Скорость набора прочности бетона: Набора прочности бетона — график набора по времени

Содержание

Набор прочности бетона.

 

            Твердение бетона представляет собой сложное физико-химическое явление, при котором цемент, взаимодействуя с водой, образует новые соединения. Вода проникает вглубь частиц цемента постепенно, в результате все новые его порции вступают в химическую реакцию. Поэтому бетон твердеет постепенно, даже через несколько месяцев твердения внутренняя часть зерен цемента еще не успевает вступить в реакцию с водой. Рост прочности бетона в значительной степени зависит от температуры, при которой происходит твердение. При нормальных условиях твердения нарастание прочности бетона происходит довольно быстро и бетон на портландцементе через 7-14 дней после приготовления набирает 60-70% своей 28-дневной прочности. Затем рост прочности замедляется.

            Иногда используют дорогостоящий глиноземистый цемент, который через сутки твердения дает 80-90% 28-дневной прочности. Ускоряют процесс твердения быстротвердеющие портландцементы, а также жесткие бетонные смеси на обычных цементах.

            Для ускорения твердения бетона могут применяться добавки-ускорители, вводимые при приготовлении бетонной смеси.

При твердении бетона всегда изменяется его объем. Твердея, бетон дает усадку, которая в поверхностных зонах происходит быстрее, чем внутри, поэтому при недостаточной влажности бетона в период твердения на его поверхности появляются мелкие усадочные трещины. Также, трещинообразование возможно в результате неравномерного разогрева бетона вследствие выделения тепла при схватывании цемента.

 

Рис. 6.1. Усредненные кривые набора прочности бетона В15-В25 на сжатие на портландцементе М400 — М500 по дням в зависимости от температуры выдерживания.

  

            Точно рассчитать срок набора прочности бетона в конструкции в условиях строительной площадки невозможно, даже при гарантированном качестве товарной смеси, из-за перепадов температур и изменения влажности окружающей среды.

            В условиях производства работ в зимнее время для обеспечения требуемого качества бетона проводят дополнительные технологические мероприятия. При отрицательных температурах замерзает содержащаяся в бетоне свободная вода, образуются кристаллы льда большего объема, чем имела вода. Поэтому в порах бетона развивается большое давление, приводящее к разрушению структуры еще не затвердевшего бетона и снижению его конечной прочности. Конечная прочность снижается тем больше, чем в более раннем возрасте замерз бетон. Наиболее опасно замерзание бетона в период схватывания цемента. Для снижения температуры кристаллизации воды в состав бетона вводят противоморозные химические добавки. Для создания благоприятных условий набора прочности бетоном применяют различные способы поддерживания температурно-влажностного режима выдерживания, такие как, электрообогрев, обогрев паром и устройство «термоса». Выбор противоморозных добавок и их оптимальное количество  зависят от вида бетонируемой конструкции, степени ее армирования, наличия агрессивных сред и блуждающих токов, температуры окружающей среды. Некоторые добавки могут вызывать коррозию арматуры, что снижает прочность сцепления бетона с профилем арматуры, ухудшать удобоукладываемость и вызывать образование высолов на поверхности конструкций. Противоморозные химические добавки в основном приводят к замедлению набора прочности бетоном по сравнению со скоростью твердения бетона в нормальных условиях.

Твердение бетона с добавками.

ПКБ Аксис 

Набор прочности бетона: графики, особенности, факторы

Все жилые здания и хозяйственные постройки выполняются с применением бетона. В зависимости от его класса, вы можете выложить аллейки, создать фундамент, несущие конструкции, дом, фонтан в саду. Чтобы конструкция прослужила долго, важно использовать правильные марки материалов, соответствующей прочности.

Содержание статьи

Какой бывает прочность бетона


Многие считают бетон прочным и долговечным материалом, и это справедливо. Но есть разные способы оценки его прочности, как и разные виды. Знания о прочности конструкций позволят избежать дефектов и ускоренного разрушения постройки, включая появление трещин и досрочный выход здания из строя.


Прочность на сжатие бетона


Это наиболее известное, распространенное и общепринятое измерение прочности, которое применяют для оценки характеристик конкретной смеси. Прочность на сжатие измеряет способность бетона выдерживать расчетные нагрузки, и соответственно, позволяет уменьшить количество задействованного бетона в конструкции.


Прочность на сжатие проверяют путем разрушения цилиндрических образцов бетона в специальной машине, предназначенной для измерения этого показателя.


Единица измерения кгс/кв. см.  Чем выше значение, тем бетонная смесь прочнее и тем больше ее цена. И чем прочнее бетон, тем он долговечнее.


Прочность на сжатие является главным критерием для ответа на вопрос, будет ли конкретно взятая смесь бетона соответствовать потребностям конкретной работы.


Каждая бетонная конструкция имеет свой диапазон прочности на сжатие. Например:


  • бетон М100 имеет среднюю прочность (кгс/кв. см.) 98;
  • М150 — 131-164;
  • М200 — 196;
  • М250 — 262;
  • М300 — 302;
  • М350 — 327;
  • М400 — 393.

Прочность на сжатие обычно проверяется через семь дней, а затем снова через 28 суток, чтобы определить диапазон прочности на сжатие.  Семидневный тест проводится для определения раннего усиления конструкции, но в стандартах подразумевается результат 28-ми дневного теста.


Для строительной конструкции используют понятие класса прочности, который соотносится с маркой. Например, класс В3,5 соответствует марке бетона М50.


Прочность на разрыв


Прочностью на разрыв называется способность бетона противостоять разрушению или растрескиванию при растяжении. Этот параметр влияет на размер трещин в бетонных конструкциях и степень их возникновения. Трещины появляются, если растягивающие усилия превышают предел прочности бетона.


Обычно бетон имеет более низкую прочность на разрыв по сравнению с прочностью на сжатие.  Из чего следует, что бетонные конструкции, испытывающие растягивающее напряжение, должны быть усилены материалами с высокой прочностью на разрыв, например, сталью.


Непосредственно проверить прочность бетона на разрыв сложно, поэтому используются косвенные методы. Наиболее распространенными косвенными методами являются прочность на изгиб и разделенная прочность на растяжение. Параметр определяют с помощью испытания на разрыв бетонных цилиндров.


Прочность бетона на изгиб


Такой вид прочности используется как еще один измеритель прочности на разрыв. Он определяется, как мера неармированной бетонной плиты или балки, способная противостоять разрушению при изгибе. Другими словами, это способность бетона сопротивляться изгибу. Прочность на изгиб обычно составляет от 10 до 15 процентов прочности на сжатие, в зависимости от конкретной бетонной смеси.


Измеряют прочность на изгиб для влажного бетона. Поэтому при описании прочности на бетона, чаще используются результаты испытаний прочности на сжатие, поскольку эти числа более надежны.


От чего зависит набор прочности бетона?


Главные причины, которые влияют на прочность бетона дополняются химическими процессами, влиянием атмосферы, взаимодействием с влагой. Все это факторы, которые влияют на прочность. Избежать этого невозможно. Но можно учесть на этапе проектирования.


Дополнительные причины, влияющие на проектную прочность бетона, включают:


  1. Соотношение вода / цемент. Чем меньше воды, тем прочнее цемент, но тем труднее работать. Например, бетонная смесь, содержащая 400 кг цемента и 240 литров (= 240 кг) воды, будет иметь отношение вода / цемент 240/400 = 0,6. В смесях, где соотношение выше, можно говорить о наличии пор, заполненных водой или воздухом.
  2. Пористость бетона: пустоты в бетоне можно заполнять воздухом или водой. Чем пористее бетон, тем он слабее. Вероятно, наиболее важным источником пористости в бетоне является соотношение воды и цемента в смеси.
  3. Дозирование. Традиционный бетон состоит из воды, цемента, воздуха и смеси песка, гравия. Правильное соединение этих ингредиентов является ключевым для достижения более высокой прочности бетона. Например, смесь, в которой много цемента легче заливать, но она легко растрескивается и не выдержит испытания временем. И наоборот, при малом количестве цемента получится грубый и пористый бетон.
  4. Смешивание. Прочность имеет тенденцию усиливаться до определенного момента. Чем дольше вы размешиваете, тем больше испарится воды и смесь станет менее прочной.

Дополнительные факторы:


  • температуру;
  • влажность;
  • марку бетона;
  • время.

Температура


Чем холоднее на улице, тем медленнее повышается прочность бетона. При отрицательных температурах процесс останавливается, так как замерзает вода, обеспечивающая гидратацию цемента. Как только температура воздуха повысится, набор прочности бетона продолжится. При снижении температуры может опять остановиться.


При наличии в составе различных модификаторов время твердения может уменьшаться, а температура, при которой процесс останавливается, снижаться. Производители предлагают специальные быстротвердеющие составы, способные набрать марочную прочность уже через две недели.


