Таблица тока по сечению: Калькулятор расчета сечения кабеля

Содержание

Максимально допустимая сила тока в медном кабеле, таблица мощности и сечений

Медные проводники получили преимущественное распространение в электрических сетях, электро,- и радиотехнике. Это обусловлено наилучшим соотношением характеристик данного металла:

  • Низкое удельное сопротивление;
  • Низкая стоимость;
  • Высокая механическая прочность;
  • Пластичность и гибкость;
  • Высокая коррозионная стойкость.

Медный кабель

В некоторых случаях в качестве металла для проводников и кабелей используется алюминий, но, по большей части, это вызвано лишь стремлением снизить стоимость и массу, поскольку алюминий имеет меньший удельный вес и стоимость, но несравнимо худшие механические и химические свойства. Алюминиевые провода плохо поддаются пайке, поэтому при производстве продукции радио,- и электротехнического назначения, силовых кабелей преимущество имеет медь. Еще одно преимущество меди состоит в том, что она имеет большие допустимые токовые нагрузки из-за низкого удельного сопротивления и большей температуры плавления.

Определение допустимого тока

Имеется несколько критериев выбора максимального тока через проводники:

  • Тепловой нагрев;
  • Падение напряжения.

Данные параметры являются взаимосвязанными, и увеличение сечения проводников с целью уменьшения падения напряжения снижает и нагрев. В любой ситуации длительно допустимый ток подразумевает отсутствие критического нагрева, который может привести к деградации изоляции, изменению параметров как самого провода, так и близко расположенных элементов.

Тепловой нагрев

Величина тока связана с нагревом в соответствии с законом Джоуля-Ленца, названного так по именам первооткрывателей зависимости:

Q=I2·R·t, где:

  • Q – количество теплоты, которое выделяется на проводнике;
  • R – сопротивление проводника;
  • I – ток, протекающий через проводник;
  • t – промежуток времени, в течение которого производится подсчет тепловыделения.

Из формулы следует, что чем больше сопротивление проводника, тем большее количество теплоты выделится на нем. На этом принципе построены нагревательные приборы с высокоомным нагревательным элементом. Нагреватель выполнен из провода, который, кроме высокого удельного сопротивления, имеет высокую температурную устойчивость (как правило, нихром). Температура меди намного ниже, поэтому существуют определенные условия, при которых нагрев медного проводника не будет выходить за допустимые пределы.

Падение напряжения

Для того чтобы представить влияние тока на падение напряжения, необходимо вспомнить закон Ома:

I=U/(R+r).

Согласно закону Ома, при протекании тока через проводник с сопротивлением R на нем образуется падение напряжения:

U=I·(R+r).

Таким образом, при постоянном сопротивлении нагрузки R, чем больше ток в питающей сети, тем больше будет падение напряжения на сопротивлении r, питающих проводов (U=I·r).

Именно напряжение потерь вызывает ненужный нагрев проводов, но главная проблема в том, что напряжение нагрузки становится меньше на эту величину. Пояснить это можно на простом примере. Пускай в домашней электропроводке имеется участок длиной 100 м, выполненный медным проводом сечением 2.5 мм2. Сопротивление такого участка составит около 0.7 Ом. При токе нагрузки 10А, а это потребляемая мощность чуть больше 2 кВт, падение напряжения на проводе составит 7 В. При однофазном питании используется два провода, поэтому суммарное падение составит 14 В. Это довольно значительная величина, поскольку напряжение на потребителях будет составлять уже не 220, а 206В.

К определению падения напряжения в кабеле

На самом деле этот пример не совсем точен, поскольку уменьшение напряжения на активной нагрузке приведет к снижению мощности, следовательно, к снижению потребляемого тока. Но целью данной статьи не является замена учебника электротехники, поэтому данное объяснение вполне правдоподобно. Таблица, приведенная ниже, показывает соотношение падения напряжения при различных значениях тока на 1 м провода для наиболее распространенных сечений.

Зависимость падения напряжения от сечения и величины протекающего тока

Сечение, мм2

Ток, А

0,7511,522,546
10,0230,0180,0120,0090,0070,0040,003
20,0470,0350,0230,0180,0140,0090,006
50,1170,0880,0590,0450,0350,0220,015
100,2330,1750,1170,0900,0700,0440,029
150,3500,2630,1750,1350,1050,0660,044
200,4660,3500,2330,1800,1400,0880,058

При расчетах однофазной электропроводки по допустимому падению напряжения при предполагаемом токе нагрузки данные таблицы следует удваивать (используется два проводника: ноль и фаза). Не всегда в таблице будет присутствовать нужное сечение проводника, поэтому следует выбирать ближайшее большее значение. Это хорошо еще и тем, что учитывается возможное повышение мощности потребителей. Сильно большое сечение, взятое с запасом, приведет к неоправданному удорожанию материалов.

Допустимая плотность тока

Для упрощения расчетов и подбора требуемого провода принята такая величина, как плотность тока для меди и иных материалов. Плотность тока выражается в амперах на один квадратный миллиметр сечения.

Важно! Допустимая плотность тока определяется для площади сечения, а не диаметра провода. При маркировке монтажного провода обычно используется сечение, а обмоточного – диаметр. Для перевода диаметра провода в сечение нужно воспользоваться формулой S=π·d2/4 или определить его по таблице, взяв равное или ближайшее меньшее значение имеющегося диаметра.

Сечение популярного обмоточного провода ПЭВ-2

Сечение провода ПЭВ-2

Выбирая сечение провода, нужно знать, что допустимый ток для медных проводов во многом зависит от условий охлаждения. Наличие свободного доступа воздуха улучшает охлаждение нагретых проводов, поэтому в самых неблагоприятных условиях находятся внутренние обмотки трансформаторов напряжения, электропроводка, смонтированная в штробах стен. Большое влияние на теплоотдачу имеет материал и толщина внешней изоляции силовых кабелей.

Расчетным путем установлены и подтверждены на практике допустимые значения плотности тока для медного провода, применяемого в обмотках электрических машин и электрической проводки, которые сведены в таблицу ниже.

Допустимые значения плотности тока на 1 мм² в медном проводе

Трансформаторы и электрические машиныЭлектропроводка
Внутренние обмоткиНаружные обмоткиСкрытаяНаружная
2-3 А3-5 А4 А5 А

Обратите внимание! Таблица дает только ориентировочные данные для предварительных расчетов. Более точные показатели допустимых значений для кабелей разных типов и условий эксплуатации приведены в нормативной документации, в частности в ПУЭ.

Нормативные значения сечения кабеля

Пути повышения допустимого тока

Для снижения стоимости конструкций, в которых используются медные провода и кабели или шнуры, уменьшения массы, существует несколько путей повышения допустимых значений тока:

  • Улучшение охлаждения за счет обдува или конвективных потоков;
  • Отвод тепла при помощи теплоотводов или радиаторов;
  • Ограничение максимальных токовых нагрузок по времени.

Грамотно выполненная конфигурация обмоток и расположение трансформатора способны эффективно отводить тепло, которое выделяется при прохождении тока. Для мощных силовых трансформаторов, а это сварочные аппараты, трансформаторы подстанций, выполняется специальная обмотка с воздушными промежутками. Попадая в промежуток между отдельными частями обмоток, воздух отбирает часть тепла и выносит его наружу.

Те же цели преследует обдув нагревающихся частей машин при помощи вентиляторов. К такому решению часто обращаются производители микроволновых печей, устанавливая кулер на мощный высоковольтный трансформатор.

Обмотка с зазорами

Мощные трансформаторы силовых подстанций охлаждают обмотки при помощи трансформаторного масла, в которое погружен весь трансформатор. Обмотки выполняются с промежутками, в которых циркулирует масло.

Масло охлаждается при помощи трубчатого радиатора, который находится на боковых сторонах корпуса трансформатора. Вся конструкция выполнена полностью герметичной, поэтому для компенсации температурного расширения масла имеется расширительный бак.

Масляный трансформатор

Кратковременные токовые нагрузки не успевают в достаточной мере прогреть всю обмотку, поэтому для кратковременно работающего оборудования можно принимать плотность тока по сечению провода вплоть до 7-10А на мм2.

Оборудование, которое эксплуатируется на максимально допустимых плотностях тока, должно чередовать работу под нагрузкой с перерывом на охлаждение.

Важно! Теплопроводность меди и теплоемкость железного сердечника машин переменного тока высоки. Проходящие токи нагрузки прогревают весь объем обмоток одновременно, а охлаждение происходит только с поверхности, поэтому периоды отдыха должны превышать время работы под нагрузкой в несколько раз для достаточного охлаждения не только наружных, но и внутренних частей оборудования.

Последствия превышения тока

Чрезмерно высокий ток в медных проводах способен разогреть материал вплоть до температуры плавления. Разумеется, что подобная ситуация приведет к аварии или неработоспособности оборудования, но в некоторых случаях это является полезным.

Речь идет о плавких предохранителях. Основу их устройства составляет тонкая металлическая проволока, заключенная в огнеупорный изоляционный корпус. Толщина проволоки подобрана таким образом, чтобы ток определенной величины вызывал нагрев и перегорание проводника предохранителя. Наиболее часто используются плавкие вставки из цинка или меди.

Трубчатый предохранитель

Самое главное требование к плавкой вставке – строгое соответствие состава металла и его равномерный диаметр проводника по всей длине. Состав важен для стабильности температуры плавления. Наличие неравномерности по длине провода может вызвать локальный перегрев в месте сужения и перегорание предохранителя при токе, меньше номинального. Исходя из этих условий, провод для предохранителей выпускается с повышенным контролем и называется калиброванным.

Выполнение изложенных требований по допустимому току в проводниках позволяет продлить срок нормальной эксплуатации конструкций и электрооборудования, свести к минимуму риск возникновения поломок и аварий.

Видео

Оцените статью:

Площадь сечения проводов и кабелей в зависимости от силы тока, расчет необходимого сечения кабеля

Грамотный подбор кабеля для восстановления или прокладки электропроводки гарантирует безупречную работу системы. Приборы будут получать питание в полноценном объеме.

Не случится перегрева изоляции с последующими разрушительными последствиями. Разумный расчет сечения провода по мощности избавит и от угроз воспламенения, и от лишних затрат на покупку недешевого провода.

Давайте разберемся в алгоритме расчетов.

Упрощенно кабель можно сравнить с трубопроводом, транспортирующим газ или воду. Точно так же по его жиле перемещается поток, параметры которого ограничены размером данного токоведущего канала. Следствием неверного подбора его сечения являются два распространенных ошибочных варианта:

  • Слишком узкий токоведущий канал, из-за которого в разы возрастает плотность тока. Рост плотности тока влечет за собой перегрев изоляции, затем ее оплавление. В результате оплавления по минимуму появятся «слабые» места для регулярных утечек, по максимуму пожар.
  • Излишне широкая жила, что, в сущности, совсем неплохо. Причем, наличие простора для транспортировки электро-потока весьма положительно отражается на функционале и эксплуатационных сроках проводки. Однако карман владельца облегчится на сумму, примерно вдвое превышающую по факту требующиеся деньги.

Первый из ошибочных вариантов представляет собой откровенную опасность, в лучшем случае повлечет увеличение оплаты за электроэнергию. Второй вариант не опасен, но крайне нежелателен.

«Протоптанные» пути вычислений

Все существующие расчетные способы опираются на выведенный Омом закон, согласно которому сила тока, помноженная на напряжение, равняется мощности. Бытовое напряжение – величина постоянная, равная в однофазной сети стандартным 220 В.

Значит, в легендарной формуле остаются лишь две переменные: это ток с мощностью. «Плясать» в расчетах можно и нужно от одной из них. Через расчетные значения тока и предполагаемой нагрузки в таблицах ПУЭ найдем требующийся размер сечения.

Обратите внимание, что сечение кабеля рассчитывают для силовых линий, т.е. для проводов к розеткам. Линии освещения априори прокладывают кабелем с традиционной величиной площади сечения 1,5 мм².

Если в обустраиваемом помещении нет мощного диско-прожектора или люстры, требующей питания в 3,3кВт и больше, то увеличивать площадь сечения жилы осветительного кабеля не имеет смысла. А вот розеточный вопрос – дело сугубо индивидуальное, т.к. подключать к одной линии могут такие неравнозначные тандемы, как фен с водонагревателем или электрочайник с микроволновкой.

Тем, кто планирует нагрузить силовую линию электрической варочной поверхностью, бойлером, стиральной машиной и подобной «прожорливой» техникой, желательно распределить всю нагрузку на несколько розеточных групп.

Если технической возможности разбить нагрузку на группы нет, бывалые электрики рекомендуют без затей прокладывать кабель с медной жилой сечением 4-6 мм².

Почему с медной токоведущей сердцевиной? Потому что строгим кодексом ПУЭ прокладка кабеля с алюминиевой «начинкой» в жилье и в активно используемых бытовых помещениях запрещена.

Сопротивление у электротехнической меди гораздо меньше, тока она пропускает больше и не греется при этом, как алюминий. Алюминиевые провода используются при устройстве наружных воздушных сетей, кое-где они еще остались в старых домах.

Обратите внимание! Площадь сечения и диаметр жилы кабеля – вещи разные. Первая обозначается в квадратных мм, второй просто в мм. Главное не перепутать!

