Зависимость длины кабеля от сечения: Калькулятор сечения кабеля (провода) по длине, мощности и току / Калькулятор / Элек.ру

Содержание

Пример расчета сечения кабеля — Расчет сечения провода по потребляемой мощности

Для чего нужен расчёт сечения кабеля

В главную очередь, проведение этой несильно сложной процедуры необходимо для обеспечения безопасности как самого помещения, так и находящихся в нём людей. На сегодня человечеством не изобретено более удобного метода распределения и доставки электрической энергии до потребителя, как по проводам. Людям практически ежедневно необходимы услуги электрика — кто-то нуждается в подключении розетки, кому-то необходимо установить светильник и т. д.

Из этого выходит, что с операцией подбора требуемого сечения связана даже такая, казалось бы, незначительная процедура, как установка нового светильника. Что же тогда говорить о подключении электрической плиты или водонагревателя? Несоблюдение норм может привести к нарушению целостности проводки, что нередко становится причиной короткого замыкания или даже поражения электрическим током.

Если при выборе сечения кабеля допустить ошибку, и приобрести кабель с меньшей площадью проводника, то это приведёт к постоянному нагреву кабеля, что станет причиной разрушения его изоляции. Естественно, все это негативно влияет на продолжительность эксплуатации проводки — нередки случаи, когда через месяц после успешного монтажа электропроводка переставала работать, и требовалось вмешательство специалиста.

Следует помнить, что от правильно подобранного значения сечения кабеля напрямую зависит электро и пожаробезопасность в здании, а значит, и жизнь самих жильцов. Конечно, каждый собственник желает как можно больше сэкономить, но не стоит делать это ценой своей жизни, ставя её под угрозу — ведь в результате короткого замыкания может случиться пожар, который вполне может уничтожить все имущество.

Во избежание этого, перед началом электромонтажных работ следует подобрать кабель оптимального сечения. Для подбора необходимо учитывать несколько факторов:

  • общее количество электротехнических устройств, находящихся в помещении;
  • совокупную мощность всех приборов и потребляемую ими нагрузку. К полученному значению следует добавить «про запас» 20–30%;
  • затем, путём нехитрых математических расчётов, перевести полученное значение в сечение провода, учитывая при этом материал проводника.

Внимание! Ввиду более низкой электропроводимости, провода с алюминиевыми жилами должны приобретаться с большим сечением, нежели медные.

Что будет, если неправильно рассчитать сечение

Без расчета сечения проводника можно столкнуться с одной из двух ситуаций:

  • Слишком сильный перегрев проводки. Возникает при недостаточном диаметре проводника. Создает благоприятные условия для самовозгорания и коротких замыканий.
  • Неоправданные затраты на проводку. Такое происходит в ситуациях, когда были выбраны проводники избыточного диаметра. Конечно, опасности здесь нет, но кабель большего сечения стоит дороже и не столь удобен в работе.

Что еще влияет на нагрев проводов

Сопротивление проводника зависит не только от площади поперечного сечения. В связи с этим на его нагрев будут влиять:

  • Материал. Пример – у алюминия удельное сопротивление больше, чем у меди, поэтому при одинаковом сечении проводов медь будет нагреваться меньше.
  • Длина. Слишком длинный проводник приводит к большим потерям напряжения, что вызывает дополнительный нагрев. При превышении потерь уровня 5% приходится увеличивать сечение.

Как правильно определить сечение провода

С теорией закончили. Пора переходить к основному вопросу темы – как же определить требуемое сечение токонесущей жилы для различных условий эксплуатации электропроводки. Здесь возможны несколько вариантов поиска нужного результата. Выбрать можно тот, который покажется наиболее удобным или подходящим к конкретному случаю.

Расчет через допустимую плотность тока

Изо всего изложенного выше уже должно быть понятно, что главным ограничителем при выборе требуемого сечения является резистивный нагрев проводников, способный привести к плавлению изоляции, к коротким замыканиям, к перегреву окружающих материалов вплоть до вероятности самовозгорания. То есть выбираемое сечение провода должно исключать подобные явления.

Проведение точных теплотехнических расчетов – дело очень непростое. Но специалисты уже многое сделали в этом плане, так что можно воспользоваться их наработками. В частности, ими просчитана безопасная плотность тока, которая не вызывает опасного нагрева проводника до температур, способных вызвать плавление наиболее распространенной в наше время ПВХ или ПЭ изоляции. Так, для проводников, находящихся в условиях условной комнатной температуры (+20℃), эта плотность тока составляет:

Материал проводов Оптимальная плотность тока, А/мм²
Расположение проводки Открытая Закрытая
Алюминий 3.5 3
Медь 5 4

Сразу оговорим разницу между открытой и закрытой проводками.

  • Открытая встречается не столь часто. Она прокладывается по стенам или потолкам на хомутах или изоляторах, может быть воздушной — самонесущей или же удерживаться несущим тросом. К открытым проводкам можно отнести и сетевые шнуры, удлинители, если, конечно, они не намотаны на катушки, бобины и т. п.
  • Все остальное, по сути – это закрытая проводка: расположенная к кабель-каналах, коробах или гофротрубах, вмурованная в стены, проложенная в грунте и т.п. Иными словами, в любых условиях, где отсутствует нормальный теплоотвод. С опорой на этот критерий к закрытой проводке следует отнести и те участки, которые располагаются в распределительных щитах и монтажных коробках – нормального теплообмена здесь тоже нет.

Выше не зря было оговорено, что указанные показатели справедливы для комнатной температуры. Случается, что проводку приходится прокладывать в помещениях с особым температурным режимом, то есть в которых поддерживается нагрев выше обычного (предбанники, сушилки, оранжереи и т.п.) В таком случае в значение допустимой плотности тока вносятся коррективы – применяется коэффициент 0,9 на каждые 10 градусов температуры свыше + 20 ℃.

Например, на какую плотность тока следует ориентироваться, если планируется проложить медную проводку в кабель-канале для подключения ТЭНа в сушилке, в которой будет поддерживаться температура +50 ℃? По таблице плотность тока G для закрытой медной проводки равна 4 А/мм². Разница между нормой температуры и планируемым режимом равна 50 – 20 = 30 ℃. То есть понижающий коэффициент должен быть учтен трижды. Но столько это означает не 0,9 × 3, а 0,9³: G = 4 × 0,9 × 0,9 × 0,9 = 4 × 0,9³ = 4 × 0,729 = 2,92 А/мм² На этот показатель плотности и придется ориентироваться для создания безопасной в данных условиях проводки.

Еще один пример. Скажем, в уже рассмотренных условиях проводка прокладывается для подключения двух обогревателей мощностью по 750 ватт каждый. Суммарная нагрузка по мощности на линию получается: Р = 750 + 750 = 1500 Вт Пересчитаем ее в необходимый ток при напряжении 220 вольт: I = P / U = 1500 / 220 = 6.8 А Нормальная плотность тока для таких условий эксплуатации была нами подсчитана – 2,92 А/мм². То есть ничего уже не стоит подсчитать то сечение медной жилы, которое обеспечит безопасную плотность: S = I / G = 6.8 / 2.92 = 2.33 мм²

Естественно, полученное значение приводится к ближайшему с округлением в большую сторону. То есть для прокладки проводки в указанных условиях подойдет медный провод сечением 2. 5 мм². В принципе, по такому же принципу можно проводить расчеты и для любых других помещений. В том числе для линий, к которым планируется подключить несколько электрических приборов различной мощности.

При этом суммарную мощность линии можно подсчитать так: ΣP = (P₁ + Р₂ + … + Рₙ) × Кс × Кз В скобках — мощности подключаемых к линии электроприборов, от 1 до n. Кс – так называемый коэффициент спроса. Вряд ли все подключенные в линии приборы будут работать одновременно. То есть этот коэффициент учитывает вероятность их одновременного включения.

Расчет этого коэффициента – задача непростая, так как учитывает немало нюансов. Но так как наша публикация предназначена для электриков-любителей, которые в своей работе наверняка ограничиваются своими небольшими жилыми владениями, можно задачу упростить. А конкретно: при двух приборах коэффициент оставляем равным единице. При трех ÷ четырех – 0,8. Пять ÷ шесть – 0,75. Большего количества потребителей на линии в условиях дома или квартиры вряд ли встретится, но на всякий случай, если вдруг… – коэффициент 0,7.

Кз – коэффициент запаса. Величина необязательная. Но рачительный хозяин может подумать и наперед, что, возможно, через год-другой к этой же линии придется подключать и дополнительную нагрузку, о которой пока можно только догадываться. Так что имеет смысл сразу заложить резерв, приняв коэффициент, например, от 1,5 до 2,0. Но, повторимся, дело – добровольное, и этот коэффициент можно вообще исключить из расчетов.

Еще один важный нюанс. Реальная мощность электрического прибора может оказаться выше номинальной, указанной в паспорте. Это связано с понятиями активной и реактивной мощностей. Не будем вдаваться особо в физику этого явления, скажем лишь, что полная мощность для некоторых типов нагрузки рассчитывается по формуле:

  • Pп = Pn / cos φ
  • Pп — полная мощность;
  • Pn — указанная в паспорте номинальная мощность;
  • cos φ — коэффициент мощности, равный косинусу угла φ — смещения фаз тока и напряжения.

Такое смещение свойственно приборам с мощным электроприводом, с высокой индуктивной нагрузкой (трансформаторами, дросселями). Значение cos φ для такой техники также указывается в паспорте изделия. Значения номинальной мощности и cos φ на шильдике асинхронного двигателя. В бытовых условиях подобные приборы встречаются нечасто, но все же если линия проводится, скажем, для питания мощного насоса, компрессора, электродвигателя, для сварочного поста – лучше этим показателем не манкировать.

А теперь можно попробовать произвести полный расчет с учетом всего сказанного выше. Для этого читателю предлагается онлайн-калькулятор.

В поля ввода программы необходимо ввести запрашиваемые данные:

  • Какая проводка будет использоваться: медная или алюминиевая, расположенная открыто или закрытая.
  • Напряжение в планируемой линии.
  • Если в помещении предполагается какой-то специфический температурный режим, то это следует указать – выбрать из предлагаемых вариантов. Температура в комнате ниже +25℃ будет считаться нормальной – она стоит в перечне первой и учитывается по умолчанию.
  • Далее, указывается мощность планируемой к подключению нагрузки. Предусмотрено до 6 разных единиц – для бытовых условий этого обычно достаточно. При этом если поле не заполняется, то мощность считается равной нулю, то есть поле в расчет не принимается.

Два последних поля позволяют учесть нагрузку с реактивной составляющей мощности, если таковая есть. Для этого помимо номинала необходимо указать и значение cos φ. По умолчанию cos φ = 0, то есть как для обычной активной нагрузки.

  • В зависимости от количества подключаемых к линии приборов в алгоритме автоматически учитывается коэффициент спроса.
  • Наконец, пользователь может заложить резерв мощности, повысив коэффициент запаса, от 1 до 2 с шагом 0,1.

Результат расчета будет выдан в квадратных миллиметрах сечения жилы провода (кабеля) с точностью до сотой. Естественно, после этого придется сделать округление до ближайшего стандартного размера в большую сторону.

Расчет сечения по мощности потребителей

Основное назначение проводников – доставка электрической энергии к потребителям в необходимом количестве. Поскольку в обычных условиях эксплуатации сверхпроводники не доступны, приходится принимать в расчет сопротивление материала проводника. Расчет необходимого сечения проводников и кабелей в зависимости от общей мощности потребителей основан на продолжительном опыте эксплуатации.

Сечение кабеля – одна из основных величин в подборе его для устройства проводки. Сечение определяет, какой мощности ток способен проводить кабель без перегрева из-за превышения мощности. Основой кабеля является однопроволочная или многопроволочная медная жила, которая в сечении может быть круглой, треугольной или прямоугольной. Если в проводнике больше двух жил, то они чаще всего скручиваются. Номинальное сечение многожильных изделий представляет собой сумму сечений всех имеющихся жил.

Общий ход вычислений начнем с того, что сначала проводим расчеты, используя формулу: P = (P1+P2+..PN)*K*J,

Где:

  • P – мощность всех потребителей, подключенных к рассчитываемой ветке в Ваттах.
  • P1, P2, PN – мощность первого потребителя, второго, n-го соответственно, в Ваттах.

Получив результат по окончанию вычислений по вышеприведенной формуле, настал черед обратиться к табличным данным.

Теперь предстоит выбор необходимого сечения по таблице 1.

Таблица 1. Сечение жил проводов всегда необходимо выбирать в ближайшую большую сторону (+)

Этап #1 — расчет реактивной и активной мощности

Мощности потребителей указаны в документах на оборудование. Обычно в паспортах оборудования указана активная мощность вместе с  реактивной мощностью. Устройства с активным видом нагрузки превращают всю полученную электрическую энергию, с учетом КПД,  в полезную работу: механическую, тепловую или в другой ее вид.

К устройствам с активной нагрузкой относятся лампы накаливания, обогреватели, электроплиты. Для таких устройств расчет мощности по току и напряжению имеет вид: P = U * I,

Где:

  • P – мощность в Вт;
  • U – напряжение в В;
  • I – сила тока в А.

Устройства с реактивным видом нагрузки способны накапливать энергию поступающую от источника, а затем возвращать. Происходит такой обмен за счет смещения синусоиды силы тока и синусоиды напряжения.

При нулевом смещении фаз мощность P=U*I всегда имеет положительное значение. Такой график фаз силы тока и напряжения имеют устройства с активным видом нагрузки (I, i – сила тока, U, u – напряжение, π – число пи, равное 3,14)

К устройствам с реактивной мощностью относятся электродвигатели, электронные приборы всех масштабов и назначений, трансформаторы.

Когда есть смещение фаз между синусоидой силы тока и синусоидой напряжения, мощность P=U*I может быть отрицательной (I, i – сила тока, U, u – напряжение, π – число пи, равное 3,14). Устройство с реактивной мощностью возвращает накопленную энергию обратно источнику

Электрические сети построены таким образом, что могут производить передачу электрической энергии в одну сторону от источника к нагрузке. Поэтому возвращенная энергия потребителя с реактивной нагрузкой является паразитной и тратится на нагрев проводников и других компонентов. Реактивная мощность имеет зависимость от угла смещения фаз между синусоидами напряжения и тока. Угол смещения фаз выражают через cosφ.

Для нахождения полной мощности применяют формулу: P = Q / cosφ,

Где Q – реактивная мощность в ВАрах.

Обычно в паспортных данных на устройство указана реактивная мощность и cosφ.

