Таблица подбора сечения кабеля и провода по мощности и силе тока: Калькулятор расчета сечения кабеля

Содержание

Подбор кабеля


Первоочередным параметром для выбора сечения кабеля (провода) является ток нагрузки.

В том случае, если в качестве входного параметра известна потребляемая мощность (P),

ток нагрузки (I) расчитывается следующим образом:

Одна фаза, либо постоянное напряжение, U:

              I = P / U

Три фазы (переменное напряжение), U:              

           I = P / (1,73*U)

* Данный алгоритм подбора сечения кабеля носит информативный характер.

Для получения более точной информации следует обратиться к специалисту.

Номинальное сечение жилы, мм2
Допустимые токовые нагрузки кабелей с алюминиевыми жилами с изоляцией
из поливинилхлоридного пластиката, напряжение до 3 кВ включительно, А
одножильныхдвужильныхтрехжильныхчетырехжильныхпятижильных
на воздухена землена воздухена землена воздухена землена воздухена землена воздухена земле
Номинальное сечение жилы, мм2
Допустимые токовые нагрузки кабелей с медными жилами с изоляцией
из поливинилхлоридного пластиката, напряжение до 3 кВ включительно, А
одножильныхдвужильныхтрехжильныхчетырехжильныхпятижильных
на воздухена землена воздухена землена воздухена землена воздухена землена воздухена земле

Выбор сечения кабеля и провода по мощности


Автор Alexey На чтение 7 мин. Просмотров 436 Опубликовано
Обновлено

Понимание всех параметров и процессов происходящих с электричеством, является залогом правильного выбора кабеля  . Данная статья поэтапно объясняет взаимосвязи физических величин, влияющих на надёжную работу энергосети, её безопасную эксплуатацию.

Известно, что все металлы имеют свободные электроны, которые двигаются при наличии приложенного электрического напряжения, создавая электрический ток. Ударяясь об атомы, они теряют энергию, которая переходит в тепловую. Чем больше ток, — тем гуще поток частиц, и чем меньше поперечный разрез проводника, через который они проходят, тем им «тесней», — столкновения чаще, теряется полезная энергия, увеличивается выделение бесполезного, а зачастую опасного тепла.

 Лавина тепла

Важно!  При росте температуры, растёт удельное сопротивление,  увеличивается выделение тепла, что приводит к лавинообразному процессу быстрого разогрева с катастрофическими последствиями.

Существуют сложные формулы, рассчитывающие тепловой баланс, использующие коэффициент плавления и термический коэффициент сопротивления проводника, для определения площади сечения токопроводящей жилы .

Но, в быту применяются уже готовые таблицы, в которых учтена возможность перегрева кабеля в скрытой проводке — в этом случае для одинаковых значений по току и мощности, сечение предписывается большим для кабеля в плохо вентилируемых и термоизолированных местах, чтобы нагрев не был больше допустимого.

Решение на практике

Осуществляется использованием специальных таблиц, стандартов ПУЭ, по которым происходит выбор сечения кабеля. Значение поперечного сечения проводника  выбирают несколькими способами:

  1. Расчет сечения провода по мощности;
  2. Выбор провода  по току;
  3. Если провод уже есть, но  неизвестного сечения.

Выбор по мощности

На каждом электроприборе указывается его номинальная мощность. Суммируя мощности электроприборов, которые планируется подключать к проектируемой электросети одновременно — получить некоторое число, и по таблице подобрать соответствующее сечение медного или алюминиевого кабеля, выбирая подходящее значение мощности.

Прежде всего необходимо учитывать какая предполагается нагрузка на электропроводку, которую мы собираемся прокладывать. В случае когда на одном участке электросети будет находиться несколько электроприборов, то для подсчета предполагаемой нагрузки мы складываем все их мощности. После подсчета этого показателя мы анализируем способ, каким будем прокладывать электросети (открытый или закрытый), а также воздействие какого температурного режима будет оказываться на провода.

Также рассчитать правильную величину сечения кабеля очень важно по той причине, что ошибки в подсчетах приведут к потерям мощности в проводах. Если для бытовых приборов это не столь существенно, то в промышленных масштабах это может привести к достаточно серьезным растратам.

Итак , берем листок и ручку выписываем все электроприборы находящиеся у Вас в квартире и складываем их мощности :

P=P1+P2+P3+…Pn (Вт),

где P1- это мощность, например, чайника в 1,5 кВт, P2-мощность пылесоса в 1,6 кВт и т.д.

После того как все мощности сложили необходимо суммарную мощность умножить на коэффициент одновременности K=0.8 . Этот коэффициент показывает что в определенный период времени все электроприборы в квартире будут работать , но не продолжительное время , а короткий  промежуток времени , это нужно обязательно учитывать , т.к. если вы будете выбирать сечение провода только по мощности вы выберете сечение провода больше , а это может оказаться существенно дороже .

Итак , у нас получается :

Pобщ.=P*K (Вт)

После подсчета общей мощности выбираем сечение провода (медный или алюминиевый)  в таблице 1 :

Таблица 1 — Выбор сечения провода по мощности

Важно ! Если в будущем вы собираетесь увеличивать нагрузку , то необходимо заранее увеличить сечение провода это замечание применяется для всех способов определения сечения провода.

Выбор по току

В таблице 2 можно найти соответствия сечений к номинальному току. Подбор по этому параметру считается более точным. Необходимо посмотреть в паспорта и на бирки электроприборов, обычно  указывается номинальная мощность, и далее проделать те же процедуры что и в выше описанном способе.

Далее по формуле мы определяем ток , который максимально действует в линии и на основании  этого выбираем сечение провода (формула применима для однофазной сети 220 В):

где Pобщ. — общая мощность электроприборов (Вт).

Есть возможность измерить амперметром ток для каждого потребителя в отдельности своими руками и далее просто просуммировать ток .

Для этого тестер подключают в разрыв цепи — на практике можно взять кусок сетевого провода с вилкой, подключить одну жилу к клемме розетки, другую подать на измерительный прибор. Другой щуп амперметра подсоединить к свободной клемме розетки, и в неё поочерёдно включать имеющуюся бытовую технику, в разных режимах работы, сверяясь с параметрами, заявленными производителями.

Если у Вас трехфазная сеть , необходимо ток найти по этой формуле :

После того как просуммировали  токи электроприборов, выбираем по таблице сечение проводника:

Таблица 2 Соотношение силы тока и сечения проводника

Еще один момент , если в вашей  трехфазной  сети присутствуют электрические двигатели , то ток этого двигателя определяется по формуле:

где — P это мощность двигателя , n- КПД двигателя (есть на бирке двигателя), COS f- коэффициент мощности (также смотрим на бирку) .

