Сила тока и мощность тока. Simpleinfo – все сложное простыми словами!
07 Сентября 2017
7667
Подведем итоги по разделу. Обратим внимание на некоторые важные вещи и еще разберем пройденный материал.
1.В какую сторону течет ток?
Если вы обратили внимание, во всех предыдущих статьях, направление тока обозначено от (-) к (+), то есть с отрицательного полюса к положительному. Но в статье про закон Ома, мы указали с положительного полюса к отрицательному. В статье Электрическая проводимость мы выяснили, что носителем заряда являются отрицательно заряженные частицы, под воздействие поля происходит упорядоченное движение отрицательно заряженных частиц.
Таким образом направление движения тока с отрицательного полюса к положительному. Но в схематике (при разборе схем) и в быту используется направление от положительного к отрицательному. Как я понимаю это пришло с древности, пока точно не понимали, как движутся частицы.
наведите или кликните мышкой, для анимации
наведите или кликните мышкой, для анимации
Мы же, при разборе радиоэлементов, чтобы понять, как они работают будем использовать с отрицательного к положительному. А при разборе схем, с положительного полюса к отрицательному.
2. Более простой разбор электрической цепи. Сколько потребляет нагрузка?
Мы теперь знаем, что такое замкнутая электрическая цепь. И как течет по нему ток. Также выяснили, что в цепи существует определенная сила тока, напряжение тока, сопротивление нагрузки или нагрузок, а также возникает выработка мощности. Теперь на практике выясним более подробнее.
Нужно запомнить, что чаще всего в электрической цепи, мы можем изменять напряжение тока и сопротивление нагрузки или нагрузок. К примеру, если у нас регулируемый источник питания, мы можем установить регулятор напряжения к отметке 5 В или 12 В. Если используются батарейки, можем взять 2 “пальчиковых” батарейки, это 3 В. Либо можем использовать 3 батарейки, таким образом уже
будет 4,5 В. Что касается нагрузки, мы можем подключить 1 лампу накаливания или 2 и т.д., что приведет к изменению общего сопротивления нагрузки. А сила тока будет подстраиваться согласно закону Ома.
Силу тока нужно представлять себе так: показатель силы тока в цепи — это “потребление” нагрузки. Чем больше сила тока в цепи, чем больше потребляется ток нагрузкой. Давайте рассмотрим на примере, если взять две одинаковые аккумуляторные батареи и присоединить к ним разные нагрузки. Быстрее сядет та батарея, в цепи которой было больше силы тока.
Теперь возникает вопрос, если, меняя нагрузку, мы можем менять “потребление” тока, то значит меняя напряжение, мы также можем повлиять на “потребление” тока, то есть на силу тока. Так и есть, если мы увеличим напряжение, увеличится и ток в нагрузке. Но тут необходимо быть осторожным, так как если слишком большой ток пройдет через нагрузку, он может его испортить, так же наоборот, если недостаток тока, то устройство может не работать или работать плохо.
3. Чем отличается сила тока от мощности тока?
Еще раз вспоминаем, что такое сила тока и мощность тока.
Сила тока — это прохождение частиц за единицу времени, выше мы с вами представили силу тока, как «потребление» нагрузки. К примеру, чтобы зажечь лампочку нужно создать в цепи 0,2 Ампера силы тока. Еще проще говоря, какая нужна сила, чтобы совершить, какое-то действие. (Зажечь лапочку, крутить двигатель, греть электроплиту и т.д.)
Мощность тока – это работа, которая выполняется за единицу времени нагрузкой. То есть, когда вращается двигатель — он совершает работу, когда электроплита греет — он совершает работу, когда лампочка горит – он так же совершает работу. Получается сила тока нам дает возможность выполнить работу, как бы отдавая свою энергию в нагрузку, далее нагрузка совершает ту или иную работу.
При этом чем мощнее нагрузка, тем больше нужны заряды, соответственно больше силы тока в цепи. Более мощные нагрузки, выполняют больше работы. К примеру мощные электродвигатели сильнее крутятся, мощные лампочки ярче горят.
Таким образом, сила тока это, потребление тока нагрузкой или необходимое количества тока, для получения выработки мощности нагрузки. Мощность тока, это работа нагрузки за единицу времени. Сила тока и мощность тока взаимосвязаны. Что бы не путаться в голове нужно держать две вещи:
- 1. В источниках питания пишут, показатель силы тока, то есть, сколько он сможет отдать.
- 2. В нагрузках, в электроприборах пишут потребление в мощностях, то есть сколько ему нужно.
наведите или кликните мышкой, для анимации
Мощность переменного тока. Мощность тока через катушку, резистор, конденсатор
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.
Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.
Пусть и — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины и можно считать постоянными в течение интервала .
Пусть за время через наш участок прошёл заряд (в соответствии с правилом выбора знака для силы тока заряд считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу
Мощность тока — это отношение работы электрического поля ко времени, за которое эта работа совершена:
(1)
Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.
Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.
1. Мощность положительна: . Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи (например, конденсатор заряжается).
2. Мощность отрицательна: . Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.
Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).
Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.
Мощность тока через резистор
Пусть переменный ток протекает через резистор сопротивлением . Напряжение на резисторе, как нам известно, колеблется в фазе с током:
Поэтому для мгновенной мощности получаем:
(2)
График зависимости мощности (2) от времени представлен на рис. 1. Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.
Рис. 1. Мощность переменного тока через резистор
Максимальное значение нашей мощности связано с амплитудами тока и напряжения привычными формулами:
На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой Гц, т. е. за секунду совершается колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между и . Где же именно?
Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение ?
Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:
среднее значение квадрата синуса (или косинуса) за период равно .
Этот факт иллюстрируется рисунком 2.
Рис. 2. Среднее значение квадрата синуса равно
Итак, для среднего значения мощности тока на резисторе имеем:
(3)
В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):
(4)
Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:
Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения , а затем к источнику переменного напряжения с таким же действующим значением , то в обоих случаях лампочка будет гореть одинаково ярко.
Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые вольт из розетки — это действующее значение напряжения бытовой электросети.
Мощность тока через конденсатор
Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :
Для мгновенной мощности получаем:
График зависимости мгновенной мощности от времени представлен на рис. 3.
Рис. 3. Мощность переменного тока через конденсатор
Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.
Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4).
Рис. 4. Напряжение на конденсаторе и сила тока через него
Рассмотрим последовательно все четыре четверти периода.
1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.
Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.
2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.
Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).
3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.
Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.
4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.
Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.
Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.
Мощность тока через катушку
Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :
Для мгновенной мощности получаем:
Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).
Рис. 5. Напряжение на катушке и сила тока через неё
Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.
В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.
Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.
Мощность тока на произвольном участке
Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушки…На этот участок подано переменное напряжение .
Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз . Мы записывали это так:
Тогда для мгновенной мощности имеем:
(5)
Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5), используя формулу:
В результате получим:
(6)
Но среднее значение величины равно нулю! Поэтому средняя мощность оказывается равной:
(7)
Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:
Формула (7) охватывает все три рассмотренные выше ситуации. В случае резистора имеем , и мы приходим к формуле (3). Для конденсатора и катушки , и средняя мощность равна нулю.
Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.
С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.
Расчет мощности двигателя | Полезные статьи
Как правило, мощность электродвигателя указывается на шильдике, который закреплен на корпусе или в техническом паспорте устройства. Однако в случае, когда данные на шильдике прочитать невозможно, а документация утеряна, определить мощность можно несколькими способами. Сегодня мы расскажем о двух наиболее надежных них.
Мощность электродвигателя по установочным и габаритным размерам
Понравилось видео? Подписывайтесь на наш канал!
Для первого способа необходимо знать установочные размеры электродвигателя и синхронную частоту вращения. Последняя измеряется с помощью мультиметра, установленного в режим миллиамперметра. Для этого указатель колеса выбора устанавливаем на значение 100µA. Щуп черного цвета подключаем в общее гнездо «COM», а щуп красного цвета — к гнезду для измерения напряжения, сопротивления и силы тока до 10 А.
После этого обесточиваем электродвигатель и снимаем крышку с клеммной коробки. Щупы мультиметра подключаем к началу и концу любой из обмоток (например, V1 и V2). После этого рукой медленно проворачиваем вал двигателя так, чтобы он совершил один оборот, и считаем количество отклонений стрелки из состояния покоя, которые она сделает за это время. Число отклонений стрелки за один оборот вала равно количеству полюсов и соответствует такой синхронной частоте вращения:
• 2 полюса – 3000 об/мин;
• 4 полюса – 1500 об/мин;
• 6 полюсов – 1000 об/мин;
• 8 полюсов – 750 об/мин.
Теперь необходимо выяснить установочные размеры двигателя. Для замеров используем штангенциркуль, механический или электронный, а также измерительную рулетку. Записываем результаты измерений в миллиметрах: диаметр и длину вылета вала, высоту оси вращения, расстояние между центрами отверстий в «лапах», а если двигатель фланцевый, то диаметр фланца и диаметр крепежных отверстий.
Полученные данные сравниваем с параметрами из таблиц 1-3.