Для поиска табличных значений мощности и допустимой силы тока можно пользоваться обоими показателями. Если в таблице указан размер площади сечения в мм², а нам известен только диаметр в мм, площадь нужно найти по следующей формуле:

Расчет размера сечения по нагрузке

Простейший способ подбора кабеля с нужным размером — расчет сечения провода по суммарной мощности всех подключаемых к линии агрегатов.

Алгоритм расчетных действий следующий:

  • для начала определимся с агрегатами, которые предположительно могут использоваться нами одновременно. Например, в период работы бойлера нам вдруг захочется включить кофемолку, фен и стиралку;
  • затем согласно данным техпаспортов или согласно приблизительным сведениям из приведенной ниже таблицы банально суммируем мощность одновременно работающих по нашим планам бытовых агрегатов;
  • предположим, что в сумме у нас вышло 9,2 кВт, но конкретно этого значения в таблицах ПУЭ нет. Значит, придется округлить в безопасную большую сторону – т.е. взять ближайшее значение с некоторым превышением мощности. Это будет 10,1 кВт и соответствующее ему значение сечения 6 мм².

Все округления «направляем» в сторону увеличения. В принципе суммировать можно и силу тока, указанную в техпаспортах. Расчеты и округления по току производятся аналогичным образом.

Как рассчитать сечение по току?

Табличные значения не могут учесть индивидуальных особенностей устройства и эксплуатации сети. Специфика у таблиц среднестатистическая.

Не приведены в них параметры максимально допустимых для конкретного кабеля токов, а ведь они отличаются у продукции с разными марками. Весьма поверхностно затронут в таблицах тип прокладки.

Дотошным мастерам, отвергающим легкий путь поиска по таблицам, лучше воспользоваться способом расчетаразмера сечения провода по току. Точнее по его плотности.

Начнем с освоения азов: запомним на практике выведенный интервал 6 — 10. Это значения, полученные электриками многолетним «опытным путем». В указанных пределах варьирует сила тока, протекающего по 1 мм² медной жилы. Т.е.

кабель с медной сердцевиной сечением 1 мм² без перегрева и оплавления изоляции предоставляет возможность току от 6 до 10 А спокойно достигать ожидающего его агрегата-потребителя.

Разберемся, откуда взялась и что означает обозначенная интервальная вилка.

Согласно кодексу электрических законов ПУЭ 40% отводится кабелю на неопасный для его оболочки перегрев, значит:

  • 6 А, распределенные на 1 мм² токоведущей сердцевины, являются нормальной рабочей плотностью тока. В данных условиях проводник работать может бесконечно долго без каких-либо ограничений по времени;
  • 10 А, распределенные на 1 мм² медной жилы, протекать по проводнику могут краткосрочно. Например, при включении прибора.

Потоку энергии 12 А в медном миллиметровом канале будет изначально «тесно». От тесноты и толкучки электронов увеличится плотность тока. Следом повысится температура медной составляющей, что неизменно отразиться на состоянии изоляционной оболочки.

Обратите внимание, что для кабеля с алюминиевой токоведущей жилой плотность тока отображает интервал 4 – 6 Ампер, приходящийся на 1 мм² проводника.

Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:

  • кабель с жилой сечением 2,5 мм² сможет транспортировать ток в 25 А всего лишь несколько десятых секунды во время включения техники;
  • он же бесконечно долго сможет передавать ток в 15А.

Приведенные выше значения плотности тока действительны для открытой проводки.

Если кабель прокладывается в стене, в металлической гильзе или в пластиковом кабель канале, указанную величину плотности тока нужно помножить на поправочный коэффициент 0,8.

Запомните и еще одну тонкость в организации открытого типа проводки. Из соображений механической прочности кабель с сечением меньше 4 мм² в открытых схемах не используют.

Изучение схемы расчета

Суперсложных вычислений снова не будет, расчет провода по предстоящей нагрузке предельно прост.

  • Сначала найдем предельно допустимую нагрузку. Для этого суммируем мощность приборов, которые предполагаем одновременно подключать к линии. Сложим, например, мощность стиральной машины 2000 Вт, фена 1000 Вт и произвольно какого-либо обогревателя 1500 Вт. Получили мы 4500 Вт или 4,5 кВт.
  • Затем делим наш результат на стандартную величину напряжения бытовой сети 220 В. Мы получили 20,45…А, округляем до целого числа, как положено, в большую сторону.
  • Далее вводим поправочный коэффициент, если в нем есть необходимость. Значение с коэффициентом будет равно 16,8, округленно 17 А, без коэффициента 21 А.
  • Вспоминаем о том, что рассчитывали рабочие параметры мощности, а нужно еще учесть предельно допустимое значение. Для этого вычисленную нами силу тока умножаем на 1,4, ведь поправка на тепловое воздействие 40%. Получили: 23,8 А и 29,4 А соответственно.
  • Значит, в нашем примере для безопасной работы открытой проводки потребуется кабель с сечением более 3 мм², а для скрытого варианта 2,5 мм².

Не забудем о том, что в силу разнообразных обстоятельств порой включаем одновременно больше агрегатов, чем рассчитывали. Что есть еще лампочки и прочие приборы, незначительно потребляющие энергию. Запасемся некоторым резервом сечения на случай увеличения парка бытовой техники и с расчетами отправимся за важной покупкой.

Видео-руководство для точных расчетов

Следуя жестким рекомендациям ПУЭ, покупать для обустройства личной собственности будем кабельную продукцию с «литерными группами» NYM и ВВГ в маркировке. Именно они не вызывают нареканий и придирок со стороны электриков и пожарников. Вариант NYM – аналог отечественных изделий ВВГ.

Лучше всего, если отечественный кабель будет сопровождать индекс НГ, это означает, что проводка будет пожароустойчивой. Если предполагается прокладывать линию за перегородкой, между лагами или над подвесным потолком, купите изделия с низким дымовыделением. У них будет индекс LS.

Вот таким нехитрым способом рассчитывается сечение токопроводящей жилы кабеля. Сведения о принципах вычислений помогут рационально подобрать данный важный элемент электросети. Необходимый и достаточный размер токоведущей сердцевины обеспечит питанием домашнюю технику и не станет причиной возгорания проводки.

Таблица соответствия сечения кабеля току и мощности

Большое значение в электротехнике имеет такая величина, как поперечное сечение провода и нагрузка. Без этого параметра невозможно проведение каких-либо расчетов, особенно, связанных с прокладкой кабельных линий.

Ускорить необходимые вычисления помогает таблица зависимости мощности от сечения провода, применяемая при проектировании электротехнического оборудования.

Правильные расчеты обеспечивают нормальную работу приборов и установок, способствуют надежной и долговременной эксплуатации проводов и кабелей.

Правила расчетов площади сечения

На практике расчеты сечения любого провода не представляют какой-либо сложности. Достаточно всего лишь вычислить сечение кабеля по диаметру с помощью штангенциркуля, а затем полученное значение использовать в формуле: S = π (D/2)2, в которой S является площадью сечения, число π составляет 3,14, а D представляет собой измеренный диаметр жилы.

В настоящее время используются преимущественно медные провода. По сравнению с алюминиевыми, они более удобны в монтаже, долговечны, имеют значительно меньшую толщину, при одинаковой силе тока.

Однако, при увеличении площади сечения стоимость медных проводов начинает возрастать, и все преимущества постепенно теряются. Поэтому при значении силы тока более 50-ти ампер практикуется применение кабелей с алюминиевыми жилами. Для измерения сечения проводов используются квадратные миллиметры.

Наиболее распространенными показателями, применяемыми на практике, являются площади 0,75; 1,5; 2,5; 4,0 мм2.

Таблица сечения кабеля по диаметру жилы

Основным принципом расчетов служит достаточность площади сечения, для нормального протекания через него электрического тока. То есть, допустимый ток не должен нагревать проводник до температуры свыше 60 градусов.

Падение напряжения не должно превышать допустимого значения. Этот принцип особенно актуален для ЛЭП большой протяженности и высокой силы тока.

Обеспечение механической прочности и надежности провода осуществляется за счет оптимальной толщины провода и защитной изоляции.

Сечение провода по току и мощности

Прежде чем рассматривать соотношение сечения и мощности, следует остановиться на показателе, известном, как максимальная рабочая температура. Данный параметр обязательно учитывается при выборе толщины кабеля.

Если этот показатель превышает свое допустимое значение, то из-за сильного нагрева металл жилы и изоляция расплавятся и разрушатся. Таким образом, происходит ограничение рабочего тока для конкретного провода его максимальной рабочей температурой.

Важным фактором является время, в течение которого кабель сможет функционировать в подобных условиях.

Основное влияние на устойчивую и долговечную работу провода оказывает потребляемая мощность и сила тока.

Для быстроты и удобства расчетов были разработаны специальные таблицы, позволяющие подобрать необходимое сечение в соответствии с предполагаемыми условиями эксплуатации.

Например, при мощности 5 кВт и силе тока в 27,3 А, площадь сечения проводника составит 4.0 мм2. Точно так же подбирается сечение кабелей и проводов при наличии других показателей.

Необходимо учитывать и влияние окружающей среды. При температуре воздуха, на 20 градусов превышающей нормативную, рекомендуется выбор большего сечения, следующего по порядку.

То же самое касается наличия нескольких кабелей, содержащихся в одном жгуте или значения рабочего тока, приближающегося к максимальному.

В конечном итоге, таблица зависимости мощности от сечения провода позволит выбрать подходящие параметры на случай возможного увеличения нагрузки в перспективе, а также при наличии больших пусковых токов и существенных перепадов температур.

Читать также:  Внешнее освещение загородного дома

Формулы для расчета сечения кабеля

Качество проведения электромонтажных работ оказывает воздействие на безопасность целого здания. Определяющим фактором при проведении таких работ является показатель сечения кабеля. Для осуществления расчета нужно выяснить характеристики всех подключенных потребителей электричества. Необходимо провести расчет сечения кабеля по мощности. Таблица нужна, чтобы посмотреть требуемые показатели.

Качественный и подходящий кабель обеспечивает безопасную и долговечную работу любой сети

Расчет сечения кабеля по мощности: таблица с важными характеристиками

Оптимальная площадь сечения кабеля позволяет протекать максимальному количеству тока и при этом не нагревается.

Выполняя проект электропроводки, важно найти правильное значение для диаметра провода, который бы подходил под определенные условия потребляемой мощности.

Чтобы выполнить вычисления, требуется определить показатель общего тока. При этом нужно выяснить мощность всего оборудования, которое подключено к кабелю.

Такая таблица поможет подобрать оптимальные параметры

Перед работой вычисляется сечение провода и нагрузка. Таблица поможет найти эти значения. Для стандартной сети 220 вольт, примерное значение тока рассчитывается так, I(ток)=(Р1+Р2+….+Рn)/220, Pn – мощность. Например, оптимальный ток для алюминиевого провода – 8 А/мм, а для медного – 10 А/мм.

Расчет по нагрузке

Даже определив нужное значение, можно произвести определенные поправки по нагрузке. Ведь нечасто все приборы работают одновременно в сети. Чтобы данные были более точными, необходимо значение сечения умножить на Кс (поправочный коэффициент). В случае, если будет включаться всё оборудование в одно и то же время, то данный коэф-т не применяется.

Чтобы выполнить вычисления правильно применяют таблицу расчетов сечения кабеля по мощности. Нужно учитывать, что существует два типа данного параметра: реактивная и активная.

Так проводится расчет с учетом нагрузки

В электрических сетях протекает ток переменного типа, показатель которого может меняться. Активная мощность нужна, чтобы рассчитать среднее показатели. Активную мощность имеют электрические нагреватели и лампы накаливания.

Если в сети присутствуют электромоторы и трансформаторы, то могут возникать некоторые отклонения. При этом и формируется реактивная мощность. При расчетах показатель реактивной нагрузки отражается в виде коэффициента (cosф).

Особенности потребления тока

Полезная информация! В быту среднее значение cosф равняется 0,8. А у компьютера такой показатель равен 0,6-0,7.

Расчет по длине

Вычисления параметров по длине необходимы при возведении производственных линий, когда кабель подвергается мощным нагрузкам. Для расчетов применяют таблицу сечения кабеля по мощности и току. При перемещении тока по магистралям проявляются потери мощности, которые зависят от сопротивления, появляющегося в цепи.

По техническим параметрам, самое большое значение падения напряжения не должно быть больше пяти процентов.

Применение таблицы помогает узнать значение сечения кабеля по длине

Использование таблицы сечения проводов по мощности

На практике для проведения подсчетов применяется таблица. Расчет сечения кабеля по мощности осуществляется с учетом показанной зависимости параметров тока и мощности от сечения. Существуют специальные стандарты возведения электроустановок, где можно посмотреть информацию по нужным измерениям. В таблице представлены распространенные значения.

Узнать точный показатель можно, используя различные параметры

Чтобы подобрать кабель под определенную нагрузку, необходимо провести некоторые расчеты:

  • рассчитать показатель силы тока;
  • округлить до наибольшего показателя, используя таблицу;
  • подобрать ближайший стандартный параметр.

Читать также:  Нормы браковки канатных и цепных стропов

Статья по теме:

Как повесить люстру на натяжной потолок. Видео пошагового монтажа позволит всю работу произвести самостоятельно без обращения к специалистам. Что нужно подготовить для работы и как избежать ошибок мы и расскажем в статье.