И последнее , в трехфазной сети суммируем рассчитанные токи двигателей и рассчитанные токи электроприборов и выбираем из таблицы 2  сечение проводника.

Нужно учитывать еще один момент — это прокладка кабеля.  Она может быть открытого типа или закрытого , соответственно и токовые нагрузки будут различаться, поэтому при выборе сечения провода обратите на это внимание. В таблице 2 вы можете проанализировать этот момент

Провод уже есть

В обратной ситуации, когда имеется кабель, но не видно маркировки, необходимо узнать его номинальный ток и мощность, для этого измеряем диаметр провода штангенциркулем, или микрометром. Можно обойтись линейкой, если жила достаточно гибкая, намотать её на тонкий прут, измерить длину получившейся спирали, разделить на количество витков — результат будет соответствовать диаметру.

По формуле вычисляем площадь поперечного сечения проводника:

S=πD²/4 (мм²) ,

 где π- 3,14 , D — диаметр проводника, можно взять штангенциркуль и померить диаметр (мм)

Методом подбора по сечению из таблицы 1 , можно узнать, для какой мощности сгодится имеющийся кабель.

Важно:

Выбирать сечение кабеля лучше с запасом.
Запрещается эксплуатация кабеля, смотанного в бухту(катушку), ввиду её индуктивного сопротивления.

Монтаж алюминиевого кабеля проводить с особой осторожностью — частое сгибание и разгибание продуцирует невидимые трещины, которые уменьшают сечение, в этом месте растёт сопротивление и происходит точечный перегрев.

Проверка по длине

Фактор длины проводника l также увеличивает сопротивление в сети . Им можно пренебречь на небольшом расстоянии, но по мере его увеличения, падение напряжения на нагрузке будет всё ощутимым, и оно может стать ниже номинального значения — 5 %.

Разберем подробнее , во избежание этого, рассчитывают площадь поперечного сечения всего кабеля, допуская некоторое его значение и используя его в формуле определения сопротивления:

R= ϱ*l/S,

где l — длина провода (м), ϱ — удельное сопротивление проводника (Ом*мм²/м) (см. в таблице 2 ), S — площадь поперечного сечения проводника, определяется из вышеописанного способа (мм²)

Таблица 3- удельное сопротивления металлов:

Далее , по закону Ома находим падение напряжения:

U=I²*R (В),

где I — это суммарная сила тока в вашей сети (А), R — рассчитанное  сопротивление (Ом).

И последнее , определяем потери в сети . Рассчитанное падение напряжения делим на напряжение в сети и умножаем на 100 %.

Если полученное значение превышает 5% от напряжения сети — сечение кабеля необходимо увеличить по в таблице 1.

Выбор сечения провода (кабеля) — по току, мощности и длине: таблица

Перед вами встал вопрос выбора провода (кабеля). Не важно для чего вы его выбираете, для квартиры, дома, гаража, дачи или для подключения электродвигателя, нагревательного прибора, компрессора, электролампы или любого другого электрического прибора, все равно нужен расчет сечения проводника, который будет использоваться для подключения.

Для чего нужен расчет? Если сказать простыми словами, то у любого электрического прибора (оборудования) или помещения есть потребляемый ток, нагрузка. Чтобы этот провод (кабель) выдерживал потребляемую нагрузку потребителем электроэнергии и нужен расчет.

Естественно расчет проводят после сбора данных о потребителе, то есть надо подсчитать нагрузку для каждого потребителя электроэнергии в отдельности и общую, если это требуется.

Но для начала нужно знать, как определяется сечение провода. Расчет ведется по формуле:

S = πD² ⁄ 4 = 0,785D²

где: S – сечение провода; π – 3,14; D – диаметр провода.

Диаметр провода можно легко измерить с помощью штангенциркуля или микрометра. Если жила провода многопроволочная, то нужно измерить одну проволоку, произвести расчет и помножить на их количество. Получится сечение проводника.

Для чего нужен расчёт сечения кабеля

Основное требование, предъявляемое к линиям электропередач – безопасность их эксплуатации. Поэтому, с особой внимательностью следует подходить к выбору сечения кабеля по току. Если оно окажется чересчур маленьким, проводка будет греться из-за большой нагрузки. Это, в свою очередь, способно привести к расплавлению изоляционной оплётки, короткому замыканию с последующим пожаром.

Использование проводов слишком большого сечения обезопасит дом от возгорания, но приведёт к неоправданному перерасходу денежных средств. Самый рациональный вариант при прокладке проводки – подобрать кабеля с оптимальным сечением жилы. Точные рекомендации по правильному подбору проводки даны в гл. №1.3 «Правил установки электрооборудования».

Выбор площади поперечного сечения проводника производится в соответствии со следующими параметрами:

  • Сила тока (А).
  • Мощность тока (кВт).
  • Материал изготовления проводки (медь или алюминий).
  • Количество фаз (1 или 3).

Выбираем сечение по мощности

Выбор сечения провода в зависимости от мощности тока начинается с проведения небольших расчётов. Для этого следует сложить общую мощность электрических устройств, которые будут одновременно включаться в квартире. На каждом приборе обычно указывается его мощность в ваттах или киловаттах. В будущем возможно приобретение новых бытовых электроприборов, поэтому к полученной суммарной мощности нужно прибавить ещё 1-2 киловатта.

Для устройства внутридомовой электропроводки рекомендуется использовать медные кабели. Они, хотя и стоят дороже алюминиевых, но обладают большей гибкостью, долговечностью и лучшей электропроводностью. Ниже представлены таблицы выбора сечения кабеля по мощности и силе тока для медной проводки.

Таблица 1. Вычисление мощности медной однофазной проводки напряжением в 220 вольт:

Мощность тока (кВт)Сила тока (амперы)Сечение провода (кв. мм)
4,1191,5
5,9272,5
8,3384
10,1466
15,47010
18,78516
25,311525
29,713535
38,517550
47,321570
57,226095
66300120

Таблица 2. Подбор сечения кабеля для медной трёхфазной проводки напряжением в 380 вольт.

Мощность тока (кВт)Сила тока (амперы)Сечение провода (кв. мм)
10,5161,5
16,5252,5
19,8304
26,4406
335010
49,57516
59,49025
75,911535
95,714550
118,818070
145,222095
171,6260120

Таблица сечения проводки в зависимости от силы и мощности тока для алюминиевых проводов выглядит иначе. В представленных выше таблицах приведены показатели соотношения сечение – ток, в зависимости от его мощности и силы. Сила тока, проходящего по проводнику, не является постоянной величиной, и может изменяться в зависимости от следующих показателей:

  • Длина провода.
  • Размера сечения.
  • Показатель удельного сопротивления материала, из которого он сделан.
  • Температура проводника. С нагревом проводки сила тока падает.