Пример: в паспорте на перфоратор указана реактивная мощность 1200 ВАр и cosφ = 0,7. Следовательно, общая потребляемая мощность будет равна:

P = 1200/0,7 = 1714 Вт

Если cosφ найти не удалось, для подавляющего большинства электроприборов бытового назначения cosφ можно принять равным 0,7.

Этап #2 — поиск коэффициентов одновременности и запаса

K – безразмерный коэффициент одновременности, показывает сколько потребителей одновременно может быть включено в сеть. Редко случается, чтобы все устройства одновременно потребляли электроэнергию. Маловероятна одновременная работа телевизора и музыкального центра. Из устоявшейся практики K можно принять равным 0,8. Если Вы планируете использовать все потребители одновременно, K следует принять равным 1.

J – безразмерный коэффициент запаса. Характеризует создание запаса по мощности для будущих потребителей. Прогресс не стоит на месте, с каждым годом изобретаются все новые удивительные и полезные электрические приборы. Ожидается, что к 2050 году рост потребления электроэнергии составит 84%. Обычно J принимается равным от 1,5 до 2,0.

Этап #3 — выполнение расчета геометрическим методом

Во всех электротехнических расчетах принимается площадь поперечного сечения проводника – сечение жилы. Измеряется в мм². Часто бывает необходимо узнать, как грамотно рассчитать сечение провода по диаметру проволоки проводника. В этом случае есть простая геометрическая формула для монолитного провода круглого сечения: S = π*R2 = π*D2/4, или наоборот D = √(4*S / π)

Для проводников прямоугольного сечения: S = h * m,

Где:

  • S – площадь жилы в мм2;
  • R – радиус жилы в мм;
  • D – диаметр жилы в мм;
  • h, m – ширина и высота соответственно в мм;
  • π – число пи, равное 3,14.

Если Вы приобретаете многожильный провод, у которого один проводник состоит из множества свитых проволочек круглого сечения, то расчет ведут по формуле:

S = N*D2/1,27,

Где N – число проволочек в жиле.

Провода, имеющие свитые из нескольких проволочек жилы , в общем случае имеют лучшую проводимость, чем монолитные. Это обусловлено особенностями протекания тока по проводнику круглого сечения. Электрический ток представляет собой движение одноименных зарядов по проводнику. Одноименные заряды отталкиваются, поэтому плотность распределения зарядов смещена к поверхности проводника.

Другим достоинством многожильных проводов является их гибкость и механическая стойкость. Монолитные провода дешевле и применяют их в основном для стационарного монтажа.

Этап #4 —рассчитываем сечение по мощности на практике

Задача: общая мощность потребителей на кухне составляет 5000 Вт (имеется ввиду, что мощность всех реактивных потребителей пересчитана). Все потребители подключаются к однофазной сети 220 В и имеют запитку от одной ветки.

Таблица 2. Если вы планируете в будущем подключение дополнительных потребителей, в таблице представлены необходимые мощности распространенных бытовых приборов.

Решение:

Коэффициент одновременности K примем равным 0,8. Кухня место постоянных инноваций, мало ли что, коэффициент запаса J=2,0. Общая расчетная мощность составит: P = 5000*0,8*2 = 8000 Вт = 8 кВт Используя значение расчетной мощности, ищем ближайшее значение в таблице 1.

Ближайшим подходящим значением сечения жилы для однофазной сети является медный проводник с сечением 4 мм². Аналогичный размер провода с алюминиевой жилой 6 мм². Для одножильной проводки минимальный диаметр составит 2,3 мм и 2,8 мм соответственно. В случае применения многожильного варианта сечение отдельных жил суммируется.

Как рассчитать сечения кабеля по мощности

При достаточном значении сечения кабеля электрический ток будет проходить до потребителя, не вызывая нагрева. Почему происходит нагрев? Постараемся объяснить максимально доступно. К примеру, в розетку включён чайник потребляемой мощностью 2 киловатта, но идущий к розетке провод может передать для него ток мощностью только 1 киловатт. Пропускная способность кабеля связана с сопротивлением проводника — чем оно больше, тем меньший ток может передаваться по проводу. В результате высокого сопротивления в проводке и происходит нагрев кабеля, постепенно разрушающий изоляцию.

При соответствующем сечении электрический ток доходит до потребителя в полном объёме, и нагревание провода не происходит. Поэтому, проектируя электропроводку, следует учитывать потребляемую мощность каждого электрического прибора. Это значение можно узнать из технического паспорта на электроприбор или из наклеенной на нём этикетки. Суммируя максимальные значения и используя нехитрую формулу:

I=(P1+P2+…+Pn)/220

и получаем значение общей силы тока. Pn обозначает указанную в паспорте мощность электроприбора, 220 – номинальный вольтаж. Для трехфазной системы (380 В) формула выглядит так:

I=(P1+P2+…. +Pn)/√3/380.

Полученное значение I измеряется в Амперах, и на основании него и подбирается соответствующее сечение кабеля. Известно, что пропускная способность медного кабеля составляет 10 А/мм, для алюминиевого кабеля значение пропускной способности составляет 8 А/мм. Для того чтоб рассчитать сечение кабеля нужно величину тока разделить на 8 или 10, в зависимости от вида кабеля. Полученный результат и будет размером сечения кабеля.

Например рассчитаем величину сечения кабеля для подключения стиральной машины, потребляемая мощность которой составляет 2400 Вт. I=2400 Вт/220 В=10,91 А, округлив получаем 11 А.

Дальше, чтоб увеличить запас прочности, согласно правилу “пяти ампер” к полученному значению силы тока нужно прибавить еще 5 А: 11 А+5 А=16 А. Если учитывать, что в квартирах используют трехжильные кабеля и посмотреть по таблице, то к 16 А близкое значение 19 А, поэтому для установки стиральной машины потребуется провод, сечение которого не меньше 2 мм².

Откры-
то
в одной трубе
двух одно-
жильных
трех одно-
жильных
четырех одно-
жильных
одного двух-
жильного
одного трех-
жильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830

Формула расчета сечения кабеля по мощности

Позволяет подобрать сечение по потребляемой мощности и напряжению.

Для однофазных электрических сетей (220 В): I = (P × K и ) / (U × cos(φ) )

где:

  • cos(φ) — для бытовых приборов, равняется 1
  • U — фазовое напряжение, может колебаться в пределах от 210 V до 240 V
  • I — сила тока
  • P — суммарная мощность всех электрических приборов
  • K и — коэффициент одновременности, для расчетов принимается значение 0,75

Для 380 в трехфазных сетях: I = P / (√3 × U × cos(φ))

Где:

  • Cos φ — угол сдвига фаз
  • P — сумма мощности всех электроприборов
  • I — сила тока, по которой выбирается площадь сечения провода
  • U — фазное напряжение, 220V

Как выбрать сечения проводника

Существует ещё несколько критериев, которым должно соответствовать сечение используемых проводов:

  1. Длина кабеля. Чем больше провод по длине, тем большие в нём наблюдаются потери тока. Это происходит опять-таки в результате увеличения сопротивления, нарастающего по мере увеличения длины проводника. Особенно это ощущается при использовании алюминиевой проводки. При применении медных проводов для организации электропроводки в квартире, длина, как правило, не учитывается — стандартного запаса в 20–30% (при скрытой проводке) с лихвой достаточно, чтобы компенсировать возможные увеличения сопротивления, связанные с длиной провода.
  2. Тип используемых проводов. В бытовом электроснабжении используются 2 типа проводников — на основе меди или алюминия. Медные провода качественнее и обладают меньшим сопротивлением, но зато алюминиевые дешевле. При полном соответствии нормам, алюминиевая проводка справляется со своими задачами не хуже медной, так что необходимо тщательно взвесить свой выбор перед покупкой провода.
  3. Конфигурация электрощита. Если все провода, питающие потребителей, подключены к одному автомату, то именно он и будет являться слабым местом в системе. Сильная нагрузка приведёт к нагреву клеммных колодок, а несоблюдение номинала к его постоянному срабатыванию. Рекомендуется разделять электропроводку на несколько «лучей» с установкой отдельного автомата.

Для того, чтобы определить точные данные для выбора сечения кабелей электрической проводки, необходимо учитывать любые, даже самые незначительные параметры, такие как:

  1. Вид и тип изоляции электрической проводки;
  2. Длина участков;
  3. Способы и варианты прокладки;
  4. Особенности температурного режима;
  5. Уровень и процент влажности;
  6. Максимально возможная величина перегрева;
  7. Разница в мощностях всех приемников тока, относящихся к одной и той же группе. Все эти и многие другие показатели позволяют значительно увеличить эффективность и пользу от использования энергии в любых масштабах. Кроме того, правильные расчеты помогут избежать случаев перегревания или быстрого истирания изоляционного слоя.

Для того, чтобы правильно определить оптимальное кабельное сечение для любых человеческих бытовых нужд, необходимо во всех общих случаях использовать стандартизированные следующие правила:

  • для всех розеток, которые будут монтироваться в квартире, необходимо использовать провода с соответствующим сечением в 3,5 мм²;
  • для всех элементов точечного освещения необходимо использовать кабеля электрической проводки с сечением в 1,5 мм²;
  • что же касается приборов повышенной мощности, то для них следует использовать кабеля с сечением в 4-6 мм².

Если в процессе монтажа или расчетов возникают некоторые сомнения, лучше не действовать вслепую. Идеальным вариантом будет обратиться к соответствующей таблице расчетов и стандартов.

Сечение жил, проводящих ток (мм) Медные жилы проводов и кабелей
Напряжение 220 В Напряжение 380 В
Ток (А) Мощность (кВТ) Ток (А) Мощность (кВТ)
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 80 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 265 57,2 220 145,2
120 300 66 260 171,6

Таблица сечения алюминиевого кабеля

Сечение жил, проводящих ток (мм) Алюминиевые жилы проводов и кабелей
Напряжение 220 В Напряжение 380 В
Ток (А) Мощность (кВТ) Ток (А) Мощность (кВТ)
2,5 22 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44 170 112,2
120 230 50,6 200 132

От верно подобранного сечения кабеля напрямую зависит безопасность объекта — поэтому необходимо подойти к процедуре выбора со всей ответственностью. Рекомендуется также проконсультироваться со специалистами перед приобретением проводов — опытный электрик подскажет наиболее оптимальный вариант.

Экономия при покупке часто выходит боком — нередко владельцы квартир или домов приобретают алюминиевый кабель взамен медного, не учитывая тот факт, что его сечение должно быть больше. В итоге смонтированная электропроводка сильно греется, и в течение достаточно малого времени требуется полная замена проводов, что не слабо ударит по кошельку собственника жилья. К тому же, это ещё и чрезвычайно опасно – многие любители сэкономить остались в итоге без крыши над головой.

Если возникли сомнения в собственных силах, рекомендуется обратиться к специалисту — только в этом случае можно гарантировать безопасность для жильцов и продолжительность работы новой электропроводки.

Выбор по таблице

Зная диаметр провода, можно определить его сечение по готовой таблице зависимости. Таблица расчета сечения кабеля по диаметру жилы выглядит таким образом:

Диаметр проводника, мм Сечение проводника, мм2
0. 8 0.5
1 0.75
1.1 1
1.2 1.2
1.4 1.5
1.6 2
1.8 2.5
2 3
2.3 4
2.5 5
2.8 6
3.2 8
3. 6 10
4.5 16

Когда сечение известно, можно определить значения допустимых мощности и тока для медного или алюминиевого провода. Таким образом удастся выяснить, на какие параметры нагрузки рассчитана токопроводящая жила. Для этого понадобится таблица зависимости сечения от максимального тока и мощности.

В воздухе (лотки, короба,пустоты,каналы) Сечение,кв.мм В земле
Медные жилы Алюминиевые жилы Медные жилы Алюминиевые жилы
Ток. А Мощность, кВт Тон. А Мощность, кВт Ток, А Мощность, кВт Ток. А Мощность,кВт
220 (В) 380 (В) 220(В) 380 (В) 220(В) 380 (В) 220(В)
19 4.1 17.5 1,5 77 5. 9 17.7
35 5.5 16.4 19 4.1 17.5 7,5 38 8.3 75 79 6.3
35 7.7 73 77 5.9 17.7 4 49 10.7 33. S 38 8.4
*2 9.7 77.6 37 7 71 6 60 13.3 39.5 46 10.1
55 17.1 36.7 47 9.7 77.6 10 90 19.8 S9. 7 70 15.4
75 16.5 49.3 60 13.7 39.5 16 115 753 75.7 90 19,8
95 70,9 67.5 75 16.5 49.3 75 150 33 98. 7 115 75.3
170 76.4 78.9 90 19.8 59.7 35 180 39.6 118.5 140 30.8
145 31.9 95.4 110 74.7 77.4 50 775 493 148 175 38. 5
ISO 39.6 118.4 140 30.8 97.1 70 775 60.5 181 710 46.7
770 48.4 144.8 170 37.4 111.9 95 310 77.6 717.7 755 56. 1
760 57,7 171.1 700 44 131,6 170 385 84.7 753.4 795 6S
305 67.1 700.7 735 51.7 154.6 150 435 95.7 786.3 335 73. 7
350 77 730.3 770 59.4 177.7 185 500 110 379 385 84.7

 

Заключение

Теперь вы знаете, как произвести расчет сечения провода по потребляемой мощности (определение важных характеристик и прочих мелких факторов вам отныне известно). Исходя из всех вышеперечисленных данных, вы сможете самостоятельно, не прибегая к помощи профессионалов, составить правильно план электроснабжения для своего дома или квартиры.

Полезное видео по теме

Расчет сечения проводника по формулам:

Источники

  • http://remontnichok.ru/elektrichestvo/raschet-secheniya-kabelya-po-moshchnosti-prakticheskie-sovety-ot-professionalov
  • https://www.boncom.by/papers/raschet-secheniya-kabelya
  • https://stroyday.ru/stroitelstvo-doma/elektroxozyajstvo/raschet-secheniya-kabelya-po-toku.html
  • https://sovet-ingenera.com/elektrika/provodka/raschyot-secheniya-kabelya.html
  • https://220-help.su/cable-sechenie/
  • https://SystemsSec.ru/info/calc/raschet-secheniya-kabelya-po-diametru/
  • https://FB.ru/article/246807/raschet-secheniya-provoda-po-potreblyaemoy-moschnosti-osobennosti-rascheta

Ошибки электриков. 2. Номиналы, Уставки, УЗО

1. Как подобрать сечение кабеля?


С чего начать? Начну с того, что ПВС 2х1. 5 на 80А автомате — это неправильно. И я такое встречал. Иногда кажется люди с отверткой не могут прочитать номинал на автомате, особенно Tmax и чем-то большем обычной модульки.