Потепление способствует ускорению твердения бетона. При 40 °C марочное значение может быть достигнуто уже через неделю. Именно поэтому заливку бетона на приусадебном участке для сокращения сроков строительства лучше производить в жаркую погоду.


Зимой может потребоваться прогрев бетона, что выполнить собственными силами крайне проблематично: требуется специальное оборудование и знание технологии выполнения работ. Следует учесть, что нагрев раствора свыше 90 °C недопустим.


Чтобы понять, как температура оказывает влияние на процесс твердения, стоит изучить график набора прочности бетона. Кривые построены на основании информации, собранной для марки М400 при различных температурах. По графику можно определить, какой процент от марочного значения будет достигнут через определенное количество суток. Каждая кривая соответствует конкретной температуре. Первая линия 5°C, последняя – 50° С.



График набора прочности бетона по суткам

График позволяет определить срок распалубки монолитной конструкции. Опалубку можно снимать, как только прочность превысит 50% от своего марочного значения. Следует обратить внимание, что согласно графику, если температура воздуха ниже 10 °C, марочное значение не будет достигнуто даже через две недели. При таких погодных условиях уже стоит задуматься о подогреве заливаемого раствора.


Набор прочности бетона: время затвердевания бетона, таблица

Набор прочности бетона — Время затвердевания бетона на 100%. По ГОСТу оно составляет 28 суток с момента заливки бетонной смеси. Но при оптимальной температуре, уже в первую неделю смесь застывает более интенсивно и набирает около 75% прочности. После 28 дней процесс набора прочности не останавливается, и свойство материала может измениться спустя 200-300 суток даже в два раза. Так, например, бетон М200-М250 через несколько лет может набрать прочность, соответствующую бетону М300- М350.

Бетон — надежный строительный материал и имеет широкий спектр применения, как в индивидуальном, так и в промышленном строительстве. В зависимости от пропорций и качества его состава меняется прочность конечного материала. Именно от этого параметра зависит назначение марки и класса бетона. Чем выше обозначение, тем выше прочность.

Таблица прочности бетона

Как увеличить скорость застывания бетонной смеси

Чтобы набор прочности бетона, происходил быстрее, в процессе приготовления в бетон добавляют специальные химические элементы. Под воздействием химических добавок, необходимые свойства приобретаются за 14 суток. Дозы средства рассчитываются исходя из количества цемента в составе бетона. В зимнее время заливки, так же применяют противоморозные добавки, чтобы поддержать плюсовую температуру бетона на период схватывания. В течение нескольких недель залитая бетонная смесь отвердевает под наблюдением инженеров, которые контролируют каждый этап.

Залитый состав отвердевает и набирает прочность несколько недель. При прочих равных, чем выше марка бетона, тем меньше времени нужно для его затвердевания. Процесс проходит под наблюдением инженеров, поскольку каждый этап набора прочности требует постоянного контроля специалистов.

Этапы застывания бетона

  1. Этап застывания. Время начального схватывания бетонной массы сразу после заливки. Для максимального сохранения свойств материала, готовый раствор подвозят в бетоносмесителе либо подготавливают смесь на месте. На данном этапе осматривается опалубка на предмет протечек и деформаций. Среднее время первичного застывания 1 час, с учетом теплого времени года (выше 20 градусов), в более низкие температуры время варьируется от 6 до 20 часов;
  2. Основной этап твердения. Время, когда материал набирает до 70% прочности, составляет от 7 до 14 дней и зависит от марки бетона. Именно на этом этапе рекомендуется снимать опалубку конструкции;
  3. Контрольный этап. Официально принятый период по стандарту ГОСТ (18105-86) составляет 28 дней. Именно столько нужно времени, чтобы полностью прошел процесс гидратации, когда выходит влага из бетонной смеси. На данном этапе специалисты сопоставляют полученные данные с нормами в специальной документации.

До окончания всех стадий застывания бетонной смеси, строго избегается любое механическое воздействие на конструкции, а так же тщательно контролируется температурный режим.

В готовой бетонной смеси, как вовремя, так и после укладки происходят сложные и долгие химические процессы, которые необходимо учитывать при строительном расчете. Чем лучше условия превращения раствора в крепкий бетонный материал, тем качественнее и надежнее будет результат.

График набора прочности бетона | Фундамент для Дома

Прочность бетонного состава — это определяющий показатель качества этого востребованного материала. Прочность бетонной смеси зависит от того, сколько времени бетон набирает прочность при соблюдении условий сушки, аэрации, температуры.

Однако большинство начинающих строителей считают, что после того, как они выполнили опалубку и залили в нее смесь, — самая важная часть работы выполнена.

Это большое заблуждение, так как после укладки бетонного состава в опалубку начинается не менее важный процесс, связанный с уходом за бетонным составом, ведь только в том случае, если сушка бетона производилась правильно, прочность бетона будет соответствовать проектной величине.

Типы бетона

Прочность бетона классифицируется на марки (М) и классы (В). По прочности сжатия марки варьируются в диапазоне от 50-800 кг/с.

Бетонные составы марки М50-100 считаются наименее прочными, поэтому применяются для тех конструкций, где прочность бетона не играет решающей роли. Бетоны марки М200-300 имеют среднюю степень прочности и применяются при строительстве многих объектов — зданий, заливки полов и фундаментов. Бетонные смеси с маркой от М500 считаются особо-прочными.

Разница в прочности определяется соотношением материалов в составе бетонной смеси. Чем больше цемента в смеси, тем выше будет прочность бетонного состава.

Бетоны делятся по типу прочности на тяжелые, легкие и ячеистые. Время набора прочности бетона бывает наиболее коротким у бетонов в ячеистой структурой типа бетона с классом B25. Тяжелые типы бетонов редко опережают график.

Тяжелые типы бетонной смеси замешиваются на основе плотных цементов и заполнителей марки М50-М800.

  • Легкие бетонные смеси готовятся на цементах марок М50-М800.
  • Ячеистые бетоны считаются легкими, замешиваются на базе цемонтов марки М50-М150.

Тот или иной тип бетона выбирается для строительства в зависимости от области эксплуатации бетона, в соответствии с проектной документацией строительного объекта.

Процесс созревания бетонных составов

Набор прочности бетона увеличивается не сразу, а на протяжении некоторого времени, порой достаточно продолжительного. Это время называется периодом созревания бетона.

Время, необходимое для созревания бетонного состава, обычно составляет 28 дней. 28 дней — это именно тот период, который необходим бетонной смеси для того, чтобы были достигнуты максимальные показатели прочности, согласно графика набора прочности бетона.

Подобный график отражает кривую роста прочности в 28-дневный промежуток времени. Как уже было отмечено, для созревания бетона в естественных условиях обычно требуется 28 дней.

28 дней — это время набора прочности бетона в естественных условиях сушки.

При этом интересно то, что самое быстрое отвердевание бетонного состава происходит в течение первых пяти дней этого периода, прочность бетона через 7 суток со дня заливки равна 70% от запланированной прочности марки. Конечно, в каждом отдельном случае, рост твердости бетона может различаться от запланированного.

Но в целом, в большинстве случаев рост прочности соответствует графику набора прочности бетона. Несмотря на то, что 2/3 прочности бетона достигаются в первую неделю его созревания, использовать его можно будет лишь спустя 28 дней, когда будет достигнута 100% прочность бетона.

При этом созревание бетона зависит от его класса. Так, анализируя график набора прочности бетона В25, можно сделать вывод, что этот класс бетона набирает прочность 60% за 65 часов при температуре окружающей среды в +30С.

Условия созревания бетонного состава

Набор прочности бетона зависит того, насколько соблюдены условия сушки. Соблюдение технологии созревания позволяет получить качественный монолит.

Так, при создании монолитного фундамента в летнее время, для созревания бетонного состава требуется немного: заливка бетонной смеси в опалубку, выдерживание при естественных условиях 28 дней, съем опалубки и дозревание без опалубки.

В случае же, когда набор прочности бетона происходит в зимнее время года, то для того, чтобы плотность монолитного бетона соответствовала проектной, требуется обогревание бетона с помощью тепловых пушек и защита его от влаги путем гидроизоляции опалубки. Необходимость таких мероприятий объясняется снижением процесса полимеризации при низких температурах. В случае корректной гидроизоляции, график набора прочности бетона будет соответствовать запланированному.

Контроль за прочностью бетонного состава

Согласно графика набора прочности бетона, увеличение показателей прочности бетона ведется неодинаково на протяжении 28-дневного цикла созревания бетонного состава.

Как уже было отмечено выше, максимальный рост прочности бетона — 70% от запланированной прочности бетона через 7 суток достигается в условиях естественной сушки.