Таблица 1. Определение мощности двигателя по диаметру вала и его вылету
Таблица 2. Определение мощности по расстоянию между отверстиями в лапах
Таблица 3. Определение мощности по диаметру фланца и крепежных отверстий
Определение мощности по потребляемому току
Мощность двигателя можно определить по потребляемому им току. Для измерения силы тока будем использовать токоизмерительные клещи.
Перед началом измерений предварительно отключаем подачу напряжения на электродвигатель. После этого снимаем крышку с клеммной коробки и расправляем токопроводящие жилы, чтобы обеспечить удобный доступ к ним.
Затем подаем напряжение на двигатель и даем поработать в режиме номинальной нагрузки в течение нескольких минут. Устанавливаем предел измерений на значение «200 А» и токовыми клещами выполняем измерение потребляемого тока на одной из фаз. Далее замеряем напряжение на обмотках с помощью щупов, входящих в комплект токоизмерительных клещей.
Колесо выбора режимов и пределов измерений устанавливаем в позицию для измерения переменного напряжения с пределом в 750 В. Щуп красного цвета присоединяем к гнезду для измерения напряжения, сопротивления и силы тока до десяти Ампер, а черного – к гнезду «COM». Замеры выполняем между клеммами «U1-V1» или «V1-W1» или «U1-W1».
Расчет мощности электродвигателя выполняем по формуле:
S=1.73×I×U,
где S – полная мощность (кВА), I – сила тока (А), U – значение линейного напряжения (кВ).
Замеряем ток на одной из фаз, а также напряжение и подставляем полученные значения в формулу (например, при замере мы получили ток равный 15,2А, а напряжение – 220В):
S=1.73×15.2×0.22=5.78 кВА
Важно отметить, что мощность эл. двигателя не зависит от схемы соединения обмоток статора. В этом можно убедиться, выполнив измерения на этом же двигателе, но с обмотками статора, соединенными по схеме «звезда»: измеренный ток будет равен 8,8А, напряжение – 380В. Также подставляем значения в формулу:
S=1.73×8,8×0.38=5.78 кВА
По этой формуле мы определили мощность электродвигателя, потребляемую из электрической сети.
Чтобы узнать мощность двигателя на валу, нужно полученное значение умножить на коэффициент мощности двигателя и на коэффициент его полезного действия. Таким образом, формула мощности двигателя выглядит так:
P=S×сosφ×(η÷100),
где P – мощность двигателя на валу; S – полная мощность двигателя; сosφ – коэффициент мощности асинхронного электродвигателя; η – КПД двигателя.
Поскольку мы не располагаем точными данными, подставим в формулу средние значения cosφ и КПД двигателя:
P=5,78×0,8×0,85=3,93≈4кВт
Таким образом, мы определили мощность электродвигателя, которая равна 4 кВт.
Мы рассказали о самых надежных методах определения мощности электродвигателя. Вы также можете посмотреть наше видео, в котором подробно показано, как определить мощность электродвигателя.
Количество теплоты, выделившееся при прохождении электрического тока по проводнику, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого шел ток: | Последовательное соединение. 1. Сила тока во всех последовательно соединенных участках цепи одинакова: I1=I2=I3=…=In=… 2. Напряжение в цепи, состоящей из нескольких последовательно соединенных участков, равно сумме напряжений на каждом участке: U=U1+U2+…+Un+… 3. Сопротивление цепи, состоящей из нескольких последовательно соединенных участков, равно сумме сопротивлений каждого участка: R=R1+R2+…+Rn+… Если все сопротивления в цепи одинаковы, то: R=R1. N При последовательном соединении общее сопротивление увеличивается (больше большего). | Параллельное соединение. 1. Сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках. I=I1+I2+…+In+… | 2. Напряжение на всех параллельно соединенных участках цепи одинаково: U1=U2=U3=…=Un=… 3. При параллельном соединении проводников проводимости складываются (складываются величины, обратные сопротивлению): Если все сопротивления в цепи одинаковы, то: При параллельном соединении общее сопротивление уменьшается (меньше меньшего). | 4. Работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках: A=A1+A2+…+An+… т.к. A=I2Rt=I2(R1+R2+…+Rn+…)t. 5. Мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участках: P=P1+P2+…+Pn+… 6. Т.к. силы тока во всех участках одинаковы, то: U1:U2:…:Un:… = R1:R2:…:Rn:… Для двух резисторов: — чем больше сопротивление, тем больше напряжение. | 4. Работа электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме работ на отдельных участках: A=A1+A2+…+An+… т.к. .
5. Мощность электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме мощностей на отдельных участках: P=P1+P2+…+Pn+… 6. Т.к. напряжения на всех участках одинаковы, то: I1R1= I2R2=…= I3R3=… Для двух резисторов: — чем больше сопротивление, тем меньше сила тока. |
Расчет электрической мощности
Добавлено 1 октября 2020 в 09:01
Сохранить или поделиться
Формула расчета мощности
Мы видели формулу для определения мощности в электрической цепи: умножая напряжение в «вольтах» на ток в «амперах», мы получаем ответ в «ваттах». Давайте применим ее на примере схемы:
Рисунок 1 – Пример электрической схемы
Как использовать закон Ома для определения силы тока
В приведенной выше схеме мы знаем, что у нас напряжение батареи 18 В и сопротивление лампы 3 Ом. Используя закон Ома для определения силы тока, мы получаем:
\[I = \frac{E}{R} = \frac{18 \ В}{3 \ Ом} = 6 \ А\]
Теперь, когда мы знаем силу тока, мы можем взять это значение и умножить его на напряжение, чтобы определить мощность:
\[P = IE = (6 \ А)(18\ В) = 108 \ Вт\]
Это говорит нам о том, что лампа рассеивает (выделяет) 108 Вт мощности, скорее всего, в виде света и тепла.
Увеличение напряжения батареи
Давайте попробуем взять ту же схему и увеличить напряжение батареи, чтобы посмотреть, что произойдет. Интуиция подсказывает нам, что с увеличением напряжения ток в цепи будет увеличиваться, а сопротивление лампы останется прежним. Таким же образом, увеличится и мощность:
Рисунок 2 – Пример электрической схемы
Теперь напряжение аккумулятора составляет 36 вольт вместо 18 вольт. Лампа по-прежнему обеспечивает для прохождения тока электрическое сопротивление 3 Ом. Теперь сила тока равна:
\[I = \frac{E}{R} = \frac{36 \ В}{3 \ Ом} = 12 \ А\]
Это понятно: если I = E/R, и мы удваиваем E, а R остается прежним, сила тока тоже должна удвоиться. Так и есть: теперь у нас сила тока 12 ампер, вместо 6 А. А что насчет мощности?
\[P = IE = (12 \ А)(36\ В) = 432 \ Вт\]
Как повышение напряжения батареи влияет на мощность?
Обратите внимание, что мощность, как мы могли догадаться, увеличилась, но она увеличилась немного больше, чем ток.2R\]
Резюме
- Мощность измеряется в ваттах, которые обозначается как «Вт».
- Закон Джоуля: P = I2R; P = IE; P = E2/R
Оригинал статьи:
Теги
Закон ДжоуляЗакон ОмаМощностьОбучениеРассеиваемая мощностьСхемотехникаЭлектрический токЭлектрическое напряжениеЭлектричество
Сохранить или поделиться
Напряжение, мощность и сопротивление в электрической цепи
Электрической цепью считается комплекс определенных элементов и устройств, специально предназначенных для протекания электрического тока, в которых электромагнитные процессы можно описать, благодаря таким понятиям, как напряжение и сила тока. Изображение электрической цепи условными знаками называется электрической схемой.
Напряжение в электрической цепи
Для рассмотрения напряжения электрической цепи имеет смысл определить такое понятие, как электрический ток. Электроток характеризуется заряженными частицами, пребывающими в каком-то из проводников в упорядоченном движении. Для его возникновения заранее формируется электрическое поле, оказывающее определенное воздействие на заряженные частицы и приводящее их в движение. Возникновение зарядов при этом будет наблюдаться исключительно в том случае, когда различные вещества между собой тесно контактируют.
В некоторых отдельно взятых видах веществ заряды будут свободно перемещаться среди их разных частей, в то же время, в других веществах это не осуществляется. В этих случаях проводящие вещества называют проводниками, а непроводящие считаются диэлектриками (или изоляторами). При этом в физике подобное разделение всего лишь условное. Способностью проводить электричество обладают любые вещества, но одним она присуща в большей степени, другим – в меньшей.
Электрический ток, как явление свободных зарядов в упорядоченном движении, характеризуется силой тока, равнозначной количеству электричества (заряда), проходящему за единицу времени через поперечное сечение вещества. Таким образом, если за время $dt$ по сечению вещества переносится некий заряд $dq = dq + dq$, то ток будет выражен в формуле:
$i = \frac{dq}{dt} = \frac{q}{t}$
Согласно характеру своего проявления, электрические заряды бывают: положительными и отрицательными. Ток в теле, которое было наэлектризовано, будет существовать непродолжительное время, что объясняется постепенным угасанием заряда самого по себе. С целью более продолжительного существования тока в проводнике потребуется обеспечение постоянной поддержки в нем электрического поля.