Я хотел начать с ПУЭ, но честно, там так мутно все написано, что даже не хочется копать. Я взял хорошую книжку, авторитетного издания. Вытащил самые нужные сведения — и вот они, на картинке ниже.

Выбор сечения проводника по способу прокладки. БЕЗ ПОНИЖАЮЩИХ КОЭФФИЦИЕНТОВ!


Откуда вообще ограничения? Скорее всего из температурного режима работы кабелей. Если кабель будет нагрет больше положенного, изоляция начнет стареть, а это уже напрямую сокращение срока службы кабеля. Отсюда следует, что именно температура имеет большое значение в выборе сечения.


С таблицей все вроде бы просто — берем 2.5 мм2 — в стене, однофазный ток, получается 18.5 А для ПВХ изоляции. Ок. Но это не простая табличка. А профессиональная. Поэтому не спешите.


Ошибка №1 — воспользоваться не той таблицей подбора сечения кабеля.  Я видел множество этих таблиц, и многие из них для резиновых кабелей, для земли, для алюминия. Нужно понимать откуда и для какой ситуации прокладки составлена таблица

2. Сечение кабеля — способ прокладки


Чем больше кабелей лежит рядом друг с другом, тем хуже теплоотвод из центра пучка. Или из-под нижних кабелей в лотке, когда наложено несколько слоев. А значит, нужно чем-то это ухудшение режима работы компенсировать. Чем? Конечно же снижением подводимой мощности или увеличением сечения.

Таблица понижающих коэффициентов для прокладки в пучках


Если мы хорошенько теплоизолируем кабель, например, ватой, то теплоотвод ухудшится. А если положим в сырую землю — теплоотвод улучшится. Из этого следует, что кабель в гофре в стене каркасного дома, теплоизолированного ватой, будет греться несколько больше, а охлаждаться меньше.


Ошибка №2 — не учет влияния соседних кабелей как понижающего коэффициента.  Если взять 5 кабелей в пучок — уже теряем 40% от нагрузочной способности. Возможно европейская табличка преувеличивает наши проблемы, но не я её придумал.

3. Сечение кабеля — температура среды


Следующей ошибкой является не учитывание температуры среды в которой будет работать кабель. Летом в коттеджах на чердаке бывает достаточно жарко. В подвалах, рядом с трубами ГВС и теплоснабжения, особенно не теплоизолированными, тоже весьма жарко.

Учет температуры окружающей среды для поправки к току кабеля


В прохладе кабель имеет запас по допустимому току, а в жаре наоборот. Это следует учитывать при выборе автоматических выключателей, и нагрузке. В целом это работа проектировщиков, они знают больше и лучше. Но ситуации бывают разные, и монтажники, да и заказчики вполне несут ответственность за свою работу или объект. Поэтому, если вы вдруг столкнулись с выбором сечения кабеля — берите с запасом.


Ошибка №3 — не учет влияния температуры в месте прокладки как понижающего коэффициента.  Если температура окружающей среды 35 градусов — следует снизить максимальный ток на 5%. Если 45 градусов — 12-15%.

4. Сечение кабеля — длина и общая удаленность потребителя


Помните, чем выше нагрузка, тем больше сказывается удаленность на падении напряжения. На рисунке ниже можно видеть, как примерно снижается допустимый ток кабеля, в зависимости от удаленности.

При однофазной системе электропроводки и номинальном напряжении 230 В максимальную длину кабеля делят на два — ЗЕЛЕНЫМ ЦВЕТОМ для 220В


Эта номограмма (рисунок выше) не учитывает все, что было написано в предыдущих главах, а показывает только зависимость падения напряжения от длины в пересчете на ток нагрузки, пригодный для недопущения падения напряжения ниже 95% от номинального.


Ошибка №4 — не учет падения напряжения на удаленных нагрузках. Для тонких кабелей, применяемых для обычных розеток и освещения — это влияние наиболее сильно. Очень легко набрать 50 метров длины кабеля 3х1.5 — и допустимый ток нагрузки уже следует снижать до 6 Ампер, чтобы избежать падения напряжения сверх норматива.

5. Данные производителя


Иногда, в минуты сомнений, я обращаюсь к данным производителя конкретного кабеля. Обычно они имеют сайт и там есть максимальные токи для конкретного кабеля.


Есть еще один нюанс — если сопротивление кабеля по пути фаза-КЗ-ноль, измеренном от щита, превысит сопротивление, ток в котором не выключает автомат, то кабель сгорит от КЗ. Но по моим расчетам это может произойти при достаточно больших длинах, либо явном превышении уставки автоматического выключателя. Следует учесть время-токовую характеристику автоматического выключателя, защищающего линию.

Сечение и длина медного кабеля, однофазное короткое замыкание которого даст ток, указанный в таблице

Заключение


Все изложенное выше, показывает, что на допустимый ток влияет множество параметров, и большинство из них снижает длительный допустимый ток кабеля. Поэтому при выборе автоматического выключателя ориентируйтесь на меньший ток, чем указано в вашей табличке. Это будет более безопасно, и более надежно.

Таблица и формулы расчета максимальных длин медных кабелей (проводов) в метрах в зависимости от мощности электромотора (электродвигателя), тока и сечения провода.

Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Оборудование / / Электродвигатели. Электромоторы.  / / Таблица и формулы расчета максимальных длин медных кабелей (проводов) в метрах в зависимости от мощности электромотора (электродвигателя), тока и сечения провода.

Поделиться:   





Таблица и формулы расчета максимальных длин медных кабелей (проводов) в метрах в зависимости от мощности электромотора (электродвигателя), тока и сечения провода.


Данные методички по скважинным насосам Грундфос для 3% падения напряжения в подводке — вполне универсальные.

1х230В. Таблица для максимальных длин медных кабелей (проводов) в метрах в зависимости от мощности электромотора (электродвигателя), тока и сечения провода









Двигатель Сечение медного кабеля
кВт In, A 1,5 мм2 2,5 мм2 4 мм2 6 мм2 10 мм2
0.37 4.0 111 185 295 440 723
0.55 5.8 80 133 211 315 518
0.75 7.5 58 96 153 229 377
1.1 7.3 48 79 127 190 316
1.5 10.2 34 57 92 137 228
2.2 14

43 68 102 169

Для расчета максимальной длины медного кабеля при напряжении питания 1х230В также можно воспользоваться следующей формулой:

  • L = (U*ΔU) / (In * 2 * 100 * (Cosφ * p/q + Sinφ * XL))        (м)
    • U — номинальное напряжение, В
    • ΔU — падение напряжения, % (ΔU = 3%)
    • I — номинальный ток электродвигателя, А
    • p — удельное сопротивление, равное 0,02 Ом*мм2
    • q — поперечое сечение кабеля, мм2
    • Cosφ — коэффициент мощности
    • Sin2φ = (1- Cos2φ)
    • XL — индуктивное сопротивление, равное 0,078 х 10-3Ом/м

Ниже, в таблице для 3х400В длины даны для прямого подключения.

Для соединения по схеме «звезда-треугольник» допустимая длина кабеля выше в 1,73 раза, чем при прямом подключении 3х400 В

Для пересчета подключения 3х400В на другие напряжения используют формулу:

L = U/400B * Ltab, где Ltab — табличная величина длины провода, м.

Пример: 500 В, Ltab = 100 м;  (500 В/400 В) * 100 м = 125 м.

      • Если в таблицах величину 100 м задают как максимальную длину провода, то при том же значении тока для напряжения 500 В получают максимальную длину 125 м.
    • Пример: напряжение 380 В, длина Ltab = 42 м;  (380 В / 400 В) * 42 м = 40 м.
      • Полученная из таблиц максимальная длина провода, составившая 42 м, при том же значении тока для напряжения 380 В уменьшается до 40 м.

3х400В , прямое подключение. Таблица максимальных длин медных кабелей (проводов) в метрах в зависимости от мощности электромотора (электродвигателя), тока и сечения провода




































Максимальный ток 18.5 А 25 А 34 А 43 А 60 А 80 А 101 А 126 А 153 А 196 А 238 А 276 А 319 А 364 А 430 А 497 А
Двигатель Сечение медного провода, мм2
кВт In,А Cosφ 1,5 мм2 2,5 мм2 4 мм2 6 мм2 10 мм2 16 мм2 25 мм2 35 мм2 50 мм2 70 мм2 95 мм2 120 мм2 150 мм2 185 мм2 240 мм2 300 мм2
0.37 1.4 0.64 192 318 506 752


0.55 2.2 0.64 122 203 322 479 783


0.75 2.3 0.72 104 173 275 406 672


1.1 3.4 0.72 70 117 186 277 455 712


1.5 4.2 0.75 55 91 145 215 354 556 844


2.2 5.5 0.82 38 64 101 151 249 393 599 818


3.0 7.85 0.77 29 47 75 112 185 291 442 601 822


4.0 9.6 0.8 22 37 59 89 146 230 350 477 656 874


5.5 13 0.81 16 27 43 65 107 168 256 349 480 641 821 983


7.5 18.8 0.78

20 31 46 76 120 183 248 340 452 577 687 804 923


5.5 13.6 0.77 16 27 44 65 107 168 255 347 475 629 801 953


7.5 17.6 0.8 12 20 32 48 80 125 191 260 358 477 610 728 855 984


9.2 21.8 0.81

16 26 39 64 100 153 208 287 382 490 586 689 795 935
11.0 24.8 0.83

14 22 33 55 86 132 180 248 332 427 512 604 699 826 942
13.0 30.0 0.81

19 28 46 73 111 151 208 278 356 426 501 577 680 772
15.0 34.0 0.82

24 37 64 97 132 182 244 313 375 441 510 601 684
18.5 42.0 0.81

20 33 52 79 108 149 198 254 304 358 412 486 551
22 48.0 0.84

28 44 67 92 127 170 220 264 312 361 428 489
26 57.0 0.84

24 37 57 78 107 144 185 222 263 304 361 412
30 66.5 0.83

32 49 67 92 124 159 191 225 261 308 351
37 85.5 0.79

40 54 74 99 126 150 176 203 238 269
22 48.0 0.84

28 44 67 92 127 170 220 264 312 361 428 489
26 56.5 0.85

23 37 57 78 107 144 186 224 265 307 365 418
30 64.0 0.85

33 50 68 95 127 164 197 234 271 322 369
37 78.5 0.85

27 41 56 77 104 134 161 191 221 263 301
45 96.5 0.82

34 47 64 86 110 132 155 180 212 241
55 114 0.85

38 53 71 92 111 131 152 181 207
63 132 0.83

47 62 80 96 113 131 155 177
75 152 0.86

40 53 69 83 98 114 136 156
92 186 0.86

43 56 68 80 94 111 128
110 224 0.87

47 56 67 78 93 107
75 156 0.84

52 68 81 96 111 132 151
92 194 0.82

43 55 66 77 89 105 120
110 228 0.84

46 56 66 76 90 103
132 270 0.84

47 55 64 76 87
147 315 0.81

48 55 65 74
170 365 0.81

56 63
190 425 0.79

48 54
147 305 0.83

49 57 67 77
170 345 0.85

50 60 68
190 390 0.84

53 60
220 445 0.85

53
250 505 0.85


Двигатель Сечение медного провода, мм2
кВт In,А Cosφ 1,5 мм2 2,5 мм2 4 мм2 6 мм2 10 мм2 16 мм2 25 мм2 35 мм2 50 мм2 70 мм2 95 мм2 120 мм2 150 мм2 185 мм2 240 мм2 300 мм2
Максимальный ток 18.5 А 25 А 34 А 43 А 60 А 80 А 101 А 126 А 153 А 196 А 238 А 276 А 319 А 364 А 430 А 497 А

Для расчета максимальной длины медного кабеля при напряжении питания 3х400В также можно воспользоваться следующей формулой:

  • L = (U*ΔU) / (In * 1.73 * 100 * (Cosφ * p/q + Sinφ * XL))    (м)
    • U — номинальное напряжение, В
    • ΔU — падение напряжения, % (ΔU = 3%)
    • I — номинальный ток электродвигателя, А
    • p — удельное сопротивление, равное 0,02 Ом*мм2
    • q — поперечое сечение кабеля, мм2
    • Cosφ — коэффициент мощности
    • Sin2φ = (1- Cos2φ)
    • XL — индуктивное сопротивление, равное 0,078 х 10-3Ом/м


Поиск в инженерном справочнике DPVA. Введите свой запрос:


Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
Free xml sitemap generator

по мощности, силе тока, длине

В зависимости от потребляемой мощности оборудования, рассчитывается сечение кабеля, которое зависит от силы тока, напряжения и длине самого кабеля. Производители кабельной продукции предлагают рынку богатый ассортимент, разобраться в котором и выбрать то, что нужно не просто.

От правильного выбора зависит не только его стоимость, но и электробезопасность при эксплуатации электрооборудования. Если сечение кабеля рассчитано неправильно и оно значительно ниже требуемого, то это может привести к перегреву изоляции, короткому замыканию и возможному возгоранию, что приведет к пожару.

Затраты на устранение последствий от такой ситуации несоизмеримы с теми, которые нужны чтобы выполнить грамотный расчет проводки, даже с привлечением специалиста.

В этой статье предлагается простая методика расчета сечения проводника, которая окажет методическую помощь, желающим самим правильно рассчитать и смонтировать кабельную проводку.

Содержание статьи

Расчет по мощности электроприборов

Любой кабель или провод, в зависимости от материала из которого он изготовлен, может выдержать определенную (номинальную) силу тока, а она имеет прямую зависимость от его сечения и длины. Определить общую потребляемую мощность всех установленных приборов не сложно. Для этого составляется перечень всего оборудования с указанием потребляемой мощности каждой единицы. Все указанные значения суммируются.

Этот расчет выполняется по следующей формуле:
Pобщ = (P1+P2+P3+…+Pn)×0.8

Где:

  • Pобщ – общая сумма всех нагрузок.
  • (P1+P2+P3+…+Pn) – потребляемая мощность каждого оборудования.
  • 0,8 – это поправочный коэффициент, который характеризует степень загрузки всех приборов. Обычно приборы редко когда используются одновременно. Такие, как фен, пылесос или электрокамин, используются довольно редко

Полученная сумма будет использоваться для дальнейшего расчета.

Таблицы, по которым выбирается сечение кабеля

Расчет для алюминиевого проводаРасчет для медного провода

Выбрать нужное сечение по данным таблицы не так, сложно. По установленной мощности, величине напряжения и тока, выбирается размер сечения кабеля для закрытой и открытой проводки. Так же подбирается и материал, из которого изготовлен кабель.