Однако если погодные условия не отвечают требованиям естественной сушки, требуется обеспечить условия максимально приближенные к естественным. Для того чтобы время набора прочности бетона соответствовало норме, на протяжении первой недели после заливки следует заботиться о фундаменте.

Уход за бетоном обычно производится с целью:

  • минимизации излишней усадки бетонного состава,
  • обеспечения запланированной прочности монолита и его длительной эксплуатации;
  • защиты бетонного состава от резкого изменения температур;
  • защиты бетона от пересыхания;
  • защиты бетонного монолита от повреждений механического характера.

Набор прочности бетона по суткам в зависимости от температуры и класса

Твердение бетона представляет собой сложный поэтапный процесс, время достижения требуемых характеристик определяется целым рядом факторов: от правильности подбора состава и пропорций компонентов до условий окружающей среды. Контроль за всеми стадиями бетонирования и ухода обязателен, нормы выдержки в сутках в каждом случае свои, особенно в зимнее время. Исключить риски помогают графики и таблицы прочности, отражающие изменения  по часам и в сутках в зависимости от температуры воздуха и других внешних факторов.

Оглавление:

  1. Описание
  2. Устройство
  3. Принцип работы

Понятие прочности, стадии ее набора

Эта характеристика является самой важной, именно она определяет соответствие качеств конструкций ожидаемым условиям эксплуатации. Прочность задается марками (отражающим предельные нагрузки на сжатие в кг/см2) и классом (доверительной вероятностью обеспечения заявленных свойств в 95%). В нормальных условиях ее максимальное марочное значение достигается на 28 сутки после начала бетонирования, за этот промежуток раствор проходит все стадии гидратации цемента, а именно: схватывание и твердение.

Время первой стадии полностью зависит в первую очередь от состава и температурных условий и варьируется от 20 минут до 1 дня. На этом этапе начинается образование внутренних связей, но смесь еще сохраняет подвижность и поддается механическим воздействиям. На практике это означает возможность предотвращения появления крупных трещин в течение первых 1-2 часов после бетонирования путем виброобработки, выравнивания поверхности заливаемых монолитов и поправки формы изготавливаемых изделий.

В зимнее время сама стадия удлиняется на 15-20 часов и затягивается ее начало (в особо сложных условиях – до 10 ч), в жаркую погоду – наоборот. При необходимости ее продления (например, в ходе доставки или заливке большого объема) смесь перемешивают с целью сохранения подвижности и качества в полной мере.

Стадия твердения начинается по окончании схватывания и длится вплоть до 100% вывода из раствора влаги, в ряде случаев она занимает несколько лет. Интенсивность процесса экспоненциальная: максимальная скорость набора прочности наблюдается в первые 3 дня (до 30% от марочной), до 70 % – в течение 7-14 и до 100 % на 28 сутки. Далее он замедляется, но не останавливается никогда, искусственный камень относится к материалам с упрочняющейся со временем структурой. При расчетах и проектировании используются величины, соответствующие выдерживаемой нагрузке на сжатие на 28 день, на практике они могут быть выше на 20 и более %.

График набора прочности

Взаимосвязь между значением этой характеристики и условиями внешней среды отражена в таблице:

Время застывания, сутки Процентное соотношение прочности в сравнении с нормативом, достигаемым на 28 день в зависимости от температуры окружающего воздуха, °С
0 +5 +10 +15 +20 +25 +30
1 20 23 27 30 34 37 39
2 26 30 34 39 43 47 50
3 30 35 41 45 50 52 56
4 34 40 46 50 55 58 63
5 39 44 51 55 60 63 68
6 42 48 54 59 64 68 72
7 45 52 58 63 68 72 76
10 53 60 67 72 77 82 85
14 60 68 74 81 86 690 95
21 70 76 83 91 97 > 100 > 100
28 75 83 90 100 > 100 > 100 > 100

Набор прочности бетона в зависимости от температуры можно отследить визуально, по специальному графику, но табличными значениями пользоваться удобнее. Чаще всего эти данные используются с целью вычисления сроков выдерживания в опалубке и дозревания состава после ее демонтажа. Также они помогают отследить влияние изменений температуры на достигаемые характеристики.

Оптимальными условиями признаны +20° C, в этих пределах и с уровнем влажности не ниже нормы ЦПС набирает марочную прочность равномерно, без создания зон внутреннего напряжения и без растрескивания.

Факторы влияния и ускорения

К главным критериям относят:

  1. Внешние условия среды в ходе схватывания и застывания. Помимо температуры воздуха на величину итоговой прочности оказывает влияние влажность (чем она будет выше, тем лучше) и состояние основания (опалубка и грунт не должны быть холодными, зимой их рекомендуется предварительно подогревать).
  2. Бетонный состав: тип, доля и активность вяжущего, пропорции сухих компонентов, соотношение В/Ц. Качество заполнителей на скорость набора марочной прочности влияет слабо, но итоговое значение от этого фактора зависит напрямую.
  3. Степень уплотнения и однородность. Наличие сухих участков нарушает процессы гидратации; растворы, уложенные с применением виброоборудования, имеют лучшие показатели прочности и застывают точно по графику.
  4. Время от начала заливки. Игнорирование нормативно-безопасных и оптимальных сроков последующих строительных работ влияет на целостность заливаемых конструкций.

Лучшие результаты достигаются при выдержке при оптимальной температуре и влажности в пределах указанной временной нормы, но в ряде случаев набор прочности требуется ускорить. Чаще всего такая ситуация возникает зимой из-за риска замерзания воды. Среди принимаемых мер выделяют ввод ускорителей и противоморозных добавок, обгорев опалубки, грунта или самого бетона электрокабелем, установку тепловых пушек, снижение В/Ц соотношения без потерь пластичности.

От чего зависит набор прочности?

Если созданы благоприятные условия, то бетонное основание затвердевает за 28 дней. Но под влиянием некоторых факторов время набора прочности может увеличиваться или наоборот сокращаться. Срок затвердевания бетонного камня зависит от:

  • Постоянства температурных показателей во время вызревания бетона;
  • Уровня влажности;
  • Возможных атмосферных осадков и их интенсивность;
  • Марки цемента;
  • Времени выполнения заливки.

Температура

Если говорить о влиянии температуры окружающей среды на набор прочности бетона, то здесь действует следующее правило: чем холоднее, тем больше времени займет затвердевание бетонного основания. При отрицательной температуре процесс останавливается, из-за чего время окончательного затвердевания увеличивается. Поэтому на севере, где вызревание бетонного камня проходит в условиях низких температур, процесс может длиться годами.

Такой большой срок обусловлен тем, что вода, необходимая для реакции гидратации не может испаряться, поскольку постоянно замерзает. Но при наступлении тепла и повышении температуры воздуха до положительных значений, процесс затвердевания бетонной конструкции возобновляется.

Время

При определении сроков проведения работ по бетонированию основания строительной конструкции пользуются таблицей набора твердости. В ней приведены прочностные показатели, которых достигает бетонный камень через определенный отрезок времени после заливки при разных температурных значениях.

Влажность

Понижение влажности окружающего воздуха в месте бетонирования отрицательно сказывается на процессе твердения бетонного камня. В сухом воздухе испарение воды из раствора происходит намного быстрее, поэтому скорость набора необходимой прочности бетона достаточно высокая. Но ускоренная гидратация цемента недостаточно скрепляет компоненты, и бетонная основа получается непрочной.

Оптимальный показатель влажности 66-70%.

Летом время застывания заливки зависит от влажности основы. При максимальной влажности повышается скорость нарастания твердости.

Цемент и добавки

Использование при замесе раствора портландцемента разных марок приводит к изменению времени его твердения. Поскольку, чем выше марка цемента, тем меньше дней требуется бетону, чтобы набрать марочную прочность. Существенное влияние на скорость застывания смеси оказывает ее состав и характеристики исходных материалов.

Зимой в раствор добавляют противоморозные смеси. Поскольку сразу после заливки он сможет немного затвердеть благодаря тепловыделению, а вот после замерзания воды процесс прекращается.

Летом наоборот лучше замедлить испарение влаги, чтобы защитить конструкцию от преждевременного пересыхания. Это несложно сделать с помощью специальных добавок, которые также улучшат прочностные показатели бетона.

Если в составе будут пористые материалы, то испарение влаги будет происходить медленнее.

Для быстрого нарастания твердости бетона и получения качественной конструкции нужно обеспечить надлежащий уход. Причем начинать ухаживать следует сразу после заливки, и продолжать до момента снятия опалубки. Полная нагрузка конструкции возможна только после получения бетоном расчетной прочности.