Ниже показаны соотношения «сила тока – сечение провода» для различных вариантов прокладки. Основные цифры отдельно указаны для медных и алюминиевых проводов.

Таблица 3. Подбор сечения кабеля по мощности для алюминиевой однофазной проводки напряжением в 220 вольт.

Мощность тока (кВт)Сила тока (амперы)Сечение провода (кв. мм)
4,4202,5
6,1284
7,9366
115010
13,26016
18,78525
2210035
29,713550
36,316570
4420095
50,6230120

Таблица 4. Подбор сечения кабеля для алюминиевой трёхфазной проводки напряжением 380 вольт.

Мощность тока (кВт)Сила тока (амперы)Сечение провода (кв. мм)
12,5192,5
15,1234
19,8306
25,73910
36,35516
46,27025
56,18535
72,611050
92,414070
112,217095
132,2200120

Где именно и какую проводку укладывать

  • Проводка для снабжения электроэнергией комнатного, вести распределительной коробки, необходимо в отдельности от проводов, подающих электричество на розетки, это необходимо делать, так как мощность потребления электричества через розетки будет выше и провода, будут нагреваться. Это происходит в результате подключения приборов высокой мощности.
  • Какого сечения должны быть провода для розеток на кухне, где используются встраиваемые электроприборы потребляющие при работе большой объем электроэнергии? Провода в этих помещениях проводят раздельно и применяют более крупное сечение. Такой категорией бытовой техники являются электрические варочные панели, стиральные машины установленные на кухне, духовые шкафы с электропитанием. Для подключения этого оборудования используют проводку с диаметром сердечника от 4 до 5 мм. Перед приобретением электропроводки стоит высчитать длину необходимого метража материала, во избежание в процессе укладки ненужных стыковок, это придется делать, в случае если изначально приобретенной длины провода не хватило.

Далее приступаем к автоматам отсечки и распределительным коробам. Количество распределительных щитков рассчитывается исходя из количества комнат, по одному на каждое помещение. Будет правильным проведение к каждому распределительному коробу из автомата отсечки тока, отдельных проводов.

Как рассчитать по току

В представленных выше таблицах приведены показатели соотношения сечение – ток, в зависимости от его мощности и силы. Сила тока, проходящего по проводнику, не является постоянной величиной, и может изменяться в зависимости от следующих показателей:

  • Длина провода.
  • Размера сечения.
  • Показатель удельного сопротивления материала, из которого он сделан.
  • Температура проводника. С нагревом проводки сила тока падает.

В таблицах ниже приведены соотношения «сила тока – сечение провода» для различных вариантов прокладки. Основные цифры отдельно указаны для медных и алюминиевых проводов.

Таблица 5. Соотношение силы тока и сечение алюминиевой проводки.

Сечение провода (кв. мм)Показатель силы тока для алюминиевых проводов
Открыто проложенныхПроложенных в защитной трубе
Два одножильныхТри одножильныхЧетыре одножильныхОдин двухжильный
22119181517
2,52420191916
32724222122
43228282325
53632302728
63936323031
84643403738
106050473942
167560605560
2510585807075
35130100958595
50165140130120125
70210175165140150
95255215200175190
120295245220200230
150340275255
185390
240465
300535
400645

Таблица 6. Соотношение силы тока и сечение медной проводки.

Сечение провода (кв. мм)Показатель силы тока для медных проводов
Открыто проложенныхПроложенных в защитной трубе
Два одножильныхТри одножильныхЧетыре одножильныхОдин двухжильный
0,521
0,752420191916
32724222122
43228282325
53632302728
63936323031
84643403738
106050473942
167560605560
2510585807075
35130100958595
50165140130120125
70210175165140150
95255215200175190
120295245220200230
150340275255
185390
240465
300535
400645

Сколько киловатт выдержит СИП

Просматривая простоты интернета на предмет электромонтажа, обнаружил на одном форуме тему с обсуждением «выдержит ли сип 4х16 15квт». Вопрос возникает потому что на подключение частного дома выделяют 15 кВт 380 вольт. Ну и народ интересуется не маловато ли заложить 16 квадрат на ответвление от воздушной линии? Заглянул я счанала в ПУЭ, но почему то на тему мощности СИПа ничего там не нашел.

Вот есть только табличка 1.3.29 «Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80». И по ней видно что максимальный допустимый ток для сечения 16кв. мм. провода типа АС, АСКС, АСК вне помещения составляет 111 ампер. Ну хоть что то для начала.

Сколько киловатт выдержит СИП 4х16?

Но зато есть ГОСТ 31943-2012 «Провода самонесущие изолированные и защищенные для воздушных линий электропередачи». В конце госта, в пункте 10 указания по эксплуатации, есть табличка

Сколько киловатт выдерживает СИП — таблица:

СИП 4х1662 кВт22 кВт
СИП 4х2580 кВт29 кВт
СИП 4х3599 кВт35 кВт
СИП 4х50121 кВт43 кВт
СИП 4х70149 кВт53 кВт
СИП 4х95186 кВт66 кВт
СИП 4х120211 кВт75 кВт
СИП 4х150236 кВт84 кВт
СИП 4х185270 кВт96 кВт
СИП 4х240320 кВт113 кВт

Методика расчета (update от 19.02.2018)

Берем табличку 10 и по ней находим что одна жила сипа 16 кв.мм. выдерживает — 100 ампер. Далее берем следующие формулы расчета:

для однофазной нагрузки 220В P=U*I

для трехфазной нагрузки 380В P=(I1+I2+I3)\3*cos φ*1,732*0,38

update от 19.02.2018 Что касается расчета мощности для трехфазной нагрузки, необходимо понимать что многое зависит от типа потребителей (точнее какую нагрузку они предоставляют активную или реактивную, от этого зависит какой cos φ нужно подставлять в формулу, в данном случае для расчетов он равен 0.95)

Дорогие посетители сайта и я возможно бы не заметил ваши колкие, но технически верные комментарии к статье если бы мне, как раз сегодня мне позвонил человек с вопросом : «какой сип мне нужен под 120 кВт?». По табличке ему отлично подойдет СИП сечением 50мм кв. Даже если опустить тот факт что длина линии влияет на падение напряжения (у него 150 метров), не стоит забывать что нагрузка по фазам может разниться, что видно из формулы — там берется средняя велечина по трем фазам. Тут просто надо понимать что ток по фазе может превысить предельно допустимые значения для данного сечения провода.