На примере это будет выглядеть так: допустим общая потребляемая мощность электроэнергии в доме составила 13 кВт. Если это значение умножить на поправочный коэффициент 0.8, то номинальная потребляемая мощность составит 10.4 кВт. По таблице выбирается близкая по значению величина мощности. В данном случае для однофазной сети будет число 10.1 кВт, а для трехфазной 10.5 кВт. Для этих значений потребляемой мощности, выбирается сечение 6 мм2 и 1.5 мм2 соответственно.

Расчет сечения кабеля по силе тока

Если расчет по мощности не такой уж точный, то расчет по силе тока может дать самые оптимальные размеры сечения кабеля, что довольно важно, если используется медный кабель и в большом количестве.

Для начала необходимо определить токовую нагрузку на всю электропроводку. Она складывается из такой нагрузки для каждого из приборов и рассчитываются по таким формулам.

Для однофазной сети применяется следующая формула: I= P:(Uˑcos), а для трехфазной I=P÷√3×Uˑcos

Где:

  • I- сила тока
  • U – напряжение в сети
  • Cos – коэффициент мощности

Полученные таким способом расчета данные суммируются, и определяется токовая нагрузка на всю проводку. Из таблицы подбираются точные размеры сечения для всей сети. В таблице имеются значения для открытой и закрытой проводки. Они значительно отличаются друг от друга.

Таблица по выбору сечения кабеля в зависимости от силы тока.

Соотношения диаметра жил к токовым нагрузкам

Расчет по длине кабеля

В любом проводнике, сопротивление тока зависит от его длины. На этом свойстве и основан третий способ расчета сечения кабеля. Чем длиннее проводник, тем больше потери в сети. Если они превышают более 5%, то выбирают кабель с большим сечением.

Для определения сечения кабеля определяют суммарную мощность всех установленных приборов и силу тока, который будет протекать по проводнику. Для этого можно использовать, выше приведенную форму расчета. Далее выполняется расчет сопротивления проводки по следующей формуле:

  • R=(p×L)÷S, где p — удельное сопротивление проводника, которое приводится в специальных таблицах;
  • L – длина проводника в метрах, умножается на два, так как ток течет по фазному и нулевому проводу;
  • S- площадь поперечного сечения кабеля.

Далее производится расчет потери напряжения, где сила тока умножается на сопротивление, полученное при расчете. Полученное значение делится на величину напряжение в сети и умножается на 100%.

Если итоговое значение меньше 5%, то сечение кабеля выбрано правильно. В противном случае необходимо подобрать проводник большего сечения.

В любом случае при расчете сечения проводки, необходимо делать соответствующие поправки на перспективу. Возможно, появится желание приобрести более современные дополнительные бытовые приборы, которые будут потреблять больше электроэнергии. Поэтому желательно увеличить сечение проводки хотя бы на одну ступень. При этом вся проводка должна быть выполнена из медного провода.

Видео по расчету сечения кабеля

Понравилась статья? Поделиться с друзьями:

Сечение проводов по мощности таблица 12в

Как выбрать сечение провода для сетей освещения 12 вольт

В разговорах с покупателями при обсуждении галогенного освещения на 12 вольт почему-то очень часто мелькает слово “слаботочка”, что характеризует соответствующее отношение к выбору проводов – что есть под рукой, то и используем, напряжение ведь безопасное.

Напряжение 12 вольт, действительно безопасное, в том смысле, что прикосновение к оголенному проводу с таким напряжением просто не ощущается, но вот токи в таких цепях текут достаточно большие (см. основные моменты использования безопасного напряжения в быту).

Рассмотрим для примера питание обычной галогенной лампы мощностью 50 W, ток в первичной цепи трансформатора I=50W/220V=0.23A (или, точнее, чуть больше с учетом КПД трансформатора), при этом во вторичной цепи 12 V течет ток I=50W/12V= 4.2 A, что уже в 18 раз больше. Если не учесть этот факт, можно столкнуться с очень неприятными неожиданностями.

Однажды ко мне за консультацией зашёл человек и рассказал, что он сделал в своем доме галогенное освещение, использовал надежный индукционный трансформатор 1000W при нагрузке 900W, провел от монтажной коробки отдельный провод к каждой лампе, но в момент включения провода просто загорелись, причем те провода, которые вели от выхода трансформатора к монтажной коробке.

На вопрос о сечении проложенных проводов – ответ: “Обыкновенное сечение, как везде – 1,5 мм 2 “. В стационарном режиме по этому проводу должен был течь ток I=900W/12V=75A, а при включении и того больше. Сечение медного провода в таких условиях должно быть не менее 16 мм 2 . Отсюда вывод: важно не забывать о повышенных токах в цепях 12 вольт и соответственно выбирать провода. Этого, впрочем, иногда бывает совершенно недостаточно.

Очень часто приходится сталкиваться с жалобами на то, что при использовании трансформаторов большой мощности (в данном случае уже 200W является большой мощностью), питающих несколько ламп, яркость свечения ламп заметно убывает с увеличением расстояния от трансформатора. Попытки справиться с этой проблемой путём увеличения мощности трансформатора, естественно, не приводят к улучшению ситуации, тем более не помогает увеличение мощности используемых ламп. Дело в том, что причиной данного явления является банальное падение напряжения на проводах в соответствии с законом Ома.

Проиллюстрируем сказанное на конкретном примере:

Допустим, надо запитать группу из трех ламп по 50W каждая, расположенную на расстоянии L от трансформатора, как показано на рисунке:

Эквивалентная схема имеет вид:

Сопротивление каждой лампы Rl= U 2 /P = 2.88 Ом, а сопротивление провода длиной L и сечением S

где ρ – удельное сопротивление, в данном случае меди (0,0173 Ом мм 2 /М).

Если на выходе трансформатора поддерживается напряжение U = 12 V, то ток через каждую лампу

а мощность, выделяемая в лампе

Пользуясь этими формулами, легко рассчитать зависимость мощности от длины провода. Результаты расчетов приведены в таблице (если нажать на картинку, то загрузится таблица в большем формате):

Как видно из таблицы, мощность довольно быстро падает с увеличением длины проводов, еще более наглядно это видно на графиках:

Рис.3. Потеря мощности ламп в зависимости от длины питающих проводов

Избежать заметной неравномерности светового потока ламп можно не только за счет применения провода большого сечения, но и разделяя лампы на группы, питаемые отдельными проводами, в пределе запитывая каждую лампу своим проводом. В любом случае, приобретая осветительное оборудование полезно попросить продавца дать точные рекомендации по выбору сечения проводов и схеме монтажа.

Конкретные рекомендации по выбору сечения провода в цепи освещения 12 В при использовании электронных и индукционных трансформаторов можно найти в соответствующих таблицах.

Таблицы для выбора сечения проводов в низковольтных цепях освещения

Как показано ранее, из анализа потерь мощности в сетях освещения 12 В, сечение проводов для галогенного освещения 12 вольт следует выбирать с учетом суммарной мощности ламп, подключаемых к трансформатору, и длины этих проводов.

Подход к определению сечения проводов зависит от того, какой источник используется для питания цепи: электронный или индукционный. Допустимая длина проводов во вторичной цепи электронных блоков питания, как правило, не может превышать 2 метров (в очень редких случаях для трансформаторов большой мощности допускается длина до 3 метров). В этом случае следует использовать провод с сечением указанным в документации на трансформатор. Если такие данные отсутствуют можно ориентировочно воспользоваться данными из таблицы:

Таблица сечений медных проводов в цепи освещения 12 В длиной до 2 метров (для электронных блоков питания). Если нажать на картинку, то загрузится таблица в большем формате.

При использовании индукционных трансформаторов длина провода во вторичной цепи ограничена только падением напряжения на проводах и, следовательно, может быть значительно большей, чем у электронных (импульсных) блоков питания, при условии компенсации за счет увеличения сечения провода.

Ниже приведена таблица для выбора сечения проводов в зависимости от суммарной мощности ламп, подключаемых ко вторичной обмотке индукционного трансформатора и длины этих проводов. Следует иметь в виду, что лампы могут быть разделены на группы, подключаемые каждая своим проводом, в этом случае сечение группового провода определяется по таблице для каждой группы отдельно. В пределе возможно подключение каждой лампы своим проводом.

Таблица сечений медных проводов в цепи освещения 12 В (для индукционных трансформаторов).

Как определить сечение провода по мощности – таблицы и расчеты

Популярное сегодня галогенное освещение требует наличия напряжения в 12В. Поэтому в разводку обязательно устанавливается трансформатор. Но странное получается дело, когда домашние мастера в качестве электрического провода берут любые куски этого материала, так сказать, те, которые попали под руку. Чаще всего почему-то сечением 1,5 мм², при этом жалуются на то, что проводка начинает греться, а лампы горят не так ярко. Их ошибка состоит в том, что было неправильно выбрано сечение провода по мощности (таблицу можно такого сравнения найти в свободном доступе в интернете).

Итак, начнем с того, что напряжение 12 В на самом деле безопасное, и человек его не ощущает. Но давайте смотреть на электрические сети не как на провод, по которому подается определенное напряжение, а как на проводку, по которой течет ток с определенной силой. Так вот в контуре к галогенному освещению могут поступать токи большой величины. А, как всем известно, по закону Ома сила тока зависит от мощности потребления и напряжения в цепи. К тому же зависимость по току от напряжения обратнопропорциональная. То есть, чем оно больше, тем безопаснее.

Примеры, чтобы понять ситуацию

Для примера возьмем обычную галогенную лампу 50 Вт, которая питается от напряжения 220 В через первичную цепь трансформатора, и ее же, запитанную на 12 В через вторичную цепь. Сравним ток, который течет по проводке, подсоединенной к этим двум лампам.

Представляете, какая разница. А ведь сила тока больше 4 А – это большая величина. Конечно, многое будет зависеть и от самого трансформатора, а, точнее сказать, от его мощности. Можно привести один пример, который покажет некомпетентность домашних мастеров.

К примеру, для галогенного освещения берется трансформатор мощностью 1 кВт. Оговариваемся – это для примера. Так вот вставляя эту величину в формулу закона Ома, получаем:

1000/12=83 А. Такой ток может выдержать провод в 16 мм², а уж никак не 1,5 или 2,5. Кстати, это величина медного кабеля. То есть, получается так, что правильный выбор сечения провода влияет на качество работы всей электрической разводки. Но и это не все.

Что касается мощных трансформаторов для слаботочки в 12 В. Кстати, мощность в 200 Вт – это уже большой показатель. Так вот необходимо заметить, что яркость освещения никак не связана с подаваемой на лампы мощностью. То есть, связь есть, но она крутится вокруг сопротивления ламп и проводов. И чем выше сопротивление, тем яркость освещения снижается. А само сопротивление зависит от длины уложенной проводки и от ее сечения. И если длина к сопротивлению находится в прямой зависимости. То есть, чем дальше от трансформатора установлена лампа, тем ниже яркость свечения. То с сечением оно находится в обратной зависимости. Чем больше данный показатель, тем меньше сопротивления, тем ярче горит лампа.

О чем это говорит?

  • Во-первых, брать для слаботочки провода, так сказать, какие попадутся, это неверное и губительное решение.
  • Во-вторых, соизмеряя все характеристики электрических приборов (в данном случае ламп), можно собрать схему, которая будет работать эффективно и долго, не создавая лишних проблем.
  • В-третьих, необходимо правильно подбирать группы светильников, при этом учитывая сечения кабелей, подходящих как к группе, так и к каждому отдельному осветительному прибору.

Таблицы выбора сечения проводов

Итак, из всего вышеописанного можно сделать один важный вывод – расчет сечения провода для галогенного освещения напряжением 12 В зависит от двух величин: мощности используемых ламп и длины подключаемых их проводов от трансформатора.

Что касается самого трансформатора, то необходимо учитывать, какого он типа: индукционного или электронного. Это первое. Второе, что касается длины провода во вторичной цепи. Так вот эта длина не должна превышать 2 м. В случае использования мощных трансформаторов длина может доводиться до 3 м. Кстати, оба показателя (длина и сечение) обычно указываются в сопроводительных технических документах, приложенных в комплекте к трансформатору.

Такая таблица, где определяется соотношение сечения и потребляемой мощности, есть в интернете.

Обратите внимание, что у индукционных аппаратов падение напряжения, связанное с длиной проводки, больше, чем у электронных (импульсных). Компенсация падения может произойти только за счет увеличения сечения.

Заключение по теме

Итак, подводим итог всему вышесказанному. Казалось бы, что слаботочка – это не самый напряженный участок электрической сети. Но практика показывает обратное. Даже здесь приходится отвечать на вопрос, как рассчитать сечение электрического провода? Из статьи становится понятным, что для этого приходится учитывать сразу два показателя: величину потребляемой мощности и длину укладываемых проводов. Благо существуют таблицы, по которым можно легко и без больших проблем сделать точную подборку. Главное – не ошибиться с самими таблицами, так сказать, не перепутать один показатель с другим.

Таблица выбора сечения кабеля. Расчет сечения проводов и кабелей по току, мощности.

В таблице приведены данные мощности, тока и сечения кабелей и проводов, для расчетов и выбора кабеля и провода, кабельных материалов и электрооборудования.

В расчете применялись данные таблиц ПУЭ, формулы активной мощности для однофазной и трехфазной симметричной нагрузки.

Ниже представлены таблицы для кабелей и проводов с медными и алюминивыми жилами проводов.

Таблица выбора сечения кабеля по току и мощности с медными жилами

Сечение токопро водящей жилы, мм 2 Медные жилы проводов и кабелей
Напряжение, 220 В Напряжение, 380 В
ток, А мощность, кВт ток, А мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33,0
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66,0 260 171,6
Таблица выбора сечения кабеля по току и мощности с алюминивыми жилами

Сечение токопро водящей жилы, мм 2 Алюминивые жилы проводов и кабелей
Напряжение, 220 В Напряжение, 380 В
ток, А мощность, кВт ток, А мощность, кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11,0 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22,0 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44,0 170 112,2
120 230 50,6 200 132,0

Пример расчета сечения кабеля

Задача: запитать ТЭН мощностью W=4,75 кВт медным проводом в кабель-канале.
Расчет тока: I = W/U. Напряжение нам известно: 220 вольт. Согласно формуле протекающий ток I = 4750/220 = 21,6 ампера.

Ориентируемся на медный провод, потому берем значение диаметра медной жилы из таблицы. В колонке 220В – медные жилы находим значение тока, превышающего 21,6 ампера, это строка со значением 27 ампера. Из этой же строки берем Сечение токопроводящей жилы, равное 2,5 квадрата.

