Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | |||||
ток, А | мощность, кВт | ток, А | мощность, кВт | ||||
1,5 | 19 | 4,1 | 16 | 10,5 | |||
2,5 | 27 | 5,9 | 25 | 16,5 | |||
4 | 38 | 8,3 | 30 | 19,8 | |||
6 | 46 | 10,1 | 40 | 26,4 | |||
10 | 70 | 15,4 | 50 | 33,0 | |||
16 | 85 | 18,7 | 75 | 49,5 | |||
25 | 115 | 25,3 | 90 | 59,4 | |||
35 | 135 | 29,7 | 115 | 75,9 | |||
50 | 175 | 38,5 | 145 | 95,7 | |||
70 | 215 | 47,3 | 180 | 118,8 | |||
95 | 260 | 57,2 | 220 | 145,2 | |||
120 | 300 | 66,0 | 260 | 171,6 | |||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | |||||
ток, А | мощность, кВт | ток, А | мощность, кВт | ||||
2,5 | 20 | 4,4 | 19 | 12,5 | |||
4 | 28 | 6,1 | 23 | 15,1 | |||
6 | 36 | 7,9 | 30 | 19,8 | |||
10 | 50 | 11,0 | 39 | 25,7 | |||
16 | 60 | 13,2 | 55 | 36,3 | |||
25 | 85 | 18,7 | 70 | 46,2 | |||
35 | 100 | 22,0 | 85 | 56,1 | |||
50 | 135 | 29,7 | 110 | 72,6 | |||
70 | 165 | 36,3 | 140 | 92,4 | |||
95 | 200 | 44,0 | 170 | 112,2 | |||
120 | 230 | 50,6 | 200 | 132,0 | |||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | |||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | |||
0,5 | 11 | – | – | – | – | – | |
0,75 | 15 | – | – | – | – | – | |
1 | 17 | 16 | 15 | 14 | 15 | 14 | |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 | |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 | |
2 | 26 | 24 | 22 | 20 | 23 | 19 | |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 | |
3 | 34 | 32 | 28 | 26 | 28 | 24 | |
4 | 41 | 38 | 35 | 30 | 32 | 27 | |
5 | 46 | 42 | 39 | 34 | 37 | 31 | |
6 | 50 | 46 | 42 | 40 | 40 | 34 | |
8 | 62 | 54 | 51 | 46 | 48 | 43 | |
10 | 80 | 70 | 60 | 50 | 55 | 50 | |
16 | 100 | 85 | 80 | 75 | 80 | 70 | |
25 | 140 | 115 | 100 | 90 | 100 | 85 | |
35 | 170 | 135 | 125 | 115 | 125 | 100 | |
50 | 215 | 185 | 170 | 150 | 160 | 135 | |
70 | 270 | 225 | 210 | 185 | 195 | 175 | |
95 | 330 | 275 | 255 | 225 | 245 | 215 | |
120 | 385 | 315 | 290 | 260 | 295 | 250 | |
150 | 440 | 360 | 330 | – | – | – | |
185 | 510 | – | – | – | – | – | |
240 | 605 | – | – | – | – | – | |
300 | 695 | – | – | – | – | – | |
400 | 830 | – | – | – | – | – | |
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | |||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | |||
2 | 21 | 19 | 18 | 15 | 17 | 14 | |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 | |
3 | 27 | 24 | 22 | 21 | 22 | 18 | |
4 | 32 | 28 | 28 | 23 | 25 | 21 | |
5 | 36 | 32 | 30 | 27 | 28 | 24 | |
6 | 39 | 36 | 32 | 30 | 31 | 26 | |
8 | 46 | 43 | 40 | 37 | 38 | 32 | |
10 | 60 | 50 | 47 | 39 | 42 | 38 | |
16 | 75 | 60 | 60 | 55 | 60 | 55 | |
25 | 105 | 85 | 80 | 70 | 75 | 65 | |
35 | 130 | 100 | 95 | 85 | 95 | 75 | |
50 | 165 | 140 | 130 | 120 | 125 | 105 | |
70 | 210 | 175 | 165 | 140 | 150 | 135 | |
95 | 255 | 215 | 200 | 175 | 190 | 165 | |
120 | 295 | 245 | 220 | 200 | 230 | 190 | |
150 | 340 | 275 | 255 | – | – | – | |
185 | 390 | – | – | – | – | – | |
240 | 465 | – | – | – | – | – | |
300 | 535 | – | – | – | – | – | |
400 | 645 | – | – | – | – | – | |
Сечение токопроводящей жилы, мм. | Ток*, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
1,5 | 23 | 19 | 33 | 19 | 27 | ||
2,5 | 30 | 27 | 44 | 25 | 38 | ||
4 | 41 | 38 | 55 | 35 | 49 | ||
6 | 50 | 50 | 70 | 42 | 60 | ||
10 | 80 | 70 | 105 | 55 | 90 | ||
16 | 100 | 90 | 135 | 75 | 115 | ||
25 | 140 | 115 | 175 | 95 | 150 | ||
35 | 170 | 140 | 210 | 120 | 180 | ||
50 | 215 | 175 | 265 | 145 | 225 | ||
70 | 270 | 215 | 320 | 180 | 275 | ||
95 | 325 | 260 | 385 | 220 | 330 | ||
120 | 385 | 300 | 445 | 260 | 385 | ||
150 | 440 | 350 | 505 | 305 | 435 | ||
185 | 510 | 405 | 570 | 350 | 500 | ||
240 | 605 | – | – | – | – | ||
Сечение токопроводящей жилы, мм. | Ток, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
2,5 | 23 | 21 | 34 | 19 | 29 | ||
4 | 31 | 29 | 42 | 27 | 38 | ||
6 | 38 | 38 | 55 | 32 | 46 | ||
10 | 60 | 55 | 80 | 42 | 70 | ||
16 | 75 | 70 | 105 | 60 | 90 | ||
25 | 105 | 90 | 135 | 75 | 115 | ||
35 | 130 | 105 | 160 | 90 | 140 | ||
50 | 165 | 135 | 205 | 110 | 175 | ||
70 | 210 | 165 | 245 | 140 | 210 | ||
95 | 250 | 200 | 295 | 170 | 255 | ||
120 | 295 | 230 | 340 | 200 | 295 | ||
150 | 340 | 270 | 390 | 235 | 335 | ||
185 | 390 | 310 | 440 | 270 | 385 | ||
240 | 465 | – | – | – | – |
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки | |||||
Сечение медных жил проводов и кабелей, кв.мм | Допустимый длительный ток нагрузки для проводов и кабелей, А | Номинальный ток автомата защиты, А | Предельный ток автомата защиты, А | Максимальная мощность однофазной нагрузки при U=220 B | Характеристика примерной однофазной бытовой нагрузки |
1,5 | 19 | 10 | 16 | 4,1 | группа освещения и сигнализации |
2,5 | 27 | 16 | 20 | 5,9 | розеточные группы и электрические полы |
4 | 38 | 25 | 32 | 8,3 | водонагреватели и кондиционеры |
6 | 46 | 32 | 40 | 10,1 | электрические плиты и духовые шкафы |
10 | 70 | 50 | 63 | 15,4 | вводные питающие линии |
В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.
Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях | |
Наименование линий | Наименьшее сечение кабелей и проводов с медными жилами, кв.мм |
Линии групповых сетей | 1,5 |
Линии от этажных до квартирных щитков и к расчетному счетчику | 2,5 |
Линии распределительной сети (стояки) для питания квартир | 4 |
Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.
Большое значение в электротехнике имеет такая величина, как поперечное сечение провода и нагрузка. Без этого параметра невозможно проведение каких-либо расчетов, особенно, связанных с прокладкой кабельных линий. Ускорить необходимые вычисления помогает таблица зависимости мощности от сечения провода, применяемая при проектировании электротехнического оборудования. Правильные расчеты обеспечивают нормальную работу приборов и установок, способствуют надежной и долговременной эксплуатации проводов и кабелей.
Правила расчетов площади сечения
На практике расчеты сечения любого провода не представляют какой-либо сложности. Достаточно всего лишь вычислить сечение кабеля по диаметру с помощью штангенциркуля, а затем полученное значение использовать в формуле: S = π (D/2)2, в которой S является площадью сечения, число π составляет 3,14, а D представляет собой измеренный диаметр жилы.
В настоящее время используются преимущественно медные провода. По сравнению с алюминиевыми, они более удобны в монтаже, долговечны, имеют значительно меньшую толщину, при одинаковой силе тока. Однако, при увеличении площади сечения стоимость медных проводов начинает возрастать, и все преимущества постепенно теряются. Поэтому при значении силы тока более 50-ти ампер практикуется применение кабелей с алюминиевыми жилами. Для измерения сечения проводов используются квадратные миллиметры. Наиболее распространенными показателями, применяемыми на практике, являются площади 0,75; 1,5; 2,5; 4,0 мм2.
Таблица сечения кабеля по диаметру жилы
Основным принципом расчетов служит достаточность площади сечения, для нормального протекания через него электрического тока. То есть, допустимый ток не должен нагревать проводник до температуры свыше 60 градусов. Падение напряжения не должно превышать допустимого значения. Этот принцип особенно актуален для ЛЭП большой протяженности и высокой силы тока. Обеспечение механической прочности и надежности провода осуществляется за счет оптимальной толщины провода и защитной изоляции.
Сечение провода по току и мощности
Прежде чем рассматривать соотношение сечения и мощности, следует остановиться на показателе, известном, как максимальная рабочая температура. Данный параметр обязательно учитывается при выборе толщины кабеля. Если этот показатель превышает свое допустимое значение, то из-за сильного нагрева металл жилы и изоляция расплавятся и разрушатся. Таким образом, происходит ограничение рабочего тока для конкретного провода его максимальной рабочей температурой. Важным фактором является время, в течение которого кабель сможет функционировать в подобных условиях.
Основное влияние на устойчивую и долговечную работу провода оказывает потребляемая мощность и сила тока. Для быстроты и удобства расчетов были разработаны специальные таблицы, позволяющие подобрать необходимое сечение в соответствии с предполагаемыми условиями эксплуатации. Например, при мощности 5 кВт и силе тока в 27,3 А, площадь сечения проводника составит 4.0 мм2. Точно так же подбирается сечение кабелей и проводов при наличии других показателей.
Необходимо учитывать и влияние окружающей среды. При температуре воздуха, на 20 градусов превышающей нормативную, рекомендуется выбор большего сечения, следующего по порядку. То же самое касается наличия нескольких кабелей, содержащихся в одном жгуте или значения рабочего тока, приближающегося к максимальному. В конечном итоге, таблица зависимости мощности от сечения провода позволит выбрать подходящие параметры на случай возможного увеличения нагрузки в перспективе, а также при наличии больших пусковых токов и существенных перепадов температур.
Формулы для расчета сечения кабеля
В теории и практике, выбору площади поперечного сечения провода по току (толщине) уделяется особое внимание. В данной статье, анализируя справочные данные, познакомимся с понятием «площадь сечения».
Расчет сечения проводов.
В науке не используется понятие «толщина» провода. В литературных источниках используется терминология – диаметр и площадь сечения. Применимо к практике, толщина провода характеризуется площадью сечения.
Довольно легко рассчитывается на практике сечение провода. Площадь сечения вычисляется с помощью формулы, предварительно измерив его диаметр (можно измерить с помощью штангенциркуля):
S = π (D/2)2 ,
- S – площадь сечения провода, мм
- D- диаметр токопроводящей жилы провода. Измерить его можно с помощью штангенциркуля.
Более удобный вид формулы площади сечения провода:
Небольшая поправка – является округленным коэффициентом. Точная расчетная формула:
В электропроводке и электромонтаже в 90 % случаях применяется медный провод. Медный провод по сравнению с алюминиевым проводом, имеет ряд преимуществ. Он более удобен в монтаже, при такой же силе токе имеет меньшую толщину, более долговечен. Но чем больше диаметр (площадь сечения), тем выше цена медного провода. Поэтому, несмотря на все преимущества, если сила тока превышает значение 50 Ампер, чаще всего используют алюминиевый провод. В конкретном случае используется провод, имеющий алюминиевую жилу 10 мм и более.
В квадратных миллиметрах измеряют площадь сечения проводов. Наиболее чаще всего на практике (в бытовой электрике), встречаются такие площади сечения: 0,75; 1,5; 2,5; 4 мм .
Существует иная система измерения площади сечения (толщины провода) – система AWG, которая используется, в основном в США. Ниже приведена таблица сечений проводов по системе AWG, а так же перевод из AWG в мм .
Рекомендовано прочитать статью про выбор сечения провода для постоянного тока. В статье приведены теоретические данные и рассуждения о падении напряжения, о сопротивлении проводов для разных сечений. Теоретические данные сориентируют, какое сечение провода по току наиболее оптимально, для разных допустимых падений напряжения. Также на реальном примере объекта, в статье о падении напряжения на трехфазных кабельных линиях большой длины, приведены формулы, а также рекомендации о том, как уменьшить потери. Потери на проводе прямо пропорциональны току и длине провода. И являются обратно пропорциональными сопротивлению.
Выделяют, три основные принципа, при выборе сечения провода.
1. Для прохождения электрического тока, площадь сечения провода (толщина провода), должна быть достаточной. Понятие достаточно означает, что когда проходит максимально возможный, в данном случае, электрический ток, нагрев провода будет допустимый (не более 600С).
2. Достаточное сечение провода, что бы падение напряжения не превышало допустимого значения. В основном это относится к длинным кабельным линиям (десятки, сотни метров) и токам большой величины.
3. Поперечное сечение провода, а также его защитная изоляция, должна обеспечивать механическую прочность и надежность.
Для питания, например люстры, используют в основном лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А).
Выбирая толщину провода, необходимо ориентироваться на максимальную рабочую температуру. Если температура будет превышена, провод и изоляция на нем будут плавиться и соответственно это приведет к разрушению самого провода. Максимальный рабочий ток для провода с определенным сечением ограничивается только максимально его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.
Далее приведена таблица сечения проводов, при помощи которой в зависимости от силы тока, можно подобрать площадь сечения медных проводов. Исходные данные – площадь сечения проводника.
Максимальный ток для разной толщины медных проводов. Таблица 1.
Сечение токопроводящей жилы, мм 2
Ток, А, для проводов, проложенных
Оцените статью:
Поделитесь с друзьями!
Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Оборудование / / Электродвигатели. Электромоторы. / / Таблица и формулы расчета максимальных длин медных кабелей (проводов) в метрах в зависимости от мощности электромотора (электродвигателя), тока и сечения провода. Поделиться:
Поиск в инженерном справочнике DPVA. Введите свой запрос: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Коды баннеров проекта DPVA.ru Консультации и техническая | Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator |
Расчёт комплексного сопротивления круглого провода
Ввиду недостаточных вычислительных возможностей JavaScript (21 значащая цифра), конечная частота в расчёте ограничена (зависит от диаметра провода).
Ввиду большого объёма производимых расчётов возможны задержки (в пределах нескольких секунд) в построении графиков.
Зависимость комплексного сопротивления (Ом) от частоты (Гц)
Зависимость толщины скин-слоя (мм) от частоты (Гц)
Пояснения к расчёту
Расчёт комплексного сопротивления Z круглого провода переменному току с учётом поверхностного (скин) эффекта может быть выражено через параметры поля:
где:
R — активное сопротивление
X — реактивное сопротивление
r0 — радиус провода
l — длина провода
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
μ μ0 — абсолютная магнитная проницаемость
γ — электрическая проводимость
J0(Z) — функция Бесселя нулевого порядка
J1(Z) — функция Бесселя первого порядка
Глубину, на которой амплитуда волны уменьшается в е (~2,71828) раз, условно принимают за толщину скин-слоя (глубину проникновения поля):
Пожелания, замечания, рекомендации по улучшению раздела расчётов на нашем сайте просьба присылать по электронной почте [email protected]
Разрешается копирование java-скриптов при условии ссылки на источник.
|
ВСЕ РАСЧЁТЫ
Зависимость сечения провода от силы тока
Токовые нагрузки на провода, кабели и шнуры, покрытые резиновой или ПХВ изоляцией приведены исходя из расчета максимально допустимого нагрева жилы до 65°C. Температура окружающего воздуха принята равной 25°C, температура земли 15°C. При определении количества проводов или жил многожильного провода, которые прокладываются в одной трубе, не принимаются в расчет нулевые и заземляющие провода. Токовые нагрузки, указанные в нижеприведенной таблице 2, действительны при любом количестве труб и месте их прокладки (на открытом воздухе, внутри помещения, в перекрытиях здания).
Таблица 1. Токовая нагрузка на провода и шнуры с резиновой или ПХВ изоляцией, проложенные открыто.
Сечение жилы, мм2 | Диаметр жилы, мм | Ток, А | |
С медными жилами | С алюминиевыми жилами | ||
0.5 | 0.80 | 11 | — |
0.75 | 0.98 | 15 | — |
1.0 | 1.1 | 17 | — |
1.2 | 1.2 | 20 | 18 |
1.5 | 1.4 | 23 | — |
2 | 1.6 | 26 | 21 |
2.5 | 1.8 | 30 | 24 |
3 | 2.0 | 34 | 27 |
4 | 2.3 | 41 | 32 |
5 | 2.5 | 46 | 36 |
6 | 2.8 | 50 | 39 |
8 | 3.2 | 62 | 46 |
10 | 3.6 | 80 | 60 |
16 | 4.5 | 100 | 75 |
25 | 5.6 | 140 | 105 |
35 | 6.7 | 170 | 130 |
50 | 8.0 | 215 | 165 |
70 | 9.4 | 270 | 210 |
95 | 11.0 | 330 | 255 |
120 | 12.4 | 385 | 295 |
150 | 13.8 | 440 | 340 |
185 | 15.3 | 510 | 390 |
240 | 17.5 | 605 | 465 |
300 | 19.5 | 695 | 535 |
400 | 22.6 | 830 | 645 |
Таблица 2. Токовая нагрузка на провода и шнуры с резиновой или ПХВ изоляцией, проложенные в трубе.