Формула расчетов мощности по току и напряжению

Если уже имеются какие-то кабели в наличии, то чтобы узнать нужное значение, следует применить штангенциркуль. При этом измеряется сечение и рассчитывается площадь. Так как кабель имеет округлую форму, то расчет производится для площади окружности и выглядит так: S(площадь)= π(3,14)R(радиус)2. Можно правильно определить, используя таблицу, сечение медного провода по мощности.

Стандартные формулы для определения силы тока

Важная информация! Большинство производителей уменьшают размер сечения для экономии материала.

Поэтому, совершая покупку, воспользуйтесь штангенциркулем и самостоятельно промеряйте провод, а затем рассчитайте площадь. Это позволит избежать проблем с превышением нагрузки.

Если провод состоит из нескольких скрученных элементов, то нужно промерить сечение одного элемента и перемножить на их количество.

Варианты кабеля для разных назначений

Какие есть примеры?

Определенная схема позволит вам сделать правильный выбор сечения кабеля для своей квартиры. Прежде всего, спланируйте места, в которых будут размещаться источники света и розетки.

Также следует выяснить, какая техника будет подключаться к каждой группе. Это позволит составить план подсоединения всех элементов, а также рассчитать длину проводки.

Не забывайте прибавлять по 2 см на стыки проводов.

Определение сечения провода с учетом разных видов нагрузки

Применяя полученные значения, по формулам вычисляется значение силы тока и по таблице определяется сечение. Например, требуется узнать сечение провода для бытового прибора, мощность которого 2400 Вт. Считаем: I = 2400/220 = 10,91 А. После округления остается 11 А.

Схемы прокладки кабелей

Чтобы определить точный показатель площади сечения применяются разные коэффициенты. Особенно данные значения актуальны для сети 380 В. Для увеличения запаса прочности к полученному показателю стоит прибавить еще 5 А.

Схема трехжильной проводки

Стоит учитывать, что для квартир применяются трехжильные провода. Воспользовавшись таблицами, можно подобрать самое близкое значение тока и соответствующее сечение провода. Можно посмотреть какое нужно сечение провода для 3 кВт, а также для других значений.

У проводов разного типа предусмотрены свои тонкости расчетов. Трехфазный ток применяется там, где нужно оборудование значительной мощности. Например, такое используется в производственных целях.

Для выявления нужных параметров на производствах важно точно рассчитать все коэффициенты, а также учесть потери мощности при колебаниях в напряжении. Выполняя электромонтажные работы дома, не нужно проводить сложные расчеты.

Следует знать о различиях алюминиевого и медного провода. Медный вариант отличается более высокой ценой, но при этом превосходит аналог по техническим характеристикам. Алюминиевые изделия могут крошиться на сгибах, а также окисляются и имеют более низкий показатель теплопроводности. По технике безопасности в жилых зданиях используется только продукция из меди.

Основные материалы для кабелей

Так как переменный ток передвигается по трем каналам, то для монтажных работ используется трехжильный кабель. При установке акустических приборов применяются кабели, имеющие минимальное значение сопротивления. Это поможет улучшить качество сигнала и устранить возможные помехи. Для подключения подобных конструкций применяются провода, размер которых 2*15 или 2*25.

Подобрать оптимальный показатель сечения для применения в быту помогут некоторые средние значения. Для розеток стоит приобрести кабель 2,5 мм2, а для оформления освещения – 1,5 мм2. Оборудование с более высокой мощностью требует сечения размером 4-6 мм2.

Варианты соединения проводов

Специальная таблица окажет помощь, если возникают сомнения при расчетах. Для определения точных показателей нужно учитывать все факторы, которые оказывают влияние на ток в цепи.

Это длина отдельных участков, метод укладки, тип изоляции и допустимое значение перегрева.

Все данные помогают увеличить производительность в производственных масштабах и более эффективно применять электрическую энергию.

Расчет сечения кабеля и провода по мощности и току, для подключения частного дома (видео)

Привет. Тема сегодняшней статьи «Сечение кабеля по мощности«. Эта информация пригодиться как в быту, так и на производстве. Речь пойдет о том, как произвести расчет сечения кабеля по мощности и сделать выбор по удобной таблице.

Для чего вообще нужно правильно подобрать сечение кабеля ?

Если говорить простым языком, это нужно для нормальной работы всего, что связано с электрическим током. Будь-то фен, стиральная машина, двигатель или трансформатор. Сегодня инновации не дошли еще до безпроводной передачи электроэнергии (думаю еще не скоро дойдут), соответственно основным средством для передачи и распределения электрического тока, являются кабели и провода.

При маленьком сечении кабеля и большой мощности оборудования, кабель может нагреваться, что приводит к потере его свойств и разрушению изоляции. Это не есть хорошо, так что правильный расчет необходим.

  • Итак, выбор сечения кабеля по мощности. Для подбора будем использовать удобную таблицу:
  • Таблица простая, описывать ее думаю не стоит.

Теперь нам нужно рассчитать общую потребляемую мощность оборудования и приборов, используемых в квартире, доме, цехе или в любом другом месте куда мы ведем кабель. Произведем расчет мощности.

Допустим у нас дом, выполняем монтаж закрытой электропроводки кабелем ВВГ. Берем лист бумаги и переписываем перечень используемого оборудования. Сделали? Хорошо.

Как узнать мощность? Мощность вы сможете найти на самом оборудовании, обычно имеется бирка, где записаны основные характеристики:

Мощность измеряется в Ваттах ( Вт, W ), или Киловаттах ( кВт, KW ). Нашли? Записываем данные, затем складываем.

Допустим, у вас получилось 20 000 Вт, это 20 кВт. Цифра говорит нам о том, сколько энергии потребляют все электроприемники вместе. Теперь нужно подумать сколько вы будете использовать приборов одновременно в течении длительного времени? Допустим 80 %. Коэффициент одновременности в таком случае равен 0,8 . Делаем расчет сечения кабеля по мощности:

Считаем:

20 х 0,8 = 16 (кВт)

Чтобы сделать выбор сечения кабеля по мощности, смотрим на наши таблицы:

Для трехфазной цепи 380 Вольт это будет выглядеть вот так:

Как видите, не сложно. Хочу также добавить, советую выбирать кабель или провод наибольшего сечения жил, на случай если вы захотите подключить что-нибудь еще.

Выбор сечения медного и алюминиевого провода кабеля для электропроводки по нагрузке

Стандартная квартирная электропроводка рассчитывается на максимальный ток потребления при длительной нагрузке 25 ампер (на такую силу тока выбирается и автоматический выключатель, который устанавливается на вводе проводов в квартиру) выполняется медным проводом сечением 4,0 мм2, что соответствует диаметру провода 2,26 мм и мощности нагрузки до 6 кВт.

Согласно требований п 7.1.35 ПУЭ сечение медной жилы для квартирной электропроводки должно быть не менее 2,5 мм2, что соответствует диаметру проводника 1,8 мм и силе тока нагрузки 16 А. К такой электропроводке можно подключать электроприборы суммарной мощностью до 3,5 кВт.

Что такое сечение провода и как его определить

Чтобы увидеть сечение провода достаточно его перерезать поперек и посмотреть на срез с торца. Площадь среза и есть сечение провода. Чем оно больше, тем большую силу тока может передать провод.

Как видно из формулы, сечение провода легко вычислить по его диаметру. Достаточно величину диаметра жилы провода умножить саму на себя и на 0,785. Для вычисления сечения многожильного провода нужно вычислить сечение одной жилы и умножить на их количество.

Диаметр проводника можно определить с помощью штангенциркуля с точностью до 0,1 мм или микрометра с точностью до 0,01 мм. Если нет под рукой приборов, то в таком случае выручит обыкновенная линейка.

Выбор сечения медного провода электропроводки по силе тока

Величина электрического тока обозначается буквой «А» и измеряется в Амперах. При выборе действует простое правило, чем сечение провода больше, тем лучше, по этому округляют результат в большую сторону.

Приведенные мною данные в таблице основаны на личном опыте и гарантируют надежную работу электропроводки при самых неблагоприятных условиях ее прокладки и эксплуатации. При выборе сечения провода по величине тока не имеет значение, переменный это ток или постоянный.

Не имеют значения также величина и частота напряжения в электропроводке, это может быть бортовая сеть автомобиля постоянного тока на 12 В или 24 В, летательного аппарата на 115 В частотой 400 Гц, электропроводка 220 В или 380 В частотой 50 Гц, высоковольтная линия электропередачи на 10000 В.

Если неизвестен ток потребления электроприбором, но известны напряжение питания и мощность, то рассчитать ток можно с помощью приведенного ниже онлайн калькулятора.

Следует отметить, что на частотах более 100 Гц в проводах при протекании электрического тока начинает проявляться скин-эффект, заключающийся в том, что с увеличением частоты ток начинает «прижиматься» к внешней поверхности провода и фактическое сечение провода уменьшается. Поэтому выбор сечения провода для высокочастотных цепей выполняется по другим законам.

Определение нагрузочной способности электропроводки 220 В выполненной из алюминиевого провода

В давно построенных домах электропроводка, как правило, выполнена из алюминиевых проводов.

Если соединения в распределительных коробках выполнены правильно, срок службы алюминиевой проводки может составлять и сто лет.

Ведь алюминий практически не окисляется, и срок службы электропроводки будет определяться только сроком службы пластмассовой изоляции и надежностью контактов в местах присоединения.

В случае подключения дополнительных энергоемких электроприборов в квартире с алюминиевой электропроводкой необходимо определить по сечению или диаметру жил проводов способность ее выдержать дополнительную мощность. По приведенной ниже таблице это легко сделать.

Если у Вас проводка в квартире выполнена из алюминиевых проводов и возникла необходимость подключить вновь установленную розетку в распределительной коробке медными проводами, то такое соединение выполняется в соответствии с рекомендациями статьи Соединение алюминиевых проводов.

Для выбора сечения жил провода кабеля при прокладке электропроводки в квартире или доме нужно проанализировать парк имеющихся электробытовых приборов с точки зрения одновременного их использования.

В таблице представлен перечень популярных бытовых электроприборов с указанием потребляемого тока в зависимости от мощности.

Вы можете узнать потребляемую мощность своих моделей самостоятельно из этикеток на самих изделиях или паспортам, часто параметры указывают на упаковке.

В случае если сила потребляемого тока электроприбором неизвестна, то ее можно измерять с помощью амперметра.

Таблица потребляемой мощности и силы тока бытовыми электроприборами при напряжении питания 220 В

Обычно мощность потребления электроприборов указывается на корпусе в ваттах (Вт или VA) или киловаттах (кВт или кVA). 1 кВт=1000 Вт.

Ток потребляют еще холодильник, осветительные приборы, радиотелефон, зарядные устройства, телевизор в дежурном состоянии. Но в сумме эта мощность составляет не более 100 Вт и при расчетах ее можно не учитывать.

Если Вы включите все имеющиеся в доме электроприборы одновременно, то необходимо будет выбрать сечение провода, способное пропустить ток 160 А. Провод понадобится толщиной в палец! Но такой случай маловероятен. Трудно представить, что кто-то способен одновременно молоть мясо, гладить утюгом, пылесосить и сушить волосы.

Пример расчета. Вы встали утром, включили электрочайник, микроволновую печь, тостер и кофеварку. Потребляемый ток соответственно составит 7 А + 8 А + 3 А + 4 А = 22 А. С учетом включенного освещения, холодильника и в дополнение, например, телевизора, потребляемый ток может достигнуть 25 А.

Выбрать сечение провода можно не только по силе тока но и по величине потребляемой мощности. Для этого нужно составить перечень всех планируемых для подключения к данному участку электропроводки электроприборов, определить, какую мощность потребляет каждый из них по отдельности. Далее сложить полученные данные и воспользоваться нижеприведенной таблицей.

Если имеется несколько электроприборов и для некоторых известен ток потребления, а для других мощность, то нужно определить из таблиц сечение провода для каждого из них, а затем полученные результаты сложить.

Выбор сечения медного провода по мощности для с бортовой сети автомобиля 12 В

Если при подключении к бортовой сети автомобиля дополнительного оборудования известна только его мощность потребления, то определить сечение дополнительной электропроводки можно с помощью ниже приведенной таблицы.

Выбор сечения провода для подключения электроприборовк трехфазной сети 380 В

При работе электроприборов, например, электродвигателя, подключенных к трехфазной сети, потребляемый ток протекает уже не по двум проводам, а по трем и, следовательно, величина протекающего тока в каждом отдельном проводе несколько меньше. Это позволяет использовать для подключения электроприборов к трехфазной сети провод меньшего сечения.

Для подключения электроприборов к трехфазной сети напряжением 380 В, например электродвигателя, сечение провода для каждой фазы берется в 1,75 раза меньше, чем для подключения к однофазной сети 220 В.

Внимание, при выборе сечения провода для подключения электродвигателя по мощности следует учесть, что на шильдике электродвигателя указывается максимальная механическая мощность, которую двигатель может создать на валу, а не потребляемая электрическая мощность. Потребляемая электрическая мощность электродвигателем с, учетом КПД и сos φ приблизительно в два раза больше, чем создаваемая на валу, что необходимо учитывать при выборе сечения провода исходя из мощности двигателя, указанной в табличке.

Например, нужно подключить электродвигатель потребляющий мощность от сети 2,0 кВт. Суммарный ток потребления электродвигателем такой мощности по трем фазам составляет 5,2 А.