Расчет необходимого сечения кабеля по марке кабеля, провода

Как рассчитать необходимое сечение провода по мощности нагрузки?

При ремонте и проектировании электрооборудования появляется необходимость правильно выбирать провода. Можно воспользоваться специальным калькулятором или справочником. Но для этого необходимо знать параметры нагрузки и особенности прокладки кабеля.

Для чего нужен расчет сечения кабеля

К электрическим сетям предъявляются следующие требования:

Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.

Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода — это залог длительной безопасной эксплуатации и рационального использования финансовых средств.

Правильному подбору проводника посвящёна отдельная глава в ПУЭ: “Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны”.

Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( “Правила устройства электроустановок“). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:

  1. Напряжение питания (однофазное или трехфазное).
  2. Материал проводника.
  3. Ток нагрузки, измеряемый в амперах (А), или мощность — в киловаттах (кВт).
  4. Месторасположение кабеля.

В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину — 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.

В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно “Правилам устройства электроустановок“, при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на порядок больше, чем у ВА. В данном случае после 25 А находится 35 А. Последнюю величину и необходимо брать за расчетную. Току 35 А соответствуют сечение 4 мм² и мощность 7,7 кВт. Итак, выбор сечения медного провода по мощности завершен: 4 мм².

Чтобы узнать, какое сечение провода нужно для 10 кВт, опять воспользуемся справочником. Если рассматривать случай для открытой проводки, то надо определиться с материалом кабеля и с питающим напряжением.

Например, для алюминиевого провода и напряжения 220 В ближайшая большая мощность будет 13 кВт, соответствующее сечение — 10 мм²; для 380 В мощность составит 12 кВт, а сечение — 4 мм².

Выбираем по мощности

Перед выбором сечения кабеля по мощности надо рассчитать ее суммарное значение, составить перечень электроприборов, находящихся на территории, к которой прокладывают кабель. На каждом из устройств должна быть указана мощность, возле нее будут написаны соответствующие единицы измерения: Вт или кВт (1 кВт = 1000 Вт). Затем потребуется сложить мощности всего оборудования и получится суммарная.

Если же выбирается кабель для подключения одного прибора, то достаточно информации только о его энергопотреблении. Можно подобрать сечения провода по мощности в таблицах ПУЭ.

Таблица 1. Подбор сечения провода по мощности для кабеля с медными жилами

Сечение токопроводящей жилы, мм² Для кабеля с медными жилами
Напряжение 220 В Напряжение 380 В
Ток, А Мощность, кВт Ток, А Мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75.9
50 175 38.5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66 260 171,6

Таблица 2. Подбор сечения провода по мощности для кабеля с алюминиевыми жилами

Сечение токопроводящей жилы, мм² Для кабеля с алюминиевыми жилами
Напряжение 220 В Напряжение 380 В
Ток, А Мощность, кВт Ток, А Мощность, кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11,0 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22,0 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44,0 170 112,2
120 230 50,6 200 132,2

Кроме того, надо знать напряжение сети: трехфазной соответствует 380 В, а однофазной — 220 В.

В ПУЭ дана информация и для алюминиевых, и для медных проводов. У обоих есть свои преимущества и недостатки. Достоинства медных проводов:

  • высокая прочность;
  • упругость;
  • стойкость к окислению;
  • электропроводность больше, чем у алюминия.

Недостаток медных проводников — высокая стоимость. В советских домах использовалась при постройке алюминиевая электропроводка. Поэтому если происходит частичная замена, то целесообразно поставить алюминиевые провода. Исключение составляют только те случаи, когда вместо всей старой проводки (до распределительного щита) устанавливается новая. Тогда есть смысл применять медь. Недопустимо, чтобы медь с алюминием контактировали напрямую, т. к. это приводит к окислению. Поэтому для их соединения используют третий металл.

Можно самостоятельно произвести расчет сечения провода по мощности для трехфазной цепи. Для этого надо воспользоваться формулой: I=P/(U*1.73), где P — мощность, Вт; U — напряжение, В; I — ток, А. Затем из справочной таблицы выбирается сечение кабеля в зависимости от рассчитанного тока. Если же там не будет необходимого значение, тогда выбирается ближайшее, которое превышает расчетное.

Как рассчитать по току

Величина тока, проходящего через проводник, зависит от длины, ширины, удельного сопротивления последнего и от температуры. При нагревании электрический ток уменьшается. Справочная информация указывается для комнатной температуры (18°С). Для выбора сечения кабеля по току используют таблицы ПУЭ (ПУЭ-7 п.1.3.10-1.3.11 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ).

Таблица 3. Электрический ток для медных проводов и шнуров с резиновой и ПВХ-изоляцией

Площадь сечение проводника, мм² Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830

Для расчета алюминиевых проводов применяют таблицу.

Таблица 4. Электрический ток для алюминиевых проводов и шнуров с резиновой и ПВХ-изоляцией

Площадь сечения проводника, мм² Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255
185 390
240 465
300 535
400 645

Для примерного расчета сечения кабеля по току его надо разделить на 10. Если в таблице не будет полученного сечения, тогда необходимо взять ближайшую большую величину. Это правило подходит только для тех случаев, когда максимально допустимый ток для медных проводов не превышает 40 А. Для диапазона от 40 до 80 А ток надо делить на 8. Если устанавливают алюминиевые кабели, то надо делить на 6. Это объясняется тем, что для обеспечения одинаковых нагрузок толщина алюминиевого проводника больше, чем медного.

Расчет сечения кабеля по мощности и длине

Длина кабеля влияет на потерю напряжения. Таким образом, на конце проводника напряжение может уменьшиться и оказаться недостаточным для работы электроприбора. Для бытовых электросетей этими потерями можно пренебречь. Достаточно будет взять кабель на 10-15 см длиннее. Этот запас израсходуется на коммутацию и подключение. Если концы провода подсоединяются к щитку, то запасная длина должна быть еще больше, т. к. будут подключаться защитные автоматы.

При укладке кабеля на большие расстояния приходиться учитывать падение напряжения. Каждый проводник характеризуется электрическим сопротивлением. На данный параметр влияют:

  1. Длина провода, единица измерения — м. При её увеличении растут потери.
  2. Площадь поперечного сечения, измеряется в мм². При её увеличении падение напряжения уменьшается.
  3. Удельное сопротивление материала (справочное значение). Показывает сопротивление провода, размеры которого 1 квадратный миллиметр на 1 метр.

Падение напряжения численно равняется произведению сопротивления и тока. Допустимо, чтобы указанная величина не превышала 5%. В противном случае надо брать кабель большего сечения. Алгоритм расчета сечения провода по максимальной мощности и длине:

  1. В зависимости от мощности P, напряжения U и коэффициента cosф находим ток по формуле: I=P/(U*cosф). Для электросетей, которые используются в быту, cosф = 1. В промышленности cosф рассчитывают как отношение активной мощности к полной. Последняя состоит из активной и реактивной мощностей.
  2. С помощью таблиц ПУЭ определяют сечение провода по току.
  3. Рассчитываем сопротивление проводника по формуле: Rо=ρ*l/S, где ρ — удельное сопротивление материала, l — длина проводника, S — площадь поперечного сечения. Необходимо учесть ток факт, что ток идет по кабелю не только в одну сторону, но и обратно. Поэтому общее сопротивление: R = Rо*2.
  4. Находим падение напряжения из соотношения: ΔU=I*R.
  5. Определяем падение напряжения в процентах: ΔU/U. Если полученное значение превышает 5%, тогда выбираем из справочника ближайшее большее поперечное сечение проводника.

Открытая и закрытая прокладка проводов

В зависимости от размещения проводка делится на 2 вида:

Сегодня в квартирах монтируют скрытую проводку. В стенах и потолках создаются специальные углубления, предназначенные для размещения кабеля. После установки проводников углубления штукатурят. В качестве проводов используют медные. Заранее всё планируется, т. к. со временем для наращивания электропроводки или замены элементов придется демонтировать отделку. Для скрытой отделки чаще используют провода и кабели, у которых плоская форма.

При открытой прокладке провода устанавливают вдоль поверхности помещения. Преимущества отдают гибким проводникам, у которых круглая форма. Их легко установить в кабель-каналы и пропустить сквозь гофру. Когда рассчитывают нагрузку на кабель, то учитывают способ укладки проводки.

Расчет сечения кабеля по току: популярно об электрическом токе

Во время строительства домов, как частных, так и многоквартирных, офисных зданий и производственных сооружений для безопасной эксплуатации электрической сети и приборов нужно обязательно сделать расчет сечения кабеля по току.

Как сделать расчет

Как выбрать кабель

Чтобы произвести подсчет безопасной и необходимой толщины электрического кабеля в зависимости от тока, который будет проходить по нему нужно знать, какими электрическими приборами будут пользоваться.

Итак, далее – все считают образом.

Потребуется мощность каждого из приборов; формула для расчета общего показателя мощности выглядит так:

где Робщ. – мощность всех электроприборов в доме или квартире (в Ваттах),

Р1, Р2 и т. д. — это мощность каждого конкретного прибора.

Допустим, в однофазной сети будут работать три лампы, холодильник, микроволновка, электрочайник. Pобщ.=300+200+1100+2200=3800 Вт. Для дальнейших расчетов нужно знать силу тока, которая рассчитывается по формуле:

где I – это сила тока,

U – напряжение сети.

Теперь при подстановке всех известных данных получится:

I = 3800:220 = 17,3 Ампер.

С учетом того, что проводка будет выполнена из меди, удельное сопротивление (р) которой 0,0175 Ом*мм 2 /м. сразу сделаем расчет сопротивления участка цепи из следующей формулы:

Теперь из расчета сопротивления (возьмем длину проводника (L) за номинальный метр), который имеет следующий вид:

R=(рL)/S, выведем площадь сечения.

Соответственно площадь сечения кабеля, нужного для нормальной работы перечисленной выше техники равна (0,0175*1000)*1/12=1,46 мм 2 .

Еще один вариант вычислений

Зачем делать расчет сечения кабеля по току и длине? Чтобы сеть функционировала без перенапряжения и сбоев, этот этап нельзя пропускать.

Сечение медных и алюминиевых жил

Дело в том, что каждый конкретный проводник будет терять в мощности при увеличении своей длины. То есть, чем продолжительнее провода, тем больше будут подобные потери, которым способствует сопротивление.

Исходя из описанной уже формулы S=рL/R. Тут все известно, кроме сопротивления R. Его можно вычислить исходя из закона Ома для участка цепи (U=I*R) – отсюда R=U/I. В рассматриваемом примере R=220/17,3= 12,7 Ом (приблизительное округленное значение – 12).

Чтобы посчитать потери напряжения, нужно разделить полученное значение U на напряжение в сети (например, в обычной бытовой сети чаще всего 220 В). В итоге получится коэффициент, который при умножении на сто даст величину потерь в процентном выражении: если он более пяти процентов – толщину кабеля надо увеличивать.

Для точной, долгой и безопасной работы вновь прокладываемой проводки, особенно большой протяженности, обязательно производить расчеты сечения кабеля по длине. При этом нужно учесть, из какого материала он изготовлен.

Например, длина медного кабеля 5 метров, тогда S=рL/R=(0,0175*1000)*5/12=7,3 мм (приблизительное округленное значение).

Пример по вычислению

Проведем расчет сечения кабеля по току 12 вольт. Допустим, что используются (или предположительно могут использоваться) разнообразные электрические приборы, а именно 12, 12, 30 Ватт, то есть Р1=12, Р2=12, Р3=30.

Теперь, подставив значения в первую формулу, получим Pобщ. = Р1+Р2+Р3 = 12+12+30 = 54 Вт. То есть величина общей мощности составляет пятьдесят четыре Ватта. Исходя из второй формулы (I = Pобщ./U) сила тока I равна 54/12= 4,5 Ампер.

Теперь осталось выбрать один из доступных материалов, из которых изготавливаются кабели, допустим, для проводки применяется медь, а длина – составляет один метр. По уже упомянутой формуле площадь сечения можно найти по формуле S=рL/R=(0,0175*1000)*1/R=17,5/R, где R=U/I.

Значит, для напряжения 12 В справедливо следующее: R=U/I=12/4,5= 2,6 Ом. Тогда площадь равна: S=17,5/R=17,5/2,6= 6 мм.

А можно прибегнуть к такой простой “электрической арифметике”. Один квадратный миллиметр сечения медного провода (если он открыт) способен пропускать не больше семнадцати Ампер, если проводка закрыта — тринадцать.

Если речь идет об алюминиевом кабеле, то предпочтительные величины на каждый миллиметр – 10 или 8 А для открытого и закрытого размещения соответственно.

Расчет для алюминиевого провода следующий.

Удельное сопротивление его составляет двадцать восемь тысячных Ома на квадратный миллиметр, то есть р=0,028 Ом*мм 2 /м.

Теперь опять берем за общую мощность рассчитанную ранее величину – пятьдесят четыре Ватта.

Сила тока в этом случае будет равна I = Pобщ./U=54/12= 4,5 Ампер. S=рL/R=(0,028*1000)*1/R=28/R, при том, что R=U/I.

Во втором случае сопротивление R=U/I=12/4,5= 2,6 Ом. А площадь сечения равна: S=28/R=28/2,6= 10 мм.

Для того, чтобы верно установить электропроводку, обязательно знать как можно подробнее о длине кабелей, мощности приборов, материале изготовления проводов. Тогда с учетом несложных формул можно легко вывести нужные значения.

Подробнее о том, как рассчитать сечение провода — на видео:

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Как подобрать сечение кабеля по мощности? Расчет

Привет. Тема сегодняшней статьи «Сечение кабеля по мощности«. Эта информация пригодиться как в быту, так и на производстве. Речь пойдет о том, как произвести расчет сечения кабеля по мощности и сделать выбор по удобной таблице.

Для чего вообще нужно правильно подобрать сечение кабеля ?

Если говорить простым языком, это нужно для нормальной работы всего, что связано с электрическим током. Будь-то фен, стиральная машина, двигатель или трансформатор. Сегодня инновации не дошли еще до безпроводной передачи электроэнергии (думаю еще не скоро дойдут), соответственно основным средством для передачи и распределения электрического тока, являются кабели и провода.

При маленьком сечении кабеля и большой мощности оборудования, кабель может нагреваться, что приводит к потере его свойств и разрушению изоляции. Это не есть хорошо, так что правильный расчет необходим.

Итак, выбор сечения кабеля по мощности. Для подбора будем использовать удобную таблицу:

Таблица простая, описывать ее думаю не стоит.