А — два одножильных; Б — три одножильных; В — четыре одножильных;
Г — один двухжильный; Д — один трехжильный.
Сечение жилы, мм2 | Диаметр жилы, мм | Ток, А | |||||||||
С медными жилами | С алюминиевыми жилами | ||||||||||
А | Б | В | Г | Д | А | Б | В | Г | Д | ||
0.5 | 0.80 | — | — | — | — | — | — | — | — | — | — |
0.75 | 0.98 | — | — | — | — | — | — | — | — | — | — |
1.0 | 1.1 | 16 | 15 | 14 | 15 | 14 | — | — | — | — | — |
1.2 | 1.2 | 18 | 16 | 15 | 16 | 14.5 | — | — | — | — | — |
1.5 | 1.4 | 19 | 17 | 16 | 18 | 15 | — | — | — | — | — |
2 | 1.6 | 24 | 22 | 20 | 23 | 19 | 19 | 18 | 15 | 17 | 14 |
2.5 | 1.8 | 27 | 25 | 25 | 25 | 21 | 20 | 19 | 19 | 19 | 16 |
3 | 2.0 | 32 | 28 | 26 | 28 | 24 | 24 | 22 | 21 | 22 | 18 |
4 | 2.3 | 38 | 35 | 30 | 32 | 27 | 28 | 28 | 23 | 25 | 21 |
5 | 2.5 | 42 | 39 | 34 | 37 | 31 | 32 | 30 | 27 | 28 | 24 |
6 | 2.8 | 46 | 42 | 40 | 40 | 34 | 36 | 32 | 30 | 31 | 26 |
8 | 3.2 | 54 | 51 | 46 | 48 | 43 | 43 | 40 | 37 | 38 | 32 |
10 | 3.6 | 70 | 60 | 50 | 55 | 50 | 50 | 47 | 39 | 42 | 38 |
16 | 4.5 | 85 | 80 | 75 | 80 | 80 | 60 | 60 | 55 | 60 | 55 |
25 | 5.6 | 115 | 100 | 90 | 100 | 100 | 85 | 80 | 70 | 75 | 65 |
35 | 6.7 | 135 | 125 | 115 | 125 | 135 | 100 | 95 | 85 | 95 | 75 |
50 | 8.0 | 185 | 170 | 150 | 160 | 175 | 140 | 130 | 120 | 125 | 105 |
70 | 9.4 | 225 | 210 | 185 | 195 | 215 | 175 | 165 | 140 | 150 | 135 |
95 | 11.0 | 275 | 255 | 225 | 245 | 250 | 215 | 200 | 175 | 190 | 165 |
120 | 12.4 | 315 | 290 | 260 | 295 | — | 245 | 220 | 200 | 230 | 190 |
150 | 13.8 | 360 | 330 | — | — | — | 275 | 255 | — | — | — |
185 | 15.3 | — | — | — | — | — | — | — | — | — | — |
240 | 17.5 | — | — | — | — | — | — | — | — | — | — |
300 | 19.5 | — | — | — | — | — | — | — | — | — | — |
400 | 22.6 | — | — | — | — | — | — | — | — | — | — |
Сечение проводов по мощности таблица 12в
Как выбрать сечение провода для сетей освещения 12 вольт
В разговорах с покупателями при обсуждении галогенного освещения на 12 вольт почему-то очень часто мелькает слово “слаботочка”, что характеризует соответствующее отношение к выбору проводов – что есть под рукой, то и используем, напряжение ведь безопасное.
Напряжение 12 вольт, действительно безопасное, в том смысле, что прикосновение к оголенному проводу с таким напряжением просто не ощущается, но вот токи в таких цепях текут достаточно большие (см. основные моменты использования безопасного напряжения в быту).
Рассмотрим для примера питание обычной галогенной лампы мощностью 50 W, ток в первичной цепи трансформатора I=50W/220V=0.23A (или, точнее, чуть больше с учетом КПД трансформатора), при этом во вторичной цепи 12 V течет ток I=50W/12V= 4.2 A, что уже в 18 раз больше. Если не учесть этот факт, можно столкнуться с очень неприятными неожиданностями.
Однажды ко мне за консультацией зашёл человек и рассказал, что он сделал в своем доме галогенное освещение, использовал надежный индукционный трансформатор 1000W при нагрузке 900W, провел от монтажной коробки отдельный провод к каждой лампе, но в момент включения провода просто загорелись, причем те провода, которые вели от выхода трансформатора к монтажной коробке.
На вопрос о сечении проложенных проводов – ответ: “Обыкновенное сечение, как везде – 1,5 мм 2 “. В стационарном режиме по этому проводу должен был течь ток I=900W/12V=75A, а при включении и того больше. Сечение медного провода в таких условиях должно быть не менее 16 мм 2 . Отсюда вывод: важно не забывать о повышенных токах в цепях 12 вольт и соответственно выбирать провода. Этого, впрочем, иногда бывает совершенно недостаточно.
Очень часто приходится сталкиваться с жалобами на то, что при использовании трансформаторов большой мощности (в данном случае уже 200W является большой мощностью), питающих несколько ламп, яркость свечения ламп заметно убывает с увеличением расстояния от трансформатора. Попытки справиться с этой проблемой путём увеличения мощности трансформатора, естественно, не приводят к улучшению ситуации, тем более не помогает увеличение мощности используемых ламп. Дело в том, что причиной данного явления является банальное падение напряжения на проводах в соответствии с законом Ома.
Проиллюстрируем сказанное на конкретном примере:
Допустим, надо запитать группу из трех ламп по 50W каждая, расположенную на расстоянии L от трансформатора, как показано на рисунке:
Эквивалентная схема имеет вид:
Сопротивление каждой лампы Rl= U 2 /P = 2.88 Ом, а сопротивление провода длиной L и сечением S
где ρ – удельное сопротивление, в данном случае меди (0,0173 Ом мм 2 /М).
Если на выходе трансформатора поддерживается напряжение U = 12 V, то ток через каждую лампу
а мощность, выделяемая в лампе
Пользуясь этими формулами, легко рассчитать зависимость мощности от длины провода. Результаты расчетов приведены в таблице (если нажать на картинку, то загрузится таблица в большем формате):
Как видно из таблицы, мощность довольно быстро падает с увеличением длины проводов, еще более наглядно это видно на графиках:
Рис.3. Потеря мощности ламп в зависимости от длины питающих проводов
Избежать заметной неравномерности светового потока ламп можно не только за счет применения провода большого сечения, но и разделяя лампы на группы, питаемые отдельными проводами, в пределе запитывая каждую лампу своим проводом. В любом случае, приобретая осветительное оборудование полезно попросить продавца дать точные рекомендации по выбору сечения проводов и схеме монтажа.
Конкретные рекомендации по выбору сечения провода в цепи освещения 12 В при использовании электронных и индукционных трансформаторов можно найти в соответствующих таблицах.
Таблицы для выбора сечения проводов в низковольтных цепях освещения
Как показано ранее, из анализа потерь мощности в сетях освещения 12 В, сечение проводов для галогенного освещения 12 вольт следует выбирать с учетом суммарной мощности ламп, подключаемых к трансформатору, и длины этих проводов.
Подход к определению сечения проводов зависит от того, какой источник используется для питания цепи: электронный или индукционный. Допустимая длина проводов во вторичной цепи электронных блоков питания, как правило, не может превышать 2 метров (в очень редких случаях для трансформаторов большой мощности допускается длина до 3 метров). В этом случае следует использовать провод с сечением указанным в документации на трансформатор. Если такие данные отсутствуют можно ориентировочно воспользоваться данными из таблицы:
Таблица сечений медных проводов в цепи освещения 12 В длиной до 2 метров (для электронных блоков питания). Если нажать на картинку, то загрузится таблица в большем формате.
При использовании индукционных трансформаторов длина провода во вторичной цепи ограничена только падением напряжения на проводах и, следовательно, может быть значительно большей, чем у электронных (импульсных) блоков питания, при условии компенсации за счет увеличения сечения провода.
Ниже приведена таблица для выбора сечения проводов в зависимости от суммарной мощности ламп, подключаемых ко вторичной обмотке индукционного трансформатора и длины этих проводов. Следует иметь в виду, что лампы могут быть разделены на группы, подключаемые каждая своим проводом, в этом случае сечение группового провода определяется по таблице для каждой группы отдельно. В пределе возможно подключение каждой лампы своим проводом.
Таблица сечений медных проводов в цепи освещения 12 В (для индукционных трансформаторов).
Как определить сечение провода по мощности – таблицы и расчеты
Популярное сегодня галогенное освещение требует наличия напряжения в 12В. Поэтому в разводку обязательно устанавливается трансформатор. Но странное получается дело, когда домашние мастера в качестве электрического провода берут любые куски этого материала, так сказать, те, которые попали под руку. Чаще всего почему-то сечением 1,5 мм², при этом жалуются на то, что проводка начинает греться, а лампы горят не так ярко. Их ошибка состоит в том, что было неправильно выбрано сечение провода по мощности (таблицу можно такого сравнения найти в свободном доступе в интернете).
Итак, начнем с того, что напряжение 12 В на самом деле безопасное, и человек его не ощущает. Но давайте смотреть на электрические сети не как на провод, по которому подается определенное напряжение, а как на проводку, по которой течет ток с определенной силой. Так вот в контуре к галогенному освещению могут поступать токи большой величины. А, как всем известно, по закону Ома сила тока зависит от мощности потребления и напряжения в цепи. К тому же зависимость по току от напряжения обратнопропорциональная. То есть, чем оно больше, тем безопаснее.
Примеры, чтобы понять ситуацию
Для примера возьмем обычную галогенную лампу 50 Вт, которая питается от напряжения 220 В через первичную цепь трансформатора, и ее же, запитанную на 12 В через вторичную цепь. Сравним ток, который течет по проводке, подсоединенной к этим двум лампам.
Представляете, какая разница. А ведь сила тока больше 4 А – это большая величина. Конечно, многое будет зависеть и от самого трансформатора, а, точнее сказать, от его мощности. Можно привести один пример, который покажет некомпетентность домашних мастеров.
К примеру, для галогенного освещения берется трансформатор мощностью 1 кВт. Оговариваемся – это для примера. Так вот вставляя эту величину в формулу закона Ома, получаем:
1000/12=83 А. Такой ток может выдержать провод в 16 мм², а уж никак не 1,5 или 2,5. Кстати, это величина медного кабеля. То есть, получается так, что правильный выбор сечения провода влияет на качество работы всей электрической разводки. Но и это не все.
Что касается мощных трансформаторов для слаботочки в 12 В. Кстати, мощность в 200 Вт – это уже большой показатель. Так вот необходимо заметить, что яркость освещения никак не связана с подаваемой на лампы мощностью. То есть, связь есть, но она крутится вокруг сопротивления ламп и проводов. И чем выше сопротивление, тем яркость освещения снижается. А само сопротивление зависит от длины уложенной проводки и от ее сечения. И если длина к сопротивлению находится в прямой зависимости. То есть, чем дальше от трансформатора установлена лампа, тем ниже яркость свечения. То с сечением оно находится в обратной зависимости. Чем больше данный показатель, тем меньше сопротивления, тем ярче горит лампа.
О чем это говорит?
- Во-первых, брать для слаботочки провода, так сказать, какие попадутся, это неверное и губительное решение.
- Во-вторых, соизмеряя все характеристики электрических приборов (в данном случае ламп), можно собрать схему, которая будет работать эффективно и долго, не создавая лишних проблем.
- В-третьих, необходимо правильно подбирать группы светильников, при этом учитывая сечения кабелей, подходящих как к группе, так и к каждому отдельному осветительному прибору.
Таблицы выбора сечения проводов
Итак, из всего вышеописанного можно сделать один важный вывод – расчет сечения провода для галогенного освещения напряжением 12 В зависит от двух величин: мощности используемых ламп и длины подключаемых их проводов от трансформатора.
Что касается самого трансформатора, то необходимо учитывать, какого он типа: индукционного или электронного. Это первое. Второе, что касается длины провода во вторичной цепи. Так вот эта длина не должна превышать 2 м. В случае использования мощных трансформаторов длина может доводиться до 3 м. Кстати, оба показателя (длина и сечение) обычно указываются в сопроводительных технических документах, приложенных в комплекте к трансформатору.
Такая таблица, где определяется соотношение сечения и потребляемой мощности, есть в интернете.
Обратите внимание, что у индукционных аппаратов падение напряжения, связанное с длиной проводки, больше, чем у электронных (импульсных). Компенсация падения может произойти только за счет увеличения сечения.
Заключение по теме
Итак, подводим итог всему вышесказанному. Казалось бы, что слаботочка – это не самый напряженный участок электрической сети. Но практика показывает обратное. Даже здесь приходится отвечать на вопрос, как рассчитать сечение электрического провода? Из статьи становится понятным, что для этого приходится учитывать сразу два показателя: величину потребляемой мощности и длину укладываемых проводов. Благо существуют таблицы, по которым можно легко и без больших проблем сделать точную подборку. Главное – не ошибиться с самими таблицами, так сказать, не перепутать один показатель с другим.
Таблица выбора сечения кабеля. Расчет сечения проводов и кабелей по току, мощности.
В таблице приведены данные мощности, тока и сечения кабелей и проводов, для расчетов и выбора кабеля и провода, кабельных материалов и электрооборудования.
В расчете применялись данные таблиц ПУЭ, формулы активной мощности для однофазной и трехфазной симметричной нагрузки.
Ниже представлены таблицы для кабелей и проводов с медными и алюминивыми жилами проводов.
Сечение токопро водящей жилы, мм 2 | Медные жилы проводов и кабелей | |||
Напряжение, 220 В | Напряжение, 380 В | ток, А | мощность, кВт | ток, А | мощность, кВт |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33,0 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66,0 | 260 | 171,6 |
Сечение токопро водящей жилы, мм 2 | Алюминивые жилы проводов и кабелей | |||
Напряжение, 220 В | Напряжение, 380 В | ток, А | мощность, кВт | ток, А | мощность, кВт |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11,0 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22,0 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,0 |
Пример расчета сечения кабеля
Задача: запитать ТЭН мощностью W=4,75 кВт медным проводом в кабель-канале.
Расчет тока: I = W/U. Напряжение нам известно: 220 вольт. Согласно формуле протекающий ток I = 4750/220 = 21,6 ампера.
Ориентируемся на медный провод, потому берем значение диаметра медной жилы из таблицы. В колонке 220В – медные жилы находим значение тока, превышающего 21,6 ампера, это строка со значением 27 ампера. Из этой же строки берем Сечение токопроводящей жилы, равное 2,5 квадрата.
Расчет необходимого сечения кабеля по марке кабеля, провода
Как рассчитать необходимое сечение провода по мощности нагрузки?
При ремонте и проектировании электрооборудования появляется необходимость правильно выбирать провода. Можно воспользоваться специальным калькулятором или справочником. Но для этого необходимо знать параметры нагрузки и особенности прокладки кабеля.
Для чего нужен расчет сечения кабеля
К электрическим сетям предъявляются следующие требования:
Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.
Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода — это залог длительной безопасной эксплуатации и рационального использования финансовых средств.
Правильному подбору проводника посвящёна отдельная глава в ПУЭ: “Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны”.
Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( “Правила устройства электроустановок“). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:
- Напряжение питания (однофазное или трехфазное).
- Материал проводника.
- Ток нагрузки, измеряемый в амперах (А), или мощность — в киловаттах (кВт).
- Месторасположение кабеля.
В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину — 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.
В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно “Правилам устройства электроустановок“, при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на порядок больше, чем у ВА. В данном случае после 25 А находится 35 А. Последнюю величину и необходимо брать за расчетную. Току 35 А соответствуют сечение 4 мм² и мощность 7,7 кВт. Итак, выбор сечения медного провода по мощности завершен: 4 мм².
Чтобы узнать, какое сечение провода нужно для 10 кВт, опять воспользуемся справочником. Если рассматривать случай для открытой проводки, то надо определиться с материалом кабеля и с питающим напряжением.
Например, для алюминиевого провода и напряжения 220 В ближайшая большая мощность будет 13 кВт, соответствующее сечение — 10 мм²; для 380 В мощность составит 12 кВт, а сечение — 4 мм².
Выбираем по мощности
Перед выбором сечения кабеля по мощности надо рассчитать ее суммарное значение, составить перечень электроприборов, находящихся на территории, к которой прокладывают кабель. На каждом из устройств должна быть указана мощность, возле нее будут написаны соответствующие единицы измерения: Вт или кВт (1 кВт = 1000 Вт). Затем потребуется сложить мощности всего оборудования и получится суммарная.
Если же выбирается кабель для подключения одного прибора, то достаточно информации только о его энергопотреблении. Можно подобрать сечения провода по мощности в таблицах ПУЭ.
Таблица 1. Подбор сечения провода по мощности для кабеля с медными жилами
Сечение токопроводящей жилы, мм² | Для кабеля с медными жилами | |||
Напряжение 220 В | Напряжение 380 В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75.9 |
50 | 175 | 38.5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Таблица 2. Подбор сечения провода по мощности для кабеля с алюминиевыми жилами
Сечение токопроводящей жилы, мм² | Для кабеля с алюминиевыми жилами | |||
Напряжение 220 В | Напряжение 380 В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11,0 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22,0 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,2 |
Кроме того, надо знать напряжение сети: трехфазной соответствует 380 В, а однофазной — 220 В.