По таблице получается, что нужен провод сечением 1,0 мм2, с учетом вышеизложенного 1,0 / 1,75 = 0,5 мм2.

Следовательно, для подключения электродвигателя мощностью 2,0 кВт к трехфазной сети 380 В понадобится медный трехжильный кабель с сечением каждой жилы 0,5 мм2.

Гораздо проще выбрать сечение провода для подключения трехфазного двигателя, исходя из величины тока его потребления, который всегда указывается на шильдике.

Например, в шильдике приведенном на фотографии, ток потребления двигателя мощностью 0,25 кВт по каждой фазе при напряжении питания 220 В (обмотки двигателя подключены по схеме «треугольник») составляет 1,2 А, а при напряжении 380 В (обмотки двигателя подключены по схеме «звезда») всего 0,7 А.

Взяв силу тока, указанную на шильдике, по таблице для выбора сечения провода для квартирной электропроводки выбираем провод сечением 0,35 мм2 при подключении обмоток электродвигателя по схеме «треугольник» или 0,15 мм2 при подключении по схеме «звезда».

О выборе марки кабеля для домашней электропроводки

Делать квартирную электропроводку из алюминиевых проводов на первый взгляд кажется дешевле, но эксплуатационные расходы из-за низкой надежности контактов со временем многократно превысят затраты на электропроводку из меди.

Рекомендую делать проводку исключительно из медных проводов! Алюминиевые провода незаменимы при прокладке воздушной электропроводки, так как они легкие и дешевые и при правильном соединении служат надежно продолжительное время.

А какой провод лучше использовать при монтаже электропроводки, одножильный или многожильный? С точки зрения способности проводить ток на единицу сечения и монтажа, одножильный лучше. Так что для домашней электропроводки нужно использовать только одножильный провод.

Многожильный допускает многократные изгибы, и чем тоньше в нем проводники, тем он более гибкий и долговечнее.

Поэтому многожильный провод применяют для подключения к электросети нестационарных электроприборов, таких как электрофен, электробритва, электроутюг и все остальных.

После принятия решения по сечению провода встает вопрос о марке кабеля для электропроводки. Тут выбор не велик и представлен всего несколькими марками кабелей: ПУНП, ВВГнг и NYM.

Кабель ПУНП с 1990 года, в соответствии с решением Главгосэнергонадзора «О запрете применения проводов типа АПВН, ППБН, ПЕН, ПУНП и др., выпускаемых по ТУ 16-505. 610-74 вместо проводов АПВ, АППВ, ПВ и ППВ по ГОСТ 6323-79*» к применению запрещен.

Кабель ВВГ и ВВГнг – медные провода в двойной поливинилхлоридной изоляции, плоской формы. Предназначен для работы при температуре окружающей среды от −50°С до +50°С, для выполнения проводки внутри зданий, на открытом воздухе, в земле при прокладке в тубах.

Срок службы до 30 лет. Буквы «нг» в обозначении марки говорят о негорючести изоляции провода. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 35,0 мм2. Если в обозначении кабеля перед ВВГ стоит буква А (АВВГ), то жилы в проводе алюминиевые.

Кабель NYM (его российский аналог – кабель ВВГ), с медными жилами, круглой формы, с негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения, практически одинаковые с кабелем ВВГ. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 4,0 мм2.

Как видите, выбор для прокладки электропроводки не велик и определяется в зависимости от того, какой формы кабель более подходит для монтажа, круглой или плоской.

Кабель круглой формы удобнее прокладывается через стены, особенно если делается ввод с улицы в помещение. Понадобится просверлить отверстие чуть больше диаметра кабеля, а при большей толщине стены это становится актуальным.

Для внутренней проводки удобнее применять плоский кабель ВВГ.

При прокладке квартирной электропроводки, как правило, возникает вопрос и о выборе автоматического выключателя, или, как его часто называют, автомата. Этот вопрос и о выборе счетчика, УЗО, дифференциального автомата подробно освещен в статье сайта «Об электрическом счетчике, УЗО и автоматах защиты».

Параллельное соединение проводов электропроводки

Бывают безвыходные ситуации, когда срочно нужно проложить проводку, а провода требуемого сечения в наличии нет. В таком случае, если есть провод меньшего, чем необходимо, сечения, то можно проводку сделать из двух и более проводов, соединив их параллельно. Главное, чтобы сумма сечений каждого из них была не меньше расчетной.

Например, есть три провода сечением 2, 3 и 5 мм2, а нужен по расчетам 10 мм2. Соединяете их все параллельно, и проводка будет выдерживать ток до 50 ампер. Да Вы и сами многократно видели параллельное соединение большего количества тонких проводников для передачи больших токов.

Например, для сварки используется ток до 150 А и для того, чтобы сварщик мог управлять электродом, нужен гибкий провод. Его и делают из сотен параллельно соединенных тонких медных проволочек. В автомобиле аккумулятор к бортовой сети тоже подключают с помощью такого же гибкого многожильного провода, так как во время пуска двигателя стартер потребляет от аккумулятора ток до 100 А.

А при установке и снятии аккумулятора необходимо провода отводить в сторону, то есть провод должен быть достаточно гибким.

Способ увеличения сечения электропровода путем параллельного соединения нескольких проводов разного диаметра можно использовать только в крайнем случае. При прокладке домашней электропроводки допустимо соединять параллельно только провода одинакового сечения, взятые из одной бухты.

Онлайн калькуляторы для вычисления сечения и диаметра провода

С помощью онлайн калькулятора, представленного ниже можно решить обратную задачу – определить по сечению диаметр проводника.

Как вычислить сечение многожильного провода

Многожильный провод, или как его называют еще многопроволочный или гибкий, представляет собой свитые вместе одножильные проволочки. Для вычисления сечения многожильного провода нужно сначала вычислить сечение одной проволочки, а затем полученный результат умножить на их число.

Рассмотрим пример. Есть многожильный гибкий провод, в котором 15 жил диаметром 0,5 мм. Сечение одной жилы равно 0,5 мм×0,5 мм×0,785 = 0,19625 мм2, после округления получим 0,2 мм2. Так как у нас в проводе 15 проволочек , то для определения сечения кабеля нужно перемножить эти числа. 0,2 мм2×15=3 мм2. Осталось по таблице определить, что такой многожильный провод выдержит ток 20 А.

Можно оценить нагрузочную способность многожильного провода без замера диаметра отдельного проводника, измеряв общий диаметр всех свитых проволочек.

Но так как проволочки круглые, то между ними находятся воздушные зазоры. Для исключения площади зазоров нужно полученный по формуле результат сечения провода умножить на коэффициент 0,91.

При замере диаметра надо проследить, чтобы многожильный провод не сплющился.

Рассмотрим на примере. В результате измерений многожильный провод имеет диаметр 2,0 мм. Рассчитаем его сечение: 2,0 мм×2,0 мм×0,785×0,91 = 2,9 мм2. По таблице (смотри ниже) определяем, что данный многожильный провод выдержит ток величиной до 20 А.

Рассчитать сечение многожильного провода удобно с помощью онлайн калькулятора, достаточно ввести диаметр одной проволочки и количество жил в многожильном проводе.

Расчёт сечения провода по мощности и току

Вы планируете заняться модернизацией электросети или дополнительно протянуть силовую линию на кухню для подключения новой электроплиты? Здесь пригодятся минимальные знания о сечении проводника и влиянии этого параметра на мощность и силу тока.

Согласитесь, что неправильный расчёт сечения кабеля приводит к перегреву и короткому замыканию или к неоправданным расходам.

Очень важно провести вычисления на стадии проектирования, так как выход из строя скрытой проводки и последующая замена сопряжена со значительными издержками. Мы поможем вам разобраться с тонкостями проведения расчетов, чтобы избежать проблем при дальнейшей эксплуатации электросетей.

Чтобы не нагружать вас сложными расчетами, мы подобрали понятные формулы и варианты вычислений, привели информацию в доступном виде, снабдив формулы пояснениями. Также в статью добавили тематические фото и видеоматериалы, позволяющие наглядно понять суть рассматриваемого вопроса.

Расчет сечения по мощности потребителей

Основное назначение проводников – доставка электрической энергии к потребителям в необходимом количестве. Поскольку в обычных условиях эксплуатации сверхпроводники не доступны, приходится принимать в расчет сопротивление материала проводника.

Расчет необходимого сечения проводников и кабелей в зависимости от общей мощности потребителей основан на продолжительном опыте эксплуатации.

Общий ход вычислений начнем с того, что сначала проводим расчеты, используя формулу:

P = (P1+P2+..PN)*K*J,

Где:

  • P – мощность всех потребителей, подключенных к рассчитываемой ветке в Ваттах.
  • P1, P2, PN – мощность первого потребителя, второго, n-го соответственно, в Ваттах.

Получив результат по окончанию вычислений по вышеприведенной формуле, настал черед обратиться к табличным данным.

Этап #1 — расчет реактивной и активной мощности

Мощности потребителей указаны в документах на оборудование. Обычно в паспортах оборудования указана активная мощность вместе с  реактивной мощностью.

  • Устройства с активным видом нагрузки превращают всю полученную электрическую энергию, с учетом КПД,  в полезную работу: механическую, тепловую или в другой ее вид.
  • К устройствам с активной нагрузкой относятся лампы накаливания, обогреватели, электроплиты.
  • Для таких устройств расчет мощности по току и напряжению имеет вид:
  • P = U * I,
  • Где:
  • P – мощность в Вт;
  • U – напряжение в В;
  • I – сила тока в А.

Устройства с реактивным видом нагрузки способны накапливать энергию поступающую от источника, а затем возвращать. Происходит такой обмен за счет смещения синусоиды силы тока и синусоиды напряжения.

При нулевом смещении фаз мощность P=U*I всегда имеет положительное значение. Такой график фаз силы тока и напряжения имеют устройства с активным видом нагрузки (I, i – сила тока, U, u – напряжение, π – число пи, равное 3,14)

К устройствам с реактивной мощностью относятся электродвигатели, электронные приборы всех масштабов и назначений, трансформаторы.

Когда есть смещение фаз между синусоидой силы тока и синусоидой напряжения, мощность P=U*I может быть отрицательной (I, i – сила тока, U, u – напряжение, π – число пи, равное 3,14). Устройство с реактивной мощностью возвращает накопленную энергию обратно источнику

Электрические сети построены таким образом, что могут производить передачу электрической энергии в одну сторону от источника к нагрузке.

Поэтому возвращенная энергия потребителя с реактивной нагрузкой является паразитной и тратится на нагрев проводников и других компонентов.

Реактивная мощность имеет зависимость от угла смещения фаз между синусоидами напряжения и тока. Угол смещения фаз выражают через cosφ.

  1. Для нахождения полной мощности применяют формулу:
  2. P = Q / cosφ,
  3. Где Q – реактивная мощность в ВАрах.
  4. Обычно в паспортных данных на устройство указана реактивная мощность и cosφ.
  5. Пример: в паспорте на перфоратор указана реактивная мощность 1200 ВАр и cosφ = 0,7. Следовательно, общая потребляемая мощность будет равна:
  6. P = 1200/0,7 = 1714 Вт
  7. Если cosφ найти не удалось, для подавляющего большинства электроприборов бытового назначения cosφ можно принять равным 0,7.

Этап #2 — поиск коэффициентов одновременности и запаса

K – безразмерный коэффициент одновременности, показывает сколько потребителей одновременно может быть включено в сеть. Редко случается, чтобы все устройства одновременно потребляли электроэнергию.

Маловероятна одновременная работа телевизора и музыкального центра. Из устоявшейся практики K можно принять равным 0,8. Если Вы планируете использовать все потребители одновременно, K следует принять равным 1.

J – безразмерный коэффициент запаса. Характеризует создание запаса по мощности для будущих потребителей.

Прогресс не стоит на месте, с каждым годом изобретаются все новые удивительные и полезные электрические приборы. Ожидается, что к 2050 году рост потребления электроэнергии составит 84%. Обычно J принимается равным от 1,5 до 2,0.

Этап #3 — выполнение расчета геометрическим методом

Во всех электротехнических расчетах принимается площадь поперечного сечения проводника – сечение жилы. Измеряется в мм2.

  • Часто бывает необходимо узнать, как грамотно рассчитать сечение провода по диаметру проволоки проводника.
  • В этом случае есть простая геометрическая формула для монолитного провода круглого сечения:
  • S = π*R2 = π*D2/4, или наоборот
  • D = √(4*S / π)
  • Для проводников прямоугольного сечения:
  • S = h * m
  • Где:
  • S – площадь жилы в мм2;
  • R – радиус жилы в мм;
  • D – диаметр жилы в мм;
  • h, m – ширина и высота соответственно в мм;
  • π – число пи, равное 3,14.
  1. Если Вы приобретаете многожильный провод, у которого один проводник состоит из множества свитых проволочек круглого сечения, то расчет ведут по формуле:
  2. S = N*D2/1,27,
  3. Где N – число проволочек в жиле.

Провода, имеющие свитые из нескольких проволочек жилы , в общем случае имеют лучшую проводимость, чем монолитные. Это обусловлено особенностями протекания тока по проводнику круглого сечения.

Электрический ток представляет собой движение одноименных зарядов по проводнику. Одноименные заряды отталкиваются, поэтому плотность распределения зарядов смещена к поверхности проводника.

Другим достоинством многожильных проводов является их гибкость и механическая стойкость. Монолитные провода дешевле и применяют их в основном для стационарного монтажа.

