Ампер конвертер: ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Содержание

ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Общие сведения

И. К. Айвазовский. Чесменский бой

Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.

Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.

Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава

Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.

Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава

Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.

Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава

Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.

Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.

Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.

Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава

Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.

Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.

Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.

Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.

Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.

Историческая справка

С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.

Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)

Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.

Жан-Батист Био (1774–1862)

Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.

Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.

Электрический ток. Определения

Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:

I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах

Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:

I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах

Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).

Размерность тока в системе СИ определяется как

[А] = [Кл] / [сек]

Особенности протекания электрического тока в различных средах. Физика явлений

Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей

Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках

При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.

Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.

Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода

С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.

В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.

Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали

Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.

Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.

Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.

Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.

Хромированная пластмассовая душевая головка

Электрический ток в жидкостях (электролитах)

Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.

Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.

Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.

Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.

Электрический ток в газах

Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.

Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В

Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.

Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.

Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.

Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.

Тихий разряд. Вольт-амперная характеристика.

Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.

Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.

Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)

Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.

При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.

Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.

Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.

Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.

Электрический ток в вакууме

Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.

Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава

Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.

Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.

Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.

Современный видеопроектор

Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.

При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.

Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов

В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.

Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.

Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.

Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава

Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.

Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.

Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.

Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.

Электрический ток в биологии и медицине

Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения

Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.

При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.

Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.

Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.

Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах

В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.

Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.

К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.

Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.

Автоматический дефибриллятор для обучения лиц, не являющихся медработниками

Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.

У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.

Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.

Характеристики электрического тока, его генерация и применение

Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.

Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава

Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.

Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.

Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.

Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава

В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.

Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.

Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.

Объектив лазера в приводе компакт-диска

В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.

Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.

Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.

Стрелочный мультиметр со снятой верхней крышкой

Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.

Измерение силы электрического тока

Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.

По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.

Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной

Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.

Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.

Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.

Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.

Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.

Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение тока с помощью осциллографа

Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1

Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:

IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,

что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен

IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА

Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).

Опыт 2

Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:

IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,

что приблизительно соответствует показаниям мультиметра (1,55 мА).

Опыт 3

Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.

Опыт 4

Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.

Техника безопасности при измерении тока и напряжения

Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии

  • Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
  • Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
  • Не производить измерения токов в труднодоступных местах или на высоте.
  • При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  • Пользоваться исправным измерительным инструментом.
  • В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  • Пользоваться измерительным прибором с исправными щупами.
  • Строго следовать рекомендациям производителя по использованию измерительного прибора.

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления. Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Общие сведения

И. К. Айвазовский. Чесменский бой

Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.

Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.

Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава

Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.

Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава

Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.

Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава

Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.

Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.

Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.

Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава

Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.

Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.

Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.

Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.

Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.

Историческая справка

С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.

Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)

Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.

Жан-Батист Био (1774–1862)

Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.

Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.

Электрический ток. Определения

Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:

I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах

Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:

I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах

Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).

Размерность тока в системе СИ определяется как

[А] = [Кл] / [сек]

Особенности протекания электрического тока в различных средах. Физика явлений

Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей

Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках

При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.

Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.

Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода

С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.

В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.

Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали

Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.

Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.

Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.

Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.

Хромированная пластмассовая душевая головка

Электрический ток в жидкостях (электролитах)

Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.

Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.

Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.

Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.

Электрический ток в газах

Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.

Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В

Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.

Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.

Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.

Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.

Тихий разряд. Вольт-амперная характеристика.

Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.

Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.

Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)

Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.

При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.

Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.

Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.

Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.

Электрический ток в вакууме

Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.

Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава

Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.

Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.

Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.

Современный видеопроектор

Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.

При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.

Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов

В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.

Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.

Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.

Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава

Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.

Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.

Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.

Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.

Электрический ток в биологии и медицине

Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения

Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.

При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.

Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.

Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.

Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах

В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.

Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.

К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.

Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.

Автоматический дефибриллятор для обучения лиц, не являющихся медработниками

Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.

У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.

Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.

Характеристики электрического тока, его генерация и применение

Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.

Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава

Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.

Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.

Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.

Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава

В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.

Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.

Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.

Объектив лазера в приводе компакт-диска

В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.

Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.

Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.

Стрелочный мультиметр со снятой верхней крышкой

Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.

Измерение силы электрического тока

Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.

По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.

Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной

Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.

Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.

Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.

Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.

Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.

Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение тока с помощью осциллографа

Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1

Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:

IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,

что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен

IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА

Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).

Опыт 2

Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:

IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,

что приблизительно соответствует показаниям мультиметра (1,55 мА).

Опыт 3

Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.

Опыт 4

Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.

Техника безопасности при измерении тока и напряжения

Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии

  • Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
  • Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
  • Не производить измерения токов в труднодоступных местах или на высоте.
  • При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  • Пользоваться исправным измерительным инструментом.
  • В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  • Пользоваться измерительным прибором с исправными щупами.
  • Строго следовать рекомендациям производителя по использованию измерительного прибора.

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Общие сведения

И. К. Айвазовский. Чесменский бой

Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.

Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.

Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава

Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.

Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава

Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.

Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава

Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.

Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.

Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.

Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава

Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.

Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.

Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.

Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.

Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.

Историческая справка

С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.

Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)

Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.

Жан-Батист Био (1774–1862)

Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.

Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.

Электрический ток. Определения

Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:

I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах

Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:

I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах

Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).

Размерность тока в системе СИ определяется как

[А] = [Кл] / [сек]

Особенности протекания электрического тока в различных средах. Физика явлений

Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей

Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках

При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.

Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.

Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода

С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.

В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.

Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали

Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.

Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.

Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.

Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.

Хромированная пластмассовая душевая головка

Электрический ток в жидкостях (электролитах)

Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.

Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.

Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.

Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.

Электрический ток в газах

Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.

Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В

Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.

Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.

Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.

Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.

Тихий разряд. Вольт-амперная характеристика.

Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.

Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.

Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)

Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.

При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.

Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.

Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.

Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.

Электрический ток в вакууме

Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.

Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава

Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.

Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.

Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.

Современный видеопроектор

Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.

При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.

Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов

В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.

Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.

Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.

Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава

Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.

Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.

Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.

Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.

Электрический ток в биологии и медицине

Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения

Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.

При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.

Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.

Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.

Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах

В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.

Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.

К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.

Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.

Автоматический дефибриллятор для обучения лиц, не являющихся медработниками

Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.

У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.

Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.

Характеристики электрического тока, его генерация и применение

Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.

Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава

Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.

Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.

Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.

Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава

В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.

Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.

Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.

Объектив лазера в приводе компакт-диска

В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.

Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.

Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.

Стрелочный мультиметр со снятой верхней крышкой

Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.

Измерение силы электрического тока

Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.

По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.

Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной

Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.

Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.

Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.

Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.

Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.

Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение тока с помощью осциллографа

Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1

Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:

IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,

что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен

IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА

Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).

Опыт 2

Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:

IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,

что приблизительно соответствует показаниям мультиметра (1,55 мА).

Опыт 3

Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.

Опыт 4

Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.

Техника безопасности при измерении тока и напряжения

Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии

  • Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
  • Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
  • Не производить измерения токов в труднодоступных местах или на высоте.
  • При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  • Пользоваться исправным измерительным инструментом.
  • В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  • Пользоваться измерительным прибором с исправными щупами.
  • Строго следовать рекомендациям производителя по использованию измерительного прибора.

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Общие сведения

И. К. Айвазовский. Чесменский бой

Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.

Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.

Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава

Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.

Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава

Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.

Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава

Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.

Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.

Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.

Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава

Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.

Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.

Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.

Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.

Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.

Историческая справка

С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.

Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)

Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.

Жан-Батист Био (1774–1862)

Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.

Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.

Электрический ток. Определения

Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:

I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах

Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:

I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах

Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).

Размерность тока в системе СИ определяется как

[А] = [Кл] / [сек]

Особенности протекания электрического тока в различных средах. Физика явлений

Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей

Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках

При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.

Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.

Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода

С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.

В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.

Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали

Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.

Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.

Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.

Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.

Хромированная пластмассовая душевая головка

Электрический ток в жидкостях (электролитах)

Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.

Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.

Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.

Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.

Электрический ток в газах

Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.

Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В

Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.

Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.

Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.

Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.

Тихий разряд. Вольт-амперная характеристика.

Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.

Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.

Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)

Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.

При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.

Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.

Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.

Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.

Электрический ток в вакууме

Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.

Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава

Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.

Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.

Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.

Современный видеопроектор

Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.

При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.

Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов

В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.

Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.

Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.

Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава

Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.

Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.

Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.

Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.

Электрический ток в биологии и медицине

Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения

Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.

При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.

Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.

Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.

Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах

В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.

Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.

К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.

Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.

Автоматический дефибриллятор для обучения лиц, не являющихся медработниками

Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.

У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.

Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.

Характеристики электрического тока, его генерация и применение

Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.

Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава

Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.

Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.

Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.

Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава

В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.

Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.

Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.

Объектив лазера в приводе компакт-диска

В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.

Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.

Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.

Стрелочный мультиметр со снятой верхней крышкой

Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.

Измерение силы электрического тока

Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.

По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.

Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной

Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.

Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.

Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.

Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.

Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.

Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение тока с помощью осциллографа

Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1

Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:

IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,

что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен

IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА

Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).

Опыт 2

Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:

IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,

что приблизительно соответствует показаниям мультиметра (1,55 мА).

Опыт 3

Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.

Опыт 4

Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.

Техника безопасности при измерении тока и напряжения

Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии

  • Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
  • Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
  • Не производить измерения токов в труднодоступных местах или на высоте.
  • При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  • Пользоваться исправным измерительным инструментом.
  • В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  • Пользоваться измерительным прибором с исправными щупами.
  • Строго следовать рекомендациям производителя по использованию измерительного прибора.