В ПУЭ дана информация и для алюминиевых, и для медных проводов. У обоих есть свои преимущества и недостатки. Достоинства медных проводов:
- высокая прочность;
- упругость;
- стойкость к окислению;
- электропроводность больше, чем у алюминия.
Недостаток медных проводников — высокая стоимость. В советских домах использовалась при постройке алюминиевая электропроводка. Поэтому если происходит частичная замена, то целесообразно поставить алюминиевые провода. Исключение составляют только те случаи, когда вместо всей старой проводки (до распределительного щита) устанавливается новая. Тогда есть смысл применять медь. Недопустимо, чтобы медь с алюминием контактировали напрямую, т. к. это приводит к окислению. Поэтому для их соединения используют третий металл.
Можно самостоятельно произвести расчет сечения провода по мощности для трехфазной цепи. Для этого надо воспользоваться формулой: I=P/(U*1.73), где P — мощность, Вт; U — напряжение, В; I — ток, А. Затем из справочной таблицы выбирается сечение кабеля в зависимости от рассчитанного тока. Если же там не будет необходимого значение, тогда выбирается ближайшее, которое превышает расчетное.
Как рассчитать по току
Величина тока, проходящего через проводник, зависит от длины, ширины, удельного сопротивления последнего и от температуры. При нагревании электрический ток уменьшается. Справочная информация указывается для комнатной температуры (18°С). Для выбора сечения кабеля по току используют таблицы ПУЭ (ПУЭ-7 п.1.3.10-1.3.11 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ).
Таблица 3. Электрический ток для медных проводов и шнуров с резиновой и ПВХ-изоляцией
Площадь сечение проводника, мм² | Ток, А, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
двух одножильных | трех одножильных | четырех одножильных | одного двухжильного | одного трехжильного | ||
0,5 | 11 | – | – | – | – | – |
0,75 | 15 | – | – | – | – | – |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | – | – | – |
185 | 510 | – | – | – | – | – |
240 | 605 | – | – | – | – | – |
300 | 695 | – | – | – | – | – |
400 | 830 | – | – | – | – | – |
Для расчета алюминиевых проводов применяют таблицу.
Таблица 4. Электрический ток для алюминиевых проводов и шнуров с резиновой и ПВХ-изоляцией
Площадь сечения проводника, мм² | Ток, А, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
двух одножильных | трех одножильных | четырех одножильных | одного двухжильного | одного трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | – | – | – |
185 | 390 | – | – | – | – | – |
240 | 465 | – | – | – | – | – |
300 | 535 | – | – | – | – | – |
400 | 645 | – | – | – | – | – |
Для примерного расчета сечения кабеля по току его надо разделить на 10. Если в таблице не будет полученного сечения, тогда необходимо взять ближайшую большую величину. Это правило подходит только для тех случаев, когда максимально допустимый ток для медных проводов не превышает 40 А. Для диапазона от 40 до 80 А ток надо делить на 8. Если устанавливают алюминиевые кабели, то надо делить на 6. Это объясняется тем, что для обеспечения одинаковых нагрузок толщина алюминиевого проводника больше, чем медного.
Расчет сечения кабеля по мощности и длине
Длина кабеля влияет на потерю напряжения. Таким образом, на конце проводника напряжение может уменьшиться и оказаться недостаточным для работы электроприбора. Для бытовых электросетей этими потерями можно пренебречь. Достаточно будет взять кабель на 10-15 см длиннее. Этот запас израсходуется на коммутацию и подключение. Если концы провода подсоединяются к щитку, то запасная длина должна быть еще больше, т. к. будут подключаться защитные автоматы.
При укладке кабеля на большие расстояния приходиться учитывать падение напряжения. Каждый проводник характеризуется электрическим сопротивлением. На данный параметр влияют:
- Длина провода, единица измерения — м. При её увеличении растут потери.
- Площадь поперечного сечения, измеряется в мм². При её увеличении падение напряжения уменьшается.
- Удельное сопротивление материала (справочное значение). Показывает сопротивление провода, размеры которого 1 квадратный миллиметр на 1 метр.
Падение напряжения численно равняется произведению сопротивления и тока. Допустимо, чтобы указанная величина не превышала 5%. В противном случае надо брать кабель большего сечения. Алгоритм расчета сечения провода по максимальной мощности и длине:
- В зависимости от мощности P, напряжения U и коэффициента cosф находим ток по формуле: I=P/(U*cosф). Для электросетей, которые используются в быту, cosф = 1. В промышленности cosф рассчитывают как отношение активной мощности к полной. Последняя состоит из активной и реактивной мощностей.
- С помощью таблиц ПУЭ определяют сечение провода по току.
- Рассчитываем сопротивление проводника по формуле: Rо=ρ*l/S, где ρ — удельное сопротивление материала, l — длина проводника, S — площадь поперечного сечения. Необходимо учесть ток факт, что ток идет по кабелю не только в одну сторону, но и обратно. Поэтому общее сопротивление: R = Rо*2.
- Находим падение напряжения из соотношения: ΔU=I*R.
- Определяем падение напряжения в процентах: ΔU/U. Если полученное значение превышает 5%, тогда выбираем из справочника ближайшее большее поперечное сечение проводника.
Открытая и закрытая прокладка проводов
В зависимости от размещения проводка делится на 2 вида:
Сегодня в квартирах монтируют скрытую проводку. В стенах и потолках создаются специальные углубления, предназначенные для размещения кабеля. После установки проводников углубления штукатурят. В качестве проводов используют медные. Заранее всё планируется, т. к. со временем для наращивания электропроводки или замены элементов придется демонтировать отделку. Для скрытой отделки чаще используют провода и кабели, у которых плоская форма.
При открытой прокладке провода устанавливают вдоль поверхности помещения. Преимущества отдают гибким проводникам, у которых круглая форма. Их легко установить в кабель-каналы и пропустить сквозь гофру. Когда рассчитывают нагрузку на кабель, то учитывают способ укладки проводки.
Расчет сечения кабеля по току: популярно об электрическом токе
Во время строительства домов, как частных, так и многоквартирных, офисных зданий и производственных сооружений для безопасной эксплуатации электрической сети и приборов нужно обязательно сделать расчет сечения кабеля по току.
Как сделать расчет
Как выбрать кабель
Чтобы произвести подсчет безопасной и необходимой толщины электрического кабеля в зависимости от тока, который будет проходить по нему нужно знать, какими электрическими приборами будут пользоваться.
Итак, далее – все считают образом.
Потребуется мощность каждого из приборов; формула для расчета общего показателя мощности выглядит так:
где Робщ. – мощность всех электроприборов в доме или квартире (в Ваттах),
Р1, Р2 и т. д. — это мощность каждого конкретного прибора.
Допустим, в однофазной сети будут работать три лампы, холодильник, микроволновка, электрочайник. Pобщ.=300+200+1100+2200=3800 Вт. Для дальнейших расчетов нужно знать силу тока, которая рассчитывается по формуле:
где I – это сила тока,
U – напряжение сети.
Теперь при подстановке всех известных данных получится:
I = 3800:220 = 17,3 Ампер.
С учетом того, что проводка будет выполнена из меди, удельное сопротивление (р) которой 0,0175 Ом*мм 2 /м. сразу сделаем расчет сопротивления участка цепи из следующей формулы:
Теперь из расчета сопротивления (возьмем длину проводника (L) за номинальный метр), который имеет следующий вид:
R=(рL)/S, выведем площадь сечения.
Соответственно площадь сечения кабеля, нужного для нормальной работы перечисленной выше техники равна (0,0175*1000)*1/12=1,46 мм 2 .
Еще один вариант вычислений
Зачем делать расчет сечения кабеля по току и длине? Чтобы сеть функционировала без перенапряжения и сбоев, этот этап нельзя пропускать.
Сечение медных и алюминиевых жил
Дело в том, что каждый конкретный проводник будет терять в мощности при увеличении своей длины. То есть, чем продолжительнее провода, тем больше будут подобные потери, которым способствует сопротивление.
Исходя из описанной уже формулы S=рL/R. Тут все известно, кроме сопротивления R. Его можно вычислить исходя из закона Ома для участка цепи (U=I*R) – отсюда R=U/I. В рассматриваемом примере R=220/17,3= 12,7 Ом (приблизительное округленное значение – 12).
Чтобы посчитать потери напряжения, нужно разделить полученное значение U на напряжение в сети (например, в обычной бытовой сети чаще всего 220 В). В итоге получится коэффициент, который при умножении на сто даст величину потерь в процентном выражении: если он более пяти процентов – толщину кабеля надо увеличивать.
Для точной, долгой и безопасной работы вновь прокладываемой проводки, особенно большой протяженности, обязательно производить расчеты сечения кабеля по длине. При этом нужно учесть, из какого материала он изготовлен.
Например, длина медного кабеля 5 метров, тогда S=рL/R=(0,0175*1000)*5/12=7,3 мм (приблизительное округленное значение).
Пример по вычислению
Проведем расчет сечения кабеля по току 12 вольт. Допустим, что используются (или предположительно могут использоваться) разнообразные электрические приборы, а именно 12, 12, 30 Ватт, то есть Р1=12, Р2=12, Р3=30.
Теперь, подставив значения в первую формулу, получим Pобщ. = Р1+Р2+Р3 = 12+12+30 = 54 Вт. То есть величина общей мощности составляет пятьдесят четыре Ватта. Исходя из второй формулы (I = Pобщ./U) сила тока I равна 54/12= 4,5 Ампер.
Теперь осталось выбрать один из доступных материалов, из которых изготавливаются кабели, допустим, для проводки применяется медь, а длина – составляет один метр. По уже упомянутой формуле площадь сечения можно найти по формуле S=рL/R=(0,0175*1000)*1/R=17,5/R, где R=U/I.
Значит, для напряжения 12 В справедливо следующее: R=U/I=12/4,5= 2,6 Ом. Тогда площадь равна: S=17,5/R=17,5/2,6= 6 мм.
А можно прибегнуть к такой простой “электрической арифметике”. Один квадратный миллиметр сечения медного провода (если он открыт) способен пропускать не больше семнадцати Ампер, если проводка закрыта — тринадцать.
Если речь идет об алюминиевом кабеле, то предпочтительные величины на каждый миллиметр – 10 или 8 А для открытого и закрытого размещения соответственно.
Расчет для алюминиевого провода следующий.
Удельное сопротивление его составляет двадцать восемь тысячных Ома на квадратный миллиметр, то есть р=0,028 Ом*мм 2 /м.
Теперь опять берем за общую мощность рассчитанную ранее величину – пятьдесят четыре Ватта.
Сила тока в этом случае будет равна I = Pобщ./U=54/12= 4,5 Ампер. S=рL/R=(0,028*1000)*1/R=28/R, при том, что R=U/I.
Во втором случае сопротивление R=U/I=12/4,5= 2,6 Ом. А площадь сечения равна: S=28/R=28/2,6= 10 мм.
Для того, чтобы верно установить электропроводку, обязательно знать как можно подробнее о длине кабелей, мощности приборов, материале изготовления проводов. Тогда с учетом несложных формул можно легко вывести нужные значения.
Подробнее о том, как рассчитать сечение провода — на видео:
Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.
Как подобрать сечение кабеля по мощности? Расчет
Привет. Тема сегодняшней статьи «Сечение кабеля по мощности«. Эта информация пригодиться как в быту, так и на производстве. Речь пойдет о том, как произвести расчет сечения кабеля по мощности и сделать выбор по удобной таблице.
Для чего вообще нужно правильно подобрать сечение кабеля ?
Если говорить простым языком, это нужно для нормальной работы всего, что связано с электрическим током. Будь-то фен, стиральная машина, двигатель или трансформатор. Сегодня инновации не дошли еще до безпроводной передачи электроэнергии (думаю еще не скоро дойдут), соответственно основным средством для передачи и распределения электрического тока, являются кабели и провода.
При маленьком сечении кабеля и большой мощности оборудования, кабель может нагреваться, что приводит к потере его свойств и разрушению изоляции. Это не есть хорошо, так что правильный расчет необходим.
Итак, выбор сечения кабеля по мощности. Для подбора будем использовать удобную таблицу:
Таблица простая, описывать ее думаю не стоит.
Теперь нам нужно рассчитать общую потребляемую мощность оборудования и приборов, используемых в квартире, доме, цехе или в любом другом месте куда мы ведем кабель. Произведем расчет мощности.
Допустим у нас дом, выполняем монтаж закрытой электропроводки кабелем ВВГ. Берем лист бумаги и переписываем перечень используемого оборудования. Сделали? Хорошо.
Как узнать мощность? Мощность вы сможете найти на самом оборудовании, обычно имеется бирка, где записаны основные характеристики:
Мощность измеряется в Ваттах ( Вт, W ), или Киловаттах ( кВт, KW ). Нашли? Записываем данные, затем складываем.
Допустим, у вас получилось 20 000 Вт, это 20 кВт. Цифра говорит нам о том, сколько энергии потребляют все электроприемники вместе. Теперь нужно подумать сколько вы будете использовать приборов одновременно в течении длительного времени? Допустим 80 %. Коэффициент одновременности в таком случае равен 0,8 . Делаем расчет сечения кабеля по мощности:
Считаем:
20 х 0,8 = 16 (кВт)
Чтобы сделать выбор сечения кабеля по мощности, смотрим на наши таблицы:
Для трехфазной цепи 380 Вольт это будет выглядеть вот так:
Как видите, не сложно. Хочу также добавить, советую выбирать кабель или провод наибольшего сечения жил, на случай если вы захотите подключить что-нибудь еще.
Похожие записи:
- Когда День энергетика в России в 2012 году он был особенным.
- Если планируете учиться на электрика, рекомендую почитать где учиться и как получить диплом электрика
- Электротехнический персонал, группы
- Профессия электрик, перспективы
Полезный совет: если вы вдруг оказались в незнакомом районе в темное время суток. Не стоит подсвечивать себе дорогу сотовым телефоном
На этом у меня все, теперь вы знаете как подобрать сечение кабеля по мощности . Смело делитесь с друзьями в социальных сетях.
Сечение кабеля по мощности: таблица, как выбрать?
Часто можно услышать, что когда кто-либо делает ремонт своими руками, то прокладывает электрику в нужное место тем проводом, который оказался под рукой. К тому же могут еще и удивиться, когда им говорят, что такой кабель может не выдержать нагрузок.
Так все-таки, какую роль играет выбор провода и есть ли разница, какое сечение кабелей использовано при монтаже? Оказывается есть. И при этом, основная задача расчета сечения — подбор того, который подходит.
При любом электромонтаже первым делом необходимо определиться по размерам жилы провода, так как слишком тонкий может не выдержать нагрузки включенных приборов, а слишком толстый не удобен в прокладке, да и к тому же по цене выйдет значительно дороже.
А для того, чтобы не переплачивать или не переделывать все с нуля и нужно знать нюансы расчета толщины проводки для того, чтобы сделать правильный выбор сечения кабеля по току, который зависит от мощности, длины и такого параметра, как максимальный ток.
Если имеется таблица сечение кабеля вычислить не сложно — достаточно лишь знать некоторые нюансы подобных вычислений, в которых сейчас и необходимо разобраться.
Подсчет потребляемой мощности
Для того чтобы правильно произвести расчет сечения кабеля по мощности, необходимо определить, какое оборудование будет подключено к той или иной линии. Нужно выписать на листок все характеристики потребителей, рассчитывая именно на максимальную нагрузку, так как некоторые приборы имеют диапазон этого показателя. Узнать подобный параметр можно из технической документации или на табличке, наклеенной или закрепленной на устройстве.
Все показатели предельных мощностей суммируются, а таблица для выбора сечения кабеля поможет в расчетах. Приняв именно максимумы, можно обеспечить небольшой запас. Конечно, очень редко бывает так, что одновременно включаются все приборы, но исключать подобного нельзя. И если чуть большее сечение провода, чем необходимо, чревато, всего лишь, меньшим удобством монтажа и небольшой разницей в цене токопроводящего изделия, то слишком малое может грозить сгоранием электрики, и, как следствие, необходимостью полной ее замены (это в лучшем случае). А ведь при перегревании электрики возможно и возникновение пожара.
Существующая для определения такого параметра, как сечение кабеля по мощности, таблица, конечно, не даст полного решения вопроса, но для знания среднего значения толщины вполне подойдет.
Ну а чтобы четко рассчитать сечение кабеля по мощности потребуются и другие характеристики потребителей длина кабеля, его материал и даже рабочая температура окружающей среды. Главное помнить, что выбор площади жилы не будет идеально точен. Для этого необходимо учесть и множество других параметров.
Таблица сечений медных кабелей
Материал используемого кабеля
Здесь интересный момент заключается в том, что разные материалы имеют и различные физические параметры, а также долговечность, а значит, необходим расчет сечения провода для каждого свой. И если различие в сроке службы всем понятно, то на удельном сопротивлении стоит остановиться подробнее.
Этот показатель влияет не только на потерю тока в процессе его прохождения по проводнику. Именно от него зависит толщина провода при равном токе, то есть если при определенной нагрузке допускается одна минимальное сечение алюминиевого провода, то при той же мощности потребляемой электроприборами для медного провода оно будет меньшим. Все дело в том, что удельное сопротивление меди ниже, чем тот же параметр алюминия, и составляет 0.017 Ом*кв.мм/м к 0.028 Ом*кв.мм/м соответственно.