Поэтому если значение необходимой вам нагрузки лежит ближе 10% к табличному, следует выбирать более крупное сечения сипа по списку. Поясню на примере 120 квт. По таблице для этой трехфазной нагрузки подходит СИП сечением токопроводящих жил 50мм, однако это меньше 10%. То есть 121кВт*0.9=109 кВт. Соотвественно нужно выбирать СИП 3х70+1х54.6.

В начале темы поднимался вопрос «выдержит ли сип 4х16 15квт»? Поэтому для частного дома мы умножаем 220Вх100А=22кВт по фазе. Но не забываем что фазы то у нас три. А это уже 66 киловатт суммарно для жилого дома. Что представляет собой 4х кратный запас относительно выдаваемых техусловий.

Расчёт сечения кабеля по мощности и длине

Из-за сопротивления материала происходит некоторая потеря напряжения при прохождении тока сквозь проводник. Чем длиннее проводка, тем большая величина этих потерь. Однако, ощутимые потери могут возникнуть на линиях электропередач протяжённостью, измеряемой километрами. Для бытовой проводки они столь несущественны, что ими можно вполне пренебречь.

Рассчитываются основные показатели электротока по следующим формулам:

  • Сила тока: I = Р / (U cos ф), где: I — искомая сила тока. Р — мощность. U — напряжение. cos ф — коэффициент, применяемый для бытовой проводки. Обычно принимается за единицу.
  • Сопротивление провода: Rо=р L / S, где: Rо — удельное сопротивление проводника. р — удельное сопротивление материала, из которого он изготовлен (медь или алюминий). L — длина проводки. S — площадь сечения провода.

Какой автомат на 15 кВт 3 фазы

Быть владельцем или собственником нежилого помещения непросто. Сразу возникает большой спектр вопросов, решить которые самостоятельно порой очень затруднительно. Одной из таких глобальных задач выступает электроснабжение. От решения этой задачи будет напрямую зависеть дальнейшая эксплуатация помещения.

Перед тем, как приниматься за осуществление технологического присоединения, стоит определиться, какие приборы будут подключены к электрической сети, а также как часто и долго они будут эксплуатироваться. Все энергопринимающие устройства составят общую нагрузку сети, значение которой может как уложиться в величину разрешенной мощности, так и превысить это значение.

Для того, чтобы обеспечить безопасность вашего объекта в плане эксплуатации энергопринимающих устройств, необходимо установить соответствующий автомат. Выбрать подходящий довольно трудно, так как возникает множество сопутствующих вопросов. Например, какой автомат ставить на 15 кВт? Для 15 кВт 3 фазы сколько ампер автомат должен быть на вводе электроустановки? В первую очередь, необходимо сказать, что автомат на 15 кВт в 3 фазы принимает напряжение в 380В. Следовательно, автомат на 15 кВт требует вводного автомата на 25А. Как учесть все эти требования? Давайте разбираться.

Открытая и закрытая прокладка проводов

При расчёте нагрузки на кабель принимается во внимание и особенности прокладки электрической линии. Существует два способа её размещения — закрытый и открытый. В стенах, изготовленных из негорючих стройматериалов – бетона, кирпича, – применяют закрытую прокладку, в специально проделанных канавках-штробах.

В деревянных зданиях проводка прокладывается открытым способом, в защитных кабель-каналах или в гофрированных трубах. Для закрытого способа монтажа используют плоские провода, а для открытой-округлые.

Таблица подбора сечения кабеля

Для подбора сечения кабеля и провода по мощности и силе тока можно воспользоваться следующими таблицами:
















Сечение токопроводящей жилы, мм2Для  кабеля с медными жилами
Напряжение 220 ВНапряжение 380 В
Ток АМощность кВтТок АМощность кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066260171,6

 















Сечение токопроводящей жилы, мм2Для  кабеля с алюминиевыми жилами
Напряжение 220 ВНапряжение 380 В
Ток АМощность кВтТок АМощность кВт
2,5204,41912,5
4286,12315,1
6367,93019,8
1050113925,7
166013,25536,3
258518,77046,2
35100228556,1
5013529,711072,6
7016536,314092,4
9520044170112,2
12023050,6200132

Данные взяты из таблиц ПУЭ.

При разработке и проектировании электрической сети, необходимо правильно рассчитывать сечение кабеля по мощности и силе тока. Неправильные расчеты приведут к перегреву кабеля, что, в свою очередь, приведет к разрушению изоляции и, как следствие, к замыканию и возгоранию. Грамотный расчет позволит Вам избежать аварийной ситуации и больших затрат на ремонт электропроводки и замены электроприборов.

Электрические кабельные установки — номинальный ток

В таблице ниже указаны номинальные значения тока для стационарных кабельных установок внутри зданий. Таблица составлена ​​для кабелей с ПВХ-изоляцией и кабелей с ПВХ-изоляцией — однопроволочные, тонкопроволочные и многожильные.

9005

3

макс.70 o C

  • температура окружающей среды макс. 70 o C
    • A1 — Одножильные кабели в кабелепроводе в теплоизолированной стене
    • A2 — Многожильные кабели или многожильные кабели в оболочке в кабелепроводе в теплоизолированной стене
    • B1 — Одножильные кабели в канале или стене
    • B2 — Многожильный кабель или многожильный кабель в оболочке в канале в стене

    Часть 2: Резисторы и сопротивления

    2.1 Закон сопротивления и Ома

    Электрическое сопротивление немного похоже на трение, и электроны, протекающие по проводам, теряют энергию, преодолевая сопротивление. Все проводники имеют некоторое сопротивление, и чем больше сопротивление, тем большее количество энергии рассеивается в нем при движении электронов и, следовательно, тем больше энергии требуется для перемещения электронов по цепи. Следовательно, если источник постоянного напряжения подключен к цепи с низким общим сопротивлением, будет течь больше тока (т. Е. Кулонов заряда в секунду), чем если бы тот же источник питания был подключен к цепи с более высоким сопротивлением.

    Некоторые электрические компоненты, такие как водонагреватели, имеют большое сопротивление, так что большая часть электрической энергии преобразуется в тепло при протекании через них тока. С другой стороны, провода и кабели должны иметь низкое сопротивление, чтобы при подаче электроэнергии из одного места в другое не терялось много энергии.

    Единицей измерения сопротивления (R) является ом (Ом), а один ом — это сопротивление, которое вызывает падение на один вольт при протекании тока в один ампер.Для металлического проводника, который остается при постоянной температуре, применяется закон Ома:

    Компоненты в цепях, которые имеют фиксированное сопротивление, обычно показаны в виде простой рамки, как показано на рисунке 2.1.