Время набора прочности бетона в зависимости от температуры

1 Набор прочности бетона – этапы схватывания раствора и твердения

Первый этап приобретения цементом марочной твердости – процесс схватывания, который происходит за несколько суток с момента подготовки смеси. Скорость схватывания напрямую зависит от температуры воздуха:

  1. Летом при достижении воздухом температуры 20 градусов по Цельсию процесс схватывания начнется уже через 120 минут после заливки смеси и полностью завершится еще через 60 минут. Итого на весь процесс уйдет примерно 3 часа.
  2. При охлаждении воздуха схватывание начнется намного позже. При 0 градусов оно начинается через шесть и более часов, а на всю первую стадию твердения уйдет до суток.

Чем теплее воздух, тем быстрее схватывается смесь. Жарким летом для схватывания бывает достаточно 10-15 минут.

В жаркую погоду бетон может схватиться за 10-15 минут

Схватывание бетонного раствора приводит к началу его затвердевания, потому очень важно придать смеси нужную форму максимально быстро. При высоких температурах требуется увеличение времени схватывания, чему способствует механизм тиксотропии. Так называют способность раствора уменьшать вязкость из-за встряхивания. Из-за этого смесь в бетономешалке на протяжении длительного времени сохраняет свои качества и не твердеет.

После схватывания запускается процесс твердения. На набор максимально возможной жесткости уходит до нескольких лет, однако свои характеристики цемент приобретает уже спустя 4 недели. Процесс затвердения раствора очень неравномерен. Наиболее интенсивно он идет в течение первой недели-двух с момента заливки, за это время он приобретает до 70 процентов от своего максимального значения, после чего твердение замедляется, однако не прекращается.

Набор прочности бетона – продолжительная процедура, на которую могут оказывать влияние различные факторы. К наиболее значимым из них относят:

  • внешнюю температуру;
  • влажность воздуха;
  • марку.

2 Набор марочной прочности бетона в зависимости от температуры

Теплота воздуха – самый важный фактор, влияющий на скорость приобретения бетоном его характеристик. При прохладном воздухе процесс затвердевания происходит намного медленнее, чем жарким летом. При морозе процесс набора жесткости полностью останавливается, так как входящая в состав смеси вода замерзает, а она необходима для гидратации цемента. При повышении температуры выше нуля процесс затвердевания продолжится, но способен вновь остановиться из-за мороза.

Зимой процесс затвердевания происходит намного медленнее

Для работы в зимнее время обычно используют смеси, в состав которых входят специальные вещества, обеспечивающие ускорение процедуры затвердевания и снижающие температуру, при которой процедура гидратации останавливается. На современном рынке представлены качественные составы, твердеющие максимально быстро и способные достичь крепости за 14 дней.

Горячий воздух среды позитивно сказываются на скорости затвердевания бетона. При +40 градусах по Цельсию раствор приобретает твердость в течение первой недели. Именно по этой причине все работы с растворами принято проводить в летний период.

Зимой для ускорения процесса твердения и предотвращения замерзания воды могут использовать специальное оборудование и средства для подогрева залитой конструкции. Однако это, во-первых, требует профессиональных знаний, во-вторых, приводит к существенному удорожанию всех запланированных строительных работ. Нагрев до температуры более 90 градусов недопустим, так как из-за этого может пострадать сама структура возводимых частей.

Ниже представлен график, отражающий время набора марочной прочности бетона в зависимости от температуры. Кривые построены из расчета характеристик материала марки М400 и они позволяют определить процент прочности, набираемой за определенное количество суток в соответствии с различными температурными условиями. Первая линия – это +50 градусов по Цельсию, последняя – +5 градусов.

К примеру, график дает возможность определить, что при +50 градусах смесь за первые 2 суток наберет около 75% от марочной прочности. При +5 градусах эти же характеристики бетон приобретет только спустя 20 дней.

Существует специальное оборудование для ускорения затвердевания бетона

С помощью информации из графика можно также узнать сроки распалубки заливаемой конструкции. Распалубка может осуществляться после того, как смесь наберет более 50% от величины жесткости. Учитывая, что при температуре ниже +10 градусов для набора полной прочности бетону не хватит даже 4 недель, в таких условиях стоит задуматься о возможности подогрева заливаемых конструкций.

Определить оптимальное время заливки цементного раствора поможет приведенная ниже таблица. Она, в зависимости от марки материала и условий, показывает необходимое количество суток для гидратации.

В таблице красным цветом выделена нормативно-безопасная жесткость раствора, приобретаемая в течение указанного времени при определенных условиях. Зеленым – безопасная твердость смеси, приобретаемая в течение указанного времени при определенных условиях. Синим – твердость смеси, приобретаемая в течение указанного времени при определенных условиях.

3 Влияние марки цемента и влажности на скорость гидратации

Марка используемого цемента напрямую влияет на скорость затвердевания. Более того, марка определяет также критическую прочность раствора, которую он должен успеть приобрести на начальном этапе схватывания. Ниже приведено соотношение, описывающее критическую прочность (в проценте от марочной) для разных цементов:

  1. М15-М150 – 50%.
  2. М200-М300 – 40%.
  3. М400-М500 – 30%.

Если планируется осуществлять заливку предварительно напряженных конструкций, критическая твердость будет составлять более 70% от марочной.

Что касается влажности окружающей среды, то пониженный уровень данного параметра может отрицательно влиять на процесс гидратации. Если влага будет полностью отсутствовать, то процедура гидратации цемента полностью остановится. Если же влажность будет высокой то скорость твердения будет увеличиваться. Оптимальные условия для быстрого затвердевания – высокая влажность и высокая температура.

Особенно критичной малая влажность станет для заливки при высоких температурах. Жара приведет к быстрому высыханию воды, что отрицательно скажется не только на времени гидратации, но и на характеристиках заливаемых конструкций. Из-за этого в теплое время года может требоваться периодическое увлажнение залитого цемента.

Так как на гидратацию цемента влияет множество факторов, заливку смеси необходимо осуществлять только после определения оптимальных условий и с их соблюдением. Если не учитывать влияющие на процедуру условия, все строительство способно завершиться совсем не так, как изначально планировалось и потраченные собственником деньги просто уйдут в трубу.

взаимосвязей между семидневными и 28-дневными сильными сторонами | Журнал Concrete Construction

Вопрос: Перед укладкой бетона для последней опоры фундамента с пробуренной опорой бригадир решил долить воду в автобетоносмеситель. Инспектору не понравился вид разводненного бетона, и он взял испытательные цилиндры, которые представляли тот самый пирс. Спецификации требуют 28-дневной силы 3000 фунтов на квадратный дюйм. После того, как лаборатория сломала семидневные цилиндры, цилиндр от пирса с добавленной водой сломался при давлении 1980 фунтов на квадратный дюйм.В других семидневных цилиндрах давление достигало 2620 фунтов на квадратный дюйм. Инженер обеспокоен тем, что бетон не будет соответствовать указанной прочности. Я понимаю, что добавление воды было неправильным решением, но я не хочу удалять пирс, если он достаточно прочен. Достигнет ли он указанных 3000 фунтов на квадратный дюйм?

Ответ: Как показывает этот случай, часто бывает полезно экстраполировать 28-дневные сильные стороны из семидневных. Конечно, количество прироста силы варьируется между семидневными и 28-дневными тестами.Тип цемента и условия отверждения — это два фактора, которые влияют на ожидаемый прирост прочности. Concrete, разработанная Mindness and Young, дает общее правило: соотношение 28-дневной и семидневной прочности составляет от 1,3 до 1,7 и обычно меньше 1,5, или семидневная прочность обычно составляет от 60% до 75% от нормы. 28-дневная сила и обычно выше 65%. Цилиндр, который сломался при давлении 1980 фунтов на квадратный дюйм, составляет 66% от указанных 3000 фунтов на квадратный дюйм. Согласно правилу Mindness and Young, он должен достичь указанной силы через 28 дней.Скорее всего, смесь была рассчитана не на 3000 фунтов на квадратный дюйм, а на более высокую прочность на сжатие, чтобы учесть изменчивость. Добавляя дополнительную воду в смесь, вы увеличиваете водоцементное соотношение, что, в свою очередь, снижает прочность. Опоры, установленные до добавления воды, вероятно, будут иметь прочность выше указанных 3000 фунтов на квадратный дюйм. Однако рассматриваемый пирс, скорее всего, будет соответствовать указанной прочности. Если по прошествии 28 дней цилиндры по-прежнему не соответствуют указанной прочности, возьмите стержни для проверки прочности перед выполнением дорогостоящего удаления сваи.

Почему мы проверяем прочность бетона на сжатие через 28 дней?

🕑 Время считывания: 1 минута.

Прочность бетона обычно проверяется через 28 дней как прочность бетонного куба или прочность бетонного цилиндра. Обсуждается причина испытания бетона на прочность через 28 дней.

Почему мы проверяем прочность бетона на сжатие через 28 дней?