По этой причине медные кабели более востребованы при монтаже бытовых сетей, хотя по стоимости они и дороже.
К тому же у медных проводов есть еще одно немаловажное преимущество. В их линейке есть гибкие кабели, каждая жила которых состоит из множества проволок, а не монолитна. Это дает возможность более простой и укладки в извилистых местах.
Влияние внешних факторов
Большое влияние на выбор размера провода при монтаже имеет температура окружающей среды. Ведь если кабель будет «работать» в горячем цеху, его нагрев увеличивается за счет внешних факторов. А потому его толщина должно быть больше, чем если бы, к примеру, прокладка трассы проходила по улице.
А потому, при монтаже электропроводки в квартире огромное значение имеет его способ. Если прокладка производится наружным способом, то и размер кабеля будет меньшим, нежели при скрытой, внутренней проводке. Происходит это именно за счет теплообмена.
При этом считается, что у гибких кабелей теплообмен лучше и размеры при использовании подобной проводки можно выбрать меньшее, но это утверждение спорно.
Так же теплообмен может различаться по причине разности изоляции. А потому, если нет необходимости во влагозащищенном кабеле (помещение сухое), то приобретать проводку с улучшенной изоляцией ни к чему.
Таблица сечений алюминиевых кабелей
Рассчитываем сечение кабеля по току
Зная ток, несложно вычислить по нему значение сечения провода, аналогично тому, как делались расчеты по общей мощности оборудования, только здесь необходимы данные по потребляемому току, которые также можно найти в техническом паспорте. Сложив показатели, также возможно рассчитать сечение кабеля по току, в чем может помочь соответствующая таблица.
Для примера можно рассчитать сечение по току для подключения электрической плиты, имеющей пиковое (максимальное) значение тока в 17А. Так как именно такого показателя в таблице нет, нужно брать в расчет ближайшее большее значение, которое для медной проводки составляет 19А. Тогда толщина проводки для подобного оборудования составит 2 кв.мм.
Если же для подобной цели выбран алюминий, то ближайшее большее значение будет равно 21А, и толщина проводки составит 2.26 кв.мм. Принимая во внимание то, что жил подобной толщины не существует, необходимо использовать кабель сечением 2.5 кв.мм.
Таким образом, расчет сечения кабеля по току не составляет труда. Главное помнить, что ток и сечение — понятия взаимные.
Расчеты сечений по длине
Рассчитанные сечения кабелей по значениям токов или провода по мощности, все же имеют прямую зависимость от длины, то есть расстояния от силового шкафа до потребителя. Зная параметры общей мощности, силы потребляемого тока и длины прокладываемой проводки можно наиболее точно рассчитать ее толщину — в этом поможет таблица сечений проводов. Сделать это тоже довольно легко.
Для примера можно рассчитать сечение провода для той же электрической плиты с потребляемым током в 17А, расстояние до которой от силового распределительного щита составляет 21 м. Тогда алюминиевый провод, который необходимо использовать, должен быть толщиной 2.5 кв.мм, ну а если расстояние больше (21–34м.), то этот параметр провода будет равен уже четырем квадратам.
В любом случае, всегда, при монтаже электропроводки, желательно закладывать в кабель хотя бы небольшой запас. Дело в том, что прогресс не стоит на месте, появляются все новые бытовые приборы. Ведь неизвестно, не захочется ли установить что-то новое, к примеру, посудомоечную машину, а это повышение потребляемой мощности еще на 2 кВт.
Подобным образом рассчитывается сечение провода по току и мощности — в помощь соответствующая таблица.
Некоторые рекомендации
Монтаж электропроводки — дело непростое. Рассчитанные параметры, такие, как сечение провода мощность и остальные характеристики при подобной работе предельно важны. И чтобы немного ее облегчить, нужно составить для себя ее примерный проект. Для этого не нужно обладать особыми техническими знаниями или навыками. Ведь это будет не документация, предоставляемая в контролирующие организации, а, своего рода, план действий.
Необходимо обозначить на нем места установки энергопотребителей, с указанием мощности, силы тока и расстояния до них от силового электрического щита. Таким образом, будет удобнее не только произвести расчет сечения провода, но и вычислить нужную длину.
При монтаже не нужно отходить от намеченного плана, срезая углы. Тогда в будущем, при проведении ремонтов, глядя на эти схемы, можно будет вспомнить, где проложен кабель, что избавит от таких проблем как перебитый дрелью или перфоратором провод.
Каждая силовая линия должна быть подключена на отдельный автомат. Линии освещения можно разделить по 2-3 или даже 4 комнаты, и идти они должны раздельно с силовыми (розеточными) группами.
Так же имеет смысл подписать автоматы, либо пронумеровать, с отдельной расшифровкой.
Таблица сечения
Вывод
Выбор толщины проводов — очень важный вопрос в монтаже, а потому подойти к нему нужно с предельным вниманием и ответственностью, ведь от него зависит и долговечность работы всей системы электроснабжения квартиры, и безопасность проживающих в ней людей. Особых сложностей вопрос как рассчитать сечение кабеля не представляет, как можно было убедиться на основании вышеизложенной информации. А потому не стоит этим пренебрегать. Точность и аккуратность — главные требования электротехники и безопасности.
Похожие статьи:
Сечение провода по току 12 вольт
Применение низковольтных систем освещения, когда питание светильников осуществляется пониженным через трансформатор напряжением в настоящее время получило довольно широкое применение.
Эта растущая популярность обусловлена прежде всего высокой степенью электробезопасности таких систем освещения; напряжение 12 в принято считать условно безопасным, что позволяет применять низковольтные системы освещения в помещениях с высокой или повышенной степенью опасности.
Однако, пониженное напряжение цепей не дает оснований считать их слаботочными: ведь ток, протекающий в них будет значительно выше, чем в цепях с нагрузкой той же потребляемой мощности и напряжением 220 В.
Воспользовавшись формулой I=P/U, найдем ток потребления лампочки на 50 Вт в цепи 12 и 220 В.
Путем несложных вычислений найдем токи для лампы на 220 В и 12 В. В первом случае это 50Вт/220В=0.23A, во втором 50Вт/12В=4.2A.
Как видим, разница токов в сравниваемых цепях потребления 50-ваттной лампочки получается более чем на порядок.
Расчет сечения проводов для цепей напряжением 12 вольт
Для определения минимального сечения проводника прежде всего с помощью той же формулы необходимо рассчитать величину протекающего по нему тока, используя данные суммарной мощности потребления и питающего напряжения.
Далее предлагаем воспользоваться таблицей ниже:
В данной таблице минимальные сечения кабелей соответствуют токам потребления и максимальным длинам линий вторичных цепей (с учетом допустимых потерь напряжения в линии).
Рассчитав ток, найдите в этом-же столбце таблицы ближайшее значение длины линии и соответствующее им значение минимального сечения проводника.
Расчет сечения кабеля по току: популярно об электрическом токе. Сечение провода и мощность таблица для постоянного тока 12 вольт
Правильный расчет сечения кабеля по току 12 вольт и длине
Во время строительства домов, как частных, так и многоквартирных, офисных зданий и производственных сооружений для безопасной эксплуатации электрической сети и приборов нужно обязательно сделать расчет сечения кабеля по току.
Как сделать расчет
Как выбрать кабель
Чтобы произвести подсчет безопасной и необходимой толщины электрического кабеля в зависимости от тока, который будет проходить по нему нужно знать, какими электрическими приборами будут пользоваться.
Итак, далее – все считают образом.
Потребуется мощность каждого из приборов; формула для расчета общего показателя мощности выглядит так:
Pобщ. = (Р1+Р2…+Рn),
где Робщ. – мощность всех электроприборов в доме или квартире (в Ваттах),
Р1, Р2 и т. д. — это мощность каждого конкретного прибора.
Допустим, в однофазной сети будут работать три лампы, холодильник, микроволновка, электрочайник. Pобщ.=300+200+1100+2200=3800 Вт. Для дальнейших расчетов нужно знать силу тока, которая рассчитывается по формуле:
I = Pобщ./U,
где I – это сила тока,
U – напряжение сети.
Теперь при подстановке всех известных данных получится:
I = 3800:220 = 17,3 Ампер.
С учетом того, что проводка будет выполнена из меди, удельное сопротивление (р) которой 0,0175 Ом*мм2/м. сразу сделаем расчет сопротивления участка цепи из следующей формулы:
R=U/I=220/17,3=12 Ом.
Теперь из расчета сопротивления (возьмем длину проводника (L) за номинальный метр), который имеет следующий вид:
R=(рL)/S, выведем площадь сечения.
S=рL/R
Соответственно площадь сечения кабеля, нужного для нормальной работы перечисленной выше техники равна (0,0175*1000)*1/12=1,46 мм2.
Еще один вариант вычислений
Зачем делать расчет сечения кабеля по току и длине? Чтобы сеть функционировала без перенапряжения и сбоев, этот этап нельзя пропускать.
Сечение медных и алюминиевых жил
Дело в том, что каждый конкретный проводник будет терять в мощности при увеличении своей длины. То есть, чем продолжительнее провода, тем больше будут подобные потери, которым способствует сопротивление.
Исходя из описанной уже формулы S=рL/R. Тут все известно, кроме сопротивления R. Его можно вычислить исходя из закона Ома для участка цепи (U=I*R) – отсюда R=U/I. В рассматриваемом примере R=220/17,3= 12,7 Ом (приблизительное округленное значение – 12).
Чтобы посчитать потери напряжения, нужно разделить полученное значение U на напряжение в сети (например, в обычной бытовой сети чаще всего 220 В). В итоге получится коэффициент, который при умножении на сто даст величину потерь в процентном выражении: если он более пяти процентов – толщину кабеля надо увеличивать.
Для точной, долгой и безопасной работы вновь прокладываемой проводки, особенно большой протяженности, обязательно производить расчеты сечения кабеля по длине. При этом нужно учесть, из какого материала он изготовлен.
Например, длина медного кабеля 5 метров, тогда S=рL/R=(0,0175*1000)*5/12=7,3 мм (приблизительное округленное значение).
Пример по вычислению
Проведем расчет сечения кабеля по току 12 вольт. Допустим, что используются (или предположительно могут использоваться) разнообразные электрические приборы, а именно 12, 12, 30 Ватт, то есть Р1=12, Р2=12, Р3=30.
Теперь, подставив значения в первую формулу, получим Pобщ. = Р1+Р2+Р3 = 12+12+30 = 54 Вт. То есть величина общей мощности составляет пятьдесят четыре Ватта. Исходя из второй формулы (I = Pобщ./U) сила тока I равна 54/12= 4,5 Ампер.
Теперь осталось выбрать один из доступных материалов, из которых изготавливаются кабели, допустим, для проводки применяется медь, а длина – составляет один метр. По уже упомянутой формуле площадь сечения можно найти по формуле S=рL/R=(0,0175*1000)*1/R=17,5/R, где R=U/I.
Значит, для напряжения 12 В справедливо следующее: R=U/I=12/4,5= 2,6 Ом. Тогда площадь равна: S=17,5/R=17,5/2,6= 6 мм.
А можно прибегнуть к такой простой “электрической арифметике”. Один квадратный миллиметр сечения медного провода (если он открыт) способен пропускать не больше семнадцати Ампер, если проводка закрыта — тринадцать.
Алюминиевый кабель
Если речь идет об алюминиевом кабеле, то предпочтительные величины на каждый миллиметр – 10 или 8 А для открытого и закрытого размещения соответственно.
Расчет для алюминиевого провода следующий.
Удельное сопротивление его составляет двадцать восемь тысячных Ома на квадратный миллиметр, то есть р=0,028 Ом*мм2/м.
Теперь опять берем за общую мощность рассчитанную ранее величину – пятьдесят четыре Ватта.
Сила тока в этом случае будет равна I = Pобщ./U=54/12= 4,5 Ампер. S=рL/R=(0,028*1000)*1/R=28/R, при том, что R=U/I.
Во втором случае сопротивление R=U/I=12/4,5= 2,6 Ом. А площадь сечения равна: S=28/R=28/2,6= 10 мм.
Для того, чтобы верно установить электропроводку, обязательно знать как можно подробнее о длине кабелей, мощности приборов, материале изготовления проводов. Тогда с учетом несложных формул можно легко вывести нужные значения.
Подробнее о том, как рассчитать сечение провода — на видео:
Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.
foxremont.com
Расчет сечения кабеля для 12 В электропитания. Кабель — это одна или несколько изолированных и скрученных между собой жил из токопроводящего материала (металлы), заключенных в герметичную оболочку, поверх которой могут быть наложены различные защитные покровы. Кабель между блоком питания (БП) 12 В и его нагрузкой (светодиодные прожекторы, светильники, RGB-светильники). Чтобы точно определить сечения жил проводов от БП до его нагрузки, нужно знать протекающие по ним токи и расстояние от БП до потребителя.Как правило, большинство электроприборов (светильников, прожекторов) в своей маркировке имеют значение потребляемой мощности (Вт). Это значение поможет правильно рассчитать ток. Итак, на примере одного расчета будет показано как считать длину кабеля и его сечение. Тут нужно учесть очень важный момент: при подключении длинного кабеля, напряжение на его конце будет отличаться от напряжения непосредственно на блоке питания. Оно уменьшится на некоторое значение ∆U. Для светодиодного светильника допустимым уменьшением питающего напряжения является 0,8 В. Если напряжение питания будет меньше 11,2 В, то яркость свечения светильника будет значительно меньше и это будет заметно не вооруженным глазом. Именно с этим напряжением (0,8 В) и будут проводиться дальнейшие расчеты.Пример: БП с напряжением 12В и светодиодный светильник мощностью 100 Вт. Ток, протекающий по кабелю для данной системы будет определяться по формуле I=P/U (1)где I-протекающий ток, Р-мощность светильника, U-напряжение питания (12В).Рассчитанный по этой формуле ток равен 8,3 A. Используя допустимое уменьшение напряжения для светодиодного светильника 0,8 В, проведем расчет сопротивления провода для длины кабеля L=10 м. Из формулы (2) определим сопротивление кабеля для тока 8,3 А: R=∆U/I (2) где R-сопротивление кабеля, необходимое для данного тока I и допустимого изменения напряжения ∆U, получаем R=0,04 Ом. Чтобы найти минимальное сечение кабеля Smin нужно воспользоваться формулой (3) Smin =ρ*L/R (3), где Smin-минимальная площадь сечения проводника, ρ=0,0175 — удельное сопротивление медного провода при температуре 20 С, R- найденное значение сопротивления из формулы (2), L- длина кабеля. Таким образом, для длины кабеля L=10 м, Smin=1,94 мм^2.2. В таблице 1 приведен обратный расчет максимально возможной длины кабеля при известном его сечении и протекающем токе. Это намного удобней потому, что производятся кабели только стандартных сечений: 0,35 мм2; 075 мм2; 1мм2; 2,5 мм2; 4 мм2; 6 мм2 и т.д. В первом столбце указаны токи А, в первой строке Таблица 1. |
www.tdmegaprom.ru
Таблицы для выбора сечения проводов в цепях освещения 12 и 24 вольта
8. Таблицы для выбора сечения проводов в низковольтных цепях освещения
Как показано в статье, посвящённой анализу потерь мощности в сетях освещения 12 В, сечение проводов следует выбирать с учетом суммарной мощности ламп, подключаемых к трансформатору, и длины этих проводов.
Подход к определению сечения проводов зависит от того, какой источник используется для питания цепи: электронный или индукционный. Допустимая длина проводов во вторичной цепи электронных блоков питания, как правило, не может превышать 2 метров (в очень редких случаях для трансформаторов большой мощности допускается длина до 3 метров). В этом случае следует использовать провод с сечением указанным в документации на трансформатор. Если такие данные отсутствуют можно ориентировочно воспользоваться данными из таблицы:
Таблица сечений медных проводов в цепи освещения 12 В длиной до 2 метров(для электронных блоков питания)
Суммарная мощность нагрузки, Вт | |||||||
Сечение проводов, мм2 , не менее |
В качестве примечания следует отметить, что очень часто возникает вопрос о допустимости использования более длинных, нежели указано в технических условиях, проводов для электронных трансформаторов. Строго говоря нельзя, так как форма питающего лампы напряжения у электронных блоков питания представляет собой импульсы прямоугольной формы с частотой следования в десятки килогерц. Из этого следуют две проблемы. 1. Возможно нарушение требований к электромагнитной совместимости из-за излучения проводами радио волн (хотя сегодня уже трудно представить себе для какой техники могут представлять опасность столь низкочастотные волны). 2. Потери напряжения оказываются даже более существенными, чем описано в предыдущем посте, так как при импульсном напряжении сказываются не только омические потери, но и потери на емкостях и индуктивностях проводов. Всё сказанное выше не относится к электронным блокам питания для светодиодов, так как эти блоки выдают не импульсное а постоянное напряжение.
При использовании индукционных трансформаторов, а так же электронных светодиодных блоков питания длина провода во вторичной цепи ограничена только падением напряжения на проводах и, следовательно, может быть значительно большей, чем у электронных (импульсных) блоков питания, при условии компенсации за счет увеличения сечения провода. Ниже приведена таблица для выбора сечения проводов в зависимости от суммарной мощности ламп, подключаемых ко вторичной обмотке индукционного трансформатора и длины этих проводов. Следует иметь в виду, что лампы могут быть разделены на группы, подключаемые каждая своим проводом, в этом случае сечение группового провода определяется по таблице для каждой группы отдельно. В пределе возможно подключение каждой лампы своим проводом.