Теперь нам нужно рассчитать общую потребляемую мощность оборудования и приборов, используемых в квартире, доме, цехе или в любом другом месте куда мы ведем кабель. Произведем расчет мощности.

Допустим у нас дом, выполняем монтаж закрытой электропроводки кабелем ВВГ. Берем лист бумаги и переписываем перечень используемого оборудования. Сделали? Хорошо.

Как узнать мощность? Мощность вы сможете найти на самом оборудовании, обычно имеется бирка, где записаны основные характеристики:

Мощность измеряется в Ваттах ( Вт, W ), или Киловаттах ( кВт, KW ). Нашли? Записываем данные, затем складываем.

Допустим, у вас получилось 20 000 Вт, это 20 кВт. Цифра говорит нам о том, сколько энергии потребляют все электроприемники вместе. Теперь нужно подумать сколько вы будете использовать приборов одновременно в течении длительного времени? Допустим 80 %. Коэффициент одновременности в таком случае равен 0,8 . Делаем расчет сечения кабеля по мощности:

Считаем:

20 х 0,8 = 16 (кВт)

Чтобы сделать выбор сечения кабеля по мощности, смотрим на наши таблицы:

Для трехфазной цепи 380 Вольт это будет выглядеть вот так:

Как видите, не сложно. Хочу также добавить, советую выбирать кабель или провод наибольшего сечения жил, на случай если вы захотите подключить что-нибудь еще.

Похожие записи:

  • Когда День энергетика в России в 2012 году он был особенным.
  • Если планируете учиться на электрика, рекомендую почитать где учиться и как получить диплом электрика
  • Электротехнический персонал, группы
  • Профессия электрик, перспективы

Полезный совет: если вы вдруг оказались в незнакомом районе в темное время суток. Не стоит подсвечивать себе дорогу сотовым телефоном

На этом у меня все, теперь вы знаете как подобрать сечение кабеля по мощности . Смело делитесь с друзьями в социальных сетях.

Что такое потеря напряжения в кабеле и чем она опасна?

Во время передачи электроэнергии по проводам к электроприемникам ее небольшая часть расходуется на сопротивление самих проводов, т.е. на их нагрев. Чем выше протекаемый ток и больше сопротивление провода, тем больше на нем будет потеря напряжения. Величина тока зависит от подключенной нагрузки, а сопротивление провода тем больше, чем больше его длина. Логично? Поэтому нужно понимать, что провода большой длины могут быть не пригодны для подключения какой-либо нагрузки, которая, в свою очередь, хорошо будет работать при коротких проводах того же сечения.

В идеале все электроприборы будут работать в нормальном режиме, если к ним подается то напряжение, на которые они рассчитаны. Если провод рассчитан не правильно и в нем присутствуют большие потери, то на вводе в электрооборудование будет заниженное напряжение. Это очень актуально при электропитании постоянным током, так как тут напряжение очень низкое, например 12 В, и потеря в 1-2 В тут будет уже существенной.

Чем опасна потеря напряжения в электропроводке?

  1. Отказом работы электроприборов при очень низком напряжении на входе.

В выборе кабеля необходимо найти золотую середину. Его нужно подобрать так, чтобы сопротивление провода при нужной длине соответствовало конкретному току и исключить лишние денежные затраты. Конечно, можно купить кабель огромного сечения и не считать в нем потери напряжения, но тогда за него придется переплатить. А кто хочет отдавать свои деньги на ветер? Давайте ниже разберемся, как учесть потери напряжения в кабеле при его выборе.

Для того чтобы избежать потерь мощности нам нужно уменьшить сопротивление провода. Мы знаем что, чем больше сечение кабеля, тем меньше его сопротивление. Поэтому эта проблема в длинных линиях решается путем увеличения сечения жил кабеля.

Вспомним физику и перейдем к небольшим формулам и расчетам.

Напряжение на проводе мы можем узнать по следующей формуле, зная его сопротивление (R, Ом) и ток нагрузки (I, А).

U=RI

Сопротивление провода рассчитывается так:

R=рl/S, где

р — удельное сопротивление провода, Ом*мм2/м;

l — длина провода, м;

S — площадь поперечного сечения провода, мм2.

Удельное сопротивления это величина постоянная. Для меди она составляет р=0,0175 Ом*мм2, и для алюминия р=0,028 Ом*мм2. Значения других металлов нам не нужны, так как провода у нас только с медными или с алюминиевыми жилами.

Приведу небольшой пример расчета для медного провода. Для алюминиевого провода суть расчета будет аналогичной.

Например, мы хотим установить группу розеток в гараже и решили протянуть туда медный кабель от дома длинной 50 м сечением 1,5 мм2. Там будем подключаться нагрузка 3,3 кВт (I=15 А).

Учтите, что ток «бежит» по 2-х жильному кабелю туда и обратно, поэтому «пробегаемое» им расстояние будет в два раза больше длины кабеля (50*2=100 м).

Потеря напряжения в данной линии будет:

U=(рl)/s*I=0,0175*100/1,5*15=17,5 В

Что составляет практически 9% от номинального (входного) значения напряжения.

Значит в розетках будет уже напряжение: 220-17,5=202,5 В. Этого будет маловато для нормальной работы электрооборудования. Также свет может гореть тускло (в пол накала).

На нагрев провода будет выделяться мощность P=UI=17,5*15=262,5 Вт.

Также учтите, что здесь не учтены потери в местах соединения (скрутках), в вилке электроприбора, в контактах розетки. Поэтому реальные потери напряжения будут больше полученных значений.

Давайте повторим данный расчет, но уже для провода сечением 2,5 мм2.

U=(рl)/s*I=0,0175*100/2,5*15=10,5 В или 4,7%.

Теперь повторим данный расчет, но уже для провода сечением 4 мм2.

U=(рl)/s*I=0,0175*100/4*15=6,5 В или 2,9%.

Согласно ПУЭ, отклонения напряжения в линии должны составлять не более 5%.

Поэтому в нашем случае нужно выбирать кабель сечением 2,5 мм2 для нагрузки мощностью 3,3 кВт (15 А), а не 1,5 мм2.

Для постоянного тока такие сечения при указанных длинах использовать нельзя. Допусти, что необходимо запитать электроприбор током 15 А от источника постоянного тока 12 В (например, от аккумулятора или понижающего трансформатора). Используется кабель сечением 2,5 мм2 длинной 50 м.

Потери тут будут 10,5 В. Это значит, что на входе в электроприбор будет присутствовать напряжение 12-10,5=1,5 В. Это бред и ничего работать не будет. Даже кабель сечением 25 мм2 не спасет. Тут выход один — это нужно переносить источник питания ближе к потребителю.

Если ваша розетка находится очень далеко от щитка, то обязательно посчитайте потери напряжения в данной линии.

Не забываем улыбаться:

Звонок мужу в командировку:
— Дорогой, а почему в кране нет воды?
— Понимаешь, мы живем на 22 этаже и давления, которое создает насос возможно недостаточно…
— Милый, а почему газа нет?
— Понимаешь, сейчас зима и давление в магистральном газопроводе вследствие большого разбора несколько понижено…
— Родной, но почему же тогда нет электроэнергии?!
— Пойди заплати за коммуналку, дура!

Площадь сечения проводов и кабелей в зависимости от силы тока, расчет необходимого сечения кабеля


Если старая проводка вышла из строя нужно её заменить, но прежде чем менять на аналогичную, узнайте, почему произошла проблема со старой. Возможно, что было просто механическое повреждение, или изоляция пришла в негодность, а еще более весомой проблемой является – выход из строя проводки из-за превышения допустимой нагрузки.

Чем отличается кабельная продукция, какие основные характеристики?


Начнем с того, что определяется, какое напряжение в сети, в которой будут работать кабеля. Для бытовых сетей часто применяются кабеля и провода типа ВВГ, ПУГНП (только он запрещен современными требованиями ПУЭ из-за больших допусков по сечению при производстве, до 30%, и допустимой толщине изолирующего слоя 0.3мм, против 0.4 в ПУЭ), ШВВП и другие.


Если отойти от определений провод от кабеля отличается минимально, в основном по определению в ГОСТе или ТУ по которому он производится. Ведь на рынке есть большое количество проводов с 2-3 жилами и двумя слоями изоляции, например тот же ПУГНП или ПУНП.

Допустимое напряжение определяется изоляцией кабеля


Для выбора кабеля кроме напряжения принимают во внимание и условия, в которых он будет работать, для подключения движущегося инструмента и оборудования он должен быть гибким, для подключения неподвижных элементов, в принципе, все равно, но лучше предпочесть кабель с монолитной жилой.


Решающим фактором при покупке является площадь поперечного сечения жилы, она измеряется в мм2, от неё и зависит способность проводника выдерживать длительную нагрузку.

Что влияет на допустимый ток через кабель?


Для начала обратимся к основам физики. Есть такой закон Джоуля-Ленца, он был открыт независимо друг от друга двумя ученными Джеймсом Джоулем (в 1841) и Эмилием Ленцом (в 1842), поэтому и получил двойное название. Так вот этот закон количественно описывает тепловое действие электрического тока протекающего через проводник.


Если выразить его через плотность тока получится такая формула:


Расшифровка: w – мощность выделения тепла в единице объема, вектор j – плотность тока через проводник измеряется в Амперах на мм2. Для медного провода принимают от 6 до 10 А на миллиметр площади, где 6 – рабочая плотность, а 10 кратковременная. вектор E – напряженность электрического поля. σ – проводимость среды.


Так как проводимость обратно пропорциональна сопротивлению: σ=1/R


Если выразить закон Джоуля-Ленца через количество теплоты в интегральной форме, то:


Таким образом, dQ – количество теплоты, которое выделится за промежуток времени dt в цепи, где протекает ток I, через проводник сопротивлением R.


То есть количество тепла прямо пропорционально току и сопротивлению. Чем больше ток и сопротивление – тем больше выделяется тепла. Это опасно тем, что в определенный момент количество тепла достигнет такого значения, что у проводов плавится изоляция. Вы могли замечать, что провода дешевых кипятильников ощутимо теплеют во время работы, это оно и есть.


Если выделяется мощность на кабеле, значит, падает и напряжение на его концах, подключенных к нагрузке.


В калькуляторах для расчета сечений кабеля, обычно задаются такие параметры:


Чем больше сопротивление – тем больше упадет напряжение и нагреется кабель, поскольку на нем выделится мощность (P=UI, где U падение напряжения на кабеле, I – ток, протекающий через него).


Все расчеты свелись к току и сопротивлению. Сопротивление проводника вычисляется по формуле:


Здесь: ρ (ро) – удельное сопротивление, l – длина кабеля, S – площадь поперечного сечения.


Удельное сопротивление зависит от структуры металла, величины удельных сопротивлений можно определить из таблицы.


В проводке в основном используются алюминий и медь. У меди сопротивление 1.68*10-8 Ом*мм2/м., а у аллюминия в 1.8 раза больше чем у меди, равняется 2.82*10-8 Ом*мм2/м. Это значит, что алюминиевый провод нагреется почти в 2 раза сильнее, чем медный при одинаковом сечении и токе. Отсюда следует, что для прокладки проводки придется покупать более толстый алюминиевый провод, к тому же жилы легко повредить.


Поэтому медные провода вытеснили с домашней проводки медные, а применение аллюминия в проводке запрещено, разрешается только применение алюминиевых кабелей для монтажа очень мощных электроустановок, потребляющих большой ток, тогда используют провод из аллюминия сечением больше 16 мм2 (смотрите — Почему алюминиевый кабль нельзя использовать в электропроводке)

Как определить сопротивление провода по диаметру жилы?


Бывают случаи, когда площадь поперечного сечения жилы не известна, поэтому можно посчитать по диаметру. Для определения диаметра монолитной жилы можно использовать штангенциркуль, если его нет, то возьмите стержень, например шариковую ручку или гвоздь, намотайте плотно 10 витков провода на него, и измерьте линейкой длину получившейся спирали, разделив эту длину на 10 – вы получите диаметр жилы.


Для определения общего диаметра многопроволочной жилы, измерьте диаметр каждой жилы и умножьте на их количество.


Дальше считают поперечное сечение по этой формуле:


И вновь возвращаются к этой формуле для расчета сопротивления провода:

Как определить необходимую площадь сечения провода?


Самый простой вариант – определить площадь сечения жил по таблице. Он подходит для расчета не слишком длинных линий проложенных в нормальных условиях (с нормальной температурой окружающей среды). Также так можно подобрать провод для удлинителя. Обратите внимание, что в таблице указаны сечения при определенном токе и мощности в однофазной и трёхфазной сети для аллюминия и меди.


При расчете длинных линий (больше 10 метров) такой таблицей лучше не пользоваться. Нужно провести расчеты. Быстрее всего воспользоваться калькулятором. Алгоритм расчета такой:


Берут допустимые потери по напряжению (не более 5%), это значит что при напряжении в сети 220В и допустимым потерям напряжения в 5% на кабеле падение напряжения (от конца до конца) не должно превышать:


5%*220=11В.


Теперь, зная ток, который будет протекать, мы может вычислить сопротивление кабеля. В двух проводной линии сопротивление умножают на 2, так как ток течет по двум проводам, при линии длиной в 10м, общая длина проводников – 20м.


Отсюда по вышеприведенным формулам вычисляют необходимое поперечное сечение кабеля.


Вы можете сделать это автоматически со своего смартфона, с помощью приложений «Мобильный электрик» и electroDroid. Только в калькуляторе задается не общая длина проводов, а именно длина линии от источника питания к приемнику электричества.

Заключение


Правильно рассчитанная проводка это уже 50% залог её успешного функционирования, вторая половина зависит от правильности монтажа. Следует учитывать все особенности проводки, максимальную потребляемую мощность всеми потребителями. При этом введите запас по допустимому току на 20-40% «на всякий случай».