Электрическое поле может сформировать исключительно какой-либо источник электротока.
Пример 1
Простейшим примером процесса возникновения электрического тока можно назвать соединение одного конца провода с наэлектризованным предварительно телом и другого конца – с землей.
Изобретенная в свое время батарея стала первым стабильным источником электрического тока. Основными величинами выступают:
- сила тока;
- сопротивление;
- напряжение.
Данные величины, имея тесную взаимосвязь между собой, наиболее точным образом могут охарактеризовать происходящие в электрической цепи процессы.
Определение 1
Напряжение в электрической цепи представляет одну из основных характеристик электротока. Током в физике считается упорядоченное движение электронов (заряженных частиц). Поле, формирующее это движение, будет выполнять определенные действия, которые характеризуются, подобно его работе. Чем больший заряд за одну секунду перемещается в цепи, тем больше работы выполняет электрическое поле.
В качестве одного из факторов, воздействующих непосредственно на работу тока, и выступает напряжение, представляющее собой отношение работы к заряду, который пройдет через определенный участок цепи. Единицей измерения работы тока выступает джоуль (Дж), а заряда – кулон (Кл). Единицей напряжения, таким образом, будет 1 Дж/Кл (или один вольт (В)).
Чтобы возникло напряжение, потребуется источник тока. В ситуации с разомкнутой цепью напряжение присутствует только на клеммах источника. Если включить источник в цепь, на ее отдельных участках можно зафиксировать появление напряжения, а, соответственно, и тока. Напряжение можно измерить вольтметром, включенным параллельно в электрическую цепь.
Электрический потенциал $ф$ представляет отношение энергии (работы) $Э$ электрического поля к единичному заряду $q_0$ (малый заряд, который не искажает поле, куда он внесен). Формула получается при этом следующая:
$dф = \frac{dЭ}{dq_0} = \frac{Э}{q_0}$
Электрическое напряжение является разностью потенциалов между двумя точками электрополя (например, 1 и 2), что выражается формулами:
$U_{1-2} = ф_1 — ф_2 = \frac{dЭ_1}{q_0}-\frac{dЭ_2}{q_0} = \frac{dЭ_{1-2}}{q_0}$
$U_{1-2} = \frac{Э_{1-2}}{q_0}$
$U_{2-1} = -\frac{Э_{1-2}}{q_0}$
Таким образом, электрическое напряжение считается работой электрического поля, ориентированного на перемещение единичного заряда из одной точки в другую. В пассивных элементах цепи положительное направление напряжения будет совпадать с положительным направлением тока.
Мощность в электрических цепях
Определение 2
В качестве одного из характеризующих поведение электронов параметров (помимо тока и напряжения) может выступать мощность. Она представляет меру количества работы, которую возможно совершить за единицу времени. Работа зачастую сравнивается с подъемом веса. Так, чем больше окажется вес и высота его подъема, тем больший объем работы выполнен.
Мощность, определяя скорость совершения работы в единицу времени, считается равной произведению напряжения и силы тока:
$P = IU$, где:
- $P$ – мощность тока,
- $I$ – сила тока,
- $U$ – напряжение в цепи.
Мощность является величиной, обозначающей интенсивность передачи электроэнергии. С целью измерения мощности применяются ваттметры. Мощностью определяется работа по перемещению электрических зарядов за единицу времени:
$P = \frac{A}{\delta t}$
Здесь:
- $A$ – работа,
- $\delta t$– время, на протяжении которого такая работа совершалась.
Мощность тока в разных приборах и оборудовании будет зависеть параллельно от таких основных величин, как напряжение и сила тока. Чем выше будет ток, тем большим окажется значение мощности, соответственно, она возрастает и если напряжение повысится.
Существует две основных разновидности электрической мощности:
- активная;
- реактивная.
В первом случае мощность электротока безвозвратно превращается такие виды энергии, как:
- механическая;
- тепловая;
- световая;
- прочие.
В производственной и бытовой среде применяются уже более крупные значения: киловатты и мегаватты. К реактивной мощности будет относиться такая степень электрической нагрузки, которая создается в устройствах индуктивными и емкостными колебаниями энергии электромагнитного поля.
Сопротивление в электрической цепи
Электрическое сопротивление является определяющей величиной для силы тока, текущего при заданном напряжении по цепи. Под электрическим сопротивлением $R$ понимается отношение напряжения, возникшего на концах проводника, к силе тока, который течет по проводнику.
$R = \frac{U}{I}$, где
- $R$- электрическое сопротивление проводника;
- $U$ — напряжение;
- $I$ — сила тока.
При расчетах напряжений и токов через элементы электроцепи нужно знать показатель их общего сопротивления. Источники энергии существуют в двух разновидностях: постоянный ток (аккумуляторы, выпрямители, батарейки) и переменный ток (промышленные и бытовые сети). В первом случае ЭДС со временем не изменяется, а во втором она будет изменяться, согласно синусоидальному закону с определенной частотой.
Сопротивление нагрузки существует в активном и реактивном виде. Активное сопротивление $R$ не зависит от частоты сети, что говорит об изменении тока синхронно с напряжением. Реактивное сопротивление бывает индуктивным и емкостным.
Замечание 1
Отличительной чертой реактивной нагрузки считают присутствие опережения или отставания тока от напряжения. Ток в емкостной нагрузке будет опережать напряжение, а в индуктивной – отставать от него. На практике это выглядит, как если бы разряженный конденсатор подключить к источнику постоянного тока, а в момент включения наблюдать максимальное количество тока через него при минимальном напряжении.
Со временем будет фиксироваться уменьшение тока и возрастание напряжения до заряда конденсатора. При подключении к источнику переменного тока конденсатора, он начнет постоянно перезаряжаться с частотой сети, а ток будет увеличиваться раньше напряжения.
Как считать электрическую мощность?
Чтобы обеспечить нормальное функционирование электрической проводки, необходимо ещё на этапе проектирования правильно рассчитать мощность, подобрать кабель подходящего сечения. От этого зависит не только срок эксплуатации системы, но и пожаробезопасность сооружения. Если выбрать сечение ошибочно или неправильно рассчитать мощность, можно столкнуться с такими опасными последствиями, как возгорание электропроводки, короткие замыкания, пожар и пр. При выборе оборудования и кабельно-проводниковой продукции важно учитывать разные критерии, среди которых напряжение, сила тока, особенности эксплуатации сети.
Формула расчёта
В уже функционирующей сети измерить мощность электрического тока можно при помощи специального оборудования. Что же делать на этапе проектирования? Ведь самой цепи ещё нет. В этом случае применяется расчётный метод.
Существует два вида мощности: активная и реактивная. Активная превращается в полезную энергию безвозвратно, считается полезной. Реактивная предусматривает затрату определенного (расчетного согласно установленного оборудования и типа оборудования) количества энергии.
В нашем случае реактивная мощность нам не интересна, и мы не будем ее рассчитывать!
В цепях переменного тока, ток и напряжения сдвигаются относительно друг друга.
Этот сдвиг на угол cos обозначается буквой φ (фи).
При расчёте мощности электрической мощности следует учитывать тип сети:
P=U*I*cosφ — для однофазной;
P=√3*U*I*cosφ — для трехфазной.
U – это напряжение сети,
I – сила тока,
cosφ – коэффициент мощности.
cosφ – коэффициент мощности, это паспортная величина оборудования, если не известно о типе оборудования (например, квартиры), то cosφ – расчетный и берется из инструкции по проектированию (СП 256.1325800.2016)
Зависимость коэффициента мощности
Чтобы рассчитать полную (Обращаем внимание, что имеется ввиду установленная, т.е. полная мощность) мощность, необходимо определить суммарную мощность всей техники и оборудования, которые будут эксплуатироваться, и подключаться к данной электрической сети. Это можно узнать путём суммирования мощностей приборов (этот показатель указан в паспорте товара).
При определении коэффициента мощности учитывается характер нагрузки. К примеру, для нагревательного оборудования он близится к 1. Важно учитывать, что любая активная нагрузка предполагает незначительную реактивную составляющую, поэтому коэффициент мощности будет равен не 1, а 0,95. Для более мощных приборов – 0,8. Напряжение для однофазных цепей принимается 220 В, для трехфазных – 380 В.
Разница между током и мощностью
Чтобы правильно ответить на все ваши вопросы, потребуются определенные усилия. Рассмотрим случай, когда у нас есть источник напряжения с фиксированным выходным напряжением. Это самый распространенный случай для готовых продуктов.
В приборах
переменного тока обычно используется фиксированное напряжение (в зависимости от страны). Поскольку напряжение фиксировано и известно, я могу рассчитать мощность, если я знаю ток, или если я знаю ток, я могу рассчитать мощность, используя P = I * V. Вероятно, поэтому вы считаете их как бы избыточными или тесно связанными.