    Рисунок 2.1: простая схема, содержащая батарею и резистор.

    Пример

    Электрический нагреватель используется в источнике питания 240 В и потребляет ток 12 А. Его сопротивление:

    2.2 Удельное сопротивление

    (также известное как удельное сопротивление)

    Когда электроны проходят через провод, они испытывают сопротивление и теряют энергию. Чем дальше по проводу они протекают, тем больше энергии они теряют, поэтому мы можем сказать, что общее сопротивление провода пропорционально его длине.

    Поскольку электроны равномерно распределены по проводу и поскольку ток — это скорость, с которой заряд проходит через любую точку на этом проводе, мы можем видеть, что для обеспечения любого конкретного тока электроны в более широком проводе должны будут проходить меньшее расстояние. чем электроны в более узком проводе (рисунок 2.2). Таким образом, можно сказать, что сопротивление обратно пропорционально площади поперечного сечения проводника. Следовательно, более толстые провода имеют меньшее сопротивление на метр и вызывают меньшие потери энергии в виде тепла.

    Рисунок 2.2: Влияние диаметра проволоки на ток.

    Объединив две предыдущие концепции, мы получили:

    , где l — длина провода, a — площадь поперечного сечения, а α означает пропорционально.

    Удельное сопротивление (ρ) материала определяется как сопротивление между противоположными гранями куба из этого материала с заданной длиной стороны. Значение ρ очень мало для большинства проводников и обычно выражается в микроомах (мкОм) для куба длиной 1 метр, выраженном в мкОм.Например, алюминий имеет удельное сопротивление 0,0285 мкОм. Таким образом, удельное сопротивление проволоки пропорционально удельному сопротивлению материала, из которого она сделана. Мы можем объединить удельное сопротивление с предыдущим уравнением, чтобы получить:

    Обратите внимание, что сопротивление, рассчитанное по этому уравнению, будет дано в тех же единицах сопротивления, что и для удельного сопротивления (т. Е. МкОм). Также l и a должны быть в тех же единицах длины, что и ρ, так что если ρ выражено в мкОм, l должно быть в м, а должно быть в м 2 .В таблице 2.1 приведены удельные сопротивления некоторых металлов.

    Метод установки A1 A2 B1 B2
    Установка Одножильные кабели, в изоляционных трубках, в теплоизолированных стенках Многожильные кабели в оболочке, в изоляционных кабелях теплоизолированные стены Одножильные кабели в изоляционных трубках на стенах Многожильные кабели или многожильные кабели в оболочке в изоляционных трубках на стенах

    Количество жил

    2 3 2 3 2 3 2 3
    Поперечное сечение
    (мм 2 )
    Текущие характеристики
    (амперы)
    15,5 13,5 15,5 13,0 17,5 15,5 16,5 15,0
    2,5 19,5 18,0 18,5 17,5 24 21,5 17,5 24 21,5 23 20
    4 26 24 25 23 32 28 30 27
    6 34 31 32 29 41 36 38 34
    10 46 42 43 39 57 50 52 46
    16 61 56 57 52 76 68 69 62 9007 0
    25 80 73 75 68 101 89 90 80
    35 99 89 92 83 125 110 111 99
    50 119 108 110 99 151 134 133 118
    70 151 136 139 125 192 171 168 149
    95 182 164 167 150 232 207 201 179
    120 210 188 192 172 269 239 90 070

    232 206
    150 240 216 219 196
    185 273 245 248 223
    240 320 286 291 261
    300 367 328 334 298
    Таблица 2.1: Удельное сопротивление некоторых металлов.
    Удельное сопротивление
    мкОм мкОм · см мкОм · мм
    Медь (отожженная) 0,0172 1,72 17,2
    Медь (твердоточная) 0,0178 1,78 17,8
    Алюминий 0.0285 2,85 28,5
    Олово 0,114 11,4 11,4
    Серебро 0,0163 1,63 16,3
    Латунь 0,06-0,09 6-9 100
    Утюг 0,1 10,0 100
    Свинец 0,219 21,9 219

    Пример

    Рассчитайте сопротивление 1000 м 16 мм. 2 одиночный отожженный медный провод.
    Из таблицы: ρ = 17,2 мкОм мм (поскольку площадь поперечного сечения дана в мм 2 )

    Все провода и кабели имеют некоторое сопротивление, поэтому всегда будет происходить потеря энергии и падение напряжения. Тонкие провода сильно нагреваются и могут перегореть, если по ним проходит слишком большой ток, они также могут вызывать такое большое падение напряжения, что оборудование может работать неправильно. Однако толстые провода уменьшают эти явления, поскольку они содержат больше меди, они будут значительно дороже, чем тонкие провода.

    Обычно рекомендуется, чтобы падение напряжения в кабелях составляло не более 4% от напряжения питания. Это означает падение 9,6 В для источника питания 240 В или падение 4 В для источника питания 110 В. Обратите внимание, что вы можете измерить падение напряжения на отрезке кабеля, только когда в нем протекает ток.

    Пример

    Двойной кабель 2,5 мм 2 MI питает нагреватель, который потребляет ток 20А. Если длина кабеля 100 м, рассчитайте падение напряжения в нем и частичные разряды на нагревателе, если напряжение питания составляет 240 В.Какой должна быть минимальная площадь поперечного сечения заменяемого кабеля, если падение напряжения не превышает 9,6 В.

    Кабели

    MI имеют жесткие медные жилы, поэтому ρ = 17,8 мкОм (таблица 2.1). Поскольку это сдвоенный кабель, общая длина жилы составляет 200 м.

    Сопротивление кабеля:

    Падение напряжения на кабеле:

    ПД через нагреватель:

    Обратите внимание, что это падение на 28,5 В или 11,9%. Для падения 9,6В:

    Сопротивление кабеля:

    Минимальная площадь поперечного сечения:

    Это нестандартный размер, поэтому можно использовать 10 мм 2 .Такой кабель рассчитан на ток 77 А, хотя нам требуется только 20 А. Поэтому при выборе кабелей необходимо учитывать падение напряжения и номинальный ток.

    2.3 Температура и сопротивление

    Когда источник питания 2 В подключен к лампе 60 Вт, 240 В, он потребляет ток 25 мА, его сопротивление, таким образом, составляет:

    Когда та же лампа подключена к правильному источнику питания 240 В, она раскаливается добела и потребляет ток 250 мА, а ее сопротивление составляет:

    Таким образом, мы видим, что больший ток привел к сильному нагреву лампы и ее сопротивление увеличилось в 12 раз.