Часть 1: Зависимость от длины Прогноз: • Каким образом

Транскрибирует текст изображения: Часть 1: Зависимость от длины Прогноз: • Как изменится сопротивление провода при увеличении длины? • Какое соотношение между сопротивлением и длиной (например, линейное, степенное, обратное или экспоненциальное) вы ожидаете?
3 фактора, влияющие на сопротивление Цель: изучить зависимость сопротивления резистора от длины и площади поперечного сечения и рассчитать удельное сопротивление нержавеющей стали и нихрома.Теория: сопротивление электрического проводника зависит от нескольких факторов, включая длину провода L и его площадь поперечного сечения A (рис. 1). Площадь поперечного сечения, в свою очередь, зависит от диаметра проволоки, называемого калибром проволоки. Рис. 1 Иллюстрация провода, показывающая площадь поперечного сечения A и длину L. Другим фактором, влияющим на сопротивление провода, является удельное сопротивление p металла. Удельное сопротивление — это свойство, которое определяется свойствами материала конкретного металла, из которого состоит проволока.Удельное сопротивление металла также зависит от температуры металла.
Прогнозы Сопротивление — это свойство материала препятствовать прохождению тока при приложении напряжения к его клемме. Это свойство зависит от следующих факторов. Длина токопроводящего материала. Площадь поперечного сечения проводника. Тип материала и температура R = rho x 1 / A. Здесь rho — удельное сопротивление, и оно постоянно для данного материала. По мере увеличения длины сопротивление увеличивается. Сопротивление обратно пропорционально площади поперечного сечения.Сопротивление обратно пропорционально площади поперечного сечения. Сопротивление зависит от температуры как R = RO (1 + АЛЬФА x дельта Т). RO — начальная температура, а альфа — скорость изменения температуры.
Часть 1: Зависимость от длины Прогноз: • Как изменится сопротивление провода при увеличении длины? • Какое соотношение между сопротивлением и длиной (например, линейное, степенное, обратное или экспоненциальное) вы ожидаете?

Предыдущий вопрос Следующий вопрос

Электрическое сопротивление — провод, шланг, удельное сопротивление и ток

Электрическое сопротивление провода или цепи — это способ измерения сопротивления прохождению электрического тока.Хороший электрический провод, такой как медный провод , будет иметь очень низкое сопротивление. Хорошие изоляторы, такие как изоляторы из резины или стекла , обладают очень высоким сопротивлением. Сопротивление измеряется в Ом и связано с током в цепи и напряжением в цепи по закону Ома . Для данного напряжения провод с меньшим сопротивлением будет иметь более высокий ток.

Сопротивление данного куска провода зависит от трех факторов: длины провода, площади поперечного сечения провода и удельного сопротивления материала, из которого он состоит.Чтобы понять, как это работает, представьте воды , протекающей по шлангу. Количество воды, протекающей по шлангу, аналогично току в проводе. Подобно тому, как через пожарный шланг fat может пройти больше воды, чем через тонкий садовый шланг, толстый провод может пропускать больше тока, чем тонкий. Для провода чем больше площадь поперечного сечения, тем меньше сопротивление; чем меньше площадь поперечного сечения, тем выше сопротивление. Теперь рассмотрим длину. По очень длинному шлангу труднее протекать воде просто потому, что она должна течь дальше.Точно так же току труднее проходить по более длинному проводу. Более длинный провод будет иметь большее сопротивление. Удельное сопротивление — это свойство материала в проводе, которое зависит от химического состава материала, но не от количества материала или формы (длины, площади поперечного сечения) материала. Медь имеет низкое удельное сопротивление, но сопротивление данной медной проволоки зависит от ее длины и площади. Замена медного провода на провод той же длины и площади, но с более высоким удельным сопротивлением приведет к более высокому сопротивлению.В аналогии со шлангом это похоже на заполнение шланга песком . Через шланг, заполненный песком, будет течь меньше воды, чем через такой же свободный шланг. Фактически песок имеет более высокое сопротивление потоку воды. Таким образом, полное сопротивление провода представляет собой удельное сопротивление материала, составляющего провод, умноженное на длину провода, деленное на площадь поперечного сечения провода.

5.3 Удельное сопротивление и сопротивление — Введение в электричество, магнетизм и схемы

ЦЕЛИ ОБУЧЕНИЯ

По окончании этого раздела вы сможете:

  • Различия между сопротивлением и удельным сопротивлением
  • Определите термин проводимость
  • Опишите электрический компонент, известный как резистор
  • Укажите взаимосвязь между сопротивлением резистора и его длиной, площадью поперечного сечения и удельным сопротивлением
  • Укажите взаимосвязь между удельным сопротивлением и температурой

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он создает разность потенциалов, которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток. Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление .Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.

Удельное сопротивление

Когда к проводнику прикладывается напряжение, создается электрическое поле, и заряды в проводнике ощущают силу, обусловленную электрическим полем. Плотность тока зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, включая металлы при данной температуре, плотность тока приблизительно пропорциональна электрическому полю.В этих случаях плотность тока можно смоделировать как

где — электропроводность . Электропроводность аналогична теплопроводности и является мерой способности материала проводить или передавать электричество. Проводники имеют более высокую электропроводность, чем изоляторы. Поскольку удельная электропроводность равна, единицы равны

.

Здесь мы определяем единицу с именем Ом с греческим символом омега в верхнем регистре,.Устройство названо в честь Георга Симона Ома, о котором мы поговорим позже в этой главе. Используется, чтобы избежать путаницы с числом. Один Ом равен одному вольту на ампер:. Таким образом, единицы электропроводности равны.

Электропроводность — это внутреннее свойство материала. Другим неотъемлемым свойством материала является удельное сопротивление , или удельное электрическое сопротивление. Удельное сопротивление материала — это мера того, насколько сильно материал противостоит прохождению электрического тока.Символом удельного сопротивления является строчная греческая буква ро, а удельное сопротивление является обратной величиной удельной электропроводности:

.

Единицей измерения удельного сопротивления в системе СИ является ом-метр. Мы можем определить удельное сопротивление через электрическое поле и плотность тока,

(5.3.1)

Чем больше удельное сопротивление, тем большее поле необходимо для создания заданной плотности тока. Чем ниже удельное сопротивление, тем больше плотность тока, создаваемого данным электрическим полем.Хорошие проводники обладают высокой проводимостью и низким удельным сопротивлением. Хорошие изоляторы обладают низкой проводимостью и высоким удельным сопротивлением. В таблице 5.3.1 приведены значения удельного сопротивления и проводимости для различных материалов.

(таблица 5.3.1)

Таблица 5.3.1 Сопротивление и удельная электропроводность различных материалов при
[1] Значения сильно зависят от количества и типов примесей.

Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления.У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют разную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться. Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.

ПРИМЕР 5.3.1


Плотность тока, сопротивление и электрическое поле для токоведущего провода

Рассчитайте плотность тока, сопротивление и электрическое поле отрезка медного провода диаметром (), по которому проходит ток.

Стратегия

Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, а также определение плотности тока. Сопротивление можно найти, используя длину провода, площадь и удельное сопротивление меди, где.Удельное сопротивление и плотность тока можно использовать для определения электрического поля.

Решение

Сначала рассчитаем плотность тока:

Сопротивление провода

Наконец, мы можем найти электрическое поле:

Значение

Исходя из этих результатов, неудивительно, что медь используется для проводов, проводящих ток, потому что сопротивление довольно мало. Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.

ПРОВЕРЬТЕ ПОНИМАНИЕ 5.5


Медные провода обычно используются для удлинителей и домашней электропроводки по нескольким причинам. Медь имеет самый высокий рейтинг электропроводности и, следовательно, самый низкий рейтинг удельного сопротивления среди всех недрагоценных металлов. Также важна прочность на разрыв, где прочность на разрыв является мерой силы, необходимой для того, чтобы подтянуть объект к точке, где он сломается. Прочность материала на разрыв — это максимальная величина растягивающего напряжения, которое он может выдержать перед разрушением.Медь обладает высокой прочностью на разрыв. Третья важная характеристика — пластичность. Пластичность — это мера способности материала вытягиваться в проволоку и мера гибкости материала, а медь обладает высокой пластичностью. Подводя итог, можно сказать, что проводник является подходящим кандидатом для изготовления проволоки, по крайней мере, с тремя важными характеристиками: низким удельным сопротивлением, высокой прочностью на разрыв и высокой пластичностью. Какие еще материалы используются для электромонтажа и в чем их достоинства и недостатки?

Температурная зависимость удельного сопротивления

Возвращаясь к таблице 5.3.1 вы увидите столбец «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры. В некоторых материалах, таких как медь, удельное сопротивление увеличивается с повышением температуры. Фактически, в большинстве проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает повышенные колебания атомов в структуре решетки металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры.Во многих материалах зависимость является приблизительно линейной и может быть смоделирована с помощью линейного уравнения:

(5.3.2)

где — удельное сопротивление материала при температуре, — температурный коэффициент материала, а — удельное сопротивление при, обычно принимаемое равным.

Обратите внимание, что температурный коэффициент для полупроводников, перечисленных в Таблице 5.3.1, отрицательный, что означает, что их удельное сопротивление уменьшается с увеличением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока.Это свойство уменьшаться с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление

Теперь рассмотрим сопротивление провода или компонента. Сопротивление — это мера того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.

Чтобы рассчитать сопротивление, рассмотрите сечение токопроводящего провода с площадью поперечного сечения, длиной и удельным сопротивлением. Батарея подключается к проводнику, обеспечивая на нем разность потенциалов (рисунок 5.3.1). Разность потенциалов создает электрическое поле, пропорциональное плотности тока, согласно.

(рисунок 5.3.1)

Рисунок 5.3.1. Потенциал, создаваемый батареей, прикладывают к сегменту проводника с площадью поперечного сечения и длиной.

Величина электрического поля на участке проводника равна напряжению, деленному на длину,, а величина плотности тока равна току, деленному на площадь поперечного сечения,. Используя эту информацию и вспоминая, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:

СОПРОТИВЛЕНИЕ


Отношение напряжения к току определяется как сопротивление :

(5.3.3)

Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, разделенную на площадь:

(5.3.4)

Единица измерения сопротивления — Ом. Для заданного напряжения чем выше сопротивление, тем ниже ток.

Резисторы

Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения. Рисунок 5.3.2 показывает символы, используемые для резистора в принципиальных схемах цепи. Два обычно используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC). Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.

(рисунок 5.3.2)

Рисунок 5.3.2 Обозначения резистора, используемого в принципиальных схемах. (а) символ ANSI; (б) символ IEC.

Зависимость сопротивления материала и формы от формы

Резистор можно смоделировать как цилиндр с площадью поперечного сечения и длиной, сделанный из материала с удельным сопротивлением (рисунок 5.3.3). Сопротивление резистора составляет.

(рисунок 5.3.3)

Рисунок 5.3.3 Модель резистора в виде однородного цилиндра длины и площади поперечного сечения.Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше площадь его поперечного сечения, тем меньше сопротивление.

Наиболее распространенным материалом для изготовления резистора является углерод. Углеродная дорожка намотана на керамический сердечник, к нему прикреплены два медных провода. Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка изготовлена ​​из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным.Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке 5.3.4.

(рисунок 5.3.4)

Рисунок 5.3.4 Многие резисторы напоминают рисунок, показанный выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора. Третий цвет — множитель. Четвертый цвет обозначает допуск резистора.Показанный резистор имеет сопротивление.

Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление или более. Сухой человек может иметь сопротивление руки к ноге, тогда как сопротивление человеческого сердца составляет около. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление, а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.

Сопротивление объекта также зависит от температуры, поскольку оно прямо пропорционально. Мы знаем, что для цилиндра, если и не сильно изменяются с температурой, имеет ту же температурную зависимость, что и. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на и примерно на два порядка меньше, чем на.) Таким образом,

(5.3.5)

— это температурная зависимость сопротивления объекта, где — исходное сопротивление (обычно принимаемое равным), а — сопротивление после изменения температуры. Цветовой код показывает сопротивление резистора при температуре.

Многие термометры основаны на влиянии температуры на сопротивление (рисунок 5.3.5). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

(рисунок 5.3.5)

Рисунок 5.3.5 Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.

ПРОВЕРЬТЕ ПОНИМАНИЕ 5.6


Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги.Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?

ПРИМЕР 5.3.3


Сопротивление коаксиального кабеля

Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов. Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения.Коаксиальные кабели состоят из внутреннего проводника с радиусом, окруженного вторым внешним концентрическим проводником с радиусом (рисунок 5.3.6). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки. Определите сопротивление коаксиального кабеля соответствующей длины.

(рисунок 5.3.6)

Рисунок 5.3.6 Коаксиальные кабели состоят из двух концентрических жил, разделенных изоляцией.Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.

Стратегия

Мы не можем использовать уравнение напрямую. Вместо этого мы смотрим на концентрические цилиндрические оболочки с толщиной и интегрируем.

Решение

Сначала мы находим выражение, а затем интегрируем от до,

Значение

Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника.Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.

ПРОВЕРЬТЕ ПОНИМАНИЕ 5.7


Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиуса двух проводников. Если вы разрабатываете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?

Кандела Цитаты

Лицензионный контент CC, конкретная атрибуция

  • Загрузите бесплатно по адресу http: // cnx.org/contents/[email protected] Получено с : http://cnx.org/contents/[email protected] Лицензия : CC BY: Атрибуция

Сопротивление и удельное сопротивление

Сопротивление и удельное сопротивление

Авторские права © Майкл Ричмонд.
Эта работа находится под лицензией Creative Commons License.

  • Электрическое сопротивление измеряется в Ом :
                          1 вольт
                1 Ом = ---------
                          1 ампер
     
  • Сопротивление проволоки или прутка протеканию электрического тока
    зависит как от его геометрии, так и от состава.
  • Провода большого сечения (тонкие) имеют малое сопротивление;
    толстые обладают большим сопротивлением.
  • Короткие провода имеют малое сопротивление; длинные имеют большое сопротивление.
  • Различные материалы имеют разное удельное сопротивление .
    Единицы измерения удельного сопротивления — ом-метры.
  • Сопротивление проволоки или прутка равномерного поперечного сечения может быть
    рассчитывается как

                                (удельное сопротивление) * (длина)
                  Сопротивление = ------------------------
                                 (площадь поперечного сечения)
     
  • Удельное сопротивление материала зависит от его температуры.Большинство металлов имеют более низкое сопротивление при понижении температуры.
  • Температурный коэффициент удельного сопротивления описывает
    изменение удельного сопротивления в зависимости от температуры:

                удельное сопротивление (T) = удельное сопротивление (T0) * [1 - a * (T - T0)]
    
          где
                    a = температурный коэффициент удельного сопротивления
                    T0 = ​​эталонная температура
     
  • Некоторые материалы становятся сверхпроводниками , когда они падают ниже
    критическая температура.Они предлагают нулевое сопротивление потоку
    тока.

Просмотр графа 1


Viewgraph 2


Viewgraph 3


Viewgraph 4


Viewgraph 5


Viewgraph 6


Обзор 7


Viewgraph 8


Viewgraph 9


Viewgraph 10


Viewgraph 11

Авторские права © Майкл Ричмонд.
Эта работа находится под лицензией Creative Commons License.

Цель — 8: Сопротивление металлического проводника — CCEA — Редакция GCSE Physics (Single Science) — CCEA

Экспериментально исследовать, как сопротивление металлического проводника при постоянной температуре зависит от длины, и получить достаточные значения для построения графика сопротивления (ось y) и длины (ось x).

Переменные

Основными переменными в научном эксперименте являются независимая переменная, зависимая переменная и контрольные переменные.

Независимая переменная — это то, что мы изменяем или контролируем в эксперименте.

Зависимая переменная — это то, что мы тестируем и будем измерять в эксперименте.

Контрольные переменные — это то, что мы сохраняем неизменными во время эксперимента, чтобы убедиться, что это честный тест.

В этом эксперименте:

  • Независимая переменная — это длина провода.
  • Зависимая переменная — сопротивление провода.
  • Управляющие переменные — это материал, площадь поперечного сечения и температура провода.Они сохраняются неизменными за счет того, что не меняют провод во время эксперимента, сохраняют небольшой ток и открывают переключение между измерениями.

Помните — эти переменные контролируются (или остаются неизменными), потому что для проверки достоверности можно изменить только 1 переменную, которая в данном случае является длиной провода.

Уравнение

Сопротивление R = \ (\ frac {напряжение ~ V} {ток ~ I} \)

Прогноз

По мере увеличения длины провода сопротивление будет увеличиваться.

Обоснование прогноза

Чем больше длина провода, тем больше количество столкновений между свободными электронами и ионами металлов.

Это приведет к большему сопротивлению.

Безопасность

Опасность Последствия Меры контроля
Вода Поражение электрическим током Не ставьте эксперимент рядом с кранами, раковинами и т. Д.
Проволока нагревается Легкие ожоги Не трогайте провод. Выключайте между измерениями.

Аппарат

Длина константанового провода 1 м, линейка для счетчика, блок питания низкого напряжения, вольтметр, амперметр, соединительные провода, выключатель, 2 зажима типа «крокодил», скотч.

Метод

  1. Настройте схему, как показано выше. Прикрепите гибкий провод к отметке 20 см так, чтобы длина провода, по которому протекает ток, составляла 20 см.Запишите эту длину в подходящую таблицу.
  2. Отрегулируйте блок питания, чтобы ток на амперметре составлял 0,4 А. Запишите значение тока в таблицу.
  3. Считайте соответствующее значение напряжения на проводе на вольтметре и запишите в таблицу.
  4. Выключите выключатель, чтобы не допустить повышения температуры проволоки.
  5. Включите снова и повторите измерение напряжения. Запишите в таблицу. Выключите и рассчитайте среднее напряжение.
  6. Рассчитайте сопротивление этой длины провода и запишите в таблицу.
  7. Включите снова. Убедитесь, что ток по-прежнему составляет 0,4 А, и повторите измерение тока и напряжения для длин 40 см, 50 см, 60 см, 80 см и 100 см.
  8. Рассчитайте сопротивление для каждой длины, не забывая выключать между каждым считыванием.

Ошибка

Температура провода должна поддерживаться постоянной.

Когда через проводник течет ток, возникает эффект нагрева.

Электрическая энергия преобразуется в тепловую.

Чтобы температура провода не повышалась, в перерывах между измерениями выключайте прибор и поддерживайте ток на минимально возможном уровне.

Точно снимите показания амперметра и вольтметра, считывая шкалу непосредственно над указателем, или используйте цифровые приборы.

Закон Ома — Torqeedo

Согласно закону Ома, рассеиваемая мощность кабеля пропорциональна его электрическому сопротивлению и связана с квадратом электричества, протекающего через него. Проще говоря, удвоение тока приводит к четырехкратным потерям, а в десять раз больше тока — к 100-кратным потерям.

Лодки часто используют низкое напряжение (<60 В) по соображениям безопасности. Вот почему, в зависимости от конфигурации батареи, пиковые токи от 80 до 100 ампер протекают через электрические приводы с входной мощностью от 2000 до 4000 Вт.

Для сравнения — дрель мощностью 1100 Вт потребляет 5 А из розетки 220 В. Если бы электропривод запускался с использованием обычных бытовых кабелей, рассеиваемая мощность составляла бы примерно 15% от сопротивления только в кабелях. Чтобы снизить потери и избежать риска локального перегрева, производители должны снизить сопротивление кабеля до минимума.Можно использовать два рычага: минимизировать длину кабеля между батареями и двигателем и выбрать кабель с подходящей площадью поперечного сечения.

Из-за квадратичной зависимости рассеиваемой мощности кабеля, как правило, рекомендуется использовать более высокие напряжения, то есть больше батарей, подключенных последовательно, с более высокой входной мощностью. Мощность, потребляемая от аккумулятора, рассчитывается как напряжение аккумулятора x ток аккумулятора. Таким образом, двигатель с входной мощностью 2000 Вт, работающий от 2 последовательно соединенных батарей на 12 В, потребляет 2000 Вт / 24 В = 83 А пиковой мощности.

Для двигателя мощностью 4000 Вт это будет 166 А, что в четыре раза больше, чем рассеиваемая мощность кабеля. Вам придется покупать значительно более толстые кабели, чтобы уменьшить рассеиваемую мощность на кабеле. Работа двигателя мощностью 4000 Вт с 4 последовательно подключенными свинцовыми батареями по 12 В каждая, т.е. 48 В, приведет к пиковому току 4000 Вт / 48 В = 83 А. При такой схеме расположения батарейного блока можно использовать тот же набор. кабелей как для двигателя мощностью 2000 Вт.

Это причина того, что наши двигатели оптимизированы для повышения производительности, а также для более высоких напряжений.

Пример:

Кабельные соединения подвесного двигателя Cruise 2.0 должны выдерживать пиковые токи более 80 А (2000 Вт при 24 В). По этой причине Torqeedo разработал кабельные соединения и комплекты с поперечным сечением 25-35 мм². При длине кабеля 5 метров между двигателем и аккумулятором рассеиваемая мощность составит примерно 17 Вт. В случае Cruise 2.0 это соответствует потере 0,8% общей мощности и 3,4 Вт на метр кабеля. Таким образом, минимизация рассеиваемой мощности обеспечивает более высокую эффективность всей системы и дополнительную безопасность, поскольку риск локального перегрева возрастает с более высокими потерями.

Список факторов, влияющих на сопротивление

Сопротивление — это свойство материала, ограничивающее поток электронов. На сопротивление влияют четыре фактора: температура, длина провода, площадь поперечного сечения провода и природа материала.
Когда в проводящем материале есть ток, свободные электроны движутся через материал и иногда сталкиваются с атомами. Эти столкновения заставляют электроны терять часть своей энергии, и, таким образом, их движение ограничивается.Это ограничение различается и определяется типом материала. Свойство материала, ограничивающее поток электронов, называется сопротивлением.
Когда через какой-либо материал, обладающий сопротивлением, проходит ток, в результате столкновений свободных электронов и атомов выделяется тепло. Следовательно, провод, который обычно имеет очень маленькое сопротивление, нагревается, когда через него проходит достаточный ток.
См. Также: Типы электрического заряда
Что такое единица измерения сопротивления?
Сопротивление R выражается в омах и обозначается греческой буквой омега (Ом).
«Сопротивление один Ом (1 Ом) существует, если в материале присутствует ток в один ампер (1 А), когда на материал подается один вольт (1 В)».
Что такое проводимость?
Сопротивление обратно пропорционально проводимости, обозначенной буквой G. Это мера легкости установления тока. Формула:

G = 1 / R

Единица измерения проводимости — Сименс, сокращенно S. Например, проводимость резистора 22 кОм G = 1/22 кОм = 45,5 мкс. Иногда устаревшая единица mho все еще используется для измерения проводимости.
См. Также: закон Кулона

Список факторов, влияющих на сопротивление

Сопротивление уменьшается с повышением температуры. Термистор — это резистор, зависящий от температуры, и его сопротивление уменьшается с повышением температуры. Термистор используется в цепи, которая определяет изменение температуры. Есть четыре фактора, от которых зависит сопротивление.

  • Длина (L)
  • это площадь поперечного сечения (А)
  • вид материала
  • характер материала

Сопротивление провода зависит как от площади поперечного сечения и длины провода, так и от материала, из которого он изготовлен.Толстые провода имеют меньшее сопротивление, чем тонкие. Более длинные провода имеют большее сопротивление, чем короткие. Медная проволока имеет меньшее сопротивление тонкой стальной проволоки того же размера. Электрическое сопротивление также зависит от температуры. При определенной температуре и для конкретного вещества.

Как длина провода влияет на сопротивление?

Сопротивление провода R прямо пропорционально длине провода:

R α L… .. (1)

Это означает, что если мы удвоим длину провода, его сопротивление также увеличится вдвое, а если его длина уменьшится вдвое, его сопротивление станет наполовину.

Связь сопротивления с площадью:

Сопротивление R провода обратно пропорционально площади поперечного сечения A провода как:

R α 1 / A …… (2)

Это означает, что толстая проволока будет иметь меньшее сопротивление, чем тонкая. После объединения уравнений (1) и (2) получаем;

R α L / A

R = ρL / A…. (3)

Где ρ — коэффициент пропорциональности, известный как удельное сопротивление. Его значение зависит от типа проводника i.Медь, железо, олово и серебро будут иметь разные значения ρ. Из уравнения (3) имеем:

ρ = R A /L….(4)

Если L = 1 м, A = 1 м², то ρ = R. Таким образом, уравнение (4) дает определение.
См. Также: Разница между напряжением и током

Что такое удельное сопротивление?

Сопротивление куба вещества длиной один метр равно его удельному сопротивлению. Единица измерения ρ — ом-метр (Ом · м). Ниже приведена таблица некоторых металлов с удельным сопротивлением:

.

Удельное сопротивление металла (10-8 Ом)
  • серебро 1.7
  • Медь 1,69
  • Алюминий 2,75
  • Вольфрам 5,25
  • Платина 10,6
  • Утюг 9,8
  • Нихром 100
  • Графит 3500

Что такое проводники?
Материал или объект, который проводит тепло, электричество, свет или звук, называется проводником. Металлические провода являются хорошими проводниками электричества и обладают меньшим сопротивлением току.Почему металлы проводят электричество?… Такие металлы, как серебро и медь, имеют избыток свободных электронов, которые не удерживаются прочно ни с одним из атомов металлов. Эти свободные электроны беспорядочно перемещаются во всех направлениях внутри металлов. Когда мы прикладываем внешнее поле, эти электроны могут легко двигаться в определенном направлении.
Это движение свободных электронов в определенном направлении под действием внешнего поля вызывает протекание тока в металлических проводах.

Как сопротивление увеличивается с температурой?

Проводники имеют низкое сопротивление.Сопротивление проводников увеличивается с повышением температуры. Это связано с увеличением количества столкновений электронов с собой и с атомами металлов. Золото, серебро, медь, алюминий и другие металлы — хорошие примеры проводников. Земля также является очень хорошим и большим проводником.
Что такое изоляторы?
Материал, который с трудом передает энергию, например электрический ток или тепло, называется изоляторами. почему изоляторы не проводят электричество ?.Все материалы содержат электроны. Однако электроны в изоляторах, таких как резина, не могут двигаться. Они прочно связаны внутри атомов. Следовательно, ток не может течь через изолятор, потому что они не являются свободными электронами для протекания тока. Изоляторы имеют очень большое значение сопротивления. Стекло, дерево, пластик, мех, шелк и т. Д.

Сочетания сопротивлений в электрической цепи

Возможны две комбинации сопротивления в электрических цепях:

  • Комбинация серии
  • Параллельная комбинация
  1. Комбинация серий:

В последовательных комбинациях резисторы подключаются встык, и электрический ток проходит через цепь одним путем.Это означает, что ток, проходящий через каждый резистор, одинаков.
Ток одинаков во всех точках последовательной цепи. Ток через каждый резистор в последовательной цепи такой же, как ток через все резисторы, включенные последовательно с ним. На приведенном выше рисунке три резистора подключены последовательно к источнику постоянного напряжения.
В любой точке этой цепи ток в этой точке должен быть равен току из этой точки. Также обратите внимание, что ток на каждом резисторе должен равняться току на каждом резисторе, потому что нет места, где часть тока может ответвиться и уйти в другое место.
Следовательно, ток в каждой секции цепи такой же, как ток во всех других секциях. У него есть только один путь, идущий от положительной (+) стороны источника к отрицательной (_) стороне.

Общее последовательное сопротивление:

Общее последовательное сопротивление последовательной цепи равно сумме сопротивлений каждого отдельного последовательного резистора. Когда резисторы подключаются последовательно, значения резисторов складываются, потому что каждый резистор оказывает сопротивление току прямо пропорционально его сопротивлению.Чем больше количество резисторов, подключенных последовательно, тем больше сопротивление току. Чем больше сопротивление току, тем выше сопротивление. Таким образом, каждый раз, когда резистор добавляется последовательно, общее сопротивление увеличивается.
См. Также: Виды электрического заряда

Формула полного сопротивления при последовательном соединении:

Для любого количества отдельных резисторов, соединенных последовательно, общее сопротивление является суммой каждого из отдельных значений.

Rt = R1 + R2 + R3 + R4 + ……….. + Rn

Где Rt — полное сопротивление, а Rn — последний резистор в последовательной цепочке. Например, если есть 3 последовательно подключенных резистора. Формула общего сопротивления будет

.

Rt = R1 + R2 + R3

Если имеется шесть последовательно соединенных резисторов (n = 6), формула общего сопротивления будет:

Rt = R1 + R2 + R3 + R4 + R5 + R6

2: Параллельная комбинация:

Когда два или более резистора по отдельности подключены между одними и теми же двумя отдельными точками, они параллельны друг другу.Параллельная цепь обеспечивает более одного пути для тока.

Каждый текущий путь называется ветвью . Параллельная схема — это еще одна цепь, имеющая более одной ветви. Три резистора подключены параллельно, как показано на рисунке выше. Когда резисторы соединены параллельно, ток имеет более одного пути. Количество путей тока равно количеству параллельных ветвей.

Формула для полного параллельного сопротивления:

Поскольку Vs — это напряжение на каждом из параллельных резисторов на приведенном выше рисунке, по закону Ом I = Vs / R :

Vs / Rt = Vs / R1 + Vs / R2 + Vs / R3 …….(1)

Член Vs может быть исключен из правой части уравнения и отменен с помощью Vs в левой части, оставив только члены сопротивления.

1 / Rt = 1 / R1 + 1 / R2 + 1 / R3 …… (2)

Напомним, что величина, обратная сопротивлению (1 / R), называется проводимостью , что соответствует , обозначенному буквой G.