Теперь рассмотрим другой случай. Допустим, у меня аккумулятор на 3,7В. Я хочу использовать его для питания цепи 5 В, которая потребляет 100 мА. Для этого мне нужно поднять напряжение до 5 В (с помощью повышающего преобразователя). Теперь мощность нужно рассматривать отдельно от тока. Мощность, необходимая для схемы, составляет 5 * 0,1 = 500 мВт. Из-за экономии энергии мне потребуется не менее 500 мВт от батареи. На самом деле мне, вероятно, понадобится около 600 мВт из-за неидеальной эффективности преобразования повышающего преобразователя.Так что это около 3,7 В / 0,6 Вт = 162 мА.
Блоки питания
могут иметь различные спецификации, в зависимости от того, для чего они используются. Лабораторные источники питания обычно указывают максимальный ток и максимальное напряжение. Адаптеры для ноутбуков, вероятно, указывают максимальную потребляемую мощность на входе, выходное напряжение (фиксированное) и максимальный выходной ток.
Когда вы управляете светодиодами, вы обычно начинаете с того тока, который вы хотите пропустить через светодиод. Напряжение не сильно зависит от тока. Но когда ток и напряжение известны, мощность может быть вычислена тривиально (P = V * I).Но на самом деле белые светодиоды, предназначенные для освещения, часто оценивают по мощности. Если вы покупаете светодиоды и у вас нет номера модели или спецификации, вам следует подумать о приобретении светодиодов из другого источника. Это правда, что 20 мА — это общий максимальный ток для светодиодных индикаторов. Но в зависимости от использования иногда вы можете использовать гораздо более низкий ток (например, 1 или 2 мА), особенно для красных светодиодов. Светодиоды для освещения могут использовать ток намного более высокий, чем 20 мА.
Последний комментарий. Иногда напряжение вашего источника питания выше, чем требуемое входное напряжение вашей цепи.Для понижения напряжения можно использовать линейный регулятор. В этом случае ток будет одинаковым для обеих цепей. Линейный регулятор просто преобразует дополнительную мощность в тепло. Но вы также можете использовать понижающий преобразователь. Понижающий преобразователь будет преобразовывать более высокое напряжение в более низкое напряжение несколько более эффективно. Типичные значения: КПД от 80% до 90%. Это означает, что понижающий преобразователь будет производить меньше тепла, чем линейный регулятор.
Я пропустил некоторые детали, потому что не думаю, что вы готовы к ним.Возможно, кто-то это прокомментирует.
Мощность, ток и разность потенциалов на резисторе — класс AP [2021]
Закон Ома
Если бы вы хотели экспериментально определить взаимосвязь между током, напряжением и сопротивлением, что бы вы могли сделать?
Хороший способ определить это соотношение — измерить ток в цепи, состоящей из источника напряжения, такого как батарея, и резистора.Вы можете изменить величину напряжения, возможно, изменив количество используемых батарей, и посмотреть, как в ответ изменится ток.
При измерении таких величин, как напряжение, сопротивление и ток, очень важно убедиться, что вы используете правильные единицы измерения. Обычно ток измеряется в амперах (А), напряжение измеряется в вольтах (В), а сопротивление измеряется в омах.
После того, как вы измерили ток (в А) и напряжение (в В), график может помочь вам понять данные.Если вы построили график напряжения на оси y и тока на оси x , вы получите график, аналогичный показанному ниже:
Этот график дает вам довольно важную информацию о том, что происходит в цепи. Во-первых, вы заметили, что график представляет собой прямую линию? Это означает, что для этого резистора существует прямая зависимость между током и напряжением. Мы называем это соотношение Законом Ома , который гласит, что ток через резистор прямо пропорционален напряжению и обратно пропорционален сопротивлению резистора.
Закон Ома:
Ток = Напряжение / Сопротивление
I = V / R
Это означает, что при повышении напряжения увеличивается и ток. Однако по мере увеличения сопротивления ток падает. Вспомните автомобили, пытающиеся избежать аварии на шоссе. Чем больше полос будет заблокировано аварией, тем медленнее сможет двигаться транспорт. Увеличение сопротивления резистора так же влияет на ток в цепи.
Наклон линии на этом графике также важен.Закон Ома можно переставить и записать как V = I x R . Поскольку ток был нанесен на ось x , а напряжение было нанесено на ось y , наклон этой линии равен сопротивлению резистора, поэтому сопротивление этого конкретного резистора должно быть 10 Ом.
Омические и неомические резисторы
Резисторы, соответствующие закону Ома, известны как омические . Многие резисторы омические, а другие нет, и они называются неомическими .Вы также можете определить, является ли резистор омическим или неомическим, посмотрев на график зависимости тока от напряжения. Если график представляет собой прямую линию, значит, резистор подчиняется закону Ома. Если это НЕ прямая линия, значит, резистор неомический.
Резисторы и мощность
Резисторы всегда преобразуют электрическую энергию в другие формы энергии, такие как световая и тепловая энергия.Скорость преобразования энергии известна как мощность , и мощность обычно измеряется в ваттах (1 Вт = 1 Джоуль энергии / сек). Таким образом, мощность 25 Вт будет означать, что 25 Джоулей электрической энергии преобразуется в другие формы каждую секунду. Эта скорость изменяется при изменении как тока, так и напряжения.
Мощность = Ток x Напряжение
P = I x В
Резюме урока
Скорость, с которой протекают заряды через цепь, называется током .Заряды могут двигаться, потому что им была придана некоторая энергия за счет движения через разность потенциалов, также известную как напряжение . Когда резистор находится в электрической цепи, он замедляет поток заряда, уменьшая ток в цепи.
Закон Ома гласит, что ток через резистор прямо пропорционален приложенному напряжению и обратно пропорционален его сопротивлению. Резисторы, которые подчиняются закону Ома, известны как Ом и имеют график зависимости напряжения отток через омический резистор будет прямолинейным. Если график не прямой, значит резистор неомический .
Закон Ома: V = I x R
Скорость, с которой электрическая энергия преобразуется в другие формы с помощью резистора, известна как мощность .
Мощность: P = I x V
Атомная Энергия сегодня | Ядерная энергия
(обновлено в марте 2021 г.)
- Первые коммерческие атомные электростанции начали работать в 1950-х годах.
- Ядерная энергия в настоящее время обеспечивает около 10% мировой электроэнергии примерно за счет 440 энергетических реакторов.
- Ядерная энергия — второй по величине источник низкоуглеродной энергии в мире (29% от общего количества в 2018 году).
- Более 50 стран используют ядерную энергию примерно в 220 исследовательских реакторах. Помимо исследований, эти реакторы используются для производства медицинских и промышленных изотопов, а также для обучения.
Ядерная технология использует энергию, выделяемую при расщеплении атомов определенных элементов.Впервые он был разработан в 1940-х годах, а во время Второй мировой войны исследования первоначально были сосредоточены на производстве бомб. В 1950-х годах внимание было обращено на мирное использование ядерного деления, контролируя его для производства электроэнергии. Для получения дополнительной информации см. Страницу «История ядерной энергии».
Гражданская ядерная энергетика сегодня может похвастаться более чем 18 000 реакторно-летним опытом, а атомные электростанции работают в 31 стране мира. Фактически, благодаря региональным сетям электропередач, многие другие страны частично зависят от ядерной энергии; Например, Италия и Дания получают почти 10% электроэнергии за счет импорта ядерной энергии.
Когда в 1960-х годах зародилась коммерческая ядерная промышленность, между отраслями Востока и Запада существовали четкие границы. Сегодня разделенных американской и советской сфер больше не существует, и ядерная промышленность характеризуется международной торговлей. Компоненты строящегося сегодня в Азии реактора могут поставляться из Южной Кореи, Канады, Японии, Франции, Германии, России и других стран. Точно так же уран из Австралии или Намибии может попасть в реактор в ОАЭ, после конверсии во Франции, обогащения в Нидерландах, деконверсии в Великобритании и производства в Южной Корее.
Использование ядерных технологий выходит далеко за рамки производства низкоуглеродной энергии. Он помогает контролировать распространение болезней, помогает врачам в диагностике и лечении пациентов, а также обеспечивает выполнение наших самых амбициозных миссий по исследованию космоса. Такое разнообразное использование ставит ядерные технологии в центр мировых усилий по достижению устойчивого развития. Для получения дополнительной информации см. Страницу «Ядерная энергия и устойчивое развитие».
Количество действующих реакторов в мире
Около 10% мировой электроэнергии вырабатывается примерно 440 ядерными энергетическими реакторами.Еще около 50 реакторов находятся в стадии строительства, что эквивалентно примерно 15% существующей мощности.
В 2019 году атомные станции поставили 2657 ТВтч электроэнергии по сравнению с 2563 ТВтч в 2018 году. Это седьмой год подряд, когда мировая атомная генерация растет, при этом выработка на 311 ТВтч выше, чем в 2012 году.