Этап #4 —рассчитываем сечение по мощности на практике

Задача: общая мощность потребителей на кухне составляет 5000 Вт (имеется ввиду, что мощность всех реактивных потребителей пересчитана). Все потребители подключаются к однофазной сети 220 В и имеют запитку от одной ветки.

Решение:

Коэффициент одновременности K примем равным 0,8. Кухня место постоянных инноваций, мало ли что, коэффициент запаса J=2,0. Общая расчетная мощность составит:

P = 5000*0,8*2 = 8000 Вт = 8 кВт

Используя значение расчетной мощности, ищем ближайшее значение в таблице 1.

Ближайшим подходящим значением сечения жилы для однофазной сети является медный проводник с сечением 4 мм2. Аналогичный размер провода с алюминиевой жилой 6 мм2.

Для одножильной проводки минимальный диаметр составит 2,3 мм и 2,8 мм соответственно. В случае применения многожильного варианта сечение отдельных жил суммируется.

Расчет сечения по току

Расчеты необходимого сечения по току и мощности кабелей и проводов представят более точные результаты. Такие вычисления позволяют оценить общее влияние различных факторов на проводники, в числе которых тепловая нагрузка, марка проводов, тип прокладки, условия эксплуатации т.д.

Весь расчет проводится в ходе следующих этапов:

  • выбор мощности всех потребителей;
  • расчет токов, проходящих по проводнику;
  • выбор подходящего поперечного сечения по таблицам.

Для этого варианта расчёта мощность потребителей по току с напряжением берется без учета поправочных коэффициентов. Они будут учтены при суммировании силы тока.

Этап #1 — расчет силы тока по формулам

Тем, кто подзабыл школьный курс физики, предлагаем основные формулы в форме графической схемы в качестве наглядной шпаргалки:

«Классическое колесо» наглядно демонстрирует взаимосвязь формул и взаимозависимость характеристик электрического тока (I — сила тока, P — мощность, U — напряжение, R — радиус жилы)

  • Выпишем зависимость силы тока I от мощности P и линейного напряжения U:
  • I = P/Uл,
  • Где:
  • I — cила тока, принимается в амперах;
  • P — мощность в ваттах;
  •  — линейное напряжение в вольтах.

Линейное напряжение в общем случае зависит от источника электроснабжения, бывает одно- и трехфазным.

Взаимосвязь линейного и фазного напряжения:

  1. Uл = U*cosφ в случае однофазного напряжения.
  2. Uл = U*√3*cosφ в случае трехфазного напряжения.

Для бытовых электрических потребителей принимают cosφ=1, поэтому линейное напряжение можно переписать:

  1. Uл = 220 В для однофазного напряжения.
  2. Uл = 380 В для трехфазного напряжения.
  1. Далее суммируем все потребляемые токи по формуле:
  2. I = (I1+I2+…IN)*K*J,
  3. Где:
  • I – суммарная сила тока в амперах;
  • I1..IN – сила тока каждого потребителя в амперах;
  • K – коэффициент одновременности;
  • J – коэффициент запаса.

Коэффициенты K и J имеют те же значения, что были применены при расчете полной мощности.

Может быть случай, когда в трехфазной сети через разные фазные проводники течет ток неравнозначной силы.

Такое происходит, когда к трехфазному кабелю подключены одновременно однофазные потребители и трехфазные. Например, запитан трехфазный станок и однофазное освещение.

Возникает естественный вопрос: как в таких случаях рассчитывают сечение многожильного провода? Ответ прост — вычисления производят по наиболее нагруженной жиле.

Этап #2 — выбор подходящего сечения по таблицам

В правилах эксплуатации электроустановок (ПЭУ) приведен ряд таблиц для выбора требуемого сечения жилы кабеля.

Проводимость проводника зависит от температуры. Для металлических проводников с повышением температуры повышается сопротивление.

При превышении определенного порога процесс становится автоподдерживающимся: чем выше сопротивление, тем выше температура, тем выше сопротивление и т.д. пока проводник не перегорает или вызывает короткое замыкание.

Следующие две таблицы (3 и 4) показывают сечение проводников в зависимости от токов и способа укладки.

При использовании таблиц к допустимому длительному току применяются коэффициенты:

  • 0,68 если 5-6 жил;
  • 0,63 если 7-9 жил;
  • 0,6 если 10-12 жил.
  • Понижающие коэффициенты применяются к значениям токов из столбца «открыто».
  • Нулевая и заземляющая жилы в количество жил не входят.
  • По нормативам ПЭУ выбор сечения нулевой жилы по допустимому длительному току, производится как не менее 50% от фазной жилы.
  • Расчет и выбор медных жил до 6 мм2 или алюминиевых до 10 мм2 ведется как для длительного тока.
  • В случае больших сечений возможно применить понижающий коэффициент:
  • 0,875 * √Тпв
  • где Tпв — отношение продолжительности включения к продолжительности цикла.

Продолжительность включения берется из расчета не более 4 минут. При этом цикл не должен превышать 10 минут.

При выборе кабеля для разводки электричества в деревянном доме особое внимание уделяют его огнестойкости.

Этап #3 — расчет сечения проводника по току на примере

Задача: рассчитать необходимое сечение медного кабеля для подключения:

  • трехфазного деревообрабатывающего станка мощностью 4000 Вт;
  • трехфазного сварочного аппарата мощностью 6000 Вт;
  • бытовой техники в доме общей мощностью 25000 Вт;

Подключение будет произведено пятижильным кабелем (три жилы фазные, одна нулевая и одна заземление), проложенным в земле.

Изоляция кабельно-проводниковой продукции рассчитывается на конкретное значение рабочего напряжения. Следует учитывать, что указанное производителем рабочее напряжение его изделия должно быть выше напряжения в сети

  1. Решение.
  2. Шаг # 1. Рассчитываем линейное напряжение трехфазного подключения:
  3. Uл = 220 * √3 = 380 В
  4. Шаг # 2. Бытовая техника, станок и сварочный аппарат имеют реактивную мощность, поэтому мощность техники и оборудования составит:
  5. Pтех = 25000 / 0,7 = 35700 Вт
  6. Pобор = 10000 / 0,7 = 14300 Вт
  7. Шаг # 3. Ток, необходимый для подключения бытовой техники:
  8. Iтех = 35700 / 220 = 162 А
  9. Шаг # 4. Ток, необходимый для подключения оборудования:
  10. Iобор = 14300 / 380 = 38 А

Шаг # 5. Необходимый ток для подключения бытовой техники посчитан из расчета одной фазы. По условию задачи имеется три фазы. Следовательно, ток можно распределить по фазам. Для простоты предположим равномерное распределение:

  • Iтех = 162 / 3 = 54 А
  • Шаг # 6. Ток приходящийся на каждую фазу:
  • Iф = 38 + 54 = 92 А

Шаг # 7. Оборудование и бытовая техника работать одновременно не будут, кроме этого заложим запас равный 1,5. После применения поправочных коэффициентов:

Iф = 92 * 1,5 * 0,8 = 110 А

Шаг # 8. Хотя в составе кабеля имеется 5 жил, в расчет берется только три фазные жилы. По таблице 8 в столбце трехжильный кабель в земле находим, что току в 115 А соответствует сечение жилы 16 мм2.

Шаг # 9. По таблице 8 применяем поправочный коэффициент в зависимости от характеристики земли. Для нормального типа земли коэффициент равен 1.

Шаг # 10. Не обязательный, рассчитываем диаметр жилы:

D = √(4*16 / 3,14) = 4,5 мм

Если бы расчет производился только по мощности, без учета особенностей прокладки кабеля, то сечение жилы составит 25 мм2. Расчет по силе тока сложнее, но иногда позволяет экономить значительные денежные средства, особенно когда речь идет о многожильных силовых кабелях.

Таблица сечений проводов по току. ⋆ Руководство электрика

Содержание статьи

Таблица сечений проводов.

Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках. Они приняты для температур: жил +65°С, окружающего воздуха +25°С и земли +15°С.

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырех проводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами. Таблица 1.

Сечение токопроводящей
жилы, мм2
Ток, А, для проводов, проложенных
открытов одной трубе
двух
одножи-
льных
трех
одножи-
льных
четырех
одножи-
льных
одного
двухжи-
льного
одного
трехжи-
льного
0,511
0,7515
1171615141514
1,2201816151614,5
1,5231917161815
2262422202319
2,5302725252521
3343228262824
4413835303227
5464239343731
6504642404034
8625451464843
10807060505550
161008580758070
251401151009010085
35170135125115125100
50215185170150160135
70270225210185195175
95330275255225245215
120385315290260295250
150440360330
185510
240605
300695
400830

Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами. Таблица 2.

Сечение токопроводящей
жилы, мм2
Ток, А, для проводов, проложенных
открытов одной трубе
двух
одножи-
льных
трех
одножи-
льных
четырех
одножи-
льных
одного
двухжи-
льного
одного
трехжи-
льного
2211918151714
2,5242019191916
3272422212218
4322828232521
5363230272824
6393632303126
8464340373832
10605047394238
16756060556055
251058580707565
3513010095859575
50165140130120125120
70210175165140150135
95255215200175190165
251401151009010085
120295245220200230190
50215185170150160135
150340275255
185390
240465
300535
400645

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных. Таблица 3.

Сечение токопроводящей жилы,
мм2
Ток, А, для проводов, проложенных
одножильныхдвухжильныхтрехжильных
при прокладке
в
воздухе
в
воздухе
в землев
воздухе
в земле
1,52319331927
2,53027442538
44138553549
65050704260
1080701055590
161009013575115
2514011517595150
35170140210120180
50215175265145225
70270215320180275
95325260385220330
120385300445260385
150440350505305435
185510405570350500
240605

Таблица для расчета сечения кабеля по току. Таблица 4.

Сечение токопроводящей жилы, мм2Медные жилы проводов и кабелей
Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033,0
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066,0260171,6

Список таблиц будет пополняться. Добавляйте сайт «ЭлектроМануал.ру» в закладки, чтобы электрика своими руками стала максимально простой задачей.

ПКФ «ТИМ»

В таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора защитных средств, кабельно-проводниковых материалов и электрооборудования.

 

Медные жилы, проводов и кабелей
















Сечение токопроводящей жилыМедные жилы, проводов и кабелей
Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
1,5 мм?194,11610,5
2,5 мм?275,92516,5
4 мм?388,33019,8
6 мм?4610,14026,4
10 мм?7015,45033,0
16 мм?8518,77549,5
25 мм?11525,39059,4
35 мм?13529,711575,9
50 мм?17538,514595,7
70 мм?21547,3180118,8
95 мм?26057,2220145,2
120 мм?30066,0260171,6

 

Алюминивые жилы, проводов и кабелей
















© pkftim.ru
Сечение токопроводящей жилыАлюминивые жилы, проводов и кабелей
Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
2,5 мм?204,41912,5
4 мм?286,12315,1
6 мм?367,93019,8
10 мм?5011,03925,7
16 мм?6013,25536,3
25 мм?8518,77046,2
35 мм?10022,08556,1
50 мм?13529,711072,6
70 мм?16536,314092,4
95 мм?20044,0170112,2
120 мм?23050,6200132,0
150 мм?

 

 

 

В расчете применялись: данные таблиц ПУЭ; формулы активной мощности для однофазной и трехфазной симметричной нагрузки

Таблица шин прямоугольного сечения


Шины прямоугольного сечения медные, алюминиевые и стальные при одной полосе на фазу при переменном токе.























© pkftim.ru

Размеры, мм, шины

Медная шина

Алюминевая шина

Стальная шина

Медной и алюминиевой

Стальной

Токовая нагрузка,А,

Вес р=8,89/1 м

Токовая нагрузка,А,

Вес р=2,7/1 м

Токовая нагрузка,А,

15 * 3

16 * 2,5

210

0,4

165

0,1215

55

20 * 3

20 * 2,5

275

0,533

215

0,1312

60

25 * 3

25 * 2,5

340

0,667

265

0,2025

75

30 * 4

20 * 3

475

1,067

365

0,324

65

40 * 4

25 * 3

625

1,422

480

0,432

80

40 * 5

30 * 3

700

1,778

540

0,54

95

50 * 5

40 * 3

860

2,222

665

0,675

125

50 * 6

50 * 3

955

2,667

740

0,81

155

60 * 6

60 * 3

1125

3,2

870

0,972

185

80 * 6

70 * 3

1480

4,267

1150

1,296

215

100 * 6

75 * 3

1810

5,334

1425

1,62

230

60 * 8

20 * 4

1320

4,267

1025

1,296

70

80 * 8

22 * 4

1690

5,689

1320

1,728

75

100 * 8

25 * 4

2080

7,112

1625

2,19

85

120 * 8

30 * 4

2400

8,534

1900

2,592

100

60 * 10

40 * 4

1475

5,334

1155

1,62

130

80 * 10

50 * 4

1900

7,112

1480

2,16

165

100 * 10

60 * 4

2310

8,89

1820

2,7

195

120 * 10

70 * 4

2650

10,668

2070

3,24

225

 

* * *

Как правильно выбрать сечение провода или кабеля

Как правильно выбрать сечение провода или кабеля

Сечение кабеля — это площадь среза токоведущей жилы. Если срез жилы круглый (как в большинстве случаев) и состоит из одной проволочки — то площадь/сечение определяется по формуле площади круга. Если в жиле много проволочек, то сечением будет сумма сечений всех проволочек в данной жиле.