    Чтобы учесть изменение сопротивления с температурой, используется температурный коэффициент сопротивления e (α). α для материала при 0 ° C — это изменение сопротивления образца этого материала с сопротивлением 1 Ом при повышении температуры от 0 ° C до 1 ° C. Вопросы усложняются еще и потому, что непросто измерить сопротивление проводника при 0 ° C, поэтому значение α часто указывается для повышения температуры от 20 ° C до 21 ° C. В таблице 2.2 приведены температурные коэффициенты некоторых металлов.

    Таблица 2.2: Температурный коэффициент некоторых металлов.
    * Углерод имеет отрицательный температурный коэффициент сопротивления, что означает, что в отличие от большинства металлов его сопротивление уменьшается с повышением температуры.
    Температурный коэффициент сопротивления
    (/ ° C при 0 ° C) (/ ° C при 20 ° C)
    Медь +0,0043 +0,00396
    Алюминий +0.0040 +0,00370
    Латунь +0,0010 +0,00098
    Утюг +0,0066 +0,00583
    Никель-Хром +0,00017 +0,000169
    Углерод * -0,0005 -0,00047
    Серебро +0,0041 +0,00379

    Из приведенной выше таблицы видно, что при повышении температуры с 20 ° C до 21 ° C сопротивление медного резистора 1 Ом увеличится до 1.00396 Ом. Таким образом:

    где:
    R t = общее сопротивление проводника при T (Ом)
    R 0 = сопротивление проводника при 0 ° C (Ω)
    α = температурный коэффициент сопротивления
    T = температура (° C)

    А:

    где:
    R 20 = сопротивление проводника при 20 ° C (Ом)

    Если сопротивление проводника неизвестно при температуре, для которой известно α, можно использовать следующий метод:

    R 1 = сопротивление проводника при температуре T 1
    R 2 = сопротивление проводника при температуре T 2

    Разделение:

    Отсюда:

    Таким образом, значение R 0 было исключено из уравнения.

    Пример

    Обмотка двигателя постоянного тока изготовлена ​​из отожженной меди и имеет сопротивление 500 Ом при 15 ° C. Какой ток будет протекать при рабочей температуре 35 ° C, если поле PD 300V? (α = 0,0043 / ° C для отожженной меди при 0 ° C)

    Изменение сопротивления в зависимости от температуры может иметь серьезные последствия. Рассмотрим лампочку мощностью 60 Вт, подключенную к источнику питания 240 В, ее сопротивление в холодном состоянии составляет 80 Ом, а ток, потребляемый при включении, будет:

    По мере нагрева лампы сопротивление быстро увеличивается, и ток снижается до 250 мА.Кратковременный «переходный процесс», который протекает при включении лампы, часто приводит к ее перегоранию при первом включении. Также, если цепочка лампочек приводится в действие от одного переключателя, тока может хватить, чтобы пережечь чувствительный предохранитель.

    Резисторы серии 2,4 и параллели

    Электрические компоненты можно соединять между собой двумя основными способами: параллельно и последовательно.

    Когда резисторы подключаются в серию (рисунок 2.3), часть напряжения питания падает на каждый резистор, и каждый резистор рассеивает часть общей энергии от каждого кулоновского заряда.Общее сопротивление (R T ) цепи (без учета сопротивления проводов) представляет собой сумму сопротивлений, и одинаковый ток течет через каждый резистор.

    Рисунок 2.3: Три последовательно подключенных резистора.

    Падение напряжения на каждом резисторе определяется по формуле:

    Общее сопротивление:

    Напряжение питания:

    Ток, протекающий через каждый резистор, определяется по формуле:

    Когда резисторы подключаются по параллельно , напряжение на каждом резисторе одинаковое, поскольку любые два компонента, подключенные к одной и той же точке в цепи, должны иметь одинаковое напряжение (рисунок 2.4). Ток, протекающий через каждый резистор, составляет часть общего тока (I T ). Обратное к общему сопротивлению является суммой обратных сопротивлений.

    Рисунок 2.4: Три резистора, включенных параллельно.

    Ток через каждый резистор:

    Суммарный ток:

    Следовательно:

    Если разделить на U, получим:

    На рис. 2.5 показано, как можно упростить схемы, содержащие как параллельные, так и последовательные резисторы.

    Рисунок 2.5: два блока резисторов можно упростить, суммируя резисторы.

    После расчета общего сопротивления (рисунок 2.5) мы можем рассчитать общий ток:

    Мы можем рассчитать падение напряжения на каждой группе резисторов:

    Теперь мы можем рассчитать ток в каждом резисторе:

    Во втором блоке резисторов ток будет разделен поровну, так как каждый резистор имеет сопротивление 12 Ом, следовательно:

    Базовая электротехника

    Как выбрать размер нейтрального проводника в электрической установке ~ Learning Electrical Engineering

    Пользовательский поиск

    В сбалансированных трехфазных системах ток в нейтральном проводе теоретически равен нулю.Однако в практической электрической установке это не так. Фактически всегда есть некоторый ток в нейтрали, хотя и небольшой, если нагрузки в трех фазах достаточно сбалансированы. Однако увеличивающийся ток будет течь через нейтраль в установке с высокими гармониками, что потребует надлежащего определения минимальной площади поперечного сечения нейтрали, которая будет безопасной для установки.

    Учитывая последствия недостаточного размера нейтрального проводника, нейтральный проводник должен иметь такое же поперечное сечение, что и линейный провод:

    1.в однофазных, двухпроводных цепях любого сечения;

    2. в многофазных и однофазных трехпроводных цепях, когда размер линейных проводов меньше или равен 16 мм2 для меди или 25 мм2 для алюминия.

    Поперечное сечение нейтрального проводника может быть меньше, чем поперечное сечение фазного проводника, если поперечное сечение фазного проводника больше 16 мм2 для медного кабеля или 25 мм2 для алюминиевого кабеля, если выполняются оба следующих условия:

    1.Поперечное сечение нейтрального проводника составляет не менее 16 мм2 для медных проводов и 25 мм2 для алюминиевых проводов;

    2. Отсутствуют высокие гармонические искажения тока нагрузки. Если есть высокие гармонические искажения (содержание гармоник, THD, больше 10%), как, например, в оборудовании с газоразрядными лампами, поперечное сечение нейтрального проводника не может быть меньше поперечного сечения фазных проводов.