Атомное производство электроэнергии
Мировое производство электроэнергии по источникам 2018
Двенадцать стран в 2019 году произвели не менее четверти своей электроэнергии на атомной электростанции.Франция получает около трех четвертей своей электроэнергии от ядерной энергетики, Словакия и Украина получают более половины от атомной энергии, в то время как Венгрия, Бельгия, Швеция, Словения, Болгария, Швейцария, Финляндия и Чехия получают одну треть или более. Южная Корея обычно получает более 30% электроэнергии от ядерной энергетики, в то время как в США, Великобритании, Испании, Румынии и России около одной пятой электроэнергии приходится на атомную энергию. Япония привыкла полагаться на ядерную энергию в производстве более четверти своей электроэнергии, и ожидается, что она вернется примерно к этому уровню.
Производство ядерной энергии по странам 2019
Атомная энергия и Covid-19
Коронавирусная болезнь 2019 (Covid-19) — это инфекционное заболевание, вызываемое тяжелым острым респираторным синдромом, вызванным коронавирусом 2 (SARS-CoV-2). Распространение нового коронавируса потребовало решительных действий во всех сферах жизни во всем мире.
Обеспечение надежного электроснабжения жизненно важно. Ядерная энергия обеспечивает около 10% мировой электроэнергии, поэтому ядерные реакторы должны играть ключевую роль.Операторы реакторов предприняли шаги для защиты своих сотрудников и внедрили планы обеспечения непрерывности бизнеса, чтобы обеспечить непрерывное функционирование ключевых аспектов своей деятельности. Эти действия более подробно описаны на нашей специальной информационной странице о коронавирусе COVID-19 и ядерной энергии.
Помимо выработки электроэнергии, ядерные технологии имеют медицинское применение, которое поможет в борьбе с Covid-19. Международное агентство по атомной энергии (МАГАТЭ) предоставляет диагностические наборы, оборудование и обучение методам обнаружения ядерного происхождения странам, обращающимся за помощью в борьбе с глобальным распространением нового коронавируса, вызывающего Covid-19.
Потребность в новых генерирующих мощностях
Существует очевидная потребность в новых генерирующих мощностях по всему миру как для замены старых установок, работающих на ископаемом топливе, особенно угольных, которые выделяют много углекислого газа, так и для удовлетворения возросшего спроса на электроэнергию во многих странах. В 2018 году 64% электроэнергии было произведено за счет сжигания ископаемого топлива. Несмотря на решительную поддержку и рост возобновляемых источников электроэнергии в последние годы, вклад ископаемого топлива в производство электроэнергии практически не изменился за последние 10 лет или около того (66.5% в 2005 г.).
Международное энергетическое агентство ОЭСР ежегодно публикует сценарии, связанные с энергетикой. В документе World Energy Outlook 2020 1 содержится амбициозный «Сценарий устойчивого развития», который, среди прочего, соответствует обеспечению чистой и надежной энергии и сокращению загрязнения воздуха. В этом сценарии декарбонизации производство электроэнергии на атомных станциях увеличится почти на 55% к 2040 году до 4320 ТВтч, а мощность вырастет до 599 ГВт. Всемирная ядерная ассоциация выдвинула более амбициозный сценарий, чем этот: программа Harmony предлагает добавить к 2050 году новые ядерные мощности на 1000 ГВт, чтобы обеспечить 25% электроэнергии (около 10 000 ТВт-ч) из 1250 ГВт-ч мощности (после разрешения на пенсию).Это потребует добавления 25 ГВт в год с 2021 года с увеличением до 33 ГВт в год, что не сильно отличается от 31 ГВт, добавленного в 1984 году, или общего рекорда в 201 ГВт в 1980-х годах. Обеспечение одной четвертой мировой электроэнергии за счет ядерной энергетики существенно снизит выбросы углекислого газа и улучшит качество воздуха.
Обзор мира
Все части мира участвуют в развитии ядерной энергетики, и некоторые примеры приведены ниже.
Актуальные данные о действующих, строящихся и планируемых реакторах по всему миру см. В таблице «Мировые ядерные энергетические реакторы и потребности в уране».
Подробную информацию на уровне страны см. В разделе «Профили стран» Информационной библиотеки Всемирной ядерной ассоциации.
Северная Америка
В Канаде имеется 19 действующих ядерных реакторов общей полезной мощностью 13,6 ГВт. В 2019 году атомная энергия вырабатывала 15% электроэнергии страны.
Все, кроме одного из 19 ядерных реакторов страны, расположены в Онтарио. Десять из этих единиц — шесть в Брюсе и четыре в Дарлингтоне — подлежат ремонту.Программа продлит срок эксплуатации на 30-35 лет. Аналогичные ремонтные работы позволили Онтарио отказаться от угля в 2014 году, достигнув одного из самых чистых сочетаний электроэнергии в мире.
В Мексике есть два действующих ядерных реактора общей полезной мощностью 1,6 ГВт. В 2019 году атомная энергия вырабатывала 4,5% электроэнергии страны.
В США имеется 94 действующих ядерных реактора общей полезной мощностью 96,6 ГВт. В 2019 году атомная энергия произвела 20% электроэнергии страны.
Четыре реактора AP1000 строились, но два из них были списаны. Одной из причин перерыва в строительстве новых зданий в США на сегодняшний день является чрезвычайно успешная эволюция стратегий технического обслуживания. За последние 15 лет улучшение эксплуатационных характеристик привело к увеличению использования атомных электростанций в США, при этом увеличенная мощность эквивалентна строительству 19 новых станций мощностью 1000 МВт.
В 2016 году в стране был введен в эксплуатацию первый новый ядерный реактор за 20 лет.Несмотря на это, количество действующих реакторов в последние годы сократилось с пикового значения в 104 в 2012 году. Досрочное закрытие было вызвано сочетанием факторов, включая дешевый природный газ, либерализацию рынка, чрезмерное субсидирование возобновляемых источников и политические агитация.
Южная Америка
В Аргентине есть три реактора общей полезной мощностью 1,6 ГВт. В 2019 году страна вырабатывала 6% электроэнергии на атомной электростанции.
Бразилия имеет два реактора общей полезной мощностью 1.9 ГВт. В 2019 году атомная энергия произвела 3% электроэнергии страны.
Западная и Центральная Европа
Бельгия имеет семь действующих ядерных реакторов общей полезной мощностью 5,9 ГВт. В 2019 году атомная энергия произвела 48% электроэнергии страны.
Финляндия имеет четыре действующих ядерных реактора общей полезной мощностью 2,8 ГВт. В 2019 году атомная энергия произвела 35% электроэнергии страны. Пятый реактор — EPR мощностью 1720 МВт (эл.) — находится в стадии строительства, и есть планы построить российский блок ВВЭР-1200 на новой площадке (Ханхикиви).
Франция имеет 56 действующих ядерных реакторов общей полезной мощностью 61,4 ГВт. В 2019 году атомная энергия произвела 71% электроэнергии страны.
Энергетическая политика 2015 года была направлена на сокращение доли страны в ядерной генерации до 50% к 2025 году. Эта цель теперь перенесена на 2035 год. Министр энергетики страны сказал, что цель нереальна и что она увеличит выбросы углерода в стране. выбросы диоксида, ставят под угрозу надежность поставок и создают опасность для рабочих мест.
Один реактор в настоящее время строится во Франции — EPR мощностью 1750 МВт во Фламанвилле.
В Германии продолжают работать шесть ядерных энергетических реакторов общей полезной мощностью 8,1 ГВт. В 2019 году атомная энергия произвела 12,5% электроэнергии страны.
Германия прекращает производство ядерной энергии примерно к 2022 году в рамках своей политики Energiewende . Energiewende , широко известный как наиболее амбициозная национальная политика смягчения последствий изменения климата, еще не обеспечила значительного сокращения выбросов углекислого газа (CO 2 ).В 2011 году, через год после введения этой политики, в результате сжигания топлива в Германии было выброшено 731 млн т CO 2 ; в 2018 году страна выбросила 677 млн т CO 2 и заняла седьмое место в мире по объему выбросов CO 2 . 2 Правительство Германии рассчитывает не достичь своей цели по сокращению выбросов на 40% по сравнению с уровнями 1990 года с большим отрывом.
В Нидерландах имеется один действующий ядерный реактор полезной мощностью 0,5 ГВт. В 2019 году атомная энергия произвела 3% электроэнергии страны.
Испания имеет семь действующих ядерных реакторов общей полезной мощностью 7,1 ГВт. В 2019 году атомная энергия произвела 21% электроэнергии страны.
В Швеции имеется шесть действующих ядерных реакторов общей полезной мощностью 6,9 ГВт. В 2019 году атомная энергия произвела 34% электроэнергии страны.
Страна закрывает несколько старых реакторов, но вложила значительные средства в продление срока эксплуатации и повышение номинальной мощности.
В Швейцарии четыре действующих ядерных реактора общей полезной мощностью 3.0 ГВт. В 2019 году атомная энергия произвела 24% электроэнергии страны.
В Соединенном Королевстве имеется 15 действующих ядерных реакторов общей полезной мощностью 8,9 ГВт. В 2019 году атомная энергия произвела 16% электроэнергии страны.
В середине 2006 г. в правительственном энергетическом документе Великобритании была одобрена замена устаревшего парка ядерных реакторов в стране новыми ядерными реакторами. Начато строительство первого завода нового поколения.