Во время электромонтажных работ, а именно, на стадии прокладки проводов, кабелей, «Особо продвинутые» заказчики интересуются, почему мы прокладываем, к примеру, на розетки, кабель сечением 2.5 мм кв, когда вполне достаточно 1.5 мм кв, исходя из потребляемой мощности… В этой статье мы попробуем разобраться с сечением проводов, прокладываемых для различных потребителей.

Итак, от того, насколько верно вы подберете сечение прокладываемых проводов, во многом зависит и дальнейшая работоспособность потребителей.

Электропроводка в доме, даче или квартире начинается с вводного кабеля. На этот самый кабель ложиться вся основная нагрузка, которая есть в доме. Для того, чтобы узнать какого сечения необходим вводной кабель, нам нужно посчитать все электроприборы, которые могут работать в доме — стиральная машина, бойлер, утюг, микроволновая печь, кондиционеры и т.д. В итоге мы узнаем суммарную мощность, которую потребляют электроприборы в вашем доме. Далее, умножьте эту цифру на коэффициент 0,75. Вот эта самая циферка нам и нужна.

Для более правильного подсчета потребляемой мощности, вам поможет таблица, где указаны приборы и мощность, которую они потребляют.

Ну а далее, как говориться, дело техники. Для подбора кабеля, который удовлетворит требованиям, существует другая таблица, где указаны сечение кабеля, мощность и ток, которые способны выдержать эти самые кабеля.

В данной таблице приведены значения для медных проводов кабелей, так как алюминиевые провода, на сегодняшний день, при монтаже электропроводки, практически никто не применяет.

Таблица выбора сечения кабеля и провода

Далее нам необходимо рассчитать сечение проводов и кабелей для розеточных групп и групп освещения. Если посмотреть на таблицу или просчитать из простых формул для расчета сечения проводов, то станет ясно, что, к примеру, для групп освещении вполне подойдет провод сечением 0.5 мм кв, а для розеточных групп достаточно провода сечением 1.5 мм кв.

Но, как правило, для освещения применяют провода диаметром не менее 1.5 мм кв, а для розеточных групп используют провода сечением не менее 2.5 мм кв, если конечно же не требуется питание приборов, суммарная мощность которых не выходит за пределы, которые способен выдержать данный провод. Связано это с тем, что провода, и неважно с какого металла они сделаны, подвержены коррозии, различным механическим нагрузкам как во время монтажа, так и во время эксплуатации.

К примеру, согласно таблице, при напряжении в сети 220 В, провод сечением 2.5 мм кв способен выдержать ток до 27 А(5.9 кВт). Для защиты проводов и потребителей, в данном случае, в качестве защиты устанавливают автомат, максимальный ток срабатывания которого должен быть не более 25 А.

При проектировании электропроводки, необходимо учитывать и длину магистрали, которая будет питать конечного потребителя. Также, согласно таблице, можно определить сечение и для остальных видов нагрузки. Также, во время проектирования, а затем и монтажа электропроводки, не стоит забывать и о селективности автоматов.

В любом случае, электричество незримо и не прощает ошибок и безалаберного отношения к работе. Доверяйте профессионалам!

Кроме тока и мощности проектировщики при выборе сечения кабеля используют ряд других важных параметров.

Ранее ЭлектроВести писали, что НЭК «Укрэнерго» планирует в этом году провести модернизацию подстанции «Мукачево» (Закарпатская обл), что позволит увеличить межгосударственное сечение между Словакией и Бурштынским энергоостровом с нынешних 650 до 800 МВт. 

По материалам: electrik.info.

Руководство

по ширине дорожек на печатной плате в зависимости от текущей таблицы

Таблица зависимости ширины дорожки печатной платы от тока помогает понять взаимосвязь между шириной дорожки печатной платы и допустимой нагрузкой по току, чтобы вы могли определить требуемую ширину дорожки для конструкции печатной платы.

Соотношение ширины трассы и текущей пропускной способности

Связь между шириной дорожки и допустимой нагрузкой по току на печатных платах довольно проста. В частности, площадь поперечного сечения следа и повышение температуры определяют вашу пропускную способность по току, при этом поперечное сечение следа прямо пропорционально толщине меди и ширине следа.

Однако это не обязательно означает, что пропускная способность трассы прямо пропорциональна площади поперечного сечения. Вычисление максимального тока, который может выдержать дорожка, исходя исключительно из ширины дорожки и повышения температуры, не всегда является простым расчетом, как вы, возможно, уже заметили. Почему это должно быть так?

Элементы, определяющие максимальную пропускную способность по току

Причина, по которой не так просто применить прямую формулу для вычисления максимальной допустимой токовой нагрузки, когда у вас есть информация о площади поперечного сечения и повышении температуры, заключается в том, что есть другие элементы, участвующие в определении максимальной допустимой токовой нагрузки, которая у вас есть. не считается.На пропускную способность по току также может существенно влиять количество переходных отверстий, контактных площадок и компонентов.

Например, если по трассам распределено большое количество контактных площадок, вы обнаружите, что любая трасса с луженым покрытием работает со значительно большей пропускной способностью, чем другие трассы. Если вы не компенсируете это, вы можете закончить тем, что наложите слишком много припоя и создадите более высокую площадь поперечного сечения без эффективного изменения трассы, в результате чего вы получите огромный импульсный скачок или ваша трасса может полностью сгореть.

Так как же вы компенсируете такую ​​ситуацию? Лучшее решение — увеличить ширину следа. Если это невозможно, вы всегда можете добавить паяльную маску к следам, которые могут выгореть. Распечатайте паяльную пасту в своей процедуре SMT, чтобы ширина дорожки увеличивалась после пайки оплавлением, увеличивая допустимую нагрузку по току.

Следующая таблица, безусловно, будет полезна для определения допустимой нагрузки по току следа, но вы также должны принимать во внимание другие факторы, такие как загрязнение окружающей среды.Во время фактического изготовления печатной платы мусор может попасть на печатную плату и образовать поврежденные следы.

По этой причине, даже если вы точно рассчитали допустимую нагрузку по току, вы хотите иметь отказоустойчивую систему на случай, если поврежденные следы, которые остаются незамеченными, приводят к перегрузке. Вам также следует обратить пристальное внимание на следы поворота, потому что острый угол на следе может повлиять на плавность переноса. Если вы имеете дело с очень узкими токонесущими границами, это может создать проблему.

Для получения дополнительной информации о ширине дорожек и передаче тока на печатных платах посетите наш веб-сайт или позвоните нам по телефону 717-558-5975.

Энергетические решения

Размер проводника кабеля и номинальный ток

Требования к проводникам по ISO 10133 и ISO 13297

Это приложение воспроизведено из приложения «А» (нормативного) стандартов ISO 10133 и 13297.Оба ISO поддерживают стандарты Директивы о развлечениях. Использование этих рекомендаций может быть использовано для демонстрации соответствия данной Директиве.

Текущие рейтинги

В таблице приведены допустимые значения продолжительного тока в амперах, определенные для температуры окружающей среды 30 ° C и минимального количества жил для проводов.

Площадь поперечного сечения проводника, допустимый постоянный ток и скрутка.
Максимальный ток в амперах для одиночного проводника при номинальной температуре изоляции
Площадь поперечного сечения мм2 60 ° С 70 ° С от 85 до 90 ° C 105 ° С 125 ° С 200 ° С Минимальное количество прядей
Тип A * Тип B *

0.75

6

10

12

16

20

25

16

1

8

14

18

20

25

35

16

1.5

12

18

21

25

30

40

19

26

2,5

17

25

30

35

40

45

19

41

4

22

35

40

45

50

55

19

65

6

29

45

50

60

70

75

19

105

10

40

65

70

90

100

120

19

168

16

54

90

100

130

150

170

37

266

25

71

120

140

170

185

200

49

420

35

87

160

185

210

225

240

127

665

50

105

210

230

270

300

325

127

1064

70

135

265

285

330

360

375

127

1323

95

165

310

330

390

410

430

259

1666

120

190

360

400

450

480

520

418

2107

150

220

380

430

475

520

560

418

2107

Примечания:
Номинальные значения тока проводника могут быть интерполированы для площадей поперечного сечения между значениями, указанными в таблице.

* Для общей электропроводки плавсредств следует использовать жилы со скрученными проводами не менее типа А. Проводники со скручиванием типа B должны использоваться для любой проводки, в которой во время использования возникает частое изгибание.

Для проводов в машинных отделениях (окружающая среда 60 ° C) максимальный номинальный ток в таблице должен быть занижен на следующие факторы:
Температурный диапазон изоляции жил, ° C Умножьте максимальный ток из таблицы выше на

70

0.75

85-90

0,82

105

0,86

125

0,89

200

1,0

Объединение в пучки (только для переменного тока)
Если в пучок объединено более трех проводов переменного тока, максимальный номинальный ток в таблице должен быть снижен на следующий коэффициент: —
Количество жгутов в пучке Умножьте максимальный ток от A1 на

от 4 до 6

0.7

от 7 до 24

0,6

25 или более

0,5

Примечания:
Снижение номинальных значений для температуры и здания, где это применимо, является кумулятивным. Коэффициенты уменьшения пакетирования обычно не считаются необходимыми для кабелей постоянного тока на малых судах.

Расчет падения напряжения

Для информации (только для сверхнизкого напряжения постоянного тока) падение напряжения на нагрузке можно рассчитать по следующей формуле: —

Где

E = Падение напряжения в вольтах

S = площадь поперечного сечения проводника в квадратных миллиметрах

I = ток нагрузки в амперах

L = общая длина в метрах проводника от положительного источника питания. Подключение к электрическому устройству и обратно к отрицательному источнику.

Состояние заряда

Следующая таблица позволит преобразовать полученные показания в оценку степени заряда. Стол хорош для аккумуляторов при 25 град. C (77 ° F), находящиеся в состоянии покоя в течение 3 часов или более. Если батареи имеют более низкую температуру, можно ожидать более низких значений напряжения

Процент полной зарядки Система постоянного тока 12 В Система 24 В постоянного тока

100%

12.7

25,4

90%

12,6

25,2

80%

12,5

25

70%

12,3

24,6

60%

12.2

24,4

50%

12,1

24,2

40%

12,0

24

30%

11,8

23,6

20%

11.7

23,4

10%

11,6

23,2

0%

11,6

23,2

Электрооборудование: Сборная шина — Таблица 3: Быстрый переключатель шин

Быстрый селектор шин — Зная допустимую нагрузку, проектировщики и специалисты по оценке могут получить приблизительный размер шины.Затем необходимо проверить допустимую нагрузку выбранной шины, проверив таблицу 1.

Требуемый ток, * (диапазон) А Размеры сборной шины, дюймы **
Повышение 30 ° C Повышение 50 ° C 65 ° C Повышение
100
(100–149)
1 / 16×1 / 2,1 / 16×3 / 4 1 / 16×1 / 2
150
(150–199)
1 / 16×1
1 / 8×1 / 2
3 / 16×1 / 2
1 / 16×3 / 4 1 / 16×1 / 2
200
(200-249)
1 / 8×3 / 4
1 / 4×1 / 2
1 / 8×1 / 2 1 / 16×3 / 4
1 / 8×1 / 2

250
(250-299)

1 / 16×1 1/2
1 / 8×1
3 / 16×3 / 4
1 / 16×1
1 / 8×3 / 4
3 / 16×1 / 2
1 / 16×1

300
(300-349)

