для вспышки дуги, ее также следует распечатать и наклеить в соответствующем месте. Для каждой метки требуется специальная информация, полученная при расчете тока короткого замыкания. Сделайте следующий шаг!Теперь, когда у вас есть базовое представление о переменных в расчетах вспышки дуги, загрузите наше бесплатное руководство по энергии вспышки дуги, чтобы получить подробные советы о том, как реализовать систему безопасности на вашем предприятии.Загрузите бесплатную копию сегодня! Расчет базового тока короткого замыкания | EC&MОсновная электрическая теорема гласит, что величина тока, протекающего через короткое замыкание, зависит от двух переменных величин: напряжения системы и связанного полного сопротивления пути прохождения тока от источника до точки повреждения. Типичные системные напряжения хорошо знакомы всем нам.Однако связанный полный импеданс пути прохождения тока короткого замыкания требует небольшого пояснения. Этот импеданс обычно включает сопротивление и реактивное сопротивление проводников фидера, любые импедансы трансформаторов (идущие от точки повреждения обратно к источнику энергии) и любое другое оборудование, подключенное на пути прохождения тока. Рис. 1 представляет собой очень простую однострочную схему со следующим: источником питания, трансформатором и устройством защиты от перегрузки по току (OCPD), имеющим определенный номинальный ток отключения при коротком замыкании. Давайте сначала поговорим об источнике питания. Во многих примерах расчета тока короткого замыкания вы увидите такие ссылки, как «Предположим, что источник питания имеет бесконечную мощность» или «Источник имеет бесконечную шину». Что это означает, и почему так важен выборочный расчет? Все, что говорится, это то, что напряжение источника не имеет внутреннего сопротивления. В результате выборочный расчет становится очень консервативным. Поскольку предполагается, что источник не имеет собственного импеданса, соответствующий ток короткого замыкания будет в худшем случае. Теперь посмотрим на трансформатор. Импеданс, определяющий величину тока короткого замыкания на его вторичной обмотке, состоит из двух отдельных импедансов: собственного импеданса плюс импеданса вторичных проводников, идущих к точке повреждения. Собственный импеданс трансформатора — это величина его сопротивления протеканию через него тока короткого замыкания. Теперь у всех трансформаторов есть импеданс, который обычно выражается в процентах напряжения. Это процент от нормального номинального первичного напряжения, которое должно быть приложено к трансформатору, чтобы вызвать протекание номинального тока полной нагрузки во вторичной обмотке, замкнутой накоротко.Например, если трансформатор 480 В / 120 В имеет импеданс 5%, это означает, что 5% от 480 В или 24 В, приложенных к его первичной обмотке, вызовут ток номинальной нагрузки во вторичной обмотке. Если 5% первичного напряжения вызовут такой ток, то 100% первичного напряжения вызовут 20-кратный (100 деленный на 5) вторичный ток с номинальной полной нагрузкой, который пройдет через твердое короткое замыкание на его вторичных выводах. Очевидно, что чем ниже полное сопротивление трансформатора с заданным номиналом кВА, тем больше ток короткого замыкания он может выдать. Для пояснения возьмем еще один пример. Предположим, у нас есть два трансформатора, каждый мощностью 500 кВА. Поскольку они имеют одинаковый номинал, каждый имеет одинаковый номинальный вторичный ток нагрузки. Предположим, что у одного из блоков импеданс 10%. Следовательно, он может подавать 10-кратный (100 деленный на 10) номинальный вторичный ток нагрузки для короткого замыкания на своих вторичных выводах. Теперь предположим, что второй блок имеет импеданс 2%. Это устройство может подавать намного больший кратный номинальный ток вторичной нагрузки при коротком замыкании на его клеммах вторичной обмотки: в 50 раз (100 делится на 2) это значение.Сравнивая оба блока, последний трансформатор может обеспечивать в пять раз больше тока короткого замыкания, чем первый блок. Пример расчета Теперь, когда мы понимаем основные переменные, определяющие токи короткого замыкания, давайте выполним пример расчета. Как показано на рис. 2, предположим, что у нас есть простая распределительная система с неисправным состоянием. Для ясности и упрощения предположим, что сопротивление линии между вторичной обмоткой трансформатора и местом повреждения пренебрежимо мало.
Следовательно, OCPD должен быть способен безопасно прерывать это количество тока вместе с асимметричным значением тока (обычно это множитель, умноженный на симметричное значение). По общему признанию, это значительно упрощается. На самом деле при расчете учитываются все импедансы и расстояние до места повреждения относительно трансформатора. Тем не менее, это дает вам представление о том, что входит в анализ тока короткого замыкания. Расчет токов короткого замыкания% PDF-1.5 / Ключевые слова (короткое замыкание, короткое замыкание, замыкание фазы на землю, мощность, полное сопротивление, напряжение, Isc, Zsc, Usc, автоматический выключатель, автоматический выключатель, предохранитель, термическое напряжение, электродинамические силы, отключающая способность, замыкание, кабель, BC , повышение температуры, перегрузка) 523 @ 1434357702684) конечный поток Расчет пусковых токов в одно- и многоступенчатых установках конденсаторных батарей% PDF-1.5 2018-08-03T04: 33: 54.916-04: 00 xmp.id:F954F32575AAE611920ABB02879FC7B9adobe:docid:indd:324f0745-684b-11db-9287-d09935121358proof:pdfuuid:e7598319-8c31-4046-804e-96f289994542xmp.iid:BC23E3542FA8E6119C47E049A7DC7163adobe:docid:indd:324f0745-684b-11db-9287-d09935121358defaultxmp. сделал: B898727D9EA2E611BAA898CDCFCB8218 конечный поток |