Бетон со временем набирает прочность после заливки. Чтобы бетон набрал 100% прочность, требуется много времени, и время для этого пока неизвестно.Скорость набора прочности бетона на сжатие увеличивается в течение первых 28 суток заливки, а затем замедляется.
В таблице ниже показана прочность на сжатие, полученная бетоном через 1, 3, 7, 14 и 28 дней, в зависимости от марки используемого нами бетона.

Возраст Прочность в процентах
1 день 16%
3 дня 40%
7 дней 65%
14 дней 90%
28 дней 99%

Из приведенной выше таблицы мы видим, что бетон набирает 16% прочности за один день, 40% за 3 дня, 65% за 7 дней, 90% за 14 дней и 99% прочности за 28 дней.Таким образом, очевидно, что бетон быстро набирает прочность в первые дни после заливки, то есть на 90% всего за 14 дней. Когда его прочность достигла 99% за 28 дней, бетон продолжает набирать прочность после этого периода, но эта скорость увеличения прочности на сжатие очень меньше по сравнению с 28 днями.

После 14 дней заливки бетона бетон набирает только 9% в следующие 14 дней. Итак, скорость набора силы снижается. У нас нет четкого представления о том, когда бетон наберет прочность, 1 год или 2 года, но предполагается, что бетон может набрать свою окончательную прочность через 1 год.Таким образом, поскольку прочность бетона составляет 99% через 28 дней, она почти близка к его конечной прочности, поэтому мы полагаемся на результаты испытания прочности на сжатие через 28 дней и используем эту прочность в качестве основы для нашего проектирования и оценки.
Хотя есть также некоторые экспресс-методы испытаний бетона на сжатие, которые показывают связь между методами экспресс-испытаний и 28-дневной прочностью. Этот экспресс-тест проводится там, где время на строительство ограничено, и необходимо знать прочность конструктивного элемента для выполнения дальнейших строительных работ. Подробнее:
Бетон — определение, марки, компоненты, производство, конструкция и изделия
Прочность бетонных кубов на сжатие
Планирование испытаний бетона на прочность, долговечность и повреждения на месте

Все, что вам нужно знать о прочности бетона

Бетон многие считают прочным и долговечным материалом, и это справедливо. Но есть разные способы оценить прочность бетона.

Возможно, что еще более важно, каждое из этих прочностных свойств придает бетону различные качества, что делает его идеальным выбором в различных случаях использования.

Здесь мы рассмотрим различные типы прочности бетона, почему они важны и как они влияют на качество, долговечность и стоимость бетонных проектов. Мы также демонстрируем разницу в прочности между традиционным бетоном и более новой инновационной технологией бетона — бетоном со сверхвысокими характеристиками (UHPC).

Терминология: Прочностные свойства бетона и почему они важны

Прочность бетона на сжатие

Это наиболее распространенное и общепринятое измерение прочности бетона для оценки характеристик конкретной бетонной смеси.Он измеряет способность бетона выдерживать нагрузки, которые уменьшают размер бетона.

Прочность на сжатие проверяют путем разрушения цилиндрических образцов бетона на специальной машине, предназначенной для измерения этого типа прочности. Он измеряется в фунтах на квадратный дюйм (psi). Тестирование проводится в соответствии со стандартом C39 ASTM (Американское общество испытаний и материалов).

Прочность на сжатие важна, поскольку это главный критерий, используемый для определения того, будет ли данная бетонная смесь соответствовать требованиям конкретной работы.

Бетон, фунт / кв. Дюйм

фунтов на квадратный дюйм (psi) измеряет прочность бетона на сжатие. Более высокое значение psi означает, что данная бетонная смесь прочнее, поэтому обычно она дороже. Но эти более прочные бетоны также более долговечны, то есть служат дольше.

Идеальный бетонный фунт на квадратный дюйм для данного проекта зависит от различных факторов, но абсолютный минимум для любого проекта обычно начинается от 2500 до 3000 фунтов на кв. Каждая бетонная конструкция имеет обычно приемлемый диапазон фунтов на квадратный дюйм.

Бетонные опоры и плиты на уровне грунта обычно требуют плотности бетона от 3500 до 4000 фунтов на квадратный дюйм. Подвесные плиты, балки и фермы (часто встречающиеся в мостах) требуют от 3500 до 5000 фунтов на квадратный дюйм. Традиционные бетонные стены и колонны, как правило, имеют диапазон от 3000 до 5000 фунтов на квадратный дюйм, в то время как для покрытия требуется от 4000 до 5000 фунтов на квадратный дюйм. Бетонным конструкциям в более холодном климате требуется более высокое давление на квадратный дюйм, чтобы выдерживать большее количество циклов замораживания / оттаивания.

Прочность на сжатие обычно проверяется через семь дней, а затем снова через 28 дней для определения psi.Семидневный тест проводится для определения раннего прироста силы, а в некоторых случаях его можно даже провести уже через три дня.

Но конкретный фунт на квадратный дюйм основан на результатах 28-дневного испытания, как указано в стандартах Американского института бетона (ACI).

Предел прочности бетона

Прочность на растяжение — это способность бетона противостоять разрушению или растрескиванию при растяжении. Это влияет на размер трещин в бетонных конструкциях и степень их возникновения.Трещины возникают, когда растягивающие усилия превышают предел прочности бетона.

Традиционный бетон имеет значительно более низкую прочность на разрыв по сравнению с прочностью на сжатие. Это означает, что бетонные конструкции, испытывающие растягивающее напряжение, должны быть усилены материалами, обладающими высокой прочностью на разрыв, такими как сталь.

Непосредственно проверить прочность бетона на разрыв сложно, поэтому используются косвенные методы. Наиболее распространенными косвенными методами являются прочность на изгиб и разделенная прочность на растяжение.

Прочность бетона на раздельное растяжение определяют с помощью испытания на раздельное растяжение бетонных цилиндров. Испытание следует проводить в соответствии со стандартом ASTM C496.

Прочность бетона на изгиб

Прочность на изгиб используется как еще один косвенный показатель прочности на разрыв. Он определяется как мера неармированной бетонной плиты или балки, способная противостоять разрушению при изгибе. Другими словами, это способность бетона противостоять изгибу.

Прочность на изгиб обычно составляет от 10 до 15 процентов прочности на сжатие, в зависимости от конкретной бетонной смеси.

Существует два стандартных теста ASTM, которые используются для определения прочности бетона на изгиб — C78 и C293. Результаты выражаются в модуле разрыва (MR) в фунтах на квадратный дюйм.

Испытания на изгиб очень чувствительны к подготовке, обращению с бетоном и его отверждению. Испытание следует проводить, когда образец влажный. По этим причинам результаты испытаний прочности на сжатие чаще используются при описании прочности бетона, поскольку эти числа более надежны.

Дополнительные факторы

Прочие факторы, влияющие на прочность бетона, включают:

Соотношение вода / цемент (Вт / см)

Относится к соотношению воды и цемента в бетонной смеси.Более низкое соотношение воды и цемента делает бетон более прочным, но также затрудняет работу с ним.

Необходимо соблюдать правильный баланс для достижения желаемой прочности при сохранении удобоукладываемости.

Дозирование

Традиционный бетон состоит из воды, цемента, воздуха и смеси песка, гравия и камня. Правильная пропорция этих ингредиентов является ключом к достижению более высокой прочности бетона.

Бетонную смесь со слишком большим количеством цементного теста легко залить, но она легко потрескается и не выдержит испытания временем.И наоборот, при слишком малом количестве цементного теста получается шероховатый и пористый бетон.

Смешивание

Оптимальное время перемешивания важно для прочности. Хотя прочность имеет тенденцию увеличиваться со временем перемешивания до определенного момента, слишком долгое перемешивание может фактически вызвать испарение избыточной воды и образование мелких частиц в смеси. В результате бетон становится труднее работать и становится менее прочным.

Не существует золотого правила для оптимального времени перемешивания, так как оно зависит от многих факторов, таких как: тип используемого миксера, скорость вращения миксера, а также конкретные компоненты и материалы в данной партии бетона.

Методы отверждения

Чем дольше бетон остается влажным, тем он прочнее. Чтобы защитить бетон, необходимо соблюдать меры предосторожности при его выдерживании при очень низких или высоких температурах.

Неопровержимые факты: традиционный бетон против UHPC

Доступна новая технология производства бетона, которая имеет более высокие прочностные характеристики, чем традиционный бетон, во всех диапазонах прочности. Этот инновационный материал называется бетоном со сверхвысокими характеристиками (UHPC), и он уже внедряется во многих инфраструктурных проектах штата и федерального правительства, учитывая его исключительную прочность и долговечность.

UHPC очень похож на традиционный бетон по составу. Фактически, примерно от 75 до 80 процентов ингредиентов одинаковы.