1 / 16×2
3 / 16×1
1 / 4×3 / 4
1 / 4×1 / 2 1 / 8×3 / 4
3 / 16×1 / 2
350
(350-399)
1 / 8×1 1/2 1 / 16×1 1/2
1 / 8×1
3 / 16×3 / 4
1 / 4×1 / 2
400
(400-449)
1 / 4×3 / 4
3 / 8×3 / 4
1 / 4×3 / 4 1 / 4×1 / 2
400
(400-449)
1 / 4×1
3 / 8×3 / 4
1 / 4×3 / 4 1 / 16×1 1/2
1 / 8×1
3 / 16×3 / 4
450
(450-499)
1 / 8×2
3 / 16×1 / 2
1 / 16×2
3 / 16×1
1 / 4×3 / 4
500
(500-599)
1 / 4×1 1/2
3 / 8×1
1 / 8×1 1/2
1 / 4×1
3 / 8×3 / 4
1 / 16×2
1 / 8×1 1/2
3 / 16×1
600
(600-699)
1 / 8×2 1/2
3 / 16×2
1 / 2×1
1 / 2×1
1 / 8×2
3 / 16×1 1/2
1 / 4×1
1 / 4×1
3 / 8×3 / 4
700
(700-799)
1 / 8×3
3 / 16×2 1/2
1 / 4×2
3 / 8×1 1/2
1 / 4×1 1/2 1 / 8×2
3 / 16×1 1/2
3 / 8×1
800
(800-899)
1 / 8×3 1/2
3 / 16×3
1 / 4×2 1/2
3 / 8×2
1 / 8×2 1/2
3 / 16×2
1 / 2×1
1 / 4×1 1/2
900
(900-999)
1 / 8×4
3 / 16×3 1/2
1 / 4×3
1 / 8×3
3 / 16×2 1/2
1 / 4×2
3 / 8×1 1/2
1 / 8×2 1/2
1 / 2×1
1000
(1000-1249)
3 / 16×4 1 / 4×3 1/2
3 / 8×2 1/2, 3 / 8×3
1 / 2×2, 1 / 2×2 1/2
1 / 8×4
3 / 16×3
1 / 4×2 1/2
3 / 8×2
1 / 8×3
3 / 16×2 1/2
1 / 4×2
3 / 8×1 1/2
1250
(1250-1499)
1 / 4×4
3 / 8×3 1/2
1 / 2×3
3 / 16×3 1/2, 3 / 16×4
1 / 4×3
3 / 8×2 1/2
1 / 2×2
1 / 8×4
3 / 16×3
1 / 4×2 1/2
3 / 8×2
1500
(1500-1749)
1 / 4×5
3 / 8×4
1 / 2×3 1/2, 1 / 2×4
1 / 4×3 1/2, 1 / 4×4
3 / 8×3
1 / 2×2 1/2
3 / 16×3 1/2, 3 / 16×4
1 / 4×3
3 / 8×2 1/2
1 / 2×2
1750
(1750–1999)
1 / 4×6
3 / 8×5
3 / 8×3 1/2
1 / 2×3
1 / 4×3 1/2, 1 / 4×4
3 / 8×3
1 / 2×2 1/2
2000
(2000-2499)
1 / 4×8
3 / 8×6
1 / 2×5, 1 / 2×6
3 / 4×4, 3 / 4×5
1 / 4×6
3 / 8×5
1 / 2×4
1 / 4×5
3 / 8×4
1 / 2×3 1/2
2500
(2500-2999)
1 / 4×10
3 / 8×8
3 / 4×6
3 / 8×6
1 / 2×5
3 / 4×4
1 / 4×6
3 / 8×5
1 / 2×4
3000
(3000-3499)
1 / 4×12
3 / 8×10
1 / 2×8
1 / 4×8
1 / 2×6
3 / 4×5
1 / 4×8
3 / 8×6
1 / 2×5
3 / 4×4
3500
(3500-3999)
3 / 8×12
1 / 2×10
3 / 4×8
1 / 4×10
3 / 8×8
3 / 4×6
1 / 2×6
3 / 4×5
4000
(4000-4499)
1 / 2х12
3 / 4х10
1 / 4×12
3 / 8×10
1 / 2×8
1 / 4×10
3 / 8×8
3 / 4×6
4500
(4500-4999)
3 / 4х12 1 / 2х10 3 / 4х8 1 / 4×12
3 / 8×10
1 / 2×8
5000
(5000-5999)
3 / 8×12
1 / 2×12
3 / 4×10
3 / 8×12
1 / 2×10
3 / 4×8
* Для тока 60 Гц

** В таблице указаны поперечные сечения шины, которые, вероятно, будут достаточно большими для токов в каждом диапазоне.Зная требуемую допустимую нагрузку, определите возможные размеры шины по таблице. Затем проверьте Таблицу 1, чтобы убедиться, что выбранный размер имеет необходимую допустимую нагрузку.

Пример: Предположим, что требуемая допустимая нагрузка составляет 185 А при повышении температуры на 30 ° C. Таблица 3 показывает, что, вероятно, будет достаточно размера 1/16 x 1 дюйм. Это подтверждается таблицей 1, в которой указана допустимая токовая нагрузка шины 1/16 x 1 дюйм как 187 ампер.

5.1 Поток | Мониторинг и оценка

Что такое сток и почему он важен?

Поток или расход воды — это объем воды, который движется над определенной точкой за фиксированный период времени.Часто выражается в кубических футах в секунду (фут 3 / сек).

Расход ручья напрямую зависит от количества воды, уходящей с водораздела в русло ручья. На нее влияет погода, она увеличивается во время ливней и уменьшается в засушливые периоды. Он также меняется в разные сезоны года, снижаясь в летние месяцы, когда интенсивность испарения высока, а прибрежная растительность активно растет и удаляет воду с земли. Август и сентябрь — обычно месяцы самого низкого стока для большинства ручьев и рек на большей части страны.

Забор воды для целей орошения может серьезно истощить сток воды, как и промышленный забор воды. Плотины, используемые для выработки электроэнергии, особенно сооружения, предназначенные для выработки электроэнергии в периоды пиковой потребности, часто блокируют течение ручья, а затем выпускают его в виде скачка.

Расход зависит от объема и скорости воды. Это важно из-за своего воздействия на качество воды, а также на живые организмы и среду обитания в ручье. Большие реки с быстрым течением могут получать сбросы загрязняющих веществ и подвергаться незначительному воздействию, в то время как небольшие реки обладают меньшей способностью разбавлять и разлагать отходы.

Скорость потока, которая увеличивается по мере увеличения объема воды в ручье, определяет виды организмов, которые могут жить в ручье (некоторым нужны участки с быстрым течением, другим нужны тихие бассейны). Это также влияет на количество ила и наносов, переносимых ручьем. Осадок, внесенный в тихие, медленно текущие ручьи, быстро оседает на дно ручья. Быстро движущиеся потоки дольше удерживают осадок во взвешенном состоянии в толще воды. Наконец, быстро движущиеся потоки обычно имеют более высокий уровень растворенного кислорода, чем медленные потоки, потому что они лучше аэрируются.

В этом разделе описан один метод оценки потока в определенной области или на участке реки. Он адаптирован на основе методов, используемых несколькими программами мониторинга добровольцами, и использует поплавок (такой объект, как апельсин, мяч для пинг-понга, сосновая шишка и т. Д.) Для измерения скорости потока. Расчет расхода включает решение уравнения, которое исследует взаимосвязь между несколькими переменными, включая площадь поперечного сечения потока, длину потока и скорость воды. Один из способов измерения расхода — решить следующее уравнение:

Расход = ALC / T
Где:
А = Средняя площадь поперечного сечения ручья (ширина ручья, умноженная на среднюю глубину воды).
л = Измеренная длина участка ручья (обычно 20 футов)
К = Коэффициент или поправочный коэффициент (0,8 для потоков с каменистым дном или 0,9 для потоков с илистым дном). Это позволяет вам скорректировать тот факт, что вода на поверхности движется быстрее, чем у дна ручья из-за сопротивления гравия, булыжника и т. Д. Умножение скорости на поверхности на поправочный коэффициент уменьшает значение и дает более точную оценку общей протяженности потока. скорость.
т = Время в секундах, за которое поплавок проходит длину L

Как измерить и рассчитать поток воды

Задача 1 Подготовиться перед выездом на место отбора проб

См. Раздел 2.3 — Меры безопасности для получения подробной информации о подтверждении даты и времени отбора проб, соображениях безопасности, проверке расходных материалов, а также проверке погоды и направления. В дополнение к стандартному оборудованию для отбора проб и одежде, при измерении и расчете расхода, необходимо включать следующее оборудование:

  • Шар из прочной струны, четыре колья и молоток для забивания кольев в землю.Трос будет натянут по ширине ручья перпендикулярно берегу в двух местах. Ставки заключаются в том, чтобы закрепить веревку на каждом берегу, чтобы сформировать линию разреза.
  • Рулетка (минимум 20 футов)
  • Водонепроницаемая линейка или другой прибор для измерения глубины воды
  • Завязки-закрутки (для обозначения интервалов на нити линии трансекты)
  • Апельсин и рыболовная сеть (чтобы вычерпать апельсин из ручья)
  • Секундомер (или часы с секундной стрелкой)
  • Калькулятор (опционально)

Задача 2 Выберите участок потока

Рисунок 5.4


Схема трансекты 20 футов

Участок ручья, выбранный для измерения расхода, должен быть прямым (без изгибов), глубиной не менее 6 дюймов и не должен содержать области с медленной водой, например бассейн. Идеальны беспрепятственные перекаты или беговые дорожки. Выбранная длина будет равна L при решении уравнения расхода. Двадцать футов — стандартная длина, используемая во многих программах. Измерьте свою длину и отметьте верхний и нижний конец, проведя линию трансекты поперек ручья перпендикулярно берегу, используя веревку и колья (рис.5.4). Трос должен быть натянут и находиться у поверхности воды. Трансект выше по течению — это разрез №1, а нижний по течению — разрез №2.

Задача 3 Рассчитать среднюю площадь поперечного сечения

Площадь поперечного сечения (A в формуле) — произведение ширины ручья на среднюю глубину воды. Чтобы рассчитать среднюю площадь поперечного сечения для охвата исследуемого ручья, добровольцы должны определить площадь поперечного сечения для каждой трансекты, сложить результаты вместе, а затем разделить на 2, чтобы определить среднюю площадь поперечного сечения для участка протока.

Для измерения площади поперечного сечения:

  1. Рисунок 5.5


    Поперечный разрез для измерения ширины и глубины потока
  2. Определите среднюю глубину на разрезе, отметив равные интервалы вдоль струны с помощью скрученных стяжек. Интервалы могут составлять одну четвертую, половину и три четверти расстояния через ручей.Измерьте глубину воды в каждой точке интервала (рис. 5.5). Чтобы вычислить среднюю глубину для каждого разреза, разделите сумму трех измерений глубины на 4. (Вы делите на 4 вместо 3, потому что вам нужно учитывать нулевые глубины, которые встречаются на берегах). В примере, показанном на Рисунке 5.6. , средняя глубина трансекты № 1 составляет 0,575 футов, а средняя глубина трансекты № 2 составляет 0,625 футов.
  3. Определите ширину каждого разреза, измерив расстояние от береговой линии до береговой линии.Просто сложите все интервалы ширины для каждого разреза, чтобы определить его ширину. В примере на Рисунке 5.6 ширина трансекты № 1 составляет 8 футов, а ширина трансекты № 2 — 10 футов.
  4. Рассчитайте площадь поперечного сечения каждого разреза, умножив ширину на среднюю глубину. Пример, приведенный на Рисунке 5.6, показывает, что средняя площадь поперечного сечения трансекты № 1 составляет 4,60 квадратных футов, а средняя площадь поперечного сечения трансекты № 2 составляет 6,25 квадратных футов.
  5. Чтобы определить среднюю площадь поперечного сечения всего участка ручья (A в формуле), сложите среднюю площадь поперечного сечения каждой трансекты и затем разделите на 2.Средняя площадь поперечного сечения ручья на Рисунке 5.6 составляет 5,42 квадратных футов.

Задача 4 Измерение времени в пути

Добровольцы должны отсчитывать с помощью секундомера, сколько времени требуется апельсину (или другому объекту), чтобы проплыть от верхнего к нижнему разрезу. Апельсин — хороший объект для использования, потому что он обладает достаточной плавучестью, чтобы плавать чуть ниже поверхности воды. Именно в этом положении обычно возникает максимальная скорость.

Доброволец, позволяющий апельсину пройти на разрезе выше по течению, должен расположить его так, чтобы он протекал по самому быстрому течению.Часы останавливаются, когда оранжевый полностью проходит под линией разреза вниз по течению. Оказавшись под линией трансекты, апельсин можно вычерпать из воды с помощью рыболовной сети. Это измерение «времени в пути» должно быть проведено не менее трех раз, а результаты усреднены — чем больше испытаний вы проведете, тем точнее будут ваши результаты. Усредненные результаты равны T в формуле. Хорошая идея — держать апельсин на разном расстоянии от берега, чтобы получить различные оценки скорости.Вы должны отказаться от любых попыток поплавка, если объект зависает в потоке (булыжниками, корнями, обломками и т. Д.).

Задача 5 Рассчитать расход

Напомним, что расход можно рассчитать по формуле:

Продолжая пример на рис. 5.6. скажем, среднее время прохождения апельсина между трансектом №1 и №2 составляет 15 секунд, а дно ручья было каменистым. Расчет расхода:

Где:
А = 5.42 фут2
л = 20 футов
К = 0,8 (коэффициент для каменистого течения)
т = 15 секунд
Расход = 15 секунд (5,42 футов 2 ) (20 футов) (0,8) / 15 секунд.
Расход = 86,72 фута 3 /15 сек.
Расход = 5,78 фут3 / сек.

Задача 6 Записать поток в форму данных

На следующей странице волонтеры могут использовать форму для расчета расхода ручья.

Список литературы

Фонд Adopt-A-Stream. Справочник : инвентаризация водосборов и методы мониторинга водотоков, Том Мердок и Марта Чео. 1996. Эверетт, Вашингтон.

Mitchell, M.K., and W. Stapp. Полевое руководство по мониторингу качества воды. 5 -е издание . Принтеры Thompson Shore.

Команды потока Миссури. Добровольный мониторинг качества воды. Департамент природных ресурсов штата Миссури, P.O. Box 176, Джефферсон-Сити, Миссури 65102.

Форма данных для расчета расхода (PDF, 82,8 КБ)

Вам понадобится Adobe Acrobat Reader для просмотра файлов Adobe PDF на этой странице. См. Страницу EPA в формате PDF для получения дополнительной информации о получении и использовании бесплатного Acrobat Reader.

Руководство EQUATOR

Сообщите о других выполненных анализах, например, анализах подгрупп и взаимодействий, а также анализах чувствительности.

В дополнение к основному анализу в обсервационных исследованиях часто проводятся другие анализы.Они могут касаться конкретных подгрупп, потенциального взаимодействия между факторами риска, расчета связанных рисков или использовать альтернативные определения переменных исследования в анализе чувствительности.