    В таблице ниже показано минимальное сечение нейтрального проводника в данной электроустановке при различных типах цепей:

    Тип цепи

    Поперечное сечение фазного проводника, S, (мм2)

    Минимальное сечение нейтрального проводника, SN (мм2)

    Однофазные / двухфазные цепи — медь / алюминий

    Любая

    S

    Трехфазные цепи — медь

    S ≤ 16

    S

    S> 16

    16

    Трехфазные цепи — алюминий

    S ≤ 25

    S

    S> 25

    25

    Fill Er Up | EC&M

    Предоставлено www.MikeHolt.com.

    Эта статья является пятой в серии из 12 статей о различиях между заземлением и заземлением.

    Давайте начнем обсуждение, сосредоточив внимание на требованиях к объединению услуг.

    Металлические части кабельных каналов и / или кожухов, содержащие рабочие провода, должны быть соединены вместе [разд. 250.92 (А)]. Используйте соединительные перемычки вокруг переходных шайб и кольцевых заглушек для сервисных дорожек качения ( Рис. 1 ). Вы можете использовать стандартные контргайки для механических соединений с дорожками качения, но вы не можете использовать их в качестве средств соединения [разд.250.92 (B)].

    Рис. 1. Следуйте этим требованиям, чтобы правильно закрепить оборудование на месте обслуживания.

    Обеспечьте сервисное соединение одним из следующих способов [разд. 250.92 (B)]:

    (1) Прикрепите металлические части к рабочему нейтральному проводу. Для соединения корпуса рабочего выключателя с нулевым проводом обслуживания требуется основная перемычка [разд. 250.24 (B) и п. 250,28]. В корпусе сервисного разъединителя рабочий нейтральный проводник обеспечивает эффективный путь тока замыкания на землю к источнику питания [гл.250,24 (C)]; следовательно, вам не нужно устанавливать перемычку на стороне питания в ПВХ-кабелепровод, содержащий входные провода для обслуживания [разд. 250.142 (A) (1) и п. 352.60, исключение № 2].

    (2) Присоедините металлические дорожки качения к резьбовым муфтам или ступицам с указанной резьбой.

    (3) Соедините металлические дорожки качения с фитингами без резьбы.

    (4) Используйте перечисленные устройства, такие как контргайки соединительного типа, втулки, клинья или втулки с соединительными перемычками к рабочему нейтральному проводнику. Перечисленный соединительный клин или проходной изолятор с соединительной перемычкой к рабочему нейтральному проводнику требуется, когда металлическая дорожка качения, содержащая служебные проводники, заканчивается кольцевым выбиванием.

    Перемычка на стороне питания того типа провода, который используется для этой цели, должна иметь размер в соответствии с таблицей 250.102 (C) (1), основанный на размере / площади проводников рабочей фазы внутри кабельного канала [разд. 250.102 (C)]. Контргайка соединительного типа, соединительный клин или соединительная втулка с соединительной перемычкой могут использоваться для металлической дорожки качения, которая заканчивается в корпусе без кольцевого выбивания.

    Крепежная контргайка отличается от стандартной контргайки тем, что она содержит крепежный винт с острым концом, который входит в металлический корпус, обеспечивая надежное соединение.Присоединение одного конца служебного кабельного канала к служебной нейтрали обеспечивает необходимый путь тока короткого замыкания с низким сопротивлением к источнику.

    Соединительные системы связи

    Для систем связи должно быть предусмотрено оконечное устройство соединения [Арт. 805], радио и телеаппаратура [ст. 810], CATV [ст. 820] и подобные системы [разд. 250.94]. Вы соединяете эти разные системы вместе, чтобы минимизировать разницу напряжений между ними.

    Оконечное устройство для межсистемного соединения должно отвечать всем следующим требованиям [разд.250.94 (A)]:

    (1) Будьте доступными.

    (2) Иметь емкость, по крайней мере, для трех проводов межсистемного заземления.

    (3) Устанавливается так, чтобы не мешать открытию какого-либо корпуса.

    (4) Надежно закрепите и электрически подключите к сервисному разъединителю, корпусу счетчика или проводнику заземляющего электрода (GEC).

    (5) Надежно смонтировать и электрически подсоединить к разъединителю здания или GEC.

    (6) Указывается как заземляющее и соединительное оборудование.

    Исключение: оконечное устройство межсистемного соединения не требуется, если системы связи вряд ли будут использоваться.

    «Межсистемный контактный зажим» — это устройство, которое обеспечивает средства для подключения соединительных проводов систем связи (витой провод, антенны и коаксиальный кабель) к системе заземляющих электродов здания [ст. 100] ( рис. 2 ).

    Рис. 2. Оконечное устройство для межсистемного соединения должно соответствовать всем требованиям гл.250,94 (А).

    Склеивание металлических частей

    Металлические части, предназначенные для использования в качестве заземляющих проводов оборудования (EGC), должны быть соединены вместе, чтобы гарантировать, что они могут безопасно проводить ток короткого замыкания, который может быть на них наложен [разд. 110.10, п. 250.4 (A) (5), п. 250.96 (A) и Таблица 250.122 Примечание].

    Непроводящие покрытия (например, краска) необходимо удалить, чтобы обеспечить эффективный путь тока замыкания на землю, или концевые фитинги должны быть спроектированы так, чтобы их удаление не требовалось [разд.250,12].

    Соединение цепей 277 В и 480 В

    Металлические кабельные каналы или кабели, содержащие цепи 277 В или 480 В, заканчивающиеся кольцевыми заглушками, должны быть прикреплены к металлическому корпусу с помощью перемычки, размер которой соответствует сек. 250.122 [Разд. 250.102 (D)].

    Там, где не встречаются выбивки увеличенного размера, концентрические или эксцентричные, или если коробка или корпус с концентрическими или эксцентричными отверстиями указаны в списке для обеспечения надежного соединения, соединительная перемычка не требуется.Но вы должны использовать один из методов, перечисленных в Исключении из Разд. 250,97. Например, используйте две контргайки на жестком металлическом трубопроводе или промежуточном металлическом трубопроводе — один внутри, а другой снаружи ящиков и шкафов.

    Перемычки для подключения оборудования должны закрываться любым из восьми способов, перечисленных в разд. 250,8 [Разд. 250.102 (B)]. К ним относятся перечисленные соединители давления, клеммные колодки и экзотермическая сварка.

    Размер перемычки на стороне питания

    Размер перемычки на стороне питания должен соответствовать Таблице 250.102 (C) (1), в зависимости от размера / площади фазового проводника внутри кабелепровода или кабеля [разд. 250.102 (C) (1)].

    Если проводники питания фазы соединены параллельно в двух или более кабельных каналах или кабелях, установите размер перемычки заземления на стороне питания для каждого из них в соответствии с Таблицей 250.102 (C) (1), исходя из размера / площади фазных проводов в каждой кабельной канавке или кабель [Сек. 250.102 (C) (2)].