Что делает UHPC уникальным, так это интегрированные волокна. Эти волокна добавляются в бетонную смесь и составляют от 20 до 25 процентов конечного продукта.

Волокна варьируются от полиэстера до стержней из стекловолокна, базальта, стали и нержавеющей стали. Каждое из этих интегрированных волокон создает все более прочный конечный продукт, причем сталь и нержавеющая сталь обеспечивают наибольший прирост прочности.

Вот более подробное сравнение UHPC с традиционным бетоном:

  • Прочность на разрыв —UHPC имеет предел прочности на разрыв 1700 фунтов на квадратный дюйм, в то время как у традиционного бетона обычно измеряется от 300 до 700 фунтов на квадратный дюйм.
  • Прочность на изгиб —UHPC может обеспечить прочность на изгиб более 2000 фунтов на кв. Дюйм; Традиционный бетон обычно имеет прочность на изгиб от 400 до 700 фунтов на квадратный дюйм.
  • Прочность на сжатие — Улучшенная прочность на сжатие UHPC особенно важна по сравнению с традиционным бетоном.В то время как традиционный бетон обычно имеет прочность на сжатие в диапазоне от 2500 до 5000 фунтов на квадратный дюйм, UHPC может иметь прочность на сжатие до 10 раз больше, чем у традиционного бетона.

Всего через 14 дней отверждения UHPC имеет прочность на сжатие 20 000 фунтов на квадратный дюйм. Это число увеличивается до 30 000 фунтов на квадратный дюйм при полном отверждении в течение 28 дней. Некоторые смеси UHPC даже продемонстрировали прочность на сжатие 50 000 фунтов на квадратный дюйм.

Другие преимущества UHPC включают:

  • Устойчивость к замерзанию / оттаиванию —Исследования показали, что UHPC выдерживает более 1000 циклов замораживания / оттаивания, в то время как традиционный бетон начинает разрушаться всего за 28 циклов.
  • Ударопрочность —UHPC может поглощать в три раза больше энергии, чем обычный бетон. При ударной нагрузке UHPC был вдвое прочнее обычного бетона и рассеивал до четырех раз больше энергии. Это делает материал отличным кандидатом для сейсмостойких мостов и зданий.
  • Влагостойкость — Из-за более высокой плотности, чем у традиционного бетона, воде труднее проникать в UHPC.
  • Пластичность —UHPC может быть растянут на более тонкие секции под действием растягивающего напряжения, в отличие от обычного бетона.
  • Более длительный срок службы —UHPC служит более 75 лет по сравнению с 15–25 годами для традиционного бетона.
  • Меньший вес — Несмотря на то, что UHPC прочнее, требуется меньше материала, поэтому торцевая конструкция легче, что снижает требования к опоре и опорам.

Неудивительно, что UHPC используется во многих американских инфраструктурных проектах для ремонта стареющих мостов и дорог страны. Материал увеличивает срок службы мостов, снижая общую стоимость жизненного цикла этих конструкций.UHPC предъявляет более низкие требования к техническому обслуживанию, учитывая его увеличенный срок службы, что еще больше способствует снижению затрат на срок службы.

Идеальное применение для UHPC:

При оценке конкретной бетонной смеси для проекта важно знать различные прочностные свойства этой смеси. Знание этих цифр и того, какие свойства прочности бетона обеспечивают проекту, является ключом к выбору правильной бетонной смеси.

Бетонные новинки, такие как UHPC, превосходят традиционный бетон по всем показателям прочности, что делает его разумным выбором для любых бетонных проектов.Снижение затрат на техническое обслуживание и увеличенный срок службы UHPC обеспечивает беспроигрышную надежность и более низкие затраты на жизненный цикл.

Фотография предоставлена ​​Peter Buitelaar Consultancy, дизайн — FDN в Эйндховене, Нидерланды.

Развитие прочности бетона

Многие факторы влияют на скорость увеличения прочности бетона после смешивания. Некоторые из них обсуждаются ниже. Во-первых, хотя несколько определений могут быть полезны:

Процессы «настройки» и «упрочнения» часто путают:

Параметр — это укрепление бетона после его укладки.Бетон можно «затвердеть» в том смысле, что он больше не жидкий, но все еще может быть очень слабым; например, вы не сможете ходить по нему. Отверждение связано с образованием эттрингита и гидрата силиката кальция на ранних стадиях. Обычно используются термины «начальный набор» и «окончательный набор»; это произвольные определения раннего и позднего множества. Существуют лабораторные процедуры для их определения с помощью утяжеленных игл, проникающих в цементное тесто.

Отверждение — это процесс увеличения прочности, который может продолжаться в течение недель или месяцев после того, как бетон был замешан и уложен.Затвердевание происходит в основном из-за образования гидрата силиката кальция по мере того, как цемент продолжает гидратировать.

Скорость схватывания бетона не зависит от скорости его затвердевания. Быстротвердеющий цемент может иметь время схватывания, подобное обычному портландцементу.

Измерение прочности бетона

Обычно это делается путем изготовления бетонных кубиков или призм, затем
отверждать их в течение указанного времени. Обычное время отверждения: 2, 7, 28 и 90.
дней.Температура отверждения обычно составляет 20 градусов по Цельсию. После
по достижении возраста, необходимого для испытаний, кубики / призмы измельчаются в
большой пресс.

Единицей измерения прочности бетона в системе СИ является мегапаскаль, хотя «ньютоны на квадратный миллиметр» все еще широко используются, поскольку числа более удобны. Таким образом, «бетон на пятьдесят ньютонов» означает бетон, плотность которого составляет 50 ньютонов на квадратный миллиметр, или 50 мегапаскалей.

В то время как измерения на основе бетонных кубов широко используются в строительной отрасли, европейский стандарт для производства цемента EN 197 определяет процедуру испытаний, основанную на призмах из раствора, а не на бетонных кубах.Например, можно ожидать, что цемент, описанный как соответствующий стандарту EN 197-1 CEM I 42,5 N, достигнет не менее 42,5 МПа за 28 дней при использовании указанного теста с призмой из строительного раствора. Будет ли «настоящий бетон», изготовленный из этого цемента, достичь 42,5 МПа при испытаниях бетонных кубов, зависит от ряда других факторов в дополнение к любым внутренним свойствам цемента.

Факторы, влияющие на прочность бетона

Есть много важных факторов; Вот некоторые из наиболее важных:

Пористость бетона: Пустоты в бетоне можно заполнить воздухом или водой.Воздушные пустоты — очевидный и легко видимый пример пор в бетоне. Вообще говоря, чем пористее бетон, тем он слабее. Вероятно, наиболее важным источником пористости в бетоне является соотношение воды и цемента в смеси, известное как соотношение воды и цемента. Этот параметр настолько важен, что мы поговорим о нем отдельно ниже.

Соотношение вода / цемент: определяется как масса воды, деленная на массу цемента в смеси. Например, бетонная смесь, содержащая 400 кг цемента и 240 литров (= 240 кг) воды, будет иметь соотношение вода / цемент 240/400 = 0.6. Соотношение вода / цемент может быть сокращено до «вод / цемент» или просто «вод / цемент». В смесях, в которых соотношение воды к воде больше примерно 0,4, весь цемент теоретически может реагировать с водой с образованием продуктов гидратации цемента. При более высоких соотношениях w / c следует, что пространство, занятое дополнительной водой выше w / c = 0,4, останется как поровое пространство, заполненное водой или воздухом, если бетон высохнет.

Следовательно, по мере увеличения соотношения вода / цемент пористость цементного теста в бетоне также увеличивается.По мере увеличения пористости прочность бетона на сжатие будет уменьшаться.

Прочность заполнителя: будет очевидно, что если заполнитель в бетоне является слабым, бетон также будет слабым. По своей природе слабые породы, такие как мел, явно не подходят для использования в качестве заполнителя.

Связка заполнитель-паста: целостность связи между пастой и заполнителем имеет решающее значение. Если облигации нет, совокупность фактически представляет собой пустоту; как обсуждалось выше, пустоты являются источником слабости в бетоне.

Параметры, связанные с цементом: Многие параметры, относящиеся к составу отдельных минералов цемента и их пропорциям в цементе, могут влиять на скорость роста прочности и конечную достигаемую прочность. К ним относятся:

  • содержание алита
  • реакционная способность алита и белита
  • содержание сульфата цемента

С
алит — самый реактивный цементный минерал, который способствует
значительно влияет на прочность бетона, большее количество алита должно давать лучшие
сильные стороны («рано» в этом контексте означает примерно до 7 дней).Тем не мение,
это утверждение должно быть тщательно оговорено, так как многое зависит от записи
условия в печи. Возможно, что более легкое горение
конкретный клинкер может привести к более высокой начальной прочности из-за
образование более реактивного алита, даже если его немного меньше.
Не все алиты созданы равными!