Центральная и Восточная Европа, Россия
В Армении есть один ядерный энергетический реактор полезной мощностью 0.4 ГВт. В 2019 году атомная энергия произвела 28% электроэнергии страны.
Беларусь имеет один действующий ядерный энергетический реактор, подключенный к сети в ноябре 2020 года, и второй реактор в стадии строительства. Почти вся остальная электроэнергия в стране производится из природного газа.
Болгария имеет два действующих ядерных реактора общей полезной мощностью 2,0 ГВт. В 2019 году атомная энергия произвела 38% электроэнергии страны.
Чешская Республика имеет шесть действующих ядерных реакторов общей полезной мощностью 3.9 ГВт. В 2019 году атомная энергия произвела 35% электроэнергии страны.
Венгрия имеет четыре действующих ядерных реактора общей полезной мощностью 1,9 ГВт. В 2019 году атомная энергия произвела 49% электроэнергии страны.
В Румынии есть два действующих ядерных реактора общей полезной мощностью 1,3 ГВт. В 2019 году атомная энергия произвела 19% электроэнергии страны.
В России действует 38 ядерных реакторов общей полезной мощностью 28,6 ГВт. В 2019 году атомная энергия произвела 20% электроэнергии страны.
Постановлением правительства от 2016 года было предусмотрено строительство к 2030 году 11 атомных энергетических реакторов в дополнение к уже строящимся. В начале 2020 года в России строились четыре реактора общей мощностью 4,8 ГВт.
Сила российской атомной отрасли отражается в ее доминировании на экспортных рынках новых реакторов. Национальная ядерная промышленность страны в настоящее время участвует в проектах новых реакторов в Беларуси, Китае, Венгрии, Индии, Иране и Турции, а также в различной степени в качестве инвестора в Алжире, Бангладеш, Боливии, Индонезии, Иордании, Казахстане, Нигерии, Южной Африке, Таджикистан и Узбекистан среди других.
В Словакии четыре действующих ядерных реактора общей полезной мощностью 1,8 ГВт. В 2019 году атомная энергия произвела 54% электроэнергии страны. Еще два блока находятся в стадии строительства.
В Словении имеется один действующий ядерный реактор полезной мощностью 0,7 ГВт. В 2019 году Словения вырабатывала 37% электроэнергии на атомной электростанции.
Украина имеет 15 действующих ядерных реакторов общей полезной мощностью 13,1 ГВт. В 2019 году атомная энергия произвела 54% электроэнергии страны.
Турция начала строительство своей первой атомной электростанции в апреле 2018 года, начало эксплуатации ожидается в 2023 году.
Азия
Бангладеш начала строительство первого из двух запланированных российских реакторов ВВЭР-1200 в 2017 году. Строительство второго началось в 2018 году. Он планирует ввести в эксплуатацию первый энергоблок к 2023 году. В настоящее время страна производит практически всю электроэнергию из ископаемого топлива. .
В Китае 49 действующих ядерных реакторов общей полезной мощностью 47.5 ГВт. В 2019 году атомная энергия вырабатывала 5% электроэнергии страны.
Страна продолжает доминировать на рынке строительства новых ядерных объектов. В начале 2021 года 16 из 54 строящихся в мире реакторов находились в Китае. В 2018 году Китай стал первой страной, которая ввела в эксплуатацию два новых образца — AP1000 и EPR. Китай начинает экспортный маркетинг реактора Hualong One, в значительной степени собственной конструкции.
Сильный импульс для развития новой ядерной энергетики в Китае исходит из необходимости улучшить качество городского воздуха и сократить выбросы парниковых газов.Заявленная правительством долгосрочная цель, изложенная в Плане действий Стратегии развития энергетики на 2014-2020 гг. рассчитана на 58 ГВт к 2020 году, еще 30 ГВт в стадии строительства.
В Индии имеется 23 действующих ядерных реактора общей полезной мощностью 6,9 ГВт. В 2019 году атомная энергия произвела 3% электроэнергии страны.
Правительство Индии намерено наращивать свои ядерные мощности в рамках своей масштабной программы развития инфраструктуры. В 2010 году правительство поставило амбициозную цель — 14.К 2024 году выйдет 6 ГВт ядерной энергии. В начале 2020 года в Индии строились семь реакторов общей мощностью 5,3 ГВт.
В Японии 33 действующих ядерных реактора общей полезной мощностью 31,7 ГВт. В начале 2020 года после аварии на Фукусиме в 2011 году только девять реакторов были снова введены в эксплуатацию, а еще 17 находятся в процессе утверждения перезапуска. В прошлом 30% электроэнергии в стране производилось на атомных станциях; в 2019 году этот показатель составлял всего 8%.
Южная Корея имеет 24 действующих ядерных реактора общей полезной мощностью 23,2 ГВт. В 2019 году атомная энергия произвела 26% электроэнергии страны.
В Южной Корее четыре новых реактора строятся внутри страны, а также четыре в Объединенных Арабских Эмиратах. Он планирует еще два, после чего энергетическая политика остается неопределенной. Он также участвует в интенсивных исследованиях будущих конструкций реакторов.
В Пакистане шесть действующих ядерных реакторов общей полезной мощностью 2.3 ГВт. В 2019 году атомная энергия произвела 7% электроэнергии страны. В Пакистане строится один китайский блок Hualong One.
Африка
Южная Африка имеет два действующих ядерных реактора общей полезной мощностью 1,9 ГВт, и это единственная африканская страна, которая в настоящее время производит электроэнергию на атомных станциях. В 2019 году атомная энергия произвела 7% электроэнергии страны. Южная Африка по-прежнему привержена планам по наращиванию мощностей, но финансовые ограничения значительны.
Ближний Восток
Иран имеет один действующий ядерный реактор с полезной мощностью 0.9 ГВт. В 2019 году атомная энергия произвела 2% электроэнергии страны. Строится второй энергоблок ВВЭР-1000 российской разработки.
В Объединенных Арабских Эмиратах имеется один действующий ядерный реактор мощностью 1,3 ГВт. Еще три блока находятся в стадии строительства на том же заводе (Бараках).
Страны с развивающейся ядерной энергетикой
Как указано выше, Бангладеш, Беларусь, Турция и Объединенные Арабские Эмираты строят свои первые атомные электростанции. Ряд других стран переходят к использованию ядерной энергии для производства электроэнергии.Для получения дополнительной информации см. Страницу о странах с развивающейся ядерной энергетикой.
Повышение производительности существующих реакторов
Характеристики ядерных реакторов со временем значительно улучшились. За последние 40 лет доля реакторов с высокими коэффициентами мощности значительно увеличилась. Например, 62% реакторов достигли коэффициента мощности выше 80% в 2018 году по сравнению с 28% в 1978 году, тогда как только 7% реакторов имели коэффициент мощности ниже 50% в 2018 году по сравнению с 20% в 1978 году.
Долгосрочные тенденции коэффициентов мощности
Также следует отметить отсутствие значимой возрастной тенденции в среднем коэффициенте мощности реакторов за последние пять лет.
Коэффициент средней мощности 2015-2018 гг. По возрасту реактора
Реакторы ядерные прочие
Помимо коммерческих атомных электростанций, в более чем 50 странах работают около 220 исследовательских реакторов, и еще больше находится в стадии строительства.Многие из этих реакторов используются не только для исследований и обучения, но и для производства медицинских и промышленных изотопов.
Использование реакторов для морских силовых установок в основном ограничивается основными военно-морскими силами, где они играли важную роль в течение пяти десятилетий, обеспечивая энергией подводные лодки и большие надводные корабли. Свыше 160 кораблей, в основном подводных лодок, приводятся в движение примерно 200 ядерными реакторами, и накоплен более чем 13 000 реакторно-летний опыт работы с морскими реакторами. Россия и США сняли с вооружения многие из своих атомных подводных лодок со времен холодной войны.
Россия также управляет флотом крупных атомных ледоколов, и еще несколько строятся. Он также подключил плавучую атомную электростанцию с двумя реакторами мощностью 32 МВт к сети в отдаленном арктическом районе Певек. Реакторы адаптированы от ледоколов.
Для получения дополнительной информации см. Страницу «Многообразие использования ядерных технологий».
Примечания и ссылки
Список литературы
1. Международное энергетическое агентство ОЭСР, World Energy Outlook 2020 [Назад]
2.Статистика Международного энергетического агентства ОЭСР [Назад]
Общие ссылки
Всемирная ядерная ассоциация, Отчет о результатах деятельности в ядерной сфере за 2020 год
Война токов: мощность переменного тока и постоянного тока
Это #GridWeek на Energy.gov. Мы подчеркиваем наши усилия по поддержанию надежной, отказоустойчивой и безопасной электросети по всей стране и то, что это значит для вас. В четверг, 20 ноября, в 14:00 по восточноевропейскому времени мы проведем чат в Твиттере на тему «Как работает сеть».Присылайте нам свои вопросы в Twitter, Facebook и Google+, используя #GridWeek.
Начиная с конца 1880-х годов Томас Эдисон и Никола Тесла были втянуты в битву, известную теперь как Война течений.