Таблица сечений медных проводов в цепи освещения 12 В(для индукционных трансформаторов)
Сечение группового провода, мм2, не менее | ||||||||||
Длина проводов, метр | 2 м | 3 м | 4 м | 5 м | 6 м | 8 м | 10 м | 12 м | 15 м | 20 м |
Мощность группы ламп, Вт | ||||||||||
20 Вт | ||||||||||
35 Вт | ||||||||||
50 Вт | ||||||||||
105 Вт | ||||||||||
150 Вт | ||||||||||
200 Вт | ||||||||||
250 Вт | ||||||||||
300 Вт | ||||||||||
400 Вт | 17.1 | |||||||||
500 Вт |
При выборе сечения в сетях в напряжением 24 В (что становится актуальным для светодиодных систем) смело делим требуемуб величину сечения из этой таблицы на два.
А здесь можно посмотреть таблицу для выбора сечения проводов в сетях с напряжением 220 вольт.
avkost1955.livejournal.com
Сечение провода, мм2 | Сила допустимого тока (А) в зависимости от температуры окружающей среды, С | |||
Выбирая провод, нужно учитывать его длину и способ его прокладки (в жгуте, гофре или отдельно). Ниже представлена более подробная таблица с учётом длины провода.
Максимальная длина кабеля (в метрах) от источника энергии до потребителя при падении напряжения меньше 2% для 12В систем.
Ток, А | Сечение кабеля, мм2 | |||||||||||
1 | 1,5 | 2,5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 75 | 100 | |
10.91 | 17.65 | 28.57 | 42.86 | 70.6 | 109.1 | 176.5 | 244.9 | — | — | — | ||
3.53 | 5.45 | 8.82 | 14.29 | 21.4 | 35.3 | 54.5 | 88.2 | 122.4 | 171.4 | — | — | |
1.76 | 2.73 | 4.41 | 7.14 | 10.7 | 17.6 | 27.3 | 44.1 | 61.2 | 85.7 | 130.4 | — | |
1.18 | 1.82 | 2.94 | 4.76 | 7.1 | 11.7 | 18.2 | 29.4 | 40.8 | 57.1 | 117.6 | ||
0.88 | 1.36 | 2.2 | 3.57 | 5.4 | 8.8 | 13.6 | 30.6 | 42.9 | 65.25 | 88.2 | ||
0.71 | 1.76 | 2.86 | 4.3 | 7.1 | 10.9 | 17.7 | 24.5 | 34.3 | 52.2 | 70.6 | ||
— | 0.73 | 1.18 | 1.9 | 2.9 | 4.7 | 7.3 | 11.8 | 16.3 | 22.9 | 34.8 | 47.1 | |
— | — | 0.88 | 1.43 | 2.1 | 3.5 | 5.5 | 8.8 | 12.2 | 17.1 | 26.1 | 35.3 | |
— | — | — | 1.14 | 1.7 | 2.8 | 4.4 | 7.1 | 9.8 | 13.7 | 20.9 | 28.2 | |
— | — | — | — | 1.4 | 2.4 | 3.6 | 5.9 | 8.2 | 11.4 | 17.4 | 23.5 | |
— | — | — | — | — | 1.8 | 2.7 | 4.4 | 6.1 | 8.5 | 17.6 | ||
— | — | — | — | — | — | 2.2 | 3.5 | 4.9 | 6.9 | 10.4 | 14.1 | |
— | — | — | — | — | — | — | 1.7 | 2.4 | 3.4 | 5.2 | 7.1 | |
— | — | — | — | — | — | — | — | — | 2.3 | 3.5 | 4.7 | |
— | — | — | — | — | — | — | — | — | — | 2.6 | 3.5 |
Например, при подключении автомагнитоллы нам нужен 1 метр провода, ток потребления примерно 10 ампер. Наблюдая по таблице, видим (выделил зелёным цветом), что нам нужен провод сечением 1,5 мм2. (10 — Ток, 1 — длина, 1,5 — сечение провода).
При выборе провода нужно не забывать про предохранители, в случае замыкания должен перегорать предохранитель, а не провод. Предохранитель должен находиться перед проводом.
На главную
Календарь | |||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||
www.avto-elektrika-shema.ru
Расчёт сечения провода. Теория
При монтаже электроустановок различного назначения, в том числе и солнечных электростанций особое внимание следует уделить выбору сечения проводников. Заниженное сечение кабеля приводит к потерям энергии из — за нагрева и зачастую становится причиной возгорания. Завышенное сечение провода влечет необоснованное удорожание системы.
Площадь сечения проводника должна соответствовать величине протекаемого тока
В бытовых сетях переменного тока 220 Вольт сечение проводов очень редко превышает 6 мм², так как ток обычно не больше 50 Ампер. Мощные нагрузки обычно стараются распределить по нескольким фазам.
В солнечных электростанциях имеется низковольтная часть постоянного тока, которая может быть выполнена проводом 25, 50, или даже 100 мм², в зависимости от мощности и напряжения системы. Самый большой ток протекает в цепи аккумуляторной батареи и преобразователя напряжения (инвертора).
Чтобы рассчитать сечение кабеля, нужно получить ток, разделив мощность на напряжение системы, и подобрать сечение токопроводящей жилы. Поможет Вам в этом таблица, расположенная ниже.
Приведем пример: Если мощность инвертора 3кВт и напряжение системы 12 Вольт, ток в низковольтной цепи составит 3000/12=250 Ампер, и если провод проложен открыто, то его сечение должно составлять не менее 70 мм2. Если использовать инвертор той же мощности, но уже на 24 Вольт, ток получим в два раза меньше, 125 Ампер и, соответственно, сечение провода 25 мм².
Поэтому преобразователи напряжения высокой мощности, как правило, рассчитаны на входное напряжение 24 или 48 Вольт. Не сложно определить максимальный ток в контуре солнечных панелей. Если фотоэлектрические модули соединены последовательно, то следует взять ток короткого замыкания для одного модуля. Если же солнечные батареи соединены параллельно, ток короткого замыкания одной панели нужно умножить на количество солнечных модулей. Руководствуясь данным принципом можно рассчитать ток для любой системы солнечных модулей.
Предельный ток в контуре «контроллеры заряда – аккумуляторы» следует принять равным номиналу контроллера.
Табл.1 Допустимый ток для кабелей с резиновой и поливинилхлоридной изоляцией и медными жилами
Данные приведены из ПУЭ7, «Правила устройства электроустановок», Издание 7. Все значения приняты для:
- температуры жил +65 °С;
- температуры окружающего воздуха +25 °С;
- температуры земли +15°С.
Их следует применять независимо от количества используемых труб, места их прокладки (в воздухе, в перекрытиях или фундаментах). Допустимые длительные токи для кабелей, проложенных в коробах и в лотках пучками, должны быть рассчитаны как для кабелей, проложенных в трубах.
www.helios-house.ru
Выбор сечения провода
Описаны правила выбора сечения провода в зависимости от расчетного тока, а также приведены соответствующие таблицы зависимости тока и сечения.
При прокладке силовых коммуникаций основной возникающий вопрос – выбор типа и сечения провода, который нужно использовать. При этом тип провода, определяющий материал и количество изоляционных оболочек (различные виды пластика и других материалов), а также материал (медь или алюминий) и тип (одно- и многожильный) проводника, выбирается исходя из условий, в которых будет проложен провод. Сечение же провода определяется исходя из максимального тока, который будет протекать по проводу продолжительное время. Помочь в выборе сечения провода вам помогут следующие таблицы.
Сечение провода для передачи переменного тока в сетях 220/380 Вольт
6 | 10 | 13 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 |
1,2 | 2,2 | 2,9 | 3,5 | 4,4 | 5,5 | 7,0 | 8,8 | 11,0 | 13,9 | 17,6 |
2,3 | 3,8 | 4,9 | 6,0 | 7,6 | 9,5 | 12,2 | 15,2 | 19,0 | 23,9 | 30,4 |
0,5 | 0,5 | 0,75 | 1,0 | 1,5 | 2,0 | 4,0 | 4,0 | 6,0 | 10,0 | 10,0 |
2,5 | 2,5 | 2,5 | 2,5 | 2,5 | 4,0 | 4,0 | 6,0 | 10,0 | 16,0 | 25,0 |
1,0; | 1,0 | 1,0 | 2,0 | 2,5 | 4,0 | 6,0 | 10,0 | 10,0 | 16,0 | 16,0 |
2,5 | 2,5 | 2,5 | 2,5 | 4,0 | 6,0 | 10,0 | 16,0 | 16,0 | 25,0 | 50,0 |
Сечение медного провода для передачи постоянного тока при напряжении 12 Вольт
16,5 | 21,5 | 25,0 | 32,0 | 43,5 | 58,5 | 77,0 | 103,0 | 142,5 |
0,20 | 0,26 | 0,30 | 0,38 | 0,52 | 0,70 | 0,92 | 1,24 | 1,71 |
0,5 | 0,75 | 1,0 | 1,5 | 2,5 | 4,0 | 6,0 | 10,0 | 16,0 |
20 | 18 | 17 | 15 | 13 | 11 | 9 | 7 | 5 |
Примечание 1. Значения токов для проводов 220/380В приведены по стандартному ряду автоматических предохранителей, сечения проводов округлены в большую сторону до стандартных сечений выпускаемых проводов из соответствующего материала.
Примечание 2. Приведены данные для температуры 30°С. Для более высоких температур следует переходить к следующему (большему) сечению на каждые 20°С.
Примечание 3. При прокладке в жгуте нескольких проводов следует увеличивать сечение провода: для 2-9 проводов в жгуте на 80%, для 10-20 проводов на 160%.
Примечание 4. «Значение AWG» — маркировка провода по American Wire Gauge System (Американской системе измерения проводов), особенно часто эти обозначения используются для акустических кабелей.
www.denvo.ru
Расчет требуемого сечения провода
Стоит помнить, что чем длиннее провода между блоком питания и светодиодной лентой, а также чем они тоньше, тем больше напряжения теряется на этих проводах.
Чтобы узнать, какой кабель можно использовать, введите напряжение питания выбранной светодиодной ленты, длину подключаемой ленты, а также введите мощность одного метра светодиодной ленты или введите номер артикула выбранной светодиодной ленты и её параметры будут подставлены из нашей базы автоматически.
При расчете учитывается допустимое падения напряжения на проводах 1 вольт, а также то, что одноцветная лента подключается кабелем с 2-мя проводами.
Наиболее часто для питания светодиодных лент используется напряжение 12 и 24 вольта. Напряжение 12В более популярно, но использование ленты с таким напряжением питания оправдано только в том случае, если напряжение 24В взять попросту негде, например, в автомобиле. Связано это с тем, что при одной и той же мощности, для ленты с питанием 12В необходим в два раза больший ток, чем для лент с питанием 24В. Соответственно, провод, которым подключается светодиодная лента с питанием 12В, должен иметь большее сечение, чем провод для лент с питанием 24В.
Также не стоит забывать, что существуют светодиодные ленты с напряжением питания 36 вольт. Для них можно использовать провод с ещё меньшим сечением.
Напряжение питания, мощность светодиодной ленты и её артикул указаны на странице товара в нашем каталоге и в инструкции к нему.
Если в описании светодиодной ленты указана только мощность всей катушки, то необходимо вычислить мощность, потребляемую одним метром ленты. Для этого нужно разделить потребляемую мощность на длину катушки (обычно 5 м). Получившийся результат укажите в ячейке калькулятора «Мощность ленты, Вт/м».
arlight.su
xn—-7sbeb3bupph.xn--p1ai
Как выбрать сечение провода
Сегодня LiPo-батарее могут выдавать достаточно большие токи. Чтобы сберечь аппаратуру и нервы надо уметь правильно подобрать силовые провода. В интернете много статей для бытовых целей (ремонт в квартирах и пр). Я расскажу как правильно подобрать провода в авиамоделизме.
В моделизме используются медные провода, алюминий слишком жесткий. Рассмотрим разные варианты на примере:
- многожильный провод в ПВХ изоляции (ПВС-2.5)
- акустический кабель
- провод в силиконовой изоляции
Сам провод состоит из жилы и изоляции.
Изоляция
Напряжение в проводах является главным критерием при выборе изоляции. Т.к. обычно используются аккумуляторы на 12-20 вольт, такое напряжение считается малым и безопасным — любая изоляция будет достаточной.
Вторым критерием является термоустойчивость. Самая низкая температура плавления у аккустического кабеля. Вторым по тугоплавкости идет ПВХ изоляция. И самая лучшая термоустойчивость у силиконовой изоляции — до 200°C.
Сечение провода
Ток протекаующий в проводах определяет какое сечение провода подобрать. Расчитаем ток потребляемый от LiPo-аккумулятора. Например на нем маркировка 3s 1300mah 20c. Это значит:
- 3s — 3 элемента по 4.2 в, т.е. 12.6 В
- 1300mha — ёмкость аккумулятора 1.3Ач
- 20с — максимальный ток равен 20 x емкость, т.е. 20 * 1.3А = 26 ампер
Таким образом ныжны провода на 12 вольт и 26 ампер. Грубое правило гласит
20 ампер на 1мм²
Значит провод сечением 1.5мм² (S = πD²/4, т.е. D = 1.4мм) будет «с головой».
Что такое AWG
На проводах от штатных аккумуляторов/регуляторов/моторов часто можно встреть маркировку AWG-16 или AWG-20. AWG — это название американского стандарта проводов (American Wire Gauge). А цифры соответствуют сечению — чем меньше, тем толще провод.
В таблице приведены сечения для AWG стандарта и допустимый ток.
16.5 | 0.5 | 20 |
21.5 | 0.75 | 18 |
25.0 | 1.0 | 17 |
32.0 | 1.5 | 15 |
43.5 | 2.5 | 13 |
58.5 | 4.0 | 11 |
77.0 | 6.0 | 9 |
103.0 | 10.0 | 7 |
142.5 | 16.0 | 5 |
Не забывайте переводить площадь сечения в диаметр!
Читайте также как сделать блок питания на 12 вольт/10 ампер и выбрать сечение нихромовой проволоки для пенорезки.
imelnikov.ru
Таблица сечений кабеля, предохранителей
Рекомендации по монтажу проводов питания (12В) изделий
1. Основные ограничения1.1. Максимально-допустимое падение напряжения на проводах на участке от блока питания до любого изделия — 1В. 1.2. Для подключения питания непосредственно к клеммам изделий рекомендуется использовать провод сечением не более 1,5 мм2.
2. Справочные данные Сопротивление 100м медного провода (двойного): а) для провода сечением 0,35мм2 — 10,3 Ом, б) для провода сечением 9,0мм2 — 0,4 Ом. В промежутке между этими значениями — обратно пропорционально сечению провода.
3. Минимально-допустимое сечение провода в зависимости от суммарного тока нагрузки и длины провода питания Для случая монтажа линии питания проводом единого сечения последовательным обходом всех изделий существует следующее общее выражение: Smin = 0,035 * (i1*L1+ i2*L2+… + ik*Lk), где L1, L2, … Lk , — значения длины участка провода питания от блока питания до каждого из изделий, м; i1, i2, ik -токи потребления изделий, включая токи нагрузок, которые питаются через клеммы изделия (замки, сирены, считыватели и т.д.), А; Smin — минимально-допустимое сечение провода, мм2.
Если токи потребления изделий равны и составляют iср , то выражение упрощается и принимает следующий вид Smin=0,035 * iср * (L1+ L2+… +Lk).
Ниже приведена таблица значений сечения провода для случая, когда вся нагрузка сосредоточена на конце провода питания.
При равномерном распределении изделий по длине провода питания его сечение может быть уменьшено по отношению к приведенным в таблице в 2 раза.
При неравномерном распределении изделий или при неодинаковых токах потребления для расчета сечения провода следует пользоваться вышеприведенными формулами.
Если для монтажа цепей питания требуется провод сечением больше, чем 1,5 мм2, то рекомендуется разделить нагрузки на группы таким образом, чтобы к каждой группе можно было подвести питание отдельным лучом проводом сечением не более 1,5 мм2.
Если монтаж цепей питания проведен проводом сечением больше, чем 1,5 мм2, то для непосредственного подключения цепи к плате изделий необходимо применять отводы из провода 0,75-1,5 мм2 длиной не более 2м.
************************************************
Подбор сечения силового кабеля.
Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под давлением. Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в роцессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.
1 Ом = 1 Вольт /1 Ампер
Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить, что с увеличением длины проводника сопротивление растет.
Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала: 35 Вт х 4 = 140 Вт. (средняя мощность)
Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение: 140 Вт х 2 ~ 280 Вт. (максимальная мощность)
Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна: Ампер = Ватт/Вольт.
Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен: 280 Вт /13 В = 21.53 A
Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов.
******************************************************
СОВЕТ Memory 12V+
В современных авто магнитолах применяется несколько проводов питания: для питания усилителя мощности, для включения подсветки при включении габаритов автомобиля, для питания памяти и т.д. провод, питающий усилитель мощности, имеет обычно толстое сечение и на нем установлен мощный предохранитель — это основное питание авто магнитолы.(обычно красный) провод меньшего сечения, часто имеющий предохранитель с малым током сгорания , необходим для питания памяти автомагнитолы . Обычно это аппаратура среднего и высокого класса, имеющие цифровую шкалу настройки и память, куда заносится информация о настройке радиоприемника на станции, что позволяет вести бес поисковый прием станций набрав только номер станции (кнопка). Еще один вариант , где применяется дополнительный провод это приемники с возможностью кодирования и чтобы не вносить код доступа при каждом включении применяется микросхема памяти, питающаяся от аккумулятора отдельным проводом.(может быть желтого цвета или красный, но малого сечения). Из этого следует: чтобы авто магнитола работала правильно надо тонкий провод питания подключать напрямую (без каких-либо коммутаций) это и есть провод «Memory 12V+ » к аккумулятору, а толстый провод можно подключать через коммутирующие элементы как замок зажигания или дополнительный выключатель.