Для конкретного цемента существует
будет то, что называется «оптимальным содержанием сульфата» или «оптимальным содержанием гипса».
содержание.’ Сульфат в цементе, сульфат клинкера и добавленный гипс,
замедляет гидратацию алюминатной фазы.Если недостаточно
сульфат, может произойти схватывание; и наоборот, слишком много сульфата может вызвать
ложная установка.

Следовательно, требуется баланс между
способность основных минералов клинкера, особенно алюминатной фазы,
вступать в реакцию с сульфатами на ранних стадиях после смешения и способности
цемента для подачи сульфата. Оптимальное содержание сульфатов будет
зависит от многих факторов, включая содержание алюмината, алюмината
размер кристаллов, реакционная способность алюмината, растворимость различных
источники сульфата, размеры частиц сульфата и наличие примесей
использовал.

Если бы это было недостаточно сложно, сумма
сульфат, необходимый для оптимизации одного свойства, например прочности, может
не должно быть таким же, как это требуется для оптимизации других свойств, таких как
усадка при высыхании. Бетон и раствор также могут иметь разные оптимальные
сульфатное содержание.

Эта увлекательная область обсуждается далее в разделе «Изменчивость прочности бетона, связанная с цементом».

В дополнение к параметрам состава, рассмотренным выше, также важны физические параметры, в частности площадь поверхности цемента и гранулометрический состав.

Тонкость помола цемента, очевидно, повлияет на скорость гидратации цемента и, следовательно, на скорость роста прочности; Более мелкое измельчение цемента приведет к более быстрой реакции. Если производитель цемента обнаруживает, что его сила уменьшается, часто первое, что он делает, чтобы исправить проблему, — это измельчать цемент более мелко.

Тонкость частиц часто выражается через общую площадь поверхности частиц, например: 400 квадратных метров на килограмм.Однако не менее, если не более важно, гранулометрический состав цемента; полагаться только на измерения площади поверхности может ввести в заблуждение. Некоторые минералы, например, гипс, могут измельчаться, в результате чего получается цемент с большой площадью поверхности. Такой цемент может содержать очень мелко измельченный гипс, а также относительно крупные частицы клинкера, что приводит к более медленной гидратации.

Более подробная информация о прочности бетона

Мы только что рассмотрели некоторые из основных факторов, влияющих на прочность бетона.Конечно, есть еще много других, некоторые из которых связаны с внутренними проблемами с цементом, а некоторые из них довольно тонкие. Другие относятся к тому, как используется цемент, очевидным примером является то, что в смеси недостаточно цемента, но есть много других, которые менее очевидны.

Я написал книгу именно по этой теме — чтобы узнать подробности, просто щелкните кубик ниже.

Дополнительные статьи по этой или смежным темам можно найти в Справочнике статей.

Прочность бетонных кубов на сжатие

Общая прочность конструкции, такая как сопротивление изгибу и истиранию, напрямую зависит от прочности бетона на сжатие.

Согласно Википедии, Прочность бетона на сжатие определяется как характеристическая прочность бетонных кубов размером 150 мм, испытанных в течение 28 дней.

Почему мы проводим тестирование через 7, 14 и 28 дней?

Бетон представляет собой макрокомпонент с песком, цементом и крупнозернистым заполнителем в качестве микрокомпонентов (соотношение смеси) и со временем приобретает 100% прочность в затвердевшем состоянии.

Взгляните на приведенную ниже таблицу.

Прочность бетона сверхурочно

Дней после литья Прирост силы
День 1 16%
День 3 40%
День 7 65%
День 14 90%
День 28 99%

Как видите, бетон быстро набирает прочность до 7 -го и 14 -го дней.Затем постепенно увеличивается оттуда. Таким образом, мы не можем предсказать прочность, пока бетон не придет в это стабильное состояние.

Как только он достигнет определенной силы через 7 дней, тогда мы знаем (согласно таблице) только 9% силы увеличится. Поэтому на объектах мы обычно тестируем бетон с этим интервалом. Если бетон выйдет из строя через 14 дней, мы откажемся от замеса.

Таблица прочности на сжатие бетона через 7 и 28 дней

Марка бетона Минимальная прочность на сжатие Н / мм2 в течение 7 дней Нормативная прочность на сжатие (Н / мм2) через 28 дней
M15 10 15
M20 13.5 20
M25 17 25
M30 20 30
M35 23,5 35
M40 27 40
M45 30 45

Лабораторное испытание бетона на прочность при сжатии

Цель

Найти значение прочности бетонных кубов на сжатие.

Требуемое оборудование и аппаратура

  • Формы для кубов 150 мм (с маркировкой IS)
  • Электронные весы
  • Лист G.I (для изготовления бетона)
  • Вибрирующая игла и другие инструменты
  • Машина для испытания на сжатие

Процедура

Отливка куба
  • Измерьте сухую пропорцию ингредиентов (цемент, песок и крупнозернистый заполнитель) в соответствии с проектными требованиями.Ингредиентов должно хватить для отливки тестовых кубиков
  • Тщательно перемешайте сухие ингредиенты для получения однородной смеси
  • Добавьте расчетное количество воды к сухой пропорции (водоцементное соотношение) и хорошо перемешайте для получения однородной текстуры
  • Залить бетон в форму с помощью вибратора для тщательного уплотнения
  • Обработайте верхнюю часть бетона шпателем и хорошо постучите до тех пор, пока цементный раствор не достигнет вершины кубиков.
Отверждение
  • Через некоторое время форму следует накрыть красным мешком и поставить в покое на 24 часа при температуре 27 ° C ± 2
  • Через 24 часа выньте образец из формы.
  • Держите образец погруженным в пресную воду с температурой 27 ° Цельсия. Образец следует хранить 7 или 28 дней. Каждые 7 дней воду следует обновлять.
  • Образец следует вынуть из воды за 30 минут до испытания.
  • Перед проведением испытания образец должен быть в сухом состоянии.
  • Вес куба не должен быть меньше 8,1 кг
Тестирование
  • Теперь поместите бетонные кубики в испытательную машину. (централизованно)
  • Кубики должны быть правильно размещены на плите машины (проверьте отметки кружков на машине). Тщательно совместите образец со сферически установленной пластиной.
  • Нагрузка будет приложена к образцу в осевом направлении.
  • Теперь медленно прилагайте нагрузку со скоростью 140 кг / см 2 в минуту, пока куб не рухнет.
  • Максимальная нагрузка, при которой образец разрушается, принимается за сжимающую нагрузку.

Расчет

Прочность бетона на сжатие = максимальная сжимающая нагрузка / площадь поперечного сечения

Площадь поперечного сечения = 150 мм X 150 мм = 22500 мм2 или 225 см 2

Предположим, что сжимающая нагрузка составляет 450 кН,

Прочность на сжатие = (450000 Н / 225) / 9.81 = 204 кг / см 2

Примечание — 1 кг равен 9,81 N

Результат наблюдения (лабораторный отчет)

Детали Образцы
Образец 1 Образец 2 Образец 3

Сжимающая нагрузка

(кН)

375 кН 425 кН 435 кН

Прочность на сжатие

(кг / см2)

(375000/225) / 9.81

= 170 кг / см 2

(425000/225) / 9,81

= 192,5 кг / см 2

(435000/225) / 9,81

= 197,0 кг / см 2

Средняя прочность на сжатие = (170 + 192,5 + 197) / 3

= 186,5 кг / см 2

Банкноты
  • Указанный выше эксперимент следует проводить при температуре 27 ° C ± 2 °.
  • Согласно IS 516 индивидуальное изменение сжимающей нагрузки не должно превышать плюс минус 15% от среднего значения.

Частота дискретизации

Согласно IS 456: 2000, минимальная частота отбора проб бетона

Количество бетона в работе (м3) Количество образцов
1-5 1
6-15 2
16-30 3
31-50 4
51 и выше 4 плюс одна дополнительная проба на каждые дополнительные 50 м3

Видео эксперимента

Надеюсь, вам понравился контент.Поддержите нас, поделившись.

Счастливого обучения 🙂

Прочность 28 суток — INFINITY ДЛЯ ЦЕМЕНТНОГО ОБОРУДОВАНИЯ

Бетонные конструкции спроектированы на основе 28-дневной прочности цилиндров на раздавливание. 28-дневная прочность цилиндра фактически представляет собой характеристическую прочность бетона. Испытание бетонных цилиндров в возрасте 28 дней является обязательным в соответствии почти со всеми требованиями строительных норм.