Ведутся споры об опасностях, связанных с анализом подгрупп, и множественности анализов в целом [4,104]. По нашему мнению, существует слишком большая тенденция искать свидетельства ассоциаций, специфичных для подгрупп, или модификации меры воздействия, когда общие результаты показывают незначительный эффект или его отсутствие.С другой стороны, имеет смысл изучить, выглядит ли общая ассоциация последовательной для нескольких, предпочтительно заранее определенных подгрупп, особенно когда исследование достаточно велико, чтобы иметь достаточно данных в каждой подгруппе. Вторая область дискуссии связана с интересными подгруппами, возникшими в ходе анализа данных. Это могут быть важные открытия, но они могут возникать случайно. Некоторые утверждают, что информировать читателя обо всех проведенных анализах подгрупп не представляется ни возможным, ни необходимым, поскольку будущий анализ других данных покажет, в какой степени первые захватывающие результаты выдержат испытание временем [9].Мы рекомендуем авторам сообщать, какие анализы были запланированы, а какие нет (см. Также пункты 4, 12b и 20). Это позволит читателям судить о последствиях множественности, принимая во внимание позицию исследования в континууме от открытия до проверки или опровержения.

Третья область дебатов — это то, как следует оценивать совместные эффекты и взаимодействия между факторами риска: по аддитивной или мультипликативной шкале, или шкала должна определяться статистической моделью, которая лучше всего подходит (см. Также пункт 12b и вставку 8)? Разумный подход состоит в том, чтобы сообщить об отдельном эффекте каждого воздействия, а также о совместном эффекте — если возможно, в таблице, как в первом примере выше [183], или в исследовании Martinelli et al.[185]. Такая таблица дает читателю достаточно информации для оценки аддитивного, а также мультипликативного взаимодействия (как эти вычисления выполняются, показано во вставке 8). Доверительные интервалы для отдельных и совместных эффектов могут помочь читателю оценить достоверность данных. Кроме того, доверительные интервалы вокруг показателей взаимодействия, таких как относительный избыточный риск от взаимодействия (RERI), относятся к тестам взаимодействия или тестам однородности. Одна повторяющаяся проблема заключается в том, что авторы используют сравнения значений P по подгруппам, что приводит к ошибочным утверждениям о модификаторе эффекта.Например, статистически значимая ассоциация в одной категории (например, мужчины), но не в другой (например, женщины), сама по себе не свидетельствует об изменении эффекта. Точно так же доверительные интервалы для каждой точечной оценки иногда неправильно используются, чтобы сделать вывод об отсутствии взаимодействия при перекрытии интервалов. Более достоверный вывод достигается путем непосредственной оценки того, различается ли величина ассоциации между подгруппами.

Анализ чувствительности полезен для изучения влияния выбора, сделанного в статистическом анализе, или для исследования устойчивости результатов к отсутствующим данным или возможным ошибкам (см. Также пункт 12b).Требуется суждение относительно уровня отчетности о таких анализах. Если было выполнено много анализов чувствительности, может быть непрактично представлять подробные результаты для всех них. Иногда может быть достаточно сообщить, что анализ чувствительности был проведен и что он соответствует основным представленным результатам. Подробное представление более уместно, если исследуемый вопрос вызывает серьезную озабоченность или если оценки воздействия значительно различаются [59,186].

Покок и его коллеги обнаружили, что 43 из 73 статей, посвященных обсервационным исследованиям, содержали анализ подгрупп.Большинство заявили о различиях между группами, но только в восьми статьях сообщалось об официальной оценке взаимодействия (см. Пункт 12b) [4].

Калькулятор ширины следа

Ширина дорожки является важным параметром при проектировании печатной платы. Соответствующая ширина следа необходима для обеспечения передачи желаемого количества тока без перегрева и повреждения вашей платы. Вы можете использовать этот онлайн-инструмент для расчета минимальной ширины дорожки для данного тока и веса меди.Для более высокого тока требуются более толстые дорожки, в то время как более толстая медная масса позволяет получить более тонкие дорожки.

Входные данные

Ток (макс. 35A)

Ампер мА

Толщина меди

унций / фут²милмм мкм

Повышение температуры (макс. 100 ° C)

° C ° F

Температура окружающей среды

° C ° F

Длина проводника

дюймов / см

Данные результатов

Внутренние дорожки

Требуемая ширина дорожки

милмммм

Площадь поперечного сечения

мил²мм²

Внешние дорожки

00020002 Внешние дорожки

Требуемая ширина

0003000 Площадь

мил ² мм²

Требуемый зазор гусеницы

мил ² мкм

Таблица минимальных размеров продукции Bittele

Вес меди 0.5 унций 1 унция 2 унции 3 унции 4 унции или больше
Наружные слои Минимальная ширина следа 3мил 4мил 5мил 6мил Запрос предложений
Минимальный интервал между трассами 4мил 5мил 7мил 10мил Запрос предложений
Переходные отверстия к другому медному элементу 7мил 9мил 12мил 16мил Запрос предложений
Внутренние слои Минимальная ширина следа 3мил 3.5мил 5мил 6мил Запрос предложений
Минимальный интервал между трассами 3мил 4мил 6мил 9мил Запрос предложений
Переходные отверстия к другому медному элементу 7мил 8мил 11мил 15мил Запрос предложений

Примечания:
Формула для расчета допустимого тока через дорожку опубликована в стандартном разделе 6 IPC-2221.2, как показано ниже.


Внутренние трассы: I = 0,024 x dT 0,44 x A 0,725
Внешние трассы: I = 0,048 x dT 0,44 x A 0,725

Где I — максимальный ток в амперах, k — постоянная величина, dT — превышение температуры окружающей среды в ° C, а A — площадь поперечного сечения в миллиметрах².

Затем можно рассчитать ширину следа, переставив эту формулу, чтобы определить площадь поперечного сечения, через которую может безопасно пройти желаемый ток.2] / (Толщина [oz] * 1,378 [мил / унция])

Согласно IPC-2221 для внутренних слоев k = 0,024 и для внешних слоев: k = 0,048

Заявление об ограничении ответственности:
Эти расчеты являются отраслевыми стандартами и считается правильным, но не гарантируется. Может не подходить для всех дизайнов.

Часто задаваемые вопросы о калькуляторе ширины следа
Q: Есть ли ограничение на величину силы тока, для которой этот инструмент может рассчитать ширину?

А: Да. Данные IPC-2221, из которых получены эти формулы, охватывают только токи до 35 А, ширину следа до 400 мил, допустимое повышение температуры от 10 до 100 градусов Цельсия и медь 0.От 5 до 3 унций на квадратный фут. Если использовать за пределами этих диапазонов, этот калькулятор будет экстраполировать, что приведет к снижению точности при более высоких токах.

Q: Инстинктивно я бы предположил, что ширина внутренней дорожки должна быть меньше ширины внешней дорожки, поскольку внешняя дорожка может оторваться от платы, если будет слишком горячей. Ваш калькулятор дает противоположный результат. Почему?

A: Внешние слои имеют лучшую теплопередачу, чем внутренние слои, поскольку воздух рассеивает тепло за счет конвекции, а внутренний диэлектрик также не проводит тепло.Поскольку целью калькулятора ширины следа является предотвращение чрезмерного повышения температуры следов, он делает внутренние следы шире, поскольку они накапливают больше тепла. В случае схемы в вакууме или в герметичной сборке внешние слои не обладают преимуществом тепловой конвекции в воздухе, поэтому вы должны использовать внутреннюю ширину дорожки для всех дорожек.

В: Что в данном контексте означает повышение температуры?

A: Повышение температуры — это разница между максимальной безопасной рабочей температурой материала вашей печатной платы и типичной рабочей температурой вашей платы.Более высокий ток увеличивает температуру медных проводов, поэтому повышение температуры является расчетным параметром того, на сколько добавленного тепла вы хотите рассчитать. Основываясь на этом пределе, формула выбирает ширину, не превышающую его. Десять градусов — это безопасное практическое правило для большинства приложений. Если вам нужно уменьшить ширину дорожки, вы можете увеличить это значение, если позволяют материал печатной платы и рабочая температура.

Q: В некоторых случаях для облегчения пайки при подключении контактной площадки к большой площади меди используются терморазгрузочные линии, называемые «колесами тележки» или «спицами».Я использовал калькулятор ширины следа, и ширина, указанная для этих спиц, настолько велика, что использовать ее непрактично. Как мне их рассчитать?

A: Спицы термического разгрузки обычно очень короткие. Формула, на которой основан этот калькулятор, была определена эмпирическим путем для достаточно протяженных линий электропередачи. Цель этого калькулятора — предотвратить образование следов перегрева, поэтому, если эти спицы подключены для отвода тепла, они не должны быть такими широкими, как прогнозирует этот инструмент. Пожалуйста, обратитесь к другим ресурсам по проектированию печатных плат по этому поводу.2 * Сопротивление

Таблица удельного электрического сопротивления и проводимости

В этой таблице представлены удельное электрическое сопротивление и электропроводность некоторых материалов.

Удельное электрическое сопротивление, обозначаемое греческой буквой ρ (ро), является мерой того, насколько сильно материал противостоит прохождению электрического тока. Чем ниже удельное сопротивление, тем легче материал пропускает электрический заряд.

Электропроводность — это величина, обратная удельному сопротивлению.Электропроводность — это мера того, насколько хорошо материал проводит электрический ток. Электропроводность может быть представлена ​​греческой буквой σ (сигма), κ (каппа) или γ (гамма).

Таблица удельного сопротивления и проводимости при 20 ° C

Материал ρ (Ом • м) при 20 ° C

Удельное сопротивление
σ (См / м) при 20 ° C

Электропроводность
Серебро 1.59 × 10
−8
6,30 × 10
7
Медь 1,68 × 10
−8
5,96 × 10
7
Медь отожженная 1,72 × 10
−8
5,80 × 10
7
Золото 2,44 × 10
−8
4,10 × 10
7
Алюминий 2,82 × 10
−8
3,5 × 10
7
Кальций 3.36 × 10
−8
2,98 × 10
7
Вольфрам 5,60 × 10
−8
1,79 × 10
7
цинк 5,90 × 10
−8
1,69 × 10
7
Никель 6,99 × 10
−8
1,43 × 10
7
Литий 9,28 × 10
−8
1,08 × 10
7
Утюг 1.0 × 10
−7
1,00 × 10
7
Платина 1,06 × 10
−7
9,43 × 10
6
Олово 1,09 × 10
−7
9,17 × 10
6
Углеродистая сталь (10
10 )
1,43 × 10
−7
Свинец 2,2 × 10
−7
4,55 × 10
6
Титан 4.20 × 10
−7
2,38 × 10
6
Электротехническая сталь с ориентированной зернистостью 4,60 × 10
−7
2,17 × 10
6
Манганин 4,82 × 10
−7
2,07 × 10
6
Константан 4,9 × 10
−7
2,04 × 10
6
Нержавеющая сталь 6,9 × 10
−7
1.45 × 10
6
Меркурий 9,8 × 10
−7
1,02 × 10
6
нихром 1,10 × 10
−6
9,09 × 10
5
GaAs 5 × 10
−7 до 10 × 10
−3
5 × 10
−8 до 10
3
Углерод (аморфный) 5 × 10
−4 до 8 × 10
−4
1.От 25 до 2 × 10
3
Углерод (графит) 2,5 × 10
−6 до 5,0 × 10
−6 // базисная плоскость

3,0 × 10
−3 ⊥ базальная плоскость
от 2 до 3 × 10
5 // базисная плоскость

3,3 × 10
2 ⊥ базальная плоскость
Карбон (алмаз) 1 × 10
12
~ 10
−13
Германий 4,6 × 10
-1
2.17
Морская вода 2 × 10
-1
4,8
Питьевая вода 2 × 10
1 до 2 × 10
3
5 × 10
−4 до 5 × 10
-2
Кремний 6,40 × 10
2
1,56 × 10
−3
Дерево (влажное) 1 × 10
3 до 4
10
−4 до 10
-3
Деионизированная вода 1.8 × 10
5
5,5 × 10
−6
Стекло 10 × 10
10 до 10 × 10
14
10
−11 до 10
−15
Твердая резина 1 × 10
13
10
−14
Древесина (сушка в духовке) 1 × 10
14 до 16
10
−16 до 10
-14
Сера 1 × 10
15
10
−16
Воздух 1.3 × 10
16 до 3,3 × 10
16
3 × 10
−15 до 8 × 10
−15
Парафиновый воск 1 × 10
17
10
−18
Плавленый кварц 7,5 × 10
17
1,3 × 10
−18
ПЭТ 10 × 10
20
10
−21
тефлон 10 × 10
22 до 10 × 10
24
10
−25 до 10
−23

Факторы, влияющие на электропроводность

На проводимость или удельное сопротивление материала влияют три основных фактора:

  1. Площадь поперечного сечения: Если поперечное сечение материала велико, через него может проходить больший ток.Точно так же тонкое поперечное сечение ограничивает ток.
  2. Длина проводника: Короткий проводник позволяет току течь с большей скоростью, чем длинный провод. Это немного похоже на попытку переместить множество людей через коридор.
  3. Температура: Повышение температуры заставляет частицы вибрировать или больше двигаться. Увеличение этого движения (повышение температуры) снижает проводимость, потому что молекулы с большей вероятностью будут мешать прохождению тока.При экстремально низких температурах некоторые материалы становятся сверхпроводниками.

Ресурсы и дополнительная информация

.