источник АвтоАудиоЦентр — ФОРУМ ПО АВТОЗВУКУ :: Просмотр темы — Питание аудио системы
magnitola.org
необходимое сечение проводов. Медные или алюминиевые провода в электропроводке.
вопрос:Как расчитать толщину провода на 12 вольт
Пока не отменили закон Ома
о Великом Самоотключении от электрической сети
Максимальный ток электропроводки — сечение провода
Для расчёта допустимой мощности электропроводки или типоразмера провода важен диаметр провода? Нет, важно сечение провода потому, что провода не обязательно круглые в сечении, а часто имеют и «другую» форму: например, многожильный гибкий провод. Токовая нагрузка на проводник распределяется равномерно по всему сечению проводника кабеля (для низкочастотных токов, в том числе и постоянного тока, и переменного 50/60 Гц).
Одножильные провода (установочные провода, «негибкие») и многожильные провода (витой провод, гибкий) подчиняются закону Ома, т.е падение напряжения на сопротивлении провода U (вольт) равно:
U = I * R,гдеI — ток ампер, протекающий по проводу;R — сопротивление провода, Ом.
Падение напряжения на кабеле есть первое ограничение для силовых проводов (в т.ч. и квартирной-домашней электропроводке).
Второе ограничение — это нагрев проводов (при перегрузке провода нагреваются, обугливаются, нагреваются до красного свечения и плавятся), мощность тепловыделения P провода расчитывается как:
P = I**2 * R
Как видите, эти параметры электропроводки электроснабжения не зависят от напряжения в электросети, а зависят только от силы протекающего тока.
Приблизительно считается, что квадратный миллиметр сечения открытого медного провода безопасно пропускает не более 17 ампер, при скрытой проводке — 13 ампер (т.к. хуже охлаждение провода), алюминиевые провода пропускают 10 ампер на кв.мм, скрытые в стенах — ток 8 ампер.
Мощность всех нагрузок в новой половине дома в сети постоянного тока -12/0/+12, +5 вольт составляет:Освещение 6 помещений по 30 ватт (мощные эффективные светодиоды Люксеон, как в Расчёт затрат на освещение мощными светодиодами) = 180 ватт.Компьютеры и электронная техника в сумме потребляют 380 ватт — учтите, что техника питается от сети постоянного тока, то есть потребляющие энергию многочисленные блоки питания — преобразователи 220/230 вольт попросту не нужны, а они кушают около 20-30% электроэнергии.Итого: домашняя электрическая сеть должна обеспечить мощность 560 ватт.
Всё! Насосы и вентиляторы — это отдельные линии, а остальные мощные потребители тока (кухонная плита, микроволновая печь, стиральная машина) являются отдельной историей.
Для простоты расчёта требуемого сечения проводов пока откинем маломощную сеть +5 вольт, и двухполярность 12 вольт. Примем, что всё обордование питается от +12 вольт и потребляет мощность 560 ватт. То есть, по «магистральной паре» проводов протекает ток 47 ампер.
Естественно, что выбор падает не на алюминиевые провода, а на медные — удельное сопротивление медных проводов 0,0175 Ом·кв.мм/м, а алюминиевых проводов 0,0175 Ом·мм²/м.Спасибо внимательным читателям, действительно в удельное сопротивления алюминиевых проводов проникла очипятка, следует читать:а алюминиевых проводов 0,028 Ом·мм²/м.Электроводность алюминиевых проводов всего на 60% хуже, чем медных проводов.
По вышепоказанному правилу, максимальная сила тока в медных проводах в скрытой проводке 13 А на квадратный миллиметр сечения. Получается, что сечение провода должно составлять не менее 3,6 кв.мм (всего-то!). Обычно к квартире подводится кабель с жилами по 4 кв.мм. Ну, местами — 2,5 кв.мм.
Округлим 3,6 кв.мм в большую сторону — 4 квадратных миллиметра, и посчитаем, что из этого получится.
Длина «главного» провода («двойного») в новой половине дома (10х6 м) составляет 19 метров, чтобы охватить все помещения (вот такая хитрая планировка :). Нулевой провод — еще столько же. Всего — 38 метров провода сечением 4 кв.мм.
Представим себе самый худший случай распределеиня нагрузки — всю технику, и всё освещение собрали в одной и самой дальней комнате. То есть весь ток должен пройти все 38 метров проводов, которые имеют электрическое сопротивление 0,167 Ом. Получаем падение напряжения на проводах 7,8 вольта, т.е 65% напряженния теряется на проводах. (Понятно, почему в автомобильной электропроводке такие толстые провода…)369 ватт уйдет на нагрев провода. Нет, такого «принято» нам не нужно.
Попробуем распределить нагрузку равномерно между шинами -12, 0, +12. Ясно, что будет путаница в трёх соснах — в розетках.А если закольцевать? Планировка комнат такая, что вокруг одной комнаты-холла расположены все остальные комнаты. Собственно, 19 метров двойного провода обходят комнату-холл почти по всем стенам, буквой «П». Так добавим еще 3,5 метра двойного провода и сделаем разводку в форме «О». Получится, что любой потребитель окажется подключен к двум параллельным проводам, то есть, сечение подводящего провода как бы удвоится.
Итого, 2 одинарных медных провода по 22,5 метра, всего 45 м.
И попробуем «американский стандарт» — калибры AWG для сечений проводов для требуемых токов.Провод калибрар 8 AWG: максимально допустимая токовая нагрузка (максимальный ампераж, copper wireampacity), при температурах провода (нагреве провода) 60/75/90 °C, соответственно: 40 / 50 / 55 ампер. Этот провод калибра 8 AWG имеет диаметр 3,3 мм, сечение — 8,37 мм², удельное сопротивление на 1 линейный метр длины 0,002061 Ома (2,061 Ω/km)
Что-ж, не такой уж и толстый медный провод. К старой половине дома подведен от 230-вольтовой сети (которая «220»)- от счётчика на столбе — приблизительно такой же медный кабель 🙂
Проверим падение напряжения на проводе электрической проводки
45 метров медного провода калибра 8 AWG (сечение 8,37 мм²) по стандарту имеют сопротивление 0,093 Ома.Проверим по удельному сопротивлению меди — получается 0,0941 Ома, расчётные сопротивления почти совпали.
Так как прокладка проводов сделана по кольцу, и мы приняли, что вся нагрузка находится в самой дальней комнате (как самый плохой вариант), то две пары параллельных проводов имеют сопротивление 0,0470 Ома.О! В сравнении с первоначальным вариантом (0,167 Ом) сопротивление проводов меньше в 3,5 раза.Значит, падение напряжения на проводах, когда включена вся нагрузка в сети, равно 2,21 вольта.
Если напряжение на входе электропроводке (напряжение на аккумуляторе, который выполняет роль суперконденсатора) составляет 14 вольт (+17% от номинала 12 вольт), то до потребителя доходит 11,79 вольта (-2% от номинала 12 вольт). Это вполне приемлемый результат, потому что в электросети «220 вольт» колебания напряжения в 20% (+-10%) считаются очень даже нормальными, а мы для расчёта проводки взяли самый тяжелый вариант, и получилось колебание напряжения без стабилизатора 19% (+17 процентов с малой нагрузкой и 2% под максимальной нагрузкой).
…Нет, не забыл про внутреннее сопротивление аккумулятора. Пусковой ток (стартерный ток) ток самого обычного автомобильного аккумулятора 680 ампер не вызывает уважения, в сравнениии с 47 амперами постоянной нагрузки?
Так как кабели американских стандартов в Европе являются редкостью, то с запасом, подходит европейский кабель с жилами 10 кв.мм.
Кстати, а почему бы не применить алюминиевый кабель NAYY 2x16re, он дешевле чем медный NYY 2×10?
последние изменения статьи 12ноя2012, 20сен2015
samodom.netnotebook.net
сечение провода по току и мощности 12v
сечение кабеля по мощности таблица 12 вольт
В разделе Прочие Авто-темы на вопрос Знаем СЕЧЕНИЕ провода и ВОЛЬТ, как рассчитать сколько ВАТТ выдержит провод? к примеру сечение 0,75, 12 вольт заданный автором Manuel Khachaturyan лучший ответ это Для расчета сечения провода используют разные способы. В ход идут и таблицы, и формулы, и дедовские рецепты бывалых электриков. Как найти простой, быстрый но эффективный метод расчета сечения провода, который легко запомнить, всегда можно воспроизвести и смоделировать любую ситуацию? Предлагаем для расчета самый, на наш взгляд, научный метод — расчет сечения провода по току, а именно, через плотность тока. Суть метода в том, что мы рассчитываем диаметр нашего кабеля так, чтобы электронам не было тесно в проводнике, от толкучки они не разогревали провод, так как слишком горячий он расплавит изоляцию и появится опасность возникновения пожара. Вот и будем учитывать при проектировании эту самую тесноту или по научному — плотность тока.Почему не всегда таблицы предлагаемые разными изданиями и производителями верны?Как правило данные таблицы предусматривают разные условия эксплуатации. То есть разный способ прокладки проводов, скрытый или наружный, и самое главное, разные эксплуатационные токи, которые производитель принимает за норму. Например, один производитель указывает максимально допустимые токи с перегрузкой в 140-200%, а другой не более 120%. А точно величину, о которой думал производитель мы никогда и не узнаем.Итак, в нашем методе расчета сечения провода надо знать плотность тока в проводнике. Чтобы не запутаться, мы должны запомнить только одну цифру: плотность тока в медном проводнике — 6-10 ампер на квадратный миллиметр. Специально не использую сокращения, чтобы не было языкового барьера. Сегодня приходит эра медных проводов и поэтому запомнить нужно только информацию о медных проводниках электрического тока. Кстати сказать, для алюминия плотность тока составляет 4-6 ампер на квадратный миллиметр.От 6 до 10 А на квадратный миллиметр. Откуда это взялось? В основном из практики. Также мы знаем из курса физики: каждый проводник имеет свои величины сопротивлений электрическому току и прочие свойства. Кроме того, существуют знаменитые правила устройства электроустановок — ПУЭ, где также используется методика расчета сечения проводов с учетом плотности тока, времени и температуры эксплуатации. ПУЭ предусматривают поправочные коэффициенты, при изменении температуры, которые как раз колеблятся до 40%. Имеющуюся «вилку» от 6 до 10А стоит понимать следующим образом. Длительная эксплуатация при токе 6А на квадратный миллиметр — это нормально и с значительным запасом, а 10А — максимально допустимый ток, или годится только для кратковременной эксплуатации.Расчет сечения провода по току на конкретном примереЗная заветную плотность тока мы легко сможем вычислить выдержит наш провод ту или иную нагрузку. Провод сечением 1 кв. мм выдержит ток в 10А, значит провод толщиной в 2 мм — уже 20А. Для ориентировочного расчета можно воспользоваться всем известным законом Ома для участка электрической цепи, где мощность равна произведению тока и напряжения. Если наша сеть работает под напряжением 220 В, то ток в 20А обеспечит нормальное электроснабжение для потребителя в 4,5 кВт.Причем при такой нагрузке провод вообще не делжен нагреваться. Это его нормальный режим с запасом безаварийной работы равной скорости старения диэлектрика, что как говорится, на наш век хватит.В эту нехитрую математику начинает вписываться дедовский способ определения сечения проводов: использовать медный кабель сечением 1-1,5 кв. мм на освещение и 1,5-2,5 кв. мм — для разводки розеток. В комнате не бывает люстр потребляющих более 3,3 кВт, что соответствует току 15А. А основные потребители в обычной квартире не потребляют более 5,5 кВт, что также находится в разумных пределах, даже с двойным запасом на увеличение потребления в будущем.
Ответ от 2 ответа
Привет! Вот подборка тем с ответами на Ваш вопрос: Знаем СЕЧЕНИЕ провода и ВОЛЬТ, как рассчитать сколько ВАТТ выдержит провод? к примеру сечение 0,75, 12 вольт
Ответ от ******Держи и не парься расчетами. Смотри как на 220 вольт ( двух проводная )Напряжение значения не имеет, имеет значение нагрузка ( ватты )
Ответ от Єил КасидиПроектирование, расчет сечения проводов по предполагаемой нагрузке и монтаж электропроводки в наших городских квартирах сделали за нас профессиональные проектировщики и строителиПодробней: ссылка
Ответ от Philд
Ответ от 2 ответа
Привет! Вот еще темы с нужными ответами:
Ответить на вопрос:
22oa.ru
Электромагнетизм
— Почему толщина провода влияет на сопротивление?
Я подойду к вашему вопросу несколько иначе, чтобы попытаться дать вам более интуитивное понимание того, почему сопротивление падает.
Давайте сначала рассмотрим эквивалентное сопротивление простой цепи:
(источник: electronics.dit.ie)
Когда резисторы включены параллельно (нижняя цепь на рисунке), общее сопротивление составляет: \ $ \ frac {1} {R_ {Total}} = \ frac {1} {R_1} + \ frac {1} {R_2} + \ frac {1} {R_3}… \ frac {1} {R_n} \
долл. США
Вы можете увидеть это уравнение в учебнике, но вам может быть интересно: «Но вы добавили больше резисторов! Как это могло снизить сопротивление?».
Чтобы понять почему, давайте посмотрим на электрическую проводимость. Проводимость — это величина, обратная сопротивлению. То есть, чем меньше сопротивление у материала, тем он более проводящим. Проводимость определяется как \ $ G = \ frac {1} {R} \ $, где \ $ G \ $ — проводимость, а \ $ R \ $ — сопротивление.
Теперь это интересно, посмотрите, что происходит, когда мы используем проводимость в уравнении сопротивления параллельной цепи.
\ $ Проводимость = G_ {Total} = G_1 + G_2 + G_3 .. G_n = \ frac {1} {R_ {Total}} = \ frac {1} {R_1} + \ frac {1} {R_2} + \ гидроразрыв {1} {R_3} … \ frac {1} {R_n} \
долл. США
Здесь мы видим, что проводимость увеличивается при добавлении дополнительных резисторов параллельно, а сопротивление уменьшается! Каждый резистор способен проводить определенное количество тока. Когда вы добавляете резистор параллельно, вы добавляете дополнительный путь, по которому может течь ток, и каждый резистор вносит определенную величину проводимости.
Когда у вас более толстый провод, он действует как эта параллельная цепь. Представьте, что у вас есть одна жила проволоки. У него есть определенная проводимость и определенное сопротивление. Теперь представьте, что у вас есть проволока, состоящая из 20 отдельных жил, каждая из которых имеет такую же толщину, как и ваша предыдущая отдельная жилка.
Если каждая жилка имеет определенную проводимость, наличие провода с 20-ю жилами означает, что ваша проводимость теперь в 20 раз больше, чем провод с одной жилой.Я использую пряди, потому что это помогает понять, насколько толстая проволока — это то же самое, что и несколько меньших проводов. Поскольку проводимость увеличивается, это означает, что сопротивление уменьшается (поскольку оно обратно пропорционально проводимости).
Электрическое сопротивление — провода, шланги, вода и удельное сопротивление
Электрическое сопротивление провода или цепи — это способ измерения сопротивления прохождению электрического тока. Хороший электрический провод, такой как медный провод , будет иметь очень низкое сопротивление.Хорошие изоляторы, такие как изоляторы из резины или стекла , обладают очень высоким сопротивлением. Сопротивление измеряется в Ом и связано с током в цепи и напряжением в цепи по закону Ома . Для данного напряжения провод с меньшим сопротивлением будет иметь более высокий ток.
Сопротивление данного куска провода зависит от трех факторов: длины провода, площади поперечного сечения провода и удельного сопротивления материала, из которого он состоит.Чтобы понять, как это работает, представьте, что вода, течет по шлангу. Количество воды, протекающей по шлангу, аналогично току в проводе. Подобно тому, как через пожарный шланг fat может пройти больше воды, чем через тонкий садовый шланг, толстый провод может пропускать больше тока, чем тонкий провод. Для провода чем больше площадь поперечного сечения, тем меньше сопротивление; чем меньше площадь поперечного сечения, тем выше сопротивление. Теперь рассмотрим длину. По очень длинному шлангу труднее протекать воде просто потому, что она должна течь дальше.Точно так же току труднее проходить по более длинному проводу. Более длинный провод будет иметь большее сопротивление. Удельное сопротивление — это свойство материала в проводе, которое зависит от химического состава материала, но не от количества материала или формы (длины, площади поперечного сечения) материала. Медь имеет низкое удельное сопротивление, но сопротивление данной медной проволоки зависит от ее длины и площади. Замена медного провода на провод той же длины и площади, но с более высоким удельным сопротивлением приведет к более высокому сопротивлению.В аналогии со шлангом это похоже на заполнение шланга песком . Через шланг, заполненный песком, будет течь меньше воды, чем через такой же свободный шланг. Фактически песок имеет более высокое сопротивление потоку воды. Таким образом, полное сопротивление провода представляет собой удельное сопротивление материала, составляющего провод, умноженное на длину провода, деленное на площадь поперечного сечения провода.
Исследование сопротивления проводов
Электрическое сопротивление
Электричество и магнетизм
Исследование сопротивления проводов
Практическая деятельность
для 14-16
Класс практический
Простое исследование факторов, влияющих на сопротивление провода.