Бетон обладает такими преимуществами, как прочность, доступность, долговечность, гибкость и экономичность.В случае проектирования бетонной конструкции важным элементом является прочность бетона на сжатие. Прочность бетона на сжатие в течение 28 дней обычно считается расчетной. Для обеспечения такой прочности необходимо подождать значительное время, т.е. 28 дней. Он становится обязательным, потому что он также представляет собой процесс контроля качества смешивания, укладки, уплотнения, отверждения бетона и т. Д. Разработка бетонной смеси — это процесс, в котором используются рекомендации кодов и сочетается с опытом соответствующего инженера.Из-за некоторой ошибки в конструкции смеси или ее приготовлении на месте результаты испытаний могут не соответствовать расчетной прочности, тогда повторение всего процесса становится обязательным, что может быть дорогостоящим и трудоемким.

какое время затвердевания бетона?

сколько времени требуется для высыхания бетона

сколько времени требуется для высыхания бетона?

время схватывания бетона?

время высыхания бетона?

каков процент прироста прочности бетона от 7 до 28 дней?

насколько увеличивается прочность бетона через 28 дней

бетон не перестает твердеть.но после периода времени, который составляет 28 дней, процесс упрочнения будет очень медленным и игнорироваться менее 1%

график выдержки бетона

каковы основные испытания прочности бетона?

  • Испытание на оседание перед отправкой с бетонного завода и по прибытии на место.
  • Испытание на прочность при сжатии.
  • Испытание на водопроницаемость.
  • Экспресс-тест на проникновение хлорид-иона.
  • Тест на водопоглощение.
  • Испытание на первичную абсорбцию поверхности.

www.iti.northwestern.edu/cement/monograph/Monograph5_1.html

какова минимальная прочность бетона на сжатие через 28 дней?

Марка бетона Характерная прочность куба fck характеризуется его кубической прочностью на сжатие. Таким образом, куб для марки M25 должен показывать прочность 25 н / мм2. Но когда мы обсуждаем критерий приемки, стандартное отклонение для M25 составляет 5 согласно IS 456-2000.

Итак, критерий приемки — fck +0.2 или 658 кН. В идеале, чтобы соответствовать разрешению IS

, какой процент максимальной прочности бетона через 28 дней?

99%

Калькулятор прочности бетона?

, пожалуйста, посетите этот сайт

https://www.calculator.net/concrete-calculator.html

что мне делать, если сборная колонна, которая уже установлена, затем 28-дневный кубический тест не прошел?

Есть какие-нибудь корректирующие действия?

Если 28-дневные испытания не дадут указанной прочности на сжатие, у вас есть несколько вариантов, которые следует рассмотреть.

Первый вариант — взять образцы керна в соответствии с разделом 1905.6.6 IBC и разделом 5.6.5 ACI 318, который был разработан для исследования результатов испытаний на низкую прочность. После того, как образцы керна проанализированы и вы выполните шаги, указанные в ACI 5.6.3.3, если вы находитесь в пределах 500 фунтов на квадратный дюйм, но ниже требуемого f’c, вам необходимо предпринять шаги для увеличения прочности бетона. Если вы упадете ниже предела в 500 фунтов на квадратный дюйм, вы должны удовлетворить пропускную способность конструкции. Шаги четко изложены в ACI 5.6.5.

Имейте в виду, что важно выполнять шаги для ACI. Хотя снятие, замена и ремонт дефектной секции кажется самым безопасным путем, процедуры ACI все же следует выполнять в первую очередь. Затем, если будет определено, что бетон действительно недостаточен и существует проблема с безопасностью жизни, вы полностью задокументируете свои действия — выявление и устранение проблемы.

Следующий вариант — связаться с ответственным инженером-конструктором для получения дальнейших инструкций. Если дополнительные 56-дневные цилиндры были отлиты, испытаны и достигли требуемой проектной прочности, то ответственный инженер-строитель должен принять или нет 56-дневные испытания как показатель того, что бетон достиг своей проектной прочности.

Другие варианты, которые следует учитывать:
-Взятие дополнительных образцов керна для анализа
-Проведение нагрузочного теста
-Предоставление альтернативных вариантов ремонта и усиления конструкции
-Отклонить деталь и структуру полностью »

Какие факторы (например, температура или влажность) повлиять на скорость отверждения?

На скорость затвердевания бетона влияет множество факторов, включая, помимо прочего, следующие:

— Температура окружающей среды во время смешивания
— Температура окружающей среды во время заливки
— Температура окружающей среды во время процесса твердения
— Температура воды в смеси
— Отношение воды к вяжущим материалам (Вт / см)
— Пропорции смеси
— Влагосодержание заполнителей
— Любые химические или минеральные добавки, используемые в бетонной смеси, включая продукты, специально предназначенные для увеличения или уменьшить скорость отверждения бетона.
— Любые составы, нанесенные на бетон после заливки или зачистки.
— Выбранный метод (ы), используемый для отверждения, который может быть ускорен с помощью приложенного тепла или пара; влажное отверждение; использование брезента, полиэтиленовой пленки или мешковины для удержания влаги; и т.п.
— Погода на протяжении всего процесса отверждения, включая ветер, солнце, дождь или снег
— Размеры продукта (более толстые секции или массивный бетон затвердевают дольше, чем тонкие секции)
— Тип цемента, используемого в бетонной смеси

Автоматический тестер бетонных цилиндров для отчетов о прочности ASTM C39

Все лаборатории по испытанию бетона выдают практически одинаковые отчеты об испытаниях прочности на сжатие.Итак, как руководитель лаборатории может создать отличительный продукт, увеличивая при этом рентабельность?

Контроль скорости
Бетон демонстрирует чувствительность к скорости нагружения относительно прочности на сжатие, 1,2, поэтому ASTM C39, «Стандартный метод испытаний цилиндрических образцов бетона на сжатие» 3 ограничивает скорость нагружения до 0,2-0,3 МПа / с ( От 28 до 42 фунтов на квадратный дюйм / сек). Это помогает обеспечить согласованность внутри лабораторий и между ними.

Почти 70% используемых в настоящее время испытательных машин управляются вручную.Следовательно, от оператора требуется вручную отрегулировать клапан для достижения скорости нагрузки в пределах спецификации. К сожалению, эти настройки могут быть неточными, особенно потому, что только около половины машин для испытаний бетона, находящихся в настоящее время в эксплуатации, имеют какое-либо устройство для индикации скорости нагрузки. Пятая часть используемых в настоящее время испытательных машин оснащена цифровыми индикаторами, показывающими скорость загрузки, но достигнутые показатели не поддаются проверке после испытаний.

Рис. 1. Автоматическая система испытаний бетона ADMET MegaForce II.

Шаг в правильном направлении
Чтобы устранить недостаток непроверяемой скорости загрузки, теперь предлагаются машины с ручным управлением, которые рассчитывают и сообщают среднюю скорость загрузки в соответствии с требованиями ASTM C39 и могут генерировать кривые зависимости нагрузки и напряжения от времени для убедитесь, что тест был проведен в соответствии со спецификацией. Они также предлагают цифровые индикаторы, которые в реальном времени показывают скорость загрузки. Однако эти системы не исключают возможность того, что оператор может проводить испытания со скоростью, превышающей пределы ASTM C39.

Больше контроля
Совершенно очевидно, что существует потребность в автоматической системе испытания бетона, которая может контролировать скорость нагрузки. Однако системы управления, используемые на обычных универсальных испытательных машинах, не подходят для испытаний на конкретных объектах. Большинство работающих машин для испытания бетона имеют гидравлический привод и работают при давлении масла до 68,9 МПа (10 000 фунтов на квадратный дюйм). Напротив, обычные сервогидравлические испытательные системы работают при максимальном давлении около 31 МПа (4500 фунтов на кв. Дюйм).Таким образом, эти системы имеют большие и очень дорогие приводы, а их высокая стоимость не позволяет широко использовать их при испытаниях бетона.
За последние шесть лет ADMET, Inc. предложила недорогую, надежную автоматическую систему испытаний бетона, которая решает эти проблемы. Как показано на рис. 1, автоматическая испытательная система MegaForce II работает с компрессионными машинами, которые работают до 68,9 МПа (10000 фунтов на кв. Дюйм), не позволяет оператору отменять процесс испытания и обеспечивает проверку скоростей нагружения — и все это на 50-75% меньше. стоимость, чем у сопоставимой испытательной машины с сервоуправлением.Автоматическая система тестирования может быть установлена ​​на новых машинах или дооснащена существующими машинами, что приведет к дополнительной экономии средств.

Ссылки
1. Карино, штат Нью-Джерси; Guthrie, W.F .; Lagergren, E.S .; и Маллингс, Г. «Влияние параметров испытаний на прочность высокопрочных (90 МПа) бетонных цилиндров», Высокоэффективный бетон: Труды, Международная конференция ACI, Сингапур, 1994 (SP-149), V.M. Малхотра, изд., Американский институт бетона, Фармингтон-Хиллз, Мичиган, 1994, стр. 589-632.