    Размер одной перемычки на стороне питания, устанавливаемой для соединения двух или более дорожек качения или кабелей, должен соответствовать Таблице 250.102 (C) (1), примечание 3, на основе эквивалентной площади фазных проводов на стороне питания [разд. 250.102 (C) (2)].

    Давайте рассмотрим пример, который поможет прояснить эти требования.

    Вопрос : Какой размер перемычки на стороне питания требуется для трех металлических кабельных каналов, каждая из которых содержит служебные проводники 400 тыс. Км2?

    Ответ : Согласно п. 250.102 (C) (2) и Таблица 250.102 (C) (1), вам понадобится соединительная перемычка 1/0 AWG на стороне питания для каждой дорожки качения.Для нескольких кабельных каналов допускается использование одной перемычки на стороне питания в зависимости от эквивалентной площади фазных проводов на стороне питания.

    Размер соединительной перемычки на стороне нагрузки

    Размер соединительной перемычки на стороне нагрузки устройств максимального тока фидера и ответвительной цепи в сек. 250.122 [Разд. 250.102 (D)].

    Давайте рассмотрим еще один пример, который поможет прояснить эти требования.

    Вопрос : Перемычка заземления оборудования какого размера требуется для каждого металлического кабельного канала, где проводники цепи защищены устройством защиты от перегрузки по току (OCPD) на 1200 А?

    Ответ : Если вы используете одну перемычку для скрепления двух или более металлических дорожек качения, задавайте размер за секунду.250.122, исходя из рейтинга самой большой цепи OCPD. В этом случае быстрая проверка таблицы 250.122 показывает нам, что требуется соединительная перемычка оборудования 3/0 AWG ( Рис. 3 ).

    Рис. 3. Подбирайте перемычку для подключения оборудования в соответствии с номиналом самого мощного устройства максимального тока цепи.

    Соединение систем трубопроводов и обнаженного конструкционного металла

    Металлический водопроводный трубопровод с непрерывным электрическим током должен быть соединен с одним из следующих [разд. 250.104 (A) (1)]:

    (1) Корпус сервисного разъединителя

    (2) Рабочий нулевой провод

    (3) GEC, если достаточное сечение

    (4) Один из заземляющих электродов заземления электродная система, если GEC или соединительная перемычка к электроду имеют достаточный размер

    Соединительная перемычка системы металлических трубопроводов должна быть медной, если она находится в пределах 18 дюймов от поверхности земли [Раздел 250.64 (A)] и надлежащим образом защищены в случае физического повреждения [разд. 250,64 (В)].

    Дорожка качения из черного металла, содержащая GEC, должна быть электрически непрерывной путем соединения каждого конца дорожки качения с GEC [разд.250.64 (E)]. Точки крепления должны быть доступны.

    Размер соединительных перемычек для металлических систем водопровода указан в Таблице 250.102 (C) (1), в зависимости от размера / площади проводов рабочей фазы. Они не должны быть больше меди 3/0, алюминия или алюминия, плакированного медью, или алюминия с медью толщиной 250 тыс. См, за исключением случаев, предусмотренных в разд. 250.104 (А) (2) и (А) (3).

    Склеивание не требуется для изолированных участков металлического водяного трубопровода, подключенного к неметаллической системе водяного трубопровода. Фактически, эти изолированные участки металлических трубопроводов не следует соединять, поскольку они могут стать причиной поражения электрическим током при определенных условиях.

    Когда электрически непрерывная металлическая водопроводная система в отдельном помещении металлически изолирована от других людей в здании, металлическая водопроводная система для этого человека может быть подключена к клемме заземления оборудования распределительного устройства, распределительного щита или щита. Выберите размер перемычки в зависимости от номинального значения OCPD цепи в секунду. 250.102 (D) [Разд. 250.104 (А) (2)].

    Металлическая водопроводная система здания, снабженная фидером, должна быть подключена к одному из следующих компонентов:

    (1) Клемма заземления оборудования в корпусе отключения здания.

    (2) Заземляющий провод фидерного оборудования.

    (3) Один из заземляющих электродов в системе заземляющих электродов, если заземляющий электрод или соединительная перемычка к электроду имеют достаточный размер.

    Размер перемычки соединения в сек. 250.102 (D), но он не обязательно должен быть больше, чем самый большой провод фазы фидера или ответвительной цепи, питающей здание.

    Другие системы металлических трубопроводов в здании или прикрепленные к нему должны быть соединены [разд.250.104 (B)]. Трубопровод считается соединенным, если он подключен к прибору, который подключен к заземляющему проводу оборудования цепи.

    Информационное примечание 1. Склеивание всех металлических трубопроводов и металлических воздуховодов обеспечит дополнительную безопасность.

    Информационное примечание 2: Дополнительную информацию можно найти в NFPA 54, Национальный код топливного газа и NFPA 780, стандарт для установки систем молниезащиты .

    Открытый конструкционный металл, который соединен между собой в металлический каркас здания, должен быть прикреплен к одному из следующих элементов [разд.250.104 (C)]:

    (1) Корпус отключения для обслуживания.

    (2) Нейтраль в сервисном разъединителе.

    (3) Корпус разъединителя здания для питаемых от фидера.

    (4) GEC достаточного размера.

    (5) Один из заземляющих электродов системы заземляющих электродов, если GEC или соединительная перемычка к электроду имеют достаточный размер.

    Комментарий автора : Это требование не распространяется на металлические элементы каркаса (например, металлические стойки) или металлическую обшивку здания.

    Металлические водопроводные системы и конструкционные металлические конструкции, соединенные между собой, чтобы сформировать каркас здания, должны быть присоединены к вторичной обмотке трансформатора за сек. 250.104 (D) (1) — (D) (3). Например, открытый конструкционный металл, используемый таким образом в области, обслуживаемой трансформатором, должен быть соединен с нейтральным проводником вторичной обмотки, где GEC подключается к трансформатору [разд. 250.104 (D) (2)].

    Исключение № 1: Соединение с трансформатором не требуется, если металлический каркас служит заземляющим электродом [разд.250,52 (A) (2)] для трансформатора.

    Не виноват

    Учитывая все детали, при соединении для тока короткого замыкания вероятно упущение или недосмотр. Это могло привести к трагическим последствиям.

    Попробуйте этот метод проверки. На монтажном чертеже отметьте все точки, в которых перемычка должна обеспечивать обратный путь к источнику повреждения. Затем пройдите по установке с этим рисунком и отметьте то, что отсутствует.