Эдисон разработал постоянный ток — ток, который непрерывно течет в одном направлении, например, в батарее или топливном элементе. В первые годы развития электричества постоянный ток (сокращенно DC) был стандартом в США.
Но была одна проблема. Постоянный ток нелегко преобразовать в более высокие или более низкие напряжения.
Тесла считал, что переменный ток (или переменный ток) был решением этой проблемы. Переменный ток меняет направление на обратное определенное количество раз в секунду — 60 в США — и может быть относительно легко преобразован в различные напряжения с помощью трансформатора.
Эдисон, не желая терять гонорары, которые он получал от своих патентов на постоянный ток, начал кампанию по дискредитации переменного тока. Он распространял дезинформацию, говоря, что переменный ток более опасен, и даже зашел так далеко, что публично казнил бездомных животных электрическим током, используя переменный ток, чтобы доказать свою точку зрения.
Чикагская всемирная выставка — также известная как Всемирная колумбийская выставка — проходила в 1893 году, в разгар нынешней войны.
General Electric предложила электрифицировать ярмарку, используя постоянный ток Эдисона, за 554 000 долларов, но проиграла Джорджу Вестингаузу, который сказал, что может обеспечить электроэнергию ярмарку всего за 399 000 долларов, используя переменный ток Tesla.
В том же году Niagara Falls Power Company решила заключить с Westinghouse, которая лицензировала патент на многофазный асинхронный двигатель переменного тока Tesla, контракт на производство электроэнергии из Ниагарского водопада.Хотя некоторые сомневались, что этот водопад может привести в действие весь Буффало, штат Нью-Йорк, Тесла был убежден, что он может привести в действие не только Буффало, но и весь восток Соединенных Штатов.
16 ноября 1896 года Буффало был освещен переменным током от Ниагарского водопада. К этому времени General Electric тоже решила запрыгнуть на поезд переменного тока.
Похоже, что переменный ток почти уничтожил постоянный ток, но в последние годы постоянный ток пережил своего рода возрождение.
Сегодня наша электроэнергия по-прежнему питается преимущественно переменным током, но компьютеры, светодиоды, солнечные элементы и электромобили работают на постоянном токе. Теперь доступны методы преобразования постоянного тока в более высокие и более низкие напряжения. Поскольку постоянный ток более стабилен, компании находят способы использования постоянного тока высокого напряжения (HVDC) для транспортировки электроэнергии на большие расстояния с меньшими потерями электроэнергии.
Получается, что Война течений еще не окончена.Но вместо того, чтобы продолжать горячую битву переменного и постоянного тока, похоже, что два тока в конечном итоге будут работать параллельно друг другу в своего рода гибридном перемирии.
И ничего из этого было бы невозможно без гения Теслы и Эдисона.
Примечание. Этот пост был первоначально опубликован в рамках серии статей «Эдисон и Тесла» в ноябре 2013 года.
Входной ток переменного тока и гармоники
Источники питания AC-DC
EMC
В результате методов выпрямления пиков, используемых в источниках питания, генерируются гармонические токи.Для ограничения этих гармоник было принято законодательство. Соответствующий стандарт — EN61000-3-2 для оборудования с входным током ≤16 А на фазу.
EN61000-3-2 устанавливает четыре класса оборудования, каждый из которых имеет свои собственные ограничения на излучение гармоник.
Класс D — телевизоры, персональные компьютеры и мониторы, потребляющие ≤600 Вт
Класс C — Осветительное оборудование
Класс B — Переносные инструменты
Class A — все остальное
Оборудование классов A и B имеет абсолютные пределы для гармоник независимо от входной мощности, оборудование класса C имеет пределы, выраженные в процентах от потребляемого тока 50 Гц, а для оборудования класса D пределы гармоник по току пропорциональны потребляемой мощности сети.Оборудование, отнесенное к классам C и D, обычно требует источника питания с активной коррекцией коэффициента мощности.
На диаграмме внизу справа форма волны входящего переменного напряжения обозначена как VLINE, пунктирная линия представляет выпрямленное напряжение переменного тока после мостового выпрямителя.
Конденсатор большой емкости заряжается под углом проводимости и медленно разряжается силовым каскадом источника питания (VCAP). Как только входное синусоидальное напряжение падает ниже напряжения конденсатора большой емкости, диод в мостовом выпрямителе смещается в обратном направлении, и ток не течет до тех пор, пока входящая выпрямленная синусоида снова не станет выше напряжения конденсатора большой емкости.Угол проводимости обычно составляет 2-3 мс.
Комплексная форма волны входного тока генерирует гармоники, которые важны для генератора энергии. Гармоники влияют на полную мощность. Реальная мощность и полная мощность обсуждаются более подробно позже. Показанная форма волны тока дает коэффициент мощности около 0,5 — 0,6.
Почему возникают проблемы с гармоническими искажениями?
Поставщик коммунальных услуг должен обеспечивать напряжение и весь ток, даже если часть тока не превращается в полезную выходную мощность — см. Раздел «Реальная мощность, кажущаяся мощность и КПД» на стр. 37 Основного руководства по подаваемому питанию.У провайдера нет средств для зарядки дополнительного тока, потому что мощность оплачивается в кВтч.
Объединенный эффект миллионов источников питания заключается в ограничении переменного напряжения, поскольку весь ток проходит на пике синусоидальной волны. Силовые провода должны иметь такой размер, чтобы пропускать дополнительный ток, вызванный низким коэффициентом мощности. Нейтральные проводники могут перегреваться, поскольку они обычно не рассчитаны на пропускание всех гармонических токов, которые не существуют для нагрузок с высоким коэффициентом мощности.
Решения для источников питания
Для соответствия законодательству по гармоническим искажениям есть два основных решения для источников питания:
Пассивная коррекция коэффициента мощности
Пассивная коррекция коэффициента мощности обычно включает добавление индуктора или резистора сетевой частоты в линию переменного тока.Действие катушки индуктивности состоит в том, чтобы сжимать форму волны тока, поскольку катушка индуктивности является реактивным компонентом, который сопротивляется изменению тока. Эффект резистора заключается в уменьшении пикового тока.
Чем ровнее форма волны тока, тем меньше гармонических искажений.
Это очень простое решение, имеющее как преимущества, так и недостатки. В источниках питания мощностью более 300 Вт это нецелесообразно из-за размера компонентов, необходимых для обеспечения адекватной индуктивности при 50/60 Гц и поддержания достаточно низких резистивных потерь.Это решение не подходит для приложений освещения, персональных компьютеров или цветного телевидения, но является жизнеспособным решением для оборудования класса А. На приведенной ниже диаграмме показано измерение в реальном времени пассивной коррекции коэффициента мощности и уровней тока гармоник.
Активная коррекция коэффициента мощности
Активная коррекция коэффициента мощности использует повышающий преобразователь, работающий на высокой частоте, для электронного управления формой волны входного тока. Входящее переменное напряжение контролируется и используется в качестве эталона для определения ширины каждого импульса тока высокочастотного коммутируемого тока.
Ток подается серией импульсов с частотой около 100 кГц, что соответствует 2000 импульсам на цикл сетевого напряжения.
Фильтр ЭМС нижних частот берет высокочастотный элемент и отфильтровывает его, так что ток, воспринимаемый сетью, является синусоидальным. Система регулирует выход постоянного тока примерно на уровне 400 В постоянного тока. На диаграмме ниже показано измерение активной коррекции коэффициента мощности в реальном времени.
Активная коррекция коэффициента мощности
Активная коррекция коэффициента мощности использует повышающий преобразователь, работающий на высокой частоте, для электронного управления формой волны входного тока.Входящее переменное напряжение контролируется и используется в качестве эталона для определения ширины каждого импульса тока высокочастотного коммутируемого тока.
Ток подается серией импульсов с частотой около 100 кГц, что соответствует 2000 импульсам на цикл сетевого напряжения.
Фильтр ЭМС нижних частот берет высокочастотный элемент и отфильтровывает его, так что ток, воспринимаемый сетью, является синусоидальным. Система регулирует выход постоянного тока примерно на уровне 400 В постоянного тока. На диаграмме ниже показано измерение активной коррекции коэффициента мощности в реальном времени.
Сравнение пассивной и активной коррекции коэффициента мощности
Пассивная коррекция коэффициента мощности
Преимущества
Простой
Прочный и надежный
Шум (EMI)
Помогает фильтровать
Недостатки
Тяжелые и громоздкие компоненты
Требуется переключение диапазона переменного тока
Низкий коэффициент мощности
Невозможно использовать несколько блоков питания в системе
Активная коррекция коэффициента мощности
Преимущества
Высокий коэффициент мощности> 0.9
Низкий входной ток
Универсальный вход
Шина регулируемая высоковольтная
Время поддержки
Можно использовать несколько блоков питания
Недостатки
Более высокая стоимость
Высшая сложность
Более высокое количество компонентов
Нижнее расчетное значение MTBF
Текущее состояние сети — Юго-западный пул энергоснабжения
Текущие условия сети (последнее обновление: фев.20, 2021, в 22:00)
Действует с 22:00. Центральное время, 20 февраля, SPP вернулся к нормальному режиму работы для всей области балансировки SPP, сигнализируя о том, что у него достаточно генерации для удовлетворения спроса и имеющихся резервов, и не предвидит никаких экстремальных или аномальных угроз надежности.