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

converter.org — Конвертер для единиц , как

  • Время

    Секунда, Минута, Час, Сутки, Неделя, Месяц (31 день), Год в системе СИ, Миллисекунда, …

  • Давление

    Паскаль, Бар, Торр, Миллиметр ртутного столба, Миллиметр водяного столба, Дюйм ртутного столба, Дюйм водяного столба, …

  • Длина

    Метр, Километр, Ангстрем, Ярд, Миля, Дюйм, Астрономическая единица, Световой год, …

  • Индуктивность

    Генри, Микрогенри, Миллигенри, Килогенри, Вебер на ампер, Абгенри, …

  • Количество информации

    Бит, Килобит, Байт, Килобайт, Мегабайт, Гигабайт, …

  • Магнитная индукция

    Тесла, Пикотесла, Нанотесла, Вебер на квадратный сантиметр, Гаусс, Гамма, Максвелл на квадратный метр, …

  • Магнитный поток

    Вебер, Максвелл, Квант магнитного потока, Тесла-квадратный метр, Гаусс-квадратный сантиметр, …

  • Масса/вес

    Килограмм, Метрическая тонна, Унция, Фунт, Стоун, Карат, Фунт, Фун, Момме, Хиакуме, Фынь (кандарин), Лян (таэль), …

  • Массовый расход

    Килограмм в секунду, Метрическая тонна в час, Длинная тонна в час, Фунт в секунду, Короткая тонна в час, …

  • Момент силы

    Ньютон-метр, Килоньютон-метр, Миллиньютон-метр, Килограмм-сила-метр, Унция-сила-дюйм, Дина-метр, …

  • Мощность

    Ватт, Киловатт, Метрическая лошадиная сила, Британская тепловая единица в час, Фут-фунт-сила в секунду, …

  • Напряжённость магнитного поля

    Ампер на метр, Микроампер на метр, Миллиампер на метр, Эрстед, Гильберт на метр, …

  • Объём

    Кубический метр, Литр, Миллилитр, Кубический дюйм, Кубический фут, Галлон, Пинта, Миним, Сяку, Ложка для соли, Стакан, …

  • Объёмный расход

    Кубический метр в секунду, Литр в минуту, Галлон (США) в минуту, …

  • Плотность

    Килограмм на кубический метр, Миллиграмм на кубический метр, Грамм на кубический сантиметр, Унция на кубический дюйм, Фунт на кубический фут, …

  • Площадь

    Квадратный метр, Гектар, Ар, Квадратный фут, Акр, Квадратный дюйм, …

  • Радиоактивность

    Беккерель, Кюри, Резерфорд, Распад в секунду, …

  • Сила

    Ньютон, Дина, Килограмм-сила (килопонд), Фунт-сила, Паундаль, Килоньютон, Деканьютон, Грамм-сила, …

  • Скорость

    Метр в секунду, Километр в час, Миля в час, Фут в секунду, Узел, …

  • Скорость передачи данных

    Бит в секунду, Килобит в минуту, Мегабайт в секунду, Гигабайт в секунду, Килобайт в минуту, …

  • Температура

    Градус Цельсия, Кельвин, Градус Фаренгейта, Градус Реомюра, Градус Ранкина, Градус Рёмера, Градус Делиля, …

  • Угол

    Градус, Радиан, Минута дуги, Секунда дуги, Град (гон), Тысячная (НАТО), Румб, Квадрант, …

  • Эквивалентная доза излучения

    Зиверт, Нанозиверт, Микрозиверт, Джоуль на килограмм, Бэр, Микробэр, Миллибэр, …

  • Электрическая ёмкость

    Фарад, Микрофарад, Нанофарад, Пикофарад, Интфарад, Абфарад, Статфарад, …

  • Электрическая проводимость

    Сименс, Мо, Ампер на вольт, …

  • Электрический заряд

    Кулон, Франклин, Абкулон, Статкулон, Элементарный заряд, Ампер-час, …

  • Электрический ток

    Ампер, Пикоампер, Наноампер, Микроампер, Абампер, Кулон в секунду, …

  • Электрическое сопротивление

    Ом, Пикоом, Наноом, Микроом, Абом, Вольт на ампер, …

  • Энергия

    Джоуль, Электронвольт, Калория, Британская тепловая единица, Киловатт-час, …

  • Конвертер ватт в амперы. Конвертер ватт в амперы Что такое Ампер

    Выбираем в магазине две вещи, которые должны использоваться «в тандеме», например, утюг и розетку, и внезапно сталкиваемся с проблемой — «электропараметры» на маркировке указаны в разных единицах.

    Как же подобрать подходящие друг к другу приборы и устройства? Как амперы перевести в ватты?

    Смежные, но разные

    Сразу надо сказать, что прямого перевода единиц сделать нельзя, поскольку обозначают они разные величины.

    Ватт — указывает на мощность, т.е. скорость, с которой потребляется энергия.

    Ампер — единица силы, говорящая о скорости прохождения тока через конкретное сечение.

    Чтобы электрические системы работали безотказно, можно рассчитать соотношение амперов и ваттов при определенном напряжении в электросети. Последнее — измеряется в вольтах и может быть:

    • фиксированным;
    • постоянным;
    • переменным.

    С учетом этого и производится сопоставление показателей.

    «Фиксированный» перевод

    Зная, помимо величин мощности и силы, еще и показатель напряжения, перевести амперы в ватты можно по следующей формуле:

    При этом P — это мощность в ваттах, I — сила тока в амперах, U — напряжение в вольтах.

    Онлайн калькулятор

    Для того, чтобы постоянно быть «в теме» можно составить для себя «ампер-ватт»-таблицу с наиболее часто встречаемыми параметрами (1А, 6А, 9А и т.п.).

    Такой «график соотношений» будет достоверным для сетей с фиксированным и постоянным напряжением.

    «Переменные нюансы»

    Для расчета при переменном напряжении в формулу включается еще одно значение — коэффициент мощности (КМ). Теперь она выглядит так:

    Сделать процесс перевода единиц измерения более быстрым и простым поможет такое доступное средство, как онлайн-калькулятор «ампер в ватты». Не забывайте, что если надо ввести в графу дробное число, производится это через точку, а не через запятую.

    Таким образом, на вопрос «1 ватт — сколько ампер?», с помощью калькулятора можно дать ответ — 0,0045. Но он будет справедливым только для стандартного напряжения в 220в.

    Используя представленные в интернете калькуляторы и таблицы, вы сможете не мучиться над формулами, а легко сопоставить разные единицы измерения.

    Это поможет подобрать автоматические выключатели на разную нагрузку и не тревожиться за свои бытовые приборы и состояние электропроводки.

    Ампер — ватт таблица:

    6 12 24 48 64 110 220 380 Вольт
    5 Ватт 0,83 0,42 0,21 0,10 0,08 0,05 0,02 0,01 Ампер
    6 Ватт 1 0,5 0,25 0,13 0,09 0,05 0,03 0,02 Ампер
    7 Ватт 1,17 0,58 0,29 0,15 0,11 0,06 0,03 0,02 Ампер
    8 Ватт 1,33 0,67 0,33 0,17 0,13 0,07 0,04 0,02 Ампер
    9 Ватт 1,5 0,75 0,38 0,19 0,14 0,08 0,04 0,02 Ампер
    10 Ватт 1,67 0,83 0,42 0,21 0,16 0,09 0,05 0,03 Ампер
    20 Ватт 3,33 1,67 0,83 0,42 0,31 0,18 0,09 0,05 Ампер
    30 Ватт 5,00 2,5 1,25 0,63 0,47 0,27 0,14 0,03 Ампер
    40 Ватт 6,67 3,33 1,67 0,83 0,63 0,36 0,13 0,11 Ампер
    50 Ватт 8,33 4,17 2,03 1,04 0,78 0,45 0,23 0,13 Ампер
    60 Ватт 10,00 5 2,50 1,25 0,94 0,55 0,27 0,16 Ампер
    70 Ватт 11,67 5,83 2,92 1,46 1,09 0,64 0,32 0,18 Ампер
    80 Ватт 13,33 6,67 3,33 1,67 1,25 0,73 0,36 0,21 Ампер
    90 Ватт 15,00 7,50 3,75 1,88 1,41 0,82 0,41 0,24 Ампер
    100 Ватт 16,67 3,33 4,17 2,08 1,56 ,091 0,45 0,26 Ампер
    200 Ватт 33,33 16,67 8,33 4,17 3,13 1,32 0,91 0,53 Ампер
    300 Ватт 50,00 25,00 12,50 6,25 4,69 2,73 1,36 0,79 Ампер
    400 Ватт 66,67 33,33 16,7 8,33 6,25 3,64 1,82 1,05 Ампер
    500 Ватт 83,33 41,67 20,83 10,4 7,81 4,55 2,27 1,32 Ампер
    600 Ватт 100,00 50,00 25,00 12,50 9,38 5,45 2,73 1,58 Ампер
    700 Ватт 116,67 58,33 29,17 14,58 10,94 6,36 3,18 1,84 Ампер
    800 Ватт 133,33 66,67 33,33 16,67 12,50 7,27 3,64 2,11 Ампер
    900 Ватт 150,00 75,00 37,50 13,75 14,06 8,18 4,09 2,37 Ампер
    1000 Ватт 166,67 83,33 41,67 20,33 15,63 9,09 4,55 2,63 Ампер
    1100 Ватт 183,33 91,67 45,83 22,92 17,19 10,00 5,00 2,89 Ампер
    1200 Ватт 200 100,00 50,00 25,00 78,75 10,91 5,45 3,16 Ампер
    1300 Ватт 216,67 108,33 54,2 27,08 20,31 11,82 5,91 3,42 Ампер
    1400 Ватт 233 116,67 58,33 29,17 21,88 12,73 6,36 3,68 Ампер
    1500 Ватт 250,00 125,00 62,50 31,25 23,44 13,64 6,82 3,95 Ампер


    Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

    Онлайн калькулятор по расчету ватт в амперы

    Для получения результата обязательно указывать напряжение и потребляемую мощность.

    В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

    Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

    1. Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
    2. Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
    3. В вольтах измеряется напряжение протекания электрического тока.

    Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

    Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

    шением. Все просто и доступно!

    Таблица расчета Ампер и нагрузки в Ватт

    Все автоматы, которые имеются в продаже, содержат в маркировке величину предельно допустимого тока (но никак не поддерживаемой мощности в ваттах), а большинство потребителей имеют пометку на бирке о потребляемой мощности. Чтобы правильно подобрать кабель и автоматический выключатель нужно знать, как перевести амперы в киловатты и обратно. Об этом мы и расскажем читателям сайта далее.


    Краткие о напряжении, токе и мощности

    Напряжением (измеряют в Вольтах) называется разность потенциалов между двумя точками или работу, выполненную по перемещению единичного заряда. Потенциал, в свою очередь, характеризует энергию в данной точке. Величина тока (количество Ампер) описывает, сколько зарядов протекли через поверхность за единицу времени. Мощность (ватты и киловатты) описывает скорость, с которой этот заряд был перенесен. Из этого следует – чем больше мощность, тем быстрее и больше переместилось носителей заряда через тело. В одном киловатте тысяча ватт, это нужно запомнить для быстрого расчета и перевода.

    В теории звучит довольно сложно, давайте рассмотрим на практике. Основная формула, которой вычисляется мощность электрических приборов следующая:

    P=I*U*cosФ

    Важно!
    Для чисто активных нагрузок используется формула P=U*I
    , у которых cosФ равен единице. Активные нагрузки – это нагревательные приборы (электрический обогрев, электропечь с ТЭНами, водонагреватель, электрочайник), лампы накаливания. Все остальные электроприборы имеют некоторое значение реактивной мощности, это обычно небольшие значения, поэтому ими пренебрегают, поэтому расчет в итоге примерный получается.

    Как выполнить перевод

    Постоянный ток

    В сфере автоэлектрики и декоративной подсветки используются цепи 12 В. Давайте рассмотрим на практике, как перевести амперы в ватты на примере светодиодной ленты. Для её подключения зачастую необходим блок питания, но подключить «просто так» его нельзя, он может сгореть, или наоборот, вы можете купить слишком мощный и дорогой БП там, где он не нужен и зря потратить деньги.

    В характеристиках блока питания на бирке указываются такие величины, как напряжение, мощность и ток. Причем количество Вольт указываются обязательно, а вот мощность или ток могут быть описаны вместе, а может быть и такое, что только одна из характеристик указана. В характеристиках светодиодной ленты указаны те же характеристики, но мощность и ток с учетом на метр.

    Представим, что вы купили 5 метров ленты 5050 с 60 светодиодами на 1 метр. На упаковке написано «14,4 Вт/м», а в магазине на бирках БП указан только ток. Подбираем правильный источник питания, для этого умножим количество метров на удельную мощность и получим общую мощность.

    14,4*5=72 Вт – необходимо для питания ленты.

    Значит нужно перевести в амперы по этой формуле:

    Итого: 72/12=6 Ампер

    Итого нужен блок питания минимум на 6 Ампер. Более подробно узнать о том, вы можете узнать из нашей отдельной статьи.

    Другая ситуация. Вы установили на свой автомобиль дополнительные фары, но на лампочках указана характеристика, допустим 55 Вт. Подключение всех потребителей в авто лучше производить через предохранитель, но какой нужен для этих фар? Нужно перевести ватты в амперы по формуле выше – разделив мощность на напряжение.

    55/12=4,58 Ампера, ближайший номинал – 5 А.

    Однофазная сеть

    Большинство бытовых приборов рассчитаны на подключение к однофазной сети 220 В. Напомним, что в зависимости от страны, в которой вы живете, напряжение может быть и 110 вольт и любым другим. В России принятая за стандарт величина именно 220 В для однофазной и 380 В для трёхфазной сети. Большинству читателей чаще всего приходится работать именно в таких условиях. Чаще всего нагрузку в таких сетях измеряют в киловаттах, при этом автоматические выключатели содержат маркировку в Амперах. Рассмотрим немного практических примеров.

    Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Здесь эффективна та же формула, связывающая силу тока и напряжение в мощность.

    P=I*U*cosФ

    Для удобства расчетов принимаем cosФ за единицу.Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.

    С помощью таблицы можно быстро перевести амперы в киловатты при выборе автоматического выключателя:

    Немного сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Чтобы определить, сколько у вас будет потреблять киловатт в час такой двигатель, нужно обязательно учитывать коэффициент мощности в формуле:

    P=U*I*cosФ

    Следует отметить, что cosФ должен быть указан на бирке, обычно от 0,7 до 0,9. В данном случае, если полная мощность двигателя 5,5 киловатт или 5500 Ватт, то потребляемая активная мощность (а мы платим, в отличие от предприятий, только за активную):

    5,5*0,87= 4,7 киловатта, а если точнее то 4785 Вт

    Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.

    Еще один пример, сколько ампер потребляет чайник на 2 кВт? Делаем расчет, сначала нужно выполнить : 2*1000 = 2000 Ватт. После этого переводим ватты в Амперы, а именно: 2000/220 = 9 Ампер.

    Это значит, что пробка на 16 Ампер выдержит чайник, но если вы включите еще один мощный потребитель (например, обогреватель) и в суммарная мощность будет выше 16 Ампер – она через время выбьет. Также дело обстоит и с автоматами, и предохранителями.

    Для подбора кабеля, который выдержит определенное количество ампер чаще, чем формулы используют таблицу. Вот пример одной из них, кроме тока в ней и указана мощность нагрузки в киловаттах, что очень удобно:

    Трёхфазная сеть

    В трёхфазной сети есть две основных схемы соединения нагрузки, например обмоток электродвигателя – это звезда и треугольник. Формула определения и перевода мощности в ток несколько иная, чем в предыдущих вариантах:

    P = √3*U*I*cosФ

    Так как наиболее частым потребителем трёхфазной электросети является электродвигатель, рассмотрим на его примере. Допустим, у нас есть электродвигатель мощностью в 5 киловатт, собранный по схеме звезды с напряжением питания 380 В.

    Нужно запитать его через автоматический выключатель, но чтобы его подобрать, нужно знать ток двигателя, значит нужно перевести из киловатт в амперы. Формула для расчета будет иметь вид:

    I=P/(√3*U*cosФ)

    На нашем примере это будет 5000/(1,73*380*0,9)=8,4 А. Таким образом мы без труда смогли перевести киловатты в амперы в трехфазной сети.

    Каждый раз собираясь в отпуск или командировку приходится брать с собой целый ворох зарядок под различные девайсы. Недавно я приобрел компактное зарядное устройство Xiaomi на 4 порта, суммарно выдающее мощность 35W (7 ампер) или 2,4 ампера на один порт. Зарядка оказалась очень качественной и полностью соответствует заявленным характеристикам, поэтому решил поделится информацией.

    Видео обзор с тестированием нагрузкой

    Маленькая упаковка с логотипом Mi, основные характеристики указаны на одной из сторон:

    • интерфейсы: 4 порта USB 2.0
    • Input: AC 100-240V / 50-60Hz
    • Output: 5.0V / 2.4A на порт или суммарно 7А
    • Мощность: 35W
    • Размеры: 6.50 x 6.18 x 2.80 см

    В комплекте: зарядник и инструкция на китайском языке.

    Размеры — очень компактные, она спокойно умещается в руке, в поездке много места не займет.

    На лицевой части расположены 4 usb порта. Поддержки QC2.0 или QC3.0 нет, но максимальный ток 2,4A на порт и без этого быстро зарядит ваш смартфон или планшет.

    Вилка складная и спрятана в корпус. Минусом можно считать то, что она китайская и дополнительно нужно использовать переходник, который в комплект не кладут. Если использовать зарядку дома, на постоянной основе, то конструкция выходит довольно громоздкой: переходник+зарядка+ кабеля. Хотя я приспособил ее и дома, просто кладу на бок и все выглядит довольно цивилизованно. В поездках этот вопрос вообще не имеет значения.

    Но конечно самый интересный и главный вопрос — соответствие на заявленные характеристики. Прежде чем написать обзор я более месяца пользовался ей дома, как основной для зарядки своих гаджетов. В работе показала себя хорошо — не греется, не шумит. То что я не написал обзор раньше связанно также с тем фактом, что я ждал новую нагрузку для точных измерений возможности зарядки. Вот пару дней назад получил, но китайцы подложили «свинью» — нагрузка оказалась нерабочей…

    Пришлось использовать старую, которая в принципе ничем не хуже, однако шаг в котором можно менять нагрузку равен 0,5А, что не позволяет точно вычислить максимальный потенциал зарядного. Но что есть то есть, буду тестировать на ней.

    Первым делом узнаем сколько максимально зарядное может выдать в реальности на 1 порт. Начнем с постепенной нагрузки — 0,5А:

    1А (на самом деле нагрузка потребляет чуть меньше — 0,95А)

    2А (реальное потребление нагрузкой 1,88А)

    И 2,5А (достигается путем использования 1,88А и дополнительного включение фонарика на 0,6А)

    Как видим заявленные характеристики — соответствуют
    и даже больше. При заявленных 2,4А зарядное выдает 2,5А без значительной просадки в напряжении. А вот если нагрузить еще больше, например на 3А, она уже не справляется — ток почти не растет, а напряжение проседает.

    Смартфон MI5S потребляет 1,75А

    Смартфон Gemini потребляет 1,43А

    Теперь включаем это все одновременно вместе с нагрузкой. Итого в сумме: 1.79А +1,75А+1.43А+2,5А = 7,47А. Это даже выше заявленных возможностей.

    Напряжение проседает до 5,05V — 5,07V но зарядка держит нагрузку. Спустя 5 минут она уже значительно теплая и я решаю ее не мучать, т.к все же она не рассчитана на такую работу. Буквально немного уменьшив нагрузку, когда смартфон чуть зарядился и стал брать 1А (уменьшение нагрузки на 0,5А) сразу видим повышение напряжения до 5,15V — 5,2V, что уже вполне хорошо. В итоге заявленные характеристики полностью подтверждены.
    Зарядное устройство считаю качественным и к приобретению рекомендую.


    В электротехнике существует множество единиц измерения, используемых при выполнении расчетов. Большие значение делятся на более мелкие, а те в свою очередь — на еще более мелкие. Поэтому, в зависимости от обстоятельств, приходится переводить одни единицы в другие. В процессе перевода нередко возникают разные вопросы, например, сколько миллиампер в ампере или ватт в киловатте и мегаватте.

    Опытные специалисты выполняют такие операции практически не задумываясь, однако начинающие электрики иногда могут и ошибиться, особенно если возникает вопрос, что больше ампер или миллиампер? Чтобы исключить подобные ошибки, нужно иметь наиболее полное представление о конкретной единице измерения и все проблемы разрешатся сами собой.

    Ампер с точки зрения физики

    В физике и электротехнике ампер является величиной, характеризующей силу тока в количественном отношении. Для ее определения используются различные способы. Среди них наибольшее распространение получил метод прямых измерений, когда используется , тестер или мультиметр. При выполнении замеров эти приборы последовательно включаются в электрическую цепь.

    Другой способ считается косвенным, требующим проведения специальных расчетов. В этом случае необходимо знать напряжение, приложенное к данному участку цепи, и сопротивление этого участка. После чего, сила тока легко определяется по формуле I = U/R, а полученный результат отображается в амперах.

    В практической деятельности амперы используются довольно редко, поскольку эта единица считается слишком большой для обычного пользования. Поэтому большинство специалистов пользуются кратными единицами — миллиамперами (10-3А) и микроамперами (10-6А), которые по-другому могут обозначаться в виде 0,001 А и 0,000001 А. Однако при выполнении расчетов необходимо вновь перевести миллиамперы в амперы и во всех формулах применять уже эти единицы. Именно на этой стадии у многих возникает вопрос, как переводить миллиамперы в амперы.

    Как измерить

    Для того чтобы определить силу тока на конкретном участке цепи, используются измерительные приборы, перечисленные выше. Среди них наиболее точным считается амперметр, производящий замеры только одной величины, с использованием одной шкалы. Однако более удобными считаются тестеры и , с помощью которых осуществляется измерение не только силы тока, но и других электротехнических величин в различных диапазонах. Данные приборы обладают возможностью переключаться с одних единиц измерения на другие и точно определять, сколько миллиампер в ампере.

    В некоторых случаях измерительное устройство может показать превышение диапазона. Чтобы решить эту проблему достаточно сделать перевод миллиампер в амперы и получить требуемое значение. Несмотря на высокие погрешности измерений, мультиметры и тестеры на практике применяются намного чаще амперметров, поскольку с их помощью большинство неисправностей очень быстро обнаруживается и устраняется. Кроме того, эти приборы при выполнении измерений не требуют обязательного разрыва цепи, и сила тока может быть измерена бесконтактным способом.

    Как перевести

    Наиболее простым способом считается перевод единиц вручную, наглядно показывая ампер и миллиампер, разница между которыми составляет 10-3. В качестве примера можно рассмотреть участок электрической цепи с напряжением 5 вольт и сопротивлением 100 Ом. Для того чтобы определить силу тока, необходимо воспользоваться формулой и разделить значение напряжения на сопротивление I = U/R = 5/100 = 0,05 А. Полученный результат не совсем удобен использования, поэтому его рекомендуется пересчитать в кратных единицах измерения, то есть, в миллиамперах.

    В этом случае 1 ампер равен 1000 миллиампер. Для пересчета 0,05 А нужно умножить на 1000 и получится 50 мА. Точно так же делается обратная процедура, когда 50 мА делится на 1000, и в итоге получаются первоначальные 0,05 А. Таким образом, решая задачу на 1 ампер сколько приходится миллиампер получается количество, равное 1000.

    Для того чтобы ускорить процедуру перевода единиц, были разработаны специальные таблицы, отображающие различные типы величин. Например, если один миллиампер составляет 0,001 ампера, то в обратном порядке один ампер будет равен 1000 миллиампер. На корпусах аккумуляторов помимо силы тока, добавляется количество времени, в течение которого они смогут отдать или получить определенный заряд. На различных зарядных устройствах наносится количество ампер или миллиампер, которые дополнительно означают их мощность.

    В таблице, приведенной на рисунке, исключается применение большого количества нулей. Вместо них используются специальные приставки, обозначающие какую-то часть от целых чисел. Все вместе они представляют собой единое слово, в котором присутствует не только приставка, но и сама основная единица.

    Конвертер ватт в амперы. Конвертер ватт в амперы Блок питания 12 вольт ампер

    Выбираем в магазине две вещи, которые должны использоваться «в тандеме», например, утюг и розетку, и внезапно сталкиваемся с проблемой — «электропараметры» на маркировке указаны в разных единицах.

    Как же подобрать подходящие друг к другу приборы и устройства? Как амперы перевести в ватты?

    Смежные, но разные

    Сразу надо сказать, что прямого перевода единиц сделать нельзя, поскольку обозначают они разные величины.

    Ватт — указывает на мощность, т.е. скорость, с которой потребляется энергия.

    Ампер — единица силы, говорящая о скорости прохождения тока через конкретное сечение.

    Чтобы электрические системы работали безотказно, можно рассчитать соотношение амперов и ваттов при определенном напряжении в электросети. Последнее — измеряется в вольтах и может быть:

    • фиксированным;
    • постоянным;
    • переменным.

    С учетом этого и производится сопоставление показателей.

    «Фиксированный» перевод

    Зная, помимо величин мощности и силы, еще и показатель напряжения, перевести амперы в ватты можно по следующей формуле:

    При этом P — это мощность в ваттах, I — сила тока в амперах, U — напряжение в вольтах.

    Онлайн калькулятор

    Для того, чтобы постоянно быть «в теме» можно составить для себя «ампер-ватт»-таблицу с наиболее часто встречаемыми параметрами (1А, 6А, 9А и т.п.).

    Такой «график соотношений» будет достоверным для сетей с фиксированным и постоянным напряжением.

    «Переменные нюансы»

    Для расчета при переменном напряжении в формулу включается еще одно значение — коэффициент мощности (КМ). Теперь она выглядит так:

    Сделать процесс перевода единиц измерения более быстрым и простым поможет такое доступное средство, как онлайн-калькулятор «ампер в ватты». Не забывайте, что если надо ввести в графу дробное число, производится это через точку, а не через запятую.

    Таким образом, на вопрос «1 ватт — сколько ампер?», с помощью калькулятора можно дать ответ — 0,0045. Но он будет справедливым только для стандартного напряжения в 220в.

    Используя представленные в интернете калькуляторы и таблицы, вы сможете не мучиться над формулами, а легко сопоставить разные единицы измерения.

    Это поможет подобрать автоматические выключатели на разную нагрузку и не тревожиться за свои бытовые приборы и состояние электропроводки.

    Ампер — ватт таблица:

    6 12 24 48 64 110 220 380 Вольт
    5 Ватт 0,83 0,42 0,21 0,10 0,08 0,05 0,02 0,01 Ампер
    6 Ватт 1 0,5 0,25 0,13 0,09 0,05 0,03 0,02 Ампер
    7 Ватт 1,17 0,58 0,29 0,15 0,11 0,06 0,03 0,02 Ампер
    8 Ватт 1,33 0,67 0,33 0,17 0,13 0,07 0,04 0,02 Ампер
    9 Ватт 1,5 0,75 0,38 0,19 0,14 0,08 0,04 0,02 Ампер
    10 Ватт 1,67 0,83 0,42 0,21 0,16 0,09 0,05 0,03 Ампер
    20 Ватт 3,33 1,67 0,83 0,42 0,31 0,18 0,09 0,05 Ампер
    30 Ватт 5,00 2,5 1,25 0,63 0,47 0,27 0,14 0,03 Ампер
    40 Ватт 6,67 3,33 1,67 0,83 0,63 0,36 0,13 0,11 Ампер
    50 Ватт 8,33 4,17 2,03 1,04 0,78 0,45 0,23 0,13 Ампер
    60 Ватт 10,00 5 2,50 1,25 0,94 0,55 0,27 0,16 Ампер
    70 Ватт 11,67 5,83 2,92 1,46 1,09 0,64 0,32 0,18 Ампер
    80 Ватт 13,33 6,67 3,33 1,67 1,25 0,73 0,36 0,21 Ампер
    90 Ватт 15,00 7,50 3,75 1,88 1,41 0,82 0,41 0,24 Ампер
    100 Ватт 16,67 3,33 4,17 2,08 1,56 ,091 0,45 0,26 Ампер
    200 Ватт 33,33 16,67 8,33 4,17 3,13 1,32 0,91 0,53 Ампер
    300 Ватт 50,00 25,00 12,50 6,25 4,69 2,73 1,36 0,79 Ампер
    400 Ватт 66,67 33,33 16,7 8,33 6,25 3,64 1,82 1,05 Ампер
    500 Ватт 83,33 41,67 20,83 10,4 7,81 4,55 2,27 1,32 Ампер
    600 Ватт 100,00 50,00 25,00 12,50 9,38 5,45 2,73 1,58 Ампер
    700 Ватт 116,67 58,33 29,17 14,58 10,94 6,36 3,18 1,84 Ампер
    800 Ватт 133,33 66,67 33,33 16,67 12,50 7,27 3,64 2,11 Ампер
    900 Ватт 150,00 75,00 37,50 13,75 14,06 8,18 4,09 2,37 Ампер
    1000 Ватт 166,67 83,33 41,67 20,33 15,63 9,09 4,55 2,63 Ампер
    1100 Ватт 183,33 91,67 45,83 22,92 17,19 10,00 5,00 2,89 Ампер
    1200 Ватт 200 100,00 50,00 25,00 78,75 10,91 5,45 3,16 Ампер
    1300 Ватт 216,67 108,33 54,2 27,08 20,31 11,82 5,91 3,42 Ампер
    1400 Ватт 233 116,67 58,33 29,17 21,88 12,73 6,36 3,68 Ампер
    1500 Ватт 250,00 125,00 62,50 31,25 23,44 13,64 6,82 3,95 Ампер

    Этот блок питания мне понравился уже просто по картинке, но так как картинка бывает обманчива, я решил его рассмотреть поближе и испытать.
    В обзоре будет описание, фотки, испытания и анализ небольшой ошибки при проектировке.
    Продолжение читайте под катом.

    Начну я как всегда с того как это ехало и как приехало.
    Приехал блок питания не один, про второй товар я расскажу в другой раз, думаю он будет не менее интересным. Ехал быстро, по треку добрался за 8 дней.

    Пришел заказ в обычном сером пакете, обмотанный поролоновой лентой.

    Вот к такой упаковке у меня и были претензии. Упаковщик просто сложил два моих пакетика, обмотал лентой и склеил скотчем, но края остались открытыми.
    В итоге пакетики и рулон ленты ехали отдельно. Очень повезло, что ехали недолго и сами по себе были упакованы в отдельные пакеты, иначе могли прорвать упаковку своими радиаторами и вылезти наружу.

    Плата была упакована в привычный многим антистатический пакет, с не менее знакомой наклейкой.

    Краткие характеристики:
    Входное напряжение 85-265 Вольт
    Выходное напряжение — 12 Вольт
    Ток нагрузки — 6 Ампер номинальный, 8 Ампер максимальный.
    Выходная мощность — 100 Ватт (максимальная)

    Размеры платы не очень большие, 107х57х30мм.

    Есть чертежик с более точными размерами, думаю он будет полезен.

    Сама плата выглядит очень аккуратно, полностью соответствует фотографии в магазине, что меня приятно удивило.

    На плате присутствуют довольно большие радиаторы, а сама плата выполнена в открытом исполнении, т.е. предназначена для установки в какое нибудь устройство и своего корпуса не имеет.
    Брал я ее не просто так, а по делу:) Есть идея переделки одного из моих устройств, но так как я был не уверен в качестве данного блока питания, то решил сначала заказать и попробовать только его, так что будет продолжение. Ну по крайней мере я надеюсь на это.

    На плате присутствует входной фильтр, ограничитель пускового тока и безвинтовой клеммник по входу 220 Вольт.
    На силовом трансформаторе есть наклейка DC12V-8.
    Выходная обмотка трансформатора намотана в 5 проводов

    Пайка очень аккуратная, выводы обкушены довольно коротко, ничего не торчит, флюс смыт полностью. Отсутствующих компонетов нет.
    Плата двухслойная с двухсторонним монтажом.
    Но есть мелкое замечание, на каждом из радиаторов припаян только один крепежный вывод.
    На мой взгляд это не очень хорошо. Что помешало припаять оба — непонятно.
    Причем на фото магазина все абсолютно точно так же.
    Отмечу то, что выходное напряжение измеряется в точке, максимально близкой к выходному разъему, за это плюс, влияет на точность удержания выходного напряжения.

    Основные компоненты платы поближе.
    Установлен ШИМ контроллер CR6842S, который является полным аналогом более известного контроллера SG6842
    Почти все установленные резисторы точные, не хуже 1%, об этом говорит четырехзначная маркировка.

    Силовой транзистор 600 Вольт 20 Ампер, 0.19 Ома SPW20N60S5 производства Infineon.
    Еще одно мелкое замечание, слишком сильно закрутили крепежный винт и он вжал изолирующую втулку. Транзистор остался изолированным от радиатора, да и сам радиатор изолирован от других компонентов, но впечатление несколько подпортило.
    Транзистор изолирован от радиатора пластинкой из слюды.

    Немного отвлекусь, на фото виден мелкий электролитический конденсатор, судя по пайке его или впаивали потом или меняли, на работоспособность это никак не повлияло (ну или почти никак).
    Дело в том, что при резком изменении нагрузки от нуля до 4 Ампер или более, БП может отключиться на 0.5 секунды. Я бы советовал заменить этот электролит на что нибудь типа 47мкФх50 В.
    Если такие режимы не планируются, то можно оставить и так.

    Выходная диодная сборка 100 Вольт 2х20 Ампер производства ST.
    Радиатор на самом деле ровный, это он на фото так вышел:)

    Так же видно пару выходных конденсаторов 1000мкФ х 35 Вольт, дроссель выходного фильтра и светодиод индикации включения блока питания.
    Здесь разъем уже установили обычный, винтовой.
    Хотя как по мне, для встраиваемой платы разъемы вообще вещь лишняя.

    Выходные конденсаторы установлены с хорошим запасом по напряжению, это очень хорошо.
    Попутно я проверил емкость и ESR этих конденсаторов, вышло так же неплохо.
    Прибор показал суммарную емкость и ESR, если пересчитать на каждый в отдельности, то будет примерно 1050мкФ и 30мОм.
    Конденсаторы врядли фирменные, но характеристики вполне нормальные, порадовало рабочее напряжение в 35 Вольт, Я в своих БП обычно и то применяю конденсаторы на 25 Вольт.

    Ну и «что бы два раза не бегать», проверил входной электролит.
    Написано 82мкФ 400 Вольт 105 градусов.
    Емкость почти в норме, ESR в норме.
    Производитель конденсатора Taicon.

    Ну и конечно начертил схему этого блока питания. Нумерация большинства компонентов соответствует печатной плате.

    Для тестирования блока питания приготовил вот такую кучку всякого разного:)
    Ничего необычного:
    Нагрузочные резисторы 3 штуки 10 Ом и одна наборка дающая в сумме 3 Ома (5 шт по 15 Ом включенных параллельно) + вентилятор.
    Мультиметр
    Бесконтактный термометр
    Осциллограф
    Всякие соединители и провода.

    Тестирование блока питания
    Процесс тестирования включал в себя последовательное увеличение нагрузки, при этом после каждого повышения нагрузки я ждал около 15 минут, потом измерял температуру основных компонентов и переходил на следующий шаг увеличения нагрузки.
    Делитель осциллографа все это время был в положении 1:1.

    1. Режим холостого хода. Напряжение 12.29 Вольта.
    2. Подключен один резистор 10 Ом, Напряжение немного просело до 12.28 Вольта.

    1. Подключено 2 резистора 10 Ом, напряжение 12.28 Вольта.
    2. Подключено 3 резистора 10 Ом, напряжение 12.27 Вольта.

    1. Подключена наборка сопротивлением 3 Ома + вентилятор, напряжение 12.27 Вольта
    2. Наборка 3 Ома + резистор 10 Ом, напряжение 12.27 Вольта.

    Небольшое замечание, при подключении нагрузки более 4 ампер БП может отключиться на 0.5 секунды и потом включится опять. Это происходит только при переходе из режима холостого хода, хотя бы небольшая нагрузка убирает этот эффект полностью.

    1. Наборка 3 Ома + 2 резистора 10 Ом, напряжение 12.27 Вольта.
    2. Режим максимальной нагрузки, наборка 3 Ома + 3 резистора 10 Ом, напряжение 12.27 Вольта.

    Как я писал выше, в процессе тестирования я измерял температуры разных компонентов.
    Измерялись температуры:
    Силового транзистора
    Трансформатора
    Выходного диода
    Первого по схеме выходного конденсатора.

    Для более точных показаний измерялась температура непосредственно транзистора и диодной сборки, а не их радиаторов.
    При мощности нагрузки 80 Ватт температуру измерил два раза, второе измерение было после дополнительного 10 минутного прогрева.

    Резюме:
    Плюсы

    Качественная сборка
    Довольно качественные компоненты с запасом.
    Соответствие заявленным параметрам.
    Отличная точность стабилизации выходного напряжения
    Не вижу необходимости в доработке.
    Низкая цена.

    Минусы

    Замечание к упаковке (минус магазину)
    Не пропаяно по одному крепежному контакту на радиаторе.

    Мое мнение.
    Если честно, то мне этот БП понравился уже внешне на фотке магазина, и была уже некоторая уверенность в том, что я получу в итоге, но одно дело видеть, а другое — попробовать.
    БП оставил положительные эмоции, отлично подойдет как встраиваемый в какое то из самодельных устройств.
    Конечно не обошлось и без минусов, но они очень малы, в сравнении с плюсами.

    Блок питания для обзора был предоставлен магазином banggood.

    Надеюсь, что мой обзор будет полезен.
    Конечно можно сказать, что я расхваливаю товар, но могу сказать, что блоками питания я занимаюсь около 15 лет, собрал за это время более 1000 штук, сколько отремонтировал и переделал, счет потерял. Потому нормальную вещь не похвалить не могу. Видел вещи и получше, особенно БП пром серии, но там и ценник другой.

    Небольшое замечание китайским инженерам
    Блок питания показал очень хорошие результаты, но есть небольшое замечание к конструкции, вернее к печатной плате.
    Трассировка некоторых цепей выполнена неправильно, и если бы была как надо, то уровень пульсаций можно было бы еще уменьшить.
    Покажу на примере.
    1. Как сделано в блоке питания, этот участок можно увидеть на плате, я его немного упростил для наглядности.
    2. Как это можно сделать лучше без перемещения компонентов на плате
    3. как сделать еще лучше, но уже с перемещением компонентов.
    Дело в том, что в силовых цепях нежелательно иметь участки, где ток может течь в двух направлениях, так как это увеличивает уровень помех.
    Ток должен течь только в одном направлении.
    В исходном варианте по одним и тем же дорожкам сначала течет ток заряда конденсатора, потом через них же течет ток разряда.

    Попал ко мне в руки блок питания с пассивным охлаждением и на привычные многим пользователям 12 Вольт, потому надеюсь, что обзор будет полезен пользователям принтеров и граверов.

    Почему мне нравится ковырять блоки питания особо расписывать смысла нет, а вот почему именно 12 Вольт, напишу.

    Так уж сложилось, но блоки питания с выходным напряжением в 12 Вольт являются одними из самых популярных наряду с 5 Вольт и 19 Вольт.

    5 Вольт используется для питания небольших устройств, но больше популярности добавило то, что такое же напряжение дает порт USB, потому и начали «плодиться» такие БП.

    19 Вольт используются в ноутбуках, а также такие БП используются энтузиастами радиолюбителями для разного рода паяльных станций и усилителей, в основном из-за приемлемой мощности и компактности.

    Ну а 12 Вольт просто для начала является безопасным напряжением и при этом позволяет передавать довольно большую мощность. Конечно на мой взгляд зачастую его можно (а иногда и нужно) на 24 Вольта, но это напряжение больше используется в промышленных устройствах.

    В быту же от 12 Вольт можно питать получившие распространение светодиодные ленты для декоративной подсветки и освещения, от 12 Вольт питаются также системы видеонаблюдения, иногда небольшие компьютеры, а также разные граверы, 3D принтеры и т.п.

    Вообще у меня в планах сделать несколько обзоров подобных БП, но с разной мощностью и сегодня ко мне на стол попал блок питания на 240 Ватт с пассивной системой охлаждения.

    На данный момент распространенные безвентиляторные БП имеют мощность до 240-300 Ватт, причем вторые встречаются куда реже и я бы скорее сказал, что 240 Ватт это уже почти максимум.

    На этом я закончу краткое вступление и перейду к предмету обзора. Блок питания был куплен , вышел в итоге около 17 долларов.

    БП в привычном металлическом корпусе, думаю многие видели подобные решения в продаже.

    Упакован был в обычную белую коробку, на фото она не попала, да и не особо там есть на что смотреть.

    Вход и выход выведены на один большой клеммник, сверху присутствует наклейка с указанием назначения контактов, но приклеили со сдвигом, что может сбить с толку неопытного пользователя.

    Клеммник имеет защитную крышку, причем открывается она на 90 градусов, что является хоть и небольшим, но плюсом, так как есть варианты, где крышка не открывается полностью.

    Справа от клеммника приютился подстроечный резистор и светодиод индикации включения блока питания.

    Заявленные параметры — 12 Вольт 20 Ампер, реальный производитель неизвестен, маркировка стандартна для многих недорогих БП — S-240-12

    Сбоку находится переключатель входного напряжения 110/200 Вольт, лучше перед первым включением проверить что он находится в правильном положении.

    Дата выпуска конец 2016 года, так что БП можно сказать, свежий.

    Для начала измеряем что на выходе у БП настроено.

    Выставлено 12.3 Вольта, диапазон регулировки 10-14.5 Вольта. после проверки выставил что-то близкое к 12 Вольт.

    Внешне осматривать больше нечего, потому снимаем верхнюю крышку и посмотрим что внутри.

    А внутри блок питания ничем не отличается от других, подобных недорогих блоков.

    Мне он сходу напомнил блок питания на я бы даже сказал что они один в один.

    Даже наверное не так, фактически это тот же БП, просто на другое напряжение, потому я в самом начале и написал, что реальный производитель неизвестен.

    Классический осмотр начинки.

    1. Входной фильтр, присутствует, хотя и не в полном объеме, отсутствует конденсатор после дросселя и варистор. К сожалению это черта подавляющего большинства китайских БП.

    2. Помехоподавляющие конденсаторы в опасной цепи — Y1, в менее опасной, обычный высоковольтный, можно сказать что нормально.

    3. Входной диодный мост установлен с запасом, 8 Ампер 1000 Вольт, но радиатор отсутствует. В предыдущем варианте диодный мост был на 20 Ампер.

    Также рядом видны два термистора, включенные параллельно.

    4. Входные конденсаторы Rubicong
    закос под Rubicon, если бы еще параметры соответствовали заявленным, но об этом позже.

    5. Пара высоковольтных транзисторов прижатых к алюминиевому корпусу, который работает как радиатор.

    6. Силовой трансформатор явно промаркирован как 240 Ватт 12 Вольт. На вид довольно неплох, видны следы пропитки лаком.

    Китайские производители продолжают штамповать свои блоки питания на классической элементной базе. Я не скажу что это плохо, но более именитые производители уже гораздо реже делают БП на базе TL494.

    По своему это имеет свои плюсы, ремонт такого БП довольно прост, комплектующие есть везде, да и документации по ним очень много.

    Как и в варианте 48 Вольт, здесь также использован усиленный вариант радиатора, выходная диодная сборка прижата к ребристому радиатору, который уже отводит часть тепла на корпус. Если в 48 Вольт версии это было не особо и нужно, то при токах в 20 Ампер такое решение не лишнее.

    1. Выходной дроссель при вполне нормальных габаритах намотан всего в два провода, причем сечение провода сопоставимо с тем, что использовалось в БП 48 Вольт.

    2. Выходные конденсаторы имеют заявленную емкость в 2200мкФ, производитель также неизвестен, впрочем я и не ожидал здесь увидеть конденсаторы от Nichicon или хотя бы Samwha.

    3,4. А вот момент с прижимом силовых элементов я проверил отдельно, так как в прошлый раз у меня были большие нарекания по поводу крепежа диодной сборки. В данном случае все в принципе нормально. Можно немного попридираться к прижиму транзисторов (слева), но практика показала, что все в порядке.

    Вынимаем плату из корпуса и посмотрим на качество пайки и поищем «косяки» производителя.

    Высоковольтные транзисторы применены с запасом, можно не беспокоиться. К тому же корпус TO247, в котором они выполнены, улучшает отвод тепла на радиатор.

    Выходная диодная сборка MBR30200 представляет собой два высоковольтных диода Шоттки. Я немного скептически отношусь к применению высоковольтных диодов Шоттки, так как у них уже нет преимущества перед обычными в плане падения напряжения, но остается преимущество в большей скорости переключения, т.е. динамические потери меньше.

    Общий вид печатной платы снизу.

    Пайка на вид вполне нормальная, в этой части БП все нормально, даже чисто.

    Силовые дорожки дополнительно покрыты припоем для увеличения сечения, здесь также нареканий особо нет, хотя в некоторым местах на мой взгляд припоя маловато.

    Но один неприятный момент я все таки нашел. Один из силовых контактов не очень хорошо пропаян. Можно конечно сказать, что там по три контакта на полюс, но ведь может так попасть, что он как раз окажется нагруженным. Собственно потому я всегда советую при покупке блоков питания проверять как они собраны. Хотя нет, корректнее сказать — при покупке недорогих блоков питания всегда проверять качество сборки.

    На плате присутствует не совсем понятная мне маркировка, очень похоже, что плата рассчитана под БП мощностью до 365 Ватт, но это уже скорее с активным охлаждением (на плате есть место под разъем вентилятора, но сам разъем и необходимые компоненты отсутствуют).

    Попутно измерил емкость конденсаторов.

    Входные имеют суммарную емкость 166мкФ (два по 330 соединенные последовательно), хотя указано 470мкФ (соответственно суммарная 235), маловато для мощности в 240 Ватт.

    Выходные в сумме дают около 6600, соответственно как указано 2200х3. Здесь вопросов нет, для блоков питания с подобными характеристиками это нормально, даже для фирменных. Правда в фирменных блоках питания стоит более качественные конденсаторы.

    Так как схема блока питания практически идентична модели на 48 Вольт, то я просто внес соответствующие коррективы, а не рисовал ее с нуля. Не гарантирую 100% совпадение, но 99% думаю есть:)

    Вот теперь можно проводить тесты.

    В качестве тестового стенда использовались

    1. Электронная нагрузка
    2. Мультиметр
    3. Осциллограф
    4. Тепловизор
    5. Термометр
    6. Ручка и бумажка. На бумагу ссылки нет.

    1. Режим холостого хода.

    1. Нагрузка 10 Ампер, напряжение лишь немного просело, пульсации остались на прежнем уровне

    2. Нагрузка 15 Ампер, практически без изменений

    Со времени проведения большого теста аккумуляторов я доработал нагрузку чтобы поднять максимальный ток до 30 Ампер. Но что-то пошло не совсем так, как было задумано и максимальный ток ограничен на уровне 16383мА (14 бит), потому для продолжения теста мне пришлось прибегнуть в обычным советским резисторам с сопротивлением 10Ом. при напряжении в 12 Вольт они обеспечивают ток нагрузки около 3.6 Ампера.

    1. 20 Ампер, напряжение просело всего на 70мВ, уровень пульсация практически не отличается от предыдущих тестов и составляет 60мВ

    2. В качестве дополнительного теста на нагрев я решил поднять выходное напряжение до 12.55 Вольта и погонять БП еще минут 15. Выходная мощность БП при этом была около 250 Ватт.

    Как видно по фото, это практически никак не сказалось на результате.

    В прошлом обзоре я был так удивлен качеством работы блока питания, что даже проводил тесты с полуторакратной перегрузкой. С БП мощностью 240 Ватт я снял 360 и только тогда начал откровенно волноваться по поводу перегрева.

    Но в данном случае все немного печальнее. Для начала фото с тепловизора, снятое в самом конце теста при мощности 250 Ватт.

    Самый горячий элемент — выходной дроссель, впрочем такая же картина была и при тесте БП 48 Вольт. Но как я тогда писал, на самом деле материал из которого изготовлен этот дроссель, не боится таких температур, ограничением является стойкость изоляции провода, которым он намотан.

    Для компании сфотографировал нагрузочные резисторы, на которых рассеивалось всего около 50 Ватт. Электронная нагрузка при этом брала на себя около 200 Ватт, у нее температура радиаторов была 61 градус.

    Как и раньше, я свел все данные в одну табличку.

    Тестирование проходило при комнатной температуре, БП лежал горизонтально на столе, что несколько ухудшало тепловой режим, в вертикальном положении он охлаждался бы лучше.

    Каждый этап длился 20 минут, затем шел замер температуры и повышение тока на одну ступень.

    Последний этап был проведен как дополнительный и занял 15 минут, итого в сумме 20+20+20+20+15= 1ч 35мин.

    Результаты заметно выше чем у БП на 48 Вольт, но я бы сказал что вполне терпимые. Самый нежный элемент — силовой трансформатор, не перегревается.

    Как-то в комментариях затронули тему низкого КПД таких блоков питания и мне реально стало интересно, какой же КПД у них в реальности.

    Конечно я не претендую на высокую точность, так как в процессе участвует много измерительных приборов и каждый имеет свою погрешность, но я постарался измерить максимально корректно.

    И так. Я измерил потребляемую мощность БП без нагрузки, с нагрузкой 33, 66 и 100%, при этом у меня вышло:

    Вход — Выход — КПД.

    189,3 — 159 — 84%

    290,4 — 238 — 82%

    Говорили, что КПД подобных БП около 60-70%, честно, мне не верилось. Но до этого я судил по количеству выделяемого тепла, потому как не заметить «лишние» 100 Ватт тепла тяжело, вот и решил провести этот тест, думаю что не зря.

    Конечно в комментариях могут начать писать — а как же MeanWell, почему не MeanWell? Да, я очень хорошо отношусь к блокам питания этой фирмы, и очень часто их использую, потому решил ради интереса сравнить обозреваемый БП и БП фирмы MeanWell. Но стоит отметить, что сравнивал я с БП серии RS, а точнее — RS-150-12, т.е. 12 Вольт 150 Ватт. На данный момент стоимость этого БП составляет около 36 долларов — ссылка.

    Блоки питания этой серии отличные, надежность действительно на высоком уровне, БП который вы видите, отработал в составе системы видеонаблюдения около 3 лет при нагрузке близкой к 90% и был заменен планово на новый.

    Производитель же заявляет что —

    Особенности:

    Долговечные 105°C электролитические конденсаторы

    Комплекс защит от короткого замыкания, перегрузки, перенапряжения

    Электромагнитная совместимость: EN50082-2/EN61000-6-2 для тяжелой промышленности

    Высокая рабочая температура до 70°C

    Вибрации 5G

    Малые размеры, высокая удельная мощность

    Высокие КПД, долговечность и надежность

    Все модули проходят 100% прогон

    Но это относится именно к RS серии, обычные же БП MenWell серий S-ххх-хх немного проще, правда и стоят меньше.

    Входной фильтр более полный, чем у обозреваемого, но варистора на входе все равно нет.

    1. Термистор упакован в термоусадку, но что интересно, уже когда разбирал фото, то заметил, что термисторов два, причем второй «голый», он стоит справа от переключателя.

    2. Входные конденсаторы Rubicon, а не RubiconG. Суммарная емкость 165мкФ при выходной мощности в 150 Ватт.

    3. Высоковольтный транзистор имеет дополнительную изоляцию. ШИМ контроллер применен другой, потому рядом совсем пусто.

    4. Выходных диодных сборок две, причем у обоих на выводах присутствуют ферритовые бусины, что практически никогда не встречается в недорогих китайских БП. Такие же бусины есть и на некоторых конденсаторах.

    5. А вот выходной дроссель изготовлен в лучших традициях Китая:) Намотка кривая, закатали в какой то клей.

    6. Выходные конденсаторы фирменные, емкость 1000х3 мкФ, напряжение 35 Вольт, что весьма правильно. У обозреваемого конденсаторы на 25 Вольт, но в двухтактной схеме это нормально (в компьютерных БП вообще на 16).

    Сегодня не буду выделять плюсы и минусы, а просто опишу мое впечатление о блоке питания.

    На мой взгляд это типичный «среднестатистический» китайский блок питания. Нагрев в пределах допуска, среднее качество сборки, но при этом низкий уровень пульсаций и отсутствие «дрейфа» выходного напряжения от прогрева (это довольно важно). Производитель не особо волнуется насчет комплектующих, об этом говорят непонятные конденсаторы на входе, если судить по маркировке, то емкость достаточна, если измерить, то занижена. Я в подобной ситуации просто добавил один конденсатор 100мкФх400В выпаянный из платы монитора.

    Самые критичные элементы, которые в данном БП будут влиять на срок службы — выходные конденсаторы.

    В остальном вполне нормальный блок питания, все тесты прошел без проблем, но получить такие результаты как с его вариантом, я увы не смог. На мой взгляд средний блок питания за вполне приемлемые деньги.

    Надеюсь что обзор был полезен, старался дать максимум информации.

    Как я писал в самом начале, в планах сделать обзоры блоков питания 12 Вольт на другую мощность, но пока не знаю, какой мощности БП наиболее интересны.


    Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

    Онлайн калькулятор по расчету ватт в амперы

    Для получения результата обязательно указывать напряжение и потребляемую мощность.

    В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

    Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

    1. Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
    2. Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
    3. В вольтах измеряется напряжение протекания электрического тока.

    Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

    Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

    шением. Все просто и доступно!

    Таблица расчета Ампер и нагрузки в Ватт

    В одном из своих я показал как сделать неплохой блок питания самому и жаловался, почему в продаже редко попадаются хорошие блоки питания. Этот блок питания мне понравился уже просто по картинке, но так как картинка бывает обманчива, я решил его рассмотреть поближе и испытать.
    В обзоре будет описание, фотки, испытания и анализ небольшой ошибки при проектировке.
    Продолжение читайте под катом.

    Мои читатели наверняка помнят обзор «12 Вольт 5 Ампер блок питания или как это могло быть сделано.» Этот блок питания мне напомнил тот, что делал я в конце обзора:)

    Но тесты и проверки это конечно хорошо, но начну я как всегда с того как это ехало и как приехало.
    Приехал блок питания не один, про второй товар я расскажу в другой раз, думаю он будет не менее интересным. Ехал быстро, по треку добрался за 8 дней.
    А вот к упаковке была претензия, но так как упаковку любят далеко не все, то я несколько фоток спрячу под спойлером.

    Упаковка

    Пришел заказ в обычном сером пакете, обмотанный поролоновой лентой.

    Вот к такой упаковке у меня и были претензии. Упаковщик просто сложил два моих пакетика, обмотал лентой и склеил скотчем, но края остались открытыми.
    В итоге пакетики и рулон ленты ехали отдельно. Очень повезло, что ехали недолго и сами по себе были упакованы в отдельные пакеты, иначе могли прорвать упаковку своими радиаторами и вылезти наружу.

    Плата была упакована в привычный многим антистатический пакет, с не менее знакомой наклейкой.

    Краткие характеристики:
    Входное напряжение 85-265 Вольт
    Выходное напряжение — 12 Вольт
    Ток нагрузки — 6 Ампер номинальный, 8 Ампер максимальный.
    Выходная мощность — 100 Ватт (максимальная)

    Размеры платы не очень большие, 107х57х30мм.

    Есть чертежик с более точными размерами, думаю он будет полезен.

    Сама плата выглядит очень аккуратно, полностью соответствует фотографии в магазине, что меня приятно удивило.

    На плате присутствуют довольно большие радиаторы, а сама плата выполнена в открытом исполнении, т.е. предназначена для установки в какое нибудь устройство и своего корпуса не имеет.
    Брал я ее не просто так, а по делу:) Есть идея переделки одного из моих устройств, но так как я был не уверен в качестве данного блока питания, то решил сначала заказать и попробовать только его, так что будет продолжение. Ну по крайней мере я надеюсь на это.

    На плате присутствует входной фильтр, ограничитель пускового тока и безвинтовой клеммник по входу 220 Вольт.
    На силовом трансформаторе есть наклейка DC12V-8.
    Выходная обмотка трансформатора намотана в 5 проводов

    Пайка очень аккуратная, выводы обкушены довольно коротко, ничего не торчит, флюс смыт полностью. Отсутствующих компонетов нет.
    Плата двухслойная с двухсторонним монтажом.
    Но есть мелкое замечание, на каждом из радиаторов припаян только один крепежный вывод.
    На мой взгляд это не очень хорошо. Что помешало припаять оба — непонятно.
    Причем на фото магазина все абсолютно точно так же.
    Отмечу то, что выходное напряжение измеряется в точке, максимально близкой к выходному разъему, за это плюс, влияет на точность удержания выходного напряжения.

    Основные компоненты платы поближе.
    Установлен ШИМ контроллер CR6842S, который является полным аналогом более известного контроллера
    Почти все установленные резисторы точные, не хуже 1%, об этом говорит четырехзначная маркировка.

    Силовой транзистор 600 Вольт 20 Ампер, 0.19 Ома производства Infineon.
    Еще одно мелкое замечание, слишком сильно закрутили крепежный винт и он вжал изолирующую втулку. Транзистор остался изолированным от радиатора, да и сам радиатор изолирован от других компонентов, но впечатление несколько подпортило.
    Транзистор изолирован от радиатора пластинкой из слюды.

    Немного отвлекусь, на фото виден мелкий электролитический конденсатор, судя по пайке его или впаивали потом или меняли, на работоспособность это никак не повлияло (ну или почти никак).
    Дело в том, что при резком изменении нагрузки от нуля до 4 Ампер или более, БП может отключиться на 0.5 секунды. Я бы советовал заменить этот электролит на что нибудь типа 47мкФх50 В.
    Если такие режимы не планируются, то можно оставить и так.

    Выходная диодная сборка 100 Вольт 2х20 Ампер производства ST.
    Радиатор на самом деле ровный, это он на фото так вышел:)

    Так же видно пару выходных конденсаторов 1000мкФ х 35 Вольт, дроссель выходного фильтра и светодиод индикации включения блока питания.
    Здесь разъем уже установили обычный, винтовой.
    Хотя как по мне, для встраиваемой платы разъемы вообще вещь лишняя.

    Выходные конденсаторы установлены с хорошим запасом по напряжению, это очень хорошо.
    Попутно я проверил емкость и ESR этих конденсаторов, вышло так же неплохо.
    Прибор показал суммарную емкость и ESR, если пересчитать на каждый в отдельности, то будет примерно 1050мкФ и 30мОм.
    Конденсаторы врядли фирменные, но характеристики вполне нормальные, порадовало рабочее напряжение в 35 Вольт, Я в своих БП обычно и то применяю конденсаторы на 25 Вольт.

    Ну и «что бы два раза не бегать», проверил входной электролит.
    Написано 82мкФ 400 Вольт 105 градусов.
    Емкость почти в норме, ESR в норме.
    Производитель конденсатора Taicon.

    Ну и конечно начертил схему этого блока питания. Нумерация большинства компонентов соответствует печатной плате.

    Для тестирования блока питания приготовил вот такую кучку всякого разного:)
    Ничего необычного:
    Нагрузочные резисторы 3 штуки 10 Ом и одна наборка дающая в сумме 3 Ома (5 шт по 15 Ом включенных параллельно) + вентилятор.
    Мультиметр
    Бесконтактный термометр
    Осциллограф
    Всякие соединители и провода.

    Тестирование блока питания

    Процесс тестирования включал в себя последовательное увеличение нагрузки, при этом после каждого повышения нагрузки я ждал около 15 минут, потом измерял температуру основных компонентов и переходил на следующий шаг увеличения нагрузки.
    Делитель осциллографа все это время был в положении 1:1.

    1. Режим холостого хода. Напряжение 12.29 Вольта.
    2. Подключен один резистор 10 Ом, Напряжение немного просело до 12.28 Вольта.

    1. Подключено 2 резистора 10 Ом, напряжение 12.28 Вольта.
    2. Подключено 3 резистора 10 Ом, напряжение 12.27 Вольта.

    1. Подключена наборка сопротивлением 3 Ома + вентилятор, напряжение 12.27 Вольта
    2. Наборка 3 Ома + резистор 10 Ом, напряжение 12.27 Вольта.

    Небольшое замечание, при подключении нагрузки более 4 ампер БП может отключиться на 0.5 секунды и потом включится опять. Это происходит только при переходе из режима холостого хода, хотя бы небольшая нагрузка убирает этот эффект полностью.

    1. Наборка 3 Ома + 2 резистора 10 Ом, напряжение 12.27 Вольта.
    2. Режим максимальной нагрузки, наборка 3 Ома + 3 резистора 10 Ом, напряжение 12.27 Вольта.

    Как я писал выше, в процессе тестирования я измерял температуры разных компонентов.
    Измерялись температуры:
    Силового транзистора
    Трансформатора
    Выходного диода
    Первого по схеме выходного конденсатора.

    Для более точных показаний измерялась температура непосредственно транзистора и диодной сборки, а не их радиаторов.
    При мощности нагрузки 80 Ватт температуру измерил два раза, второе измерение было после дополнительного 10 минутного прогрева.

    Резюме:
    Плюсы

    Качественная сборка
    Довольно качественные компоненты с запасом.
    Соответствие заявленным параметрам.
    Отличная точность стабилизации выходного напряжения
    Не вижу необходимости в доработке.
    Низкая цена.

    Минусы

    Замечание к упаковке (минус магазину)
    Не пропаяно по одному крепежному контакту на радиаторе.

    Мое мнение.
    Если честно, то мне этот БП понравился уже внешне на фотке магазина, и была уже некоторая уверенность в том, что я получу в итоге, но одно дело видеть, а другое — попробовать.
    БП оставил положительные эмоции, отлично подойдет как встраиваемый в какое то из самодельных устройств.
    Конечно не обошлось и без минусов, но они очень малы, в сравнении с плюсами.

    Блок питания для обзора был предоставлен магазином banggood.

    Надеюсь, что мой обзор будет полезен.
    Конечно можно сказать, что я расхваливаю товар, но могу сказать, что блоками питания я занимаюсь около 15 лет, собрал за это время более 1000 штук, сколько отремонтировал и переделал, счет потерял. Потому нормальную вещь не похвалить не могу. Видел вещи и получше, особенно БП пром серии, но там и ценник другой.
    Так же можно рассмотреть такого БП, но на меньшую мощность.

    Небольшое замечание китайским инженерам

    Блок питания показал очень хорошие результаты, но есть небольшое замечание к конструкции, вернее к печатной плате.
    Трассировка некоторых цепей выполнена неправильно, и если бы была как надо, то уровень пульсаций можно было бы еще уменьшить.
    Покажу на примере.
    1. Как сделано в блоке питания, этот участок можно увидеть на плате, я его немного упростил для наглядности.
    2. Как это можно сделать лучше без перемещения компонентов на плате
    3. как сделать еще лучше, но уже с перемещением компонентов.
    Дело в том, что в силовых цепях нежелательно иметь участки, где ток может течь в двух направлениях, так как это увеличивает уровень помех.
    Ток должен течь только в одном направлении.
    В исходном варианте по одним и тем же дорожкам сначала течет ток заряда конденсатора, потом через них же течет ток разряда.

    Планирую купить

    +382

    Добавить в избранное

    Обзор понравился

    +174

    +380

    Перевести миллиампер [мА] в ампер [А] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстоянияМассовый конвертерКонвертер сухого объёма и общих измерений при приготовлении пищиПреобразователь площадиКонвертер объёма и общих измерений при приготовлении пищиПреобразователь температурыПреобразователь давления, напряжения, модуля ЮнгаЭнергия и конвертер работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углового КПД, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц хранения информации и данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения Инерционный преобразователь Конвертер момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на объем) Конвертер температурного интервалаКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер объёмного расходаПреобразователь массового расходаМолярный расход раствора Конвертер массового потока Конвертер массового потока ) Конвертер вязкостиПреобразователь кинематической вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяного параКонвертер уровня звукаКонвертер чувствительности микрофонаПреобразователь уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемПреобразователь яркостиКонвертер световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния Оптическая сила (диопт. r) в увеличение (X) преобразовательПреобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимости уровней в дБм, дБВ, ваттах и ​​других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности общей дозы ионизирующего излученияКонвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровых изображенийКонвертер единиц измерения объёма древесиныКалькулятор молярной массыПериодическая таблица

    Обзор

    Чесменское сражение Ивана Айвазовского

    Мы обязаны комфортом нашей повседневной жизни электрическому току. Он генерирует излучение в видимом спектре и не только освещает наши дома, но также готовит и разогревает пищу в различных электроприборах, таких как электрические плиты, микроволновые печи и тостеры.Поскольку у нас есть электричество, нам не нужно добывать топливо, чтобы зажечь огонь. Благодаря электричеству мы также можем быстро перемещаться по горизонтальной плоскости внутри поездов, поездов метро и высокоскоростных поездов, а также по вертикальным плоскостям на эскалаторах и лифтах. Мы обязаны теплом и комфортом в наших домах электрическому току, потому что он питает наши электрические обогреватели, кондиционеры и вентиляторы. Различные машины с электрическим приводом значительно упрощают нашу работу как в повседневной жизни, так и в различных отраслях промышленности.Действительно, мы живем в эпоху электричества, потому что именно электричество позволяет нам использовать наши компьютеры, смартфоны, Интернет, телевидение и другие интеллектуальные электронные технологии. Учитывая, насколько удобно использовать электричество как форму энергии, неудивительно, что мы тратим столько усилий на ее выработку.

    Может показаться необычным, но идея практического использования электричества впервые была воспринята некоторыми из наиболее консервативных членов общества — военно-морскими офицерами. В этом элитарном обществе было трудно продвигаться вверх, и столь же трудно было убедить адмиралов, которые начинали юнгой в эпоху парусного спорта, в необходимости перехода на бронированные боевые корабли с паровыми двигателями, но молодые офицеры предпочитали и поддерживали инновации.Благодаря успеху использования огневых кораблей во время русско-турецкой войны 1770 года, которая привела к победе в Чесменской битве, военно-морской флот начал рассматривать возможность модернизации систем защиты порта за счет использования старой береговой артиллерии в сочетании с военно-морскими минами, которые были новаторскими в то время.

    Корабельная радиостанция, ок. 1910. Канадский музей науки и техники, Оттава

    Разработка различных типов морских мин началась в начале XIX века, и наиболее успешные разработки включали автономные мины, активируемые электричеством.В 1870-х годах немецкий физик Генрих Герц разработал устройство для подрыва поставленных на якорь мин с помощью электричества. Одна из разновидностей этого устройства, морская рогатая мина, широко известна и часто появляется в исторических фильмах о войне. Его свинцовый «рог» имеет емкость с электролитом, который разрушается при контакте с корпусом корабля. Электролит питает простую батарею, которая, в свою очередь, подрывает мину.

    Радиостанция Hudson’s Bay Company, ок. 1937. Канадский музей науки и техники, Оттава

    Морские офицеры были одними из первых, кто оценил потенциал свечей Яблочкова, первых источников электрического света.Они были далеки от совершенства, но излучали свет от электрической дуги и раскаленного добела положительного электрода, сделанного из угля. Они использовались для сигнализации поля боя и для освещения поля боя. Использование мощных прожекторов давало преимущество стороне, использовавшей их, для освещения поля боя в ночных боях или для передачи информации и координации действий различных военно-морских частей во время морских сражений. Прожекторы, используемые в маяках, улучшили навигацию в опасных прибрежных водах.

    Вакуумная лампа, ок. 1921. Канадский музей науки и технологий, Оттава

    Неудивительно, что военно-морской флот также был взволнован, чтобы адаптировать технологии, которые позволили беспроводную передачу информации. Большой размер первых передающих устройств не был проблемой для военно-морского флота, потому что на их кораблях было достаточно места для размещения этих удобных, но порой больших машин.

    Электрическое оборудование использовалось для упрощения заряжания пушек на борту кораблей, в то время как силовые электрические механизмы использовались для вращения пушечных турелей и повышали точность и эффективность пушек.Телеграф машинного приказа позволял экипажу общаться и повышал его эффективность, что давало значительное преимущество в бою.

    Одним из самых ужасных случаев использования электрического тока в военно-морском сражении было использование Третьим рейхом подводных лодок рейдеров. Подводные лодки Гитлера, которые действовали с использованием тактики «Волчьей стаи», потопили многие транспортные конвои союзников. Известная история Convoy PQ 17 — один из примеров.

    Drummondville Радиопередатчик, ок. 1926. Канадский музей науки и техники, Оттава

    Британский флот смог получить несколько машин Enigma, используемых немцами для кодирования сообщений, и им удалось взломать их код с помощью Алана Тьюринга, известного как отец современные вычисления.Союзники перехватили радиосвязь немецкого адмирала Карла Дёница, и с этой информацией смогли использовать