Аппаратура и материалы
На каждую студенческую группу
- Элементы, 1,5 В, с держателями, 2
- Зажимы Crocodile, 2
- Амперметр (0 — 1 А), DC
- Выводы, 4 мм, 5
- Провод для классного использования (см. Технические примечания)
- Источник питания, от 0 до 12 В, DC (ДОПОЛНИТЕЛЬНО)
- Метрическая линейка (ДОПОЛНИТЕЛЬНО)
- Изолента (ДОПОЛНИТЕЛЬНО)
- Цифровые и аналоговые амперметры, 0-1 A (ДОПОЛНИТЕЛЬНО)
- Цифровые и аналоговые вольтметры, 0-12 В (ДОПОЛНИТЕЛЬНО)
- Микрометр (ДОПОЛНИТЕЛЬНО)
Примечания по охране труда и технике безопасности
В современной конструкции сухого электролизера используется стальная банка, подключенная к положительному (приподнятому) контакту.Отрицательное соединение — это центр основания с кольцевым изолятором между ним и банкой. У некоторых держателей ячеек есть зажимы, которые могут перекрывать изолятор, вызывая короткое замыкание
. Это быстро разряжает элемент и может привести к его взрыву. Риск снижается за счет использования маломощных
, хлоридно-цинковых элементов, а не высоких
, щелочно-марганцевых.
При использовании источника питания высокие токи вызывают автоматическое отключение предохранительного выключателя на блоках питания.Если используются короткие отрезки провода с относительно высокими токами и напряжениями, то также может возникнуть значительный электрический нагрев. Учащимся следует рекомендовать регулировать напряжение, чтобы токи оставались небольшими при каждом наборе показаний. На каждом этапе они могут подключить схему, быстро снять показания, а затем отключить питание.
Если вы используете сетевой блок питания, используйте тот, который предназначен для ограничения выходного тока примерно до 1 А, и желательно с индикатором перегрузки по току.
Прочтите наше стандартное руководство по охране труда
Для использования в классе должно быть доступно следующее оборудование:
- Выбор катушек с проволокой Eureka (также известной как Constantan или Contra) разной толщины, например 0,71 мм (22 SWG), 0,46 мм (26 SWG), 0,32 мм (30 SWG) и 0,24 мм (34 SWG).
- Выбор катушек с разными проводами (например, медь, эврика, железо) одного калибра (например, 34 SWG).
Процедура
- Соедините последовательно две ячейки и амперметр с одним из проводов длиной 30 см, закрывая зазор между двумя зажимами типа «крокодил».Обратите внимание на показания амперметра.
- Замените образец провода другим такой же длины, но из другого калибра или из другого материала.
- Изучите, как сила тока зависит от толщины провода, его длины и материала, из которого он сделан.
Учебные заметки
- Используйте проволоку тонкого сечения. Если используется слишком толстая проволока, на результаты может повлиять нагревание проволоки.
- Если катушки из меди и проволоки Eureka одного калибра можно изготовить так, чтобы они имели одинаковое сопротивление, эффект будет очень поразительным.Однако тогда это потеряет свою ценность как открытое расследование.
- Студенты должны понять, что сопротивление провода зависит от его длины, площади поперечного сечения и материала, из которого он сделан. С некоторыми учениками вы могли бы пойти дальше и представить концепцию удельного сопротивления ρ через соотношение R = ρ l / A, где R = сопротивление, ρ = удельное сопротивление, l = длина и A = площадь поперечного сечения.
- Это также может быть возможностью для крупномасштабной демонстрации эффекта учителем.Но учтите: если ток слишком велик, напряжение ячеек упадет из-за их внутреннего сопротивления. По этой причине важно поддерживать очень низкий ток — медный провод фактически является коротким.
- Расширение How Science Works: Этот эксперимент можно использовать как более открытое расследование. Студенты могут выбирать переменные, диапазоны результатов и используемое оборудование. Количество руководства будет во многом зависеть от обучающей группы. Изучение влияния длины на сопротивление является обычным делом, но некоторые студенты могут захотеть исследовать влияние толщины проволоки.В любом случае разные провода должны быть из одного материала. Студентам, возможно, потребуется знать преобразование между SWG (стандартный калибр проволоки) и диаметром / радиусом проволоки.
- Студентам будет легче измерить заданную длину, если они прикрепят провод к линейке сечения изолентой и сделают соединения с помощью гибких проводов, а не зажимов типа «крокодил».
Этот эксперимент был проверен на безопасность в августе 2007 г.
Длина кабеля vs.Падение мощности
Падение мощности или потеря мощности в кабеле зависит от длины кабеля, его размера и силы тока в кабеле. Кабели большего размера имеют меньшее сопротивление и поэтому могут передавать большую мощность без больших потерь. Потери в кабелях меньшего диаметра остаются низкими, если передаваемая мощность мала или если кабель не очень длинный. Инженеры должны спроектировать систему питания таким образом, чтобы потери мощности в кабелях были приемлемы для длины кабеля, необходимого для питания нагрузки.
Основы
Электрические кабели имеют сопротивление на фут, и чем длиннее кабель, тем больше сопротивление.Когда ток течет по кабелю, ток, протекающий через сопротивление, приводит к падению напряжения в соответствии с законом Ома, напряжение = ток x сопротивление. Мощность в ваттах — это напряжение x ток. Заданный ток и сопротивление кабеля определяют допустимое падение напряжения. Если это 10 вольт для тока 10 ампер, мощность, потерянная в кабеле, составит 100 ватт.
Размер кабеля
Кабели большего размера имеют меньшее сопротивление на фут, чем кабели меньшего диаметра. Типичная бытовая проводка — AWG 12 или 14 калибра с сопротивлением 1.6 и 2,5 Ом на 1000 футов. Для типичного дома длина кабеля может составлять до 50 футов. Соответствующие сопротивления для этих распространенных размеров кабелей составляют 0,08 и 0,13 Ом. У большего кабеля сопротивление на 36 процентов меньше, чем у меньшего кабеля, и он будет терять на 36 процентов меньше энергии. Для более длинных кабелей, таких как внешние соединения, кабель калибра AWG 10 с сопротивлением 1 Ом на 1000 футов будет иметь падение мощности на 60 процентов меньше, чем кабель калибра 14.
Напряжение
В то время как сопротивление кабелей показывает, какой кабель потеряет наименьшую мощность, потеря мощности в ваттах определяется падением напряжения.Для 100-футовых трасс сопротивление кабелей AWG 10, 12 и 14 составляет 0,1, 0,16 и 0,25 Ом. Бытовая цепь рассчитана на 15 ампер. Пропускание 15-амперного тока через 100 футов этих кабелей приведет к падению напряжения на 1,5, 2,4 и 3,75 В соответственно.
Мощность
Падение напряжения, умноженное на ток, дает мощность в ваттах. Три кабеля длиной 100 футов, несущие ток 15 ампер, будут иметь падение мощности 22,5, 36 и 56,25 Вт для кабелей калибра 10, 12 и 14 соответственно.Эта мощность нагревает кабель, и падение напряжения снижает доступное для нагрузки напряжение. Падение напряжения от 3,6 до 6 вольт дает приемлемое падение мощности для цепи на 120 вольт. Кабель калибра AWG 14 является пограничным, о чем свидетельствует потеря мощности, которая больше, чем у 40-ваттной лампочки.
Сопротивление проводника
Хотя можно использовать провод любого размера или значения сопротивления, слово «проводник» обычно относится к материалам, которые обладают низким сопротивлением току, а слово «изолятор» описывает материалы, которые обладают высоким сопротивлением току. Текущий.Между проводниками и изоляторами нет четкой разделительной линии; при определенных условиях все типы материалов проводят ток. Материалы, обеспечивающие сопротивление току на полпути между лучшими проводниками и самыми плохими проводниками (изоляторами), иногда называют «полупроводниками» и находят наибольшее применение в области транзисторов.
Лучшие проводники — это материалы, в основном металлы, которые обладают большим количеством свободных электронов; И наоборот, изоляторы — это материалы с небольшим количеством свободных электронов.Лучшие проводники — серебро, медь, золото и алюминий; но некоторые неметаллы, такие как углерод и вода, могут использоваться в качестве проводников. Такие материалы, как резина, стекло, керамика и пластмассы, являются настолько плохими проводниками, что их обычно используют в качестве изоляторов. Ток в некоторых из этих материалов настолько мал, что обычно считается нулевым. Единица измерения сопротивления называется ом. Символ ома — греческая буква омега (Ω). В математических формулах заглавная буква «R» обозначает сопротивление.Сопротивление проводника и приложенное к нему напряжение определяют количество ампер тока, протекающего по проводнику. Таким образом, сопротивление 1 Ом ограничивает ток до 1 ампера в проводнике, к которому приложено напряжение 1 вольт.
Факторы, влияющие на сопротивление
- Сопротивление металлического проводника зависит от типа материала проводника. Было указано, что некоторые металлы обычно используются в качестве проводников из-за большого количества свободных электронов на их внешних орбитах.Медь обычно считается лучшим доступным материалом для проводников, поскольку медная проволока определенного диаметра обеспечивает меньшее сопротивление току, чем алюминиевая проволока того же диаметра. Однако алюминий намного легче меди, и по этой причине, а также по соображениям стоимости, алюминий часто используется, когда важен весовой коэффициент.
- Сопротивление металлического проводника прямо пропорционально его длине. Чем больше длина провода данного сечения, тем больше сопротивление.На рисунке 12-41 показаны два проводника разной длины. Если электрическое давление 1 вольт приложено к двум концам проводника длиной 1 фут, а сопротивление движению свободных электронов предполагается равным 1 Ом, ток ограничивается 1 ампер. Если провод того же размера удвоить в длину, те же электроны, приведенные в движение под действием приложенного 1 вольта, теперь обнаруживают удвоенное сопротивление; следовательно, ток уменьшается вдвое. Рисунок 12-41. Сопротивление зависит от длины проводника.
- Сопротивление металлического проводника обратно пропорционально площади поперечного сечения. Эта область может быть треугольной или даже квадратной, но обычно круглой. Если площадь поперечного сечения проводника увеличивается вдвое, сопротивление току уменьшается вдвое. Это верно из-за увеличенной площади, в которой электрон может перемещаться без столкновения или захвата атомом. Таким образом, сопротивление изменяется обратно пропорционально площади поперечного сечения проводника.
- Четвертым важным фактором, влияющим на сопротивление проводника, является температура.Хотя некоторые вещества, такие как углерод, демонстрируют снижение сопротивления при повышении температуры окружающей среды, большинство материалов, используемых в качестве проводников, увеличивают сопротивление при повышении температуры. Сопротивление некоторых сплавов, таких как константан и манганин ™, очень мало изменяется при изменении температуры. Величина увеличения сопротивления 1-омного образца проводника на один градус повышения температуры выше 0 ° по Цельсию (C), принятого стандарта, называется температурным коэффициентом сопротивления.Для каждого металла это разные значения. Например, для меди это значение составляет примерно 0,00427 Ом. Таким образом, медный провод, имеющий сопротивление 50 Ом при температуре 0 ° C, имеет увеличение сопротивления на 50 × 0,00427 или 0,214 Ом на каждый градус повышения температуры выше 0 ° C. Температурный коэффициент сопротивления необходимо учитывать там, где наблюдается заметное изменение температуры проводника во время работы. Доступны графики с указанием температурного коэффициента сопротивления для различных материалов.На Рис. 12-42 показана таблица «удельного сопротивления» некоторых распространенных электрических проводников.
Рисунок 12-42. Таблица удельного сопротивления.
Сопротивление материала определяется четырьмя свойствами: материалом, длиной, площадью и температурой. Первые три свойства связаны следующим уравнением при T = 20 ° C (комнатная температура):
Сопротивление и связь с размером провода
Круглые проводники (провода / кабели)
Поскольку известно, что Сопротивление проводника прямо пропорционально его длине, и если нам дано сопротивление единичной длины провода, мы можем легко вычислить сопротивление любой длины провода из того же материала, имеющего тот же диаметр.Кроме того, поскольку известно, что сопротивление проводника обратно пропорционально его площади поперечного сечения, и если нам дано сопротивление отрезка провода с единичной площадью поперечного сечения, мы можем вычислить сопротивление такой же длины. из проволоки из того же материала любой площади сечения. Следовательно, если мы знаем сопротивление данного проводника, мы можем рассчитать сопротивление для любого проводника из того же материала при той же температуре. Из отношения:
Также можно записать:
Если у нас есть проводник длиной 1 метр (м) с площадью поперечного сечения 1 (миллиметр) мм 2 и сопротивлением 0 .017 Ом, каково сопротивление 50 м провода из того же материала, но с площадью поперечного сечения 0,25 мм 2 ?
В то время как единицы СИ обычно используются при анализе электрических цепей, электрические проводники в Северной Америке все еще производятся с использованием стопы в качестве единицы длины и мил (одна тысячная дюйма) в качестве единицы диаметра. Прежде чем использовать уравнение R = (ρ × l) ⁄A для расчета сопротивления проводника данного американского калибра проводов (AWG), площадь поперечного сечения в квадратных метрах должна быть определена с использованием коэффициента преобразования 1 mil = 0. .0254 мм. Самая удобная единица длины проволоки — стопа. Используя эти стандарты, единицей измерения является мил-фут. Таким образом, проволока имеет единичный размер, если она имеет диаметр 1 мил и длину 1 фут.
В случае использования медных проводников мы избавляемся от утомительных вычислений с использованием таблицы, показанной на Рисунке 12-43. Обратите внимание, что размеры поперечного сечения, указанные в таблице, таковы, что каждое уменьшение на один номер датчика равняется 25-процентному увеличению площади поперечного сечения.Из-за этого уменьшение трех калибровочных чисел означает увеличение площади поперечного сечения примерно на 2: 1. Аналогичным образом, изменение десяти калибровочных номеров проводов представляет собой изменение площади поперечного сечения 10: 1 — кроме того, при удвоении площади поперечного сечения проводника сопротивление уменьшается вдвое. Уменьшение числа сечений проводов на три уменьшает сопротивление проводника заданной длины вдвое.
Рисунок 12-43. Таблица преобразования при использовании медных жил.
Прямоугольные проводники (шины)
Для вычисления площади поперечного сечения проводника в квадратных милях длина одной стороны в милах возводится в квадрат.В случае прямоугольного проводника длина одной стороны умножается на длину другой. Например, обычная прямоугольная шина (большой, специальный проводник) имеет толщину 3⁄8 дюйма и ширину 4 дюйма. Толщина 3⁄8 дюйма может быть выражена как 0,375 дюйма. Поскольку 1000 мил равняется 1 дюйму, ширину в дюймах можно преобразовать в 4000 мил. Площадь поперечного сечения прямоугольного проводника находится путем преобразования 0,375 в мил (375 мил × 4000 мил = 1 500 000 квадратных мил).
Бортовой механик рекомендует
Удельное сопротивление | Физика проводников и изоляторов
Расчет сопротивления проводов
Номинальная допустимая нагрузка проводника — это грубая оценка сопротивления, основанная на потенциальной опасности возникновения пожара по току.Однако мы можем столкнуться с ситуациями, когда падение напряжения, вызванное сопротивлением проводов в цепи, вызывает другие проблемы, кроме предотвращения возгорания. Например, мы можем проектировать схему, в которой напряжение на компоненте является критическим и не должно опускаться ниже определенного предела. В этом случае падение напряжения из-за сопротивления проводов может вызвать технические проблемы, будучи в пределах безопасных (пожарных) пределов допустимой нагрузки:
Если нагрузка в вышеуказанной цепи не выдерживает напряжения ниже 220 В при напряжении источника 230 В, то лучше убедиться, что проводка не упадет более чем на 10 вольт по пути.Если считать как питающие, так и обратные проводники этой цепи, это оставляет максимально допустимое падение в 5 вольт по длине каждого провода. Используя закон Ома (R = E / I), мы можем определить максимально допустимое сопротивление для каждого отрезка провода:
Мы знаем, что длина каждого куска провода составляет 2300 футов, но как определить величину сопротивления для конкретного размера и длины провода? Для этого нам понадобится другая формула:
Эта формула связывает сопротивление проводника с его удельным сопротивлением (греческая буква «ро» (ρ), которая похожа на строчную букву «p»), его длиной («l») и поперечным сечением. площадь сечения («А»).Обратите внимание, что с переменной длины в верхней части дроби значение сопротивления увеличивается по мере увеличения длины (аналогия: труднее протолкнуть жидкость через длинную трубу, чем через короткую) и уменьшается по мере увеличения площади поперечного сечения ( аналогия: жидкость легче течет по толстой трубе, чем по тонкой). Удельное сопротивление является константой для типа рассчитываемого материала проводника.
Удельное сопротивление нескольких проводящих материалов можно найти в следующей таблице.Внизу таблицы мы находим медь, уступающую только серебру по низкому удельному сопротивлению (хорошей проводимости):
Удельное сопротивление при 20 градусах Цельсия
Материал | Элемент / Сплав | (Ом-смил / фут) | (мкОм-см) |
---|---|---|---|
Нихром | Сплав | 675 | 112,2 |
Нихром В | Сплав | 650 | 108,1 |
Манганин | Сплав | 290 | 48.21 |
Константан | Сплав | 272,97 | 45,38 |
Сталь * | Сплав | 100 | 16,62 |
Платина | Элемент | 63,16 | 10,5 |
Утюг | Элемент | 57,81 | 9,61 |
Никель | Элемент | 41,69 | 6,93 |
цинк | Элемент | 35.49 | 5,90 |
молибден | Элемент | 32,12 | 5,34 |
Вольфрам | Элемент | 31,76 | 5,28 |
Алюминий | Элемент | 15,94 | 2,650 |
Золото | Элемент | 13,32 | 2,214 |
Медь | Элемент | 10,09 | 1.678 |
Серебро | Элемент | 9,546 | 1,587 |
* = Стальной сплав с содержанием железа 99,5%, углерода 0,5%
Обратите внимание, что значения удельного сопротивления в приведенной выше таблице даны в очень странной единице «Ом-см-мил / фут» (Ом-см-мил / фут). Эта единица указывает, какие единицы мы ожидаем использовать в формуле сопротивления ( R = ρl / A). В этом случае эти значения удельного сопротивления предназначены для использования, когда длина измеряется в футах, а площадь поперечного сечения измеряется в круглых милах.
Метрической единицей измерения удельного сопротивления является ом-метр (Ом-м) или ом-сантиметр (Ом-см), при этом 1,66243 x 10 -9 Ом-метров на Ом-см-мил / фут (1,66243 x 10 ). -7 Ом-см на Ом-см-мил / фут). В столбце таблицы Ом-см цифры фактически масштабированы как мкОм-см из-за их очень малых величин. Например, железо указано как 9,61 мкОм-см, что может быть представлено как 9,61 x 10 -6 Ом-см.
При использовании единицы измерения удельного сопротивления Ом-метр в формуле R = ρl / A длина должна быть в метрах, а площадь — в квадратных метрах.При использовании единицы Ω-сантиметр (Ω-см) в той же формуле длина должна быть в сантиметрах, а площадь — в квадратных сантиметрах.
Все эти единицы измерения удельного сопротивления действительны для любого материала (Ом-см / фут, Ом-м или Ом-см). Однако можно предпочесть использовать Ом-см-мил / фут при работе с круглым проводом, площадь поперечного сечения которого уже известна в круглых милах. И наоборот, при работе с шиной нестандартной формы или изготовленной по индивидуальному заказу шиной, вырезанной из металлической заготовки, где известны только линейные размеры длины, ширины и высоты, более подходящими могут быть единицы измерения удельного сопротивления Ом-метр или Ом-см.
Решение
Возвращаясь к нашей примерной схеме, мы искали провод с сопротивлением 0,2 Ом или меньше на длине 2300 футов. Предполагая, что мы собираемся использовать медный провод (самый распространенный тип производимого электрического провода), мы можем настроить нашу формулу следующим образом:
Алгебраически решая относительно A, мы получаем значение 116 035 круговых милов. Ссылаясь на нашу таблицу размеров сплошных проводов, мы обнаруживаем, что провод «двойной длины» (2/0) с длиной 133 100 см является достаточным, в то время как следующий меньший размер, «одинарный провод» (1/0) с длиной 105 500 см слишком мал. .Имейте в виду, что ток в нашей цепи составляет скромные 25 ампер. Согласно нашей таблице допустимой токовой нагрузки для медных проводов на открытом воздухе, достаточно было бы провода калибра 14 (если речь идет о , а не о , вызывающем возгорание). Однако с точки зрения падения напряжения провод 14-го калибра был бы совершенно неприемлемым.
Ради интереса, давайте посмотрим, как провод 14 калибра повлияет на характеристики нашей силовой цепи. Глядя на нашу таблицу размеров проводов, мы обнаруживаем, что проволока калибра 14 имеет площадь поперечного сечения 4 107 круглых милов.Если мы по-прежнему используем медь в качестве материала для проволоки (хороший выбор, если только мы не действительно богаты на и не можем позволить себе 4600 футов серебряной проволоки 14-го калибра!), То наше удельное сопротивление все равно будет 10,09 Ом-см · дюйм / фут. :
Помните, что это 5,651 Ом на 2300 футов медного провода калибра 14, и что у нас есть два участка по 2300 футов во всей цепи, поэтому каждый участок провода в цепи имеет сопротивление 5,651 Ом:
Полное сопротивление проводов в нашей цепи равно 2 умноженным на 5.651 или 11,301 Ом. К сожалению, это сопротивление , что на слишком много, чтобы обеспечить ток в 25 ампер при напряжении источника 230 вольт. Даже если бы сопротивление нагрузки было 0 Ом, сопротивление нашей проводки 11,301 Ом ограничило бы ток цепи до 20,352 ампер! Как видите, «небольшое» сопротивление провода может иметь большое значение в характеристиках схемы, особенно в силовых цепях, где токи намного выше, чем обычно встречаются в электронных схемах.
Давайте рассмотрим пример проблемы сопротивления для отрезка сборной шины, изготовленной по индивидуальному заказу.Предположим, у нас есть кусок сплошного алюминиевого стержня шириной 4 см, высотой 3 см и длиной 125 см, и мы хотим рассчитать сквозное сопротивление по длине (125 см). Во-первых, нам нужно определить площадь поперечного сечения стержня:
Нам также необходимо знать удельное сопротивление алюминия в единицах измерения, соответствующих данному применению (Ом-см). Из нашей таблицы удельных сопротивлений мы видим, что это 2,65 x 10 -6 Ом-см. Установив нашу формулу R = ρl / A, мы имеем:
Как вы можете видеть, абсолютная толщина шины обеспечивает очень низкое сопротивление по сравнению со стандартными размерами проводов, даже при использовании материала с большим удельным сопротивлением.
Процедура определения сопротивления шины принципиально не отличается от процедуры определения сопротивления круглого провода. Нам просто нужно убедиться, что площадь поперечного сечения рассчитана правильно и что все единицы соответствуют друг другу, как должны.
ОБЗОР:
- Сопротивление проводника увеличивается с увеличением длины и уменьшается с увеличением площади поперечного сечения, при прочих равных условиях.
- Удельное сопротивление («ρ») — это свойство любого проводящего материала, показатель, используемый для определения сквозного сопротивления проводника данной длины и площади в этой формуле: R = ρl / A
- Удельное сопротивление материалов указывается в единицах Ом-см / фут или Ом-метр (метрическая система).Коэффициент преобразования между этими двумя единицами составляет 1,66243 x 10 -9 Ом-метров на Ом-см-мил / фут или 1,66243 x 10 -7 Ом-см на Ом-см-мил / фут.
- Если падение напряжения в цепи критично, перед выбором сечения проводов необходимо произвести точный расчет сопротивления проводов.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Объяснение лабораторного отчета
: длина и электрическое сопротивление провода
ВВЕДЕНИЕ И ИСТОРИЯ ВОПРОСА
Когда электроны движутся по проводам или другим внешним цепям, они движутся зигзагообразно, что приводит к столкновению между электронами и ионами в проводнике, и это называется сопротивлением.Сопротивление провода затрудняет движение электрического тока провода и обычно измеряется в Ом (Ом).
Джордж Ом обнаружил, что разность потенциалов в цепи соответствует току, протекающему по цепи, и что цепь иногда сопротивляется потоку электричества. Таким образом, упомянутый ученый придумал правило для определения сопротивления, показанное на изображении сбоку:
Сопротивление — важный фактор, на который следует обратить внимание, потому что, во-первых, слишком высокое сопротивление может вызвать перегрев провода из-за трения, которое возникает, когда электроны движутся против сопротивления сопротивления, что потенциально опасно, поскольку оно может расплавиться. или даже поджечь.Поэтому важно учитывать сопротивление при работе с проводами для подачи питания на устройство или около того.
В реальной жизни можно использовать тостер, у которого провода такого размера, чтобы они были достаточно горячими, чтобы поджарить хлеб, но недостаточно, чтобы расплавиться.
Во-вторых, сопротивление также может быть очень полезным инструментом, который позволяет вам контролировать определенные вещи. Примером из реального мира могут быть светодиодные фонари, которым требуется резистор для управления потоком электрического тока, чтобы предотвратить повреждение высоким электрическим током.Другим примером может служить регулятор громкости на радио, где резистор используется для разделения сигнала, что позволяет вам контролировать уровень громкости.
Теперь ясно, что сопротивление — важный атрибут, который применялся ко многим формам технологий для выполнения полезной функции, и этот эксперимент направлен на то, чтобы увидеть, как мы можем его контролировать. Сопротивление провода варьируется в зависимости от четырех факторов провода; — температура, материал, диаметр / толщина и длина провода.
Этот эксперимент будет сосредоточен именно на этом последнем факторе — длине — и исследует, какую роль длина провода будет иметь на его электрическом сопротивлении, используя диапазон длин проводов для тестирования.
ИССЛЕДОВАТЕЛЬСКИЙ ВОПРОС
Как изменение длины нихромовой проволоки диаметром 0,315 мм, разрезанной на 10 см, 20 см, 30 см, 40 см и 50 см, влияет на электрическое сопротивление, генерируемое в нихромовой проволоке, которое может быть измерено омметром при сохранении температура и место проведения эксперимента контролируются?
ГИПОТЕЗА
Если длину нихромовой проволоки увеличить на 10 см, начиная с 10 см, то график измерения электрического сопротивления проводов будет иметь положительный наклон с математической функцией y = mx, которая отображает возрастающую величину сопротивления. сгенерировано.
ПРИЧИНА ГИПОТЕЗ
Удвоение длины провода аналогично последовательному соединению двух более коротких проводов. Если один короткий провод имеет сопротивление 1 Ом, то два коротких провода будут иметь сопротивление 2 Ом при последовательном соединении.
Более длинный провод также означает, что в нем будет больше атомов, а это значит, что движущиеся электроны с большей вероятностью столкнутся с ними; следовательно, более высокое сопротивление. Например, 10-сантиметровая проволока содержит 5 атомов, а 20-сантиметровая проволока — 10 атомов.Если, скажем, 5 электронов попытаются пройти через эти два провода, шансы, что они столкнутся с атомами, выше в 20-сантиметровом проводе, чем в 10-сантиметровом. Следовательно, чем длиннее провод, тем выше сопротивление.
Источник: Класс физики «Сопротивление». Кабинет физики, без даты. Интернет. 8 мая 2018 г. [http://www.physicsclassroom.com/class/circuits/Lesson-3/Resistance]
ПЕРЕМЕННЫЕ
Независимая переменная | Зависимая переменная |
Длина нихромовой проволоки | |
9026 9026 9026 9026 9026 9026 9026 9026 9026 9026 9026 Эксперимент будет работать с 5 наборами нихрома | Каждый провод будет измерен омметром из |
проводов, начиная с длины 10 см, добавлен мультиметр | с погрешностью ± 0.01Ω |
с шагом 10 см. Длину каждого провода | , точно обрезав щупы омметра |
, будут измерять в см с помощью 30-сантиметровой линейки с | до краев нихромовых проводов, которые должны быть |
± 0,05 см и будет следующим: 10, | проверено. |
20, 30, 40, 50. | |
Управляемый | ||
Управляемый Как управлять | ||
Материал провода | Различные материалы имеют разные | Материал провода, который будет |
сопротивления; некоторые из них являются лучшими проводниками, | используется во всем | |
означает, что у них больше свободных электронов, | эксперимент будет сохранен точно | |
, таким образом, имея меньшее сопротивление. | то же, нихромовая проволока. | |
Материалы также имеют разный нагрев | ||
точка. Некоторые нагреваются легче, чем другие | ||
после использования, что потенциально может быть | ||
опасным. | ||
Диаметр проволоки | Диаметр проволоки является одним из факторов | Диаметр проволоки |
сопротивление провода для | будет использоваться на всем протяжении | |
будет больше места для эксперимента | будет сохранено ровно | |
электронов, что будет | то же самое, что равно 0.315 мм. | |
приводит к меньшему сопротивлению. Поддержание постоянного диаметра проволоки | ||
приведет к честному эксперименту. разные температуры могут | Температура будет поддерживаться на уровне | |
повлияет на сопротивление провода, потому что | комнатная температура, которая может | |
чем выше температура, тем выше | можно просто делая | |
сопротивление провода, так как это вызывает | эксперимент в одной комнате, в пределах | |
электроны будут двигаться быстрее из-за того же периода времени.Увеличение энергии | ||
, в результате чего больше | экспериментаторам следует также избегать столкновения | |
с атомами, таким образом, более | при использовании любого света, такого как факел, | |
для него может быть источником тепла. | ||
Напряжение источника питания | Источник питания должен оставаться равным 1.5 В, | |
то же самое, что и напряжение и передаваемый ток | , и ток изменится | |
зависит от этого; высший блок питания | в зависимости от напряжения. | |
напряжения, тем больше напряжения и тока будет | ||
будет отправлено на провод, что повлияет на сопротивление | ||
. | ||
МАТЕРИАЛ И АППАРАТ
Материалы | Размер | Количество | Погрешность | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9026 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ножницы | — | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
цифровой01cm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Положительные и отрицательные мультиметрические зонды | — | 2 | ± 0,05 см | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Наждачная бумага | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
МЕТОД / ПРОЦЕДУРА ЭКСПЕРИМЕНТА
РЕЗУЛЬТАТЫ Зарегистрированное сопротивление для 5 различных длин нихромовой проволоки
0 ПРОЦЕСС ПРОЦЕДУРЫСреднее количество данных3: (6.50 + 7.00 + 6.50 + 7.90) ÷ 4 = 6.98 Средние данные неопределенности № 3: (7,90-6,50) ÷ 2 = 0,70 ГРАФИК (по усредненным данным) ЗАКЛЮЧЕНИЕ И ОЦЕНКА На графике показана возрастающая линейная линия тренда с математической функцией Y = 0,132X + 2,3, которая отображает положительную корреляцию, как видно из линии, идущей вверху и вправо, которая указывает положительные значения, а также градиент. который отображает положительное значение.График также имеет идентифицированный наклон или градиент 0,132. Единицей измерения этого градиента является Ом / см, и градиент представляет собой скорость общего увеличения зависимой переменной по мере продвижения независимой переменной. Наклон показывает, что при увеличении длины провода сопротивление будет увеличиваться приблизительно на 1,25 Ом, что может быть подтверждено расчетом графика, где все средние значения были рассчитаны из средних приращений каждого провода — (0.7 + 0,78 + 2,42 + 1,1) ÷ 4 = 1,25. Другой аспект математической функции, который можно идентифицировать, — это точка пересечения Y, равная 2,3, и она представляет собой среднее сопротивление (dv) первых данных независимой переменной, равное 3,48 Ом. Данные для длины проводов (независимая переменная) составляли от 10 см до 50 см с шагом 10 см между каждым проводом, в то время как сопротивление (зависимая переменная), казалось, отображало самые низкие данные 3,48 Ом и самые высокие данные 8.48 Ом, что, по-видимому, хорошо согласуется с смоделированным линейным графиком наилучшего соответствия, что явно подтверждается определением коэффициента (R2), согласно которому линия наилучшего соответствия соответствует разрозненным данным на 94,98% Данные не полностью совпадают с смоделированной линией наилучшего соответствия, поскольку во время эксперимента действительно возникали ошибки, о чем свидетельствуют довольно большие полосы ошибок над данными. Максимальный столбец ошибки, который может быть идентифицирован там, — это 4-я независимая переменная, которая представляет собой провод 40 см, а столбец минимальной ошибки был расположен в первых данных, которым был провод 10 см. Два данных с наибольшими ошибками вышли далеко за пределы прогнозируемой линии, из чего мы можем сделать вывод, что собранные данные имеют непостоянную точность. При измерении этих двух данных данные, полученные в каждом испытании, были очень противоречивыми, что предположительно было вызвано непоследовательным трением наждачной бумагой, что будет дополнительно уточнено в предложениях по улучшению. Образец на графике подтверждает гипотезу эксперимента, согласно которому, если длина провода увеличится, измеренное сопротивление также увеличится, на графике будет наблюдаться положительный градиент с математической функцией y = mx + c, которая равна должен отображать возрастающее сопротивление. Это было доказано и подтверждено линией тренда на графике, которая в основном показывает положительную корреляцию в увеличении сопротивления с той же скоростью, что и независимая переменная, что соответствует предсказанной гипотезе. График также показал положительную математическую функцию y = 0,132x + 2,3 с положительным градиентом (0,132x). Однако всему этому есть научное объяснение. Известно, что длина провода является одним из четырех факторов, влияющих на сопротивление провода, и этот эксперимент просто подтвердил это. Логическим объяснением было бы то, что более длинный провод также означает, что в нем будет больше атомов, а это значит, что движущиеся электроны с большей вероятностью столкнутся с ними; следовательно, более высокое сопротивление. Например, 10-сантиметровая проволока содержит 5 атомов, а 20-сантиметровая проволока — 10 атомов. Если, скажем, 5 электронов попытаются пройти через эти два провода, шансы, что они столкнутся с атомами, выше в 20-сантиметровом проводе, чем в 10-сантиметровом. Следовательно, чем длиннее провод, тем выше сопротивление. В заключение, эксперимент был успешным исследованием, которое успешно отвечает на исследовательский вопрос о том, как в основном изменить длину проволоки (особенно нихромовой проволоки с диаметром 0.315, разрезанные на 10 см, 20 см, 30 см, 40 см и 50 см), может повлиять на электрическое сопротивление, генерируемое внутри проводов. Расследование пришло к выводу, что существует четкая взаимосвязь между длиной и сопротивлением провода, и что первое на самом деле влияет на второе. ОЦЕНКА И ПРЕДЛОЖЕНИЯ
БИБЛИОГРАФИЯ
Помогите нам исправить его улыбку своими старыми эссе, это займет секунды! -Мы ищем предыдущие эссе, лабораторные работы и задания, которые вы выполнили!-Мы рассмотрим и разместим их на нашем сайте. |