График зимних погодных явлений в феврале 2021 года
- 9 февраля в 00:00 В ответ на текущее холодное время года SPP сначала объявила о периоде консервативных операций, действующем до дальнейшего уведомления.
- 15 февраля в 00:00 SPP потребовала от обслуживающих нагрузку коммунальных предприятий по всему региону SPP экономить электроэнергию, начиная с полуночи 15 февраля и в течение следующих 48 часов, чтобы снизить риск более распространенных и длительных отключений.
- 15 февраля, в 05:00 утра SPP объявила уровень 1 предупреждения о чрезвычайной ситуации в области энергетики (EEA), что означает, что все доступные ресурсы были задействованы для выполнения обязательств, а SPP рискует не выполнить необходимые операционные резервы.
- 15 февраля в 7:22 утра SPP объявил уровень 2 EEA, который требовал, чтобы SPP просил свои компании-члены подавать общественные призывы к сохранению, и служил в качестве максимального уведомления о чрезвычайных ситуациях для ресурсов, и проинформировал рынок, что аварийные диапазоны могут потребоваться любые ресурсы.
- 15 февраля в 10:08 SPP объявил EEA Level 3, когда он был вынужден начать полагаться на требуемую резервную энергию. Это означало, что он имел резервы ниже требуемого минимума и инициировал помощь через Группу распределения резервов.
- 15 февраля примерно в 12:10. В то время как все еще находился на уровне 3 ЕЭЗ и после исчерпания резервов, SPP поручил коммунальным предприятиям-членам осуществлять контролируемые временные перерывы в обслуживании.
- 15 февраля в 14:00 SPP объявил о возвращении к уровню 2 ЕЭЗ, восстановив нагрузку в регионе с достаточным объемом выработки для удовлетворения спроса и минимальных резервных требований.
- 16 февраля в 6:15 утра SPP объявил EEA Level 3. Генерирующая мощность всей системы упала ниже текущей нагрузки примерно 42 гигаватт (ГВт) из-за чрезвычайно низких температур, недостаточных поставок природного газа и ветровой генерации.SPP поручил коммунальным предприятиям-участникам осуществлять контролируемые временные перерывы в обслуживании.
- 16 февраля в 10:07 SPP восстановил всю нагрузку, что означает, что у него было достаточно генерирующих мощностей для удовлетворения общесистемного спроса. Он оставался на Уровне 3 ЕЭЗ, что указывает на то, что он все еще работал ниже требуемых минимальных резервов.
- 16 февраля в 11:30 SPP вернулся на уровень 2 EEA до дальнейшего уведомления, восстанавливая нагрузку в регионе с достаточным количеством генерации для удовлетворения спроса и минимальных резервных требований.
- 16 февраля в 12:31 SPP понижен до уровня EEA 1. Хотя компания больше не является энергодефицитной организацией, все доступные ресурсы были направлены на выполнение обязательств, и SPP по-прежнему подвергался риску невыполнения требуемых операционных резервов.
- 16 февраля в 18:28 SPP объявила об эскалации до уровня 2 ЕЭЗ. SPP поручила своим компаниям-членам подать общественные апелляции о сохранении природных ресурсов. Предупреждение будет действовать до дальнейшего уведомления. В то время у SPP было достаточно генерирующих мощностей в сети, чтобы удовлетворить общесистемный спрос, но предпринимались шаги по снижению риска сбоев.
- 17 февраля в 13:15 SPP понижен до уровня EEA 1. Хотя компания больше не является энергодефицитной организацией, все доступные ресурсы были направлены на выполнение обязательств, и SPP по-прежнему подвергался риску невыполнения требуемых операционных резервов.
- 17 февраля в 18:20 SPP объявила об эскалации до уровня 2 ЕЭЗ. SPP поручил своим компаниям-членам подать общественные апелляции о сохранении. Предупреждение будет действовать до дальнейшего уведомления.
- фев.17 в 22:59 SPP понижен до уровня EEA 1. Хотя компания больше не является энергодефицитной организацией, все доступные ресурсы были направлены на выполнение обязательств, и SPP по-прежнему подвергался риску невыполнения требуемых операционных резервов.
- 18 февраля в 9:30 SPP понижен с уровня 1 ЕЭЗ до консервативного операционного статуса. Из-за продолжающихся высоких нагрузок и других последствий суровой холодной погоды он будет оставаться в режиме консервативных операций до 22:00 февраля.20, для всей зоны балансировки СЭС.
- 18 февраля в 18:25 SPP объявлен EEA Level 1, что означает, что все доступные ресурсы были задействованы для выполнения обязательств, и SPP подвергался риску невыполнения требуемых операционных резервов.
- 19 февраля в 9:20 SPP понижен с уровня 1 ЕЭЗ до консервативного операционного статуса. Из-за продолжающихся высоких нагрузок и других последствий суровых холодов он останется в период консервативных операций до 10 p.м., 20 февраля, на всю территорию балансировочного управления СЭС.
- 20 февраля в 22:00 SPP вернулся к нормальной работе для всей зоны управления балансировкой SPP, сигнализируя, что у него достаточно генерации для удовлетворения спроса и имеющихся резервов, и не предвидит никаких экстремальных или аномальных угроз надежности.
Описание всех наиболее распространенных событий надежности приведено ниже в порядке возрастания серьезности:
Нормальные операции : SPP имеет достаточно генерации, чтобы удовлетворить спрос и доступные резервы, и не предвидит никаких экстремальных или аномальных угроз надежности.
Weather Alert : объявляется, когда на территории службы координации надежности SPP ожидается экстремальная погода.
Resource Alert : объявляется, когда в зоне действия балансирующего органа SPP ожидаются суровые погодные условия, значительные отключения, неопределенность прогноза ветра и / или неопределенность прогноза нагрузки.
Conservative Operations : объявляется, когда SPP определяет необходимость консервативного управления своей системой с учетом погодных, экологических, операционных, террористических, кибер-событий или других событий.
Максимальное количество уведомлений об аварийном генерировании : выдается, когда SPP предвидит необходимость использования аварийных диапазонов ресурсов.
Energy Emergency Alert Level 1: Объявляется, когда все доступные ресурсы задействованы для выполнения обязательств, и SPP находится под угрозой невыполнения требуемых операционных резервов.
Energy Emergency Alert Level 2: Объявлено, когда SPP больше не может обеспечивать ожидаемые потребности в энергии и является энергодефицитным субъектом, или когда SPP предвидит или внедрил процедуры вплоть до прерывания твердых обязательств по нагрузке, но исключая его.
Уровень оповещения о чрезвычайной ситуации в области энергетики: На этом уровне SPP использует операционные резервы, так что они несут резервы ниже требуемого минимума, и инициировал помощь через Группу распределения резервов. Объявляется, когда SPP предвидит или реализовал твердое прерывание обязательств по загрузке. Перед тем, как запросить EEA 3, SPP уже предоставит участникам рынка соответствующие внутренние уведомления.
Событие восстановления: Определяется как серьезное или катастрофическое отключение сети, которое может быть полным или частичным региональным отключением электроэнергии, ситуацией на острове или разделением системы.
Вин (В): 48 (26–55) | Vout (V): 2,0 (1,1 — 2,3) | Выходной ток (А): 40 | Упаковка: Половина чипа | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 3.0 (1,6 — 3,4) | Выходной ток (А): 70 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 4.0 (2,17 — 4,58) | Выходной ток (А): 50 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 6.0 (3,25 — 6,87) | Выходной ток (А): 40 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 8.0 (4,34 — 9,16) | Выходной ток (А): 30 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 9.6 (6,4 — 11,0) | Выходной ток (А): 25 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 16 (8.67 — 18,3) | Выходной ток (А): 15 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 24 (13.8 — 26,5) | Выходной ток (А): 12 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 32 (17.3 — 36,7) | Выходной ток (А): 9 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 48 (26–55) | Выходной ток (А): 6 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 12 (6.5 — 13,8) | Выходной ток (А): 10 | Упаковка: Половина чипа | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 12 (6.5 — 13,8) | Выходной ток (А): 25 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 4.0 (2,17 — 4,58) | Выходной ток (А): 25 | Упаковка: Половина чипа | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 4.0 (2,2 — 4,6) | Выходной ток (А): 50 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (26–55) | Vout (V): 12 (6.5 — 13,8) | Выходной ток (А): 25 | Упаковка: Полный чип | Подробности | |
Вин (В): 48 (0–60) | Vout (V): 12 (0–15) | Выходной ток (А): 12.5 | Упаковка: 2308 SM-чип | Подробности | |
Вин (В): 48 (0–60) | Vout (V): 6 (0 — 7.5) | Выходной ток (А): 25 | Упаковка: 2308 SM-чип | Подробности | |
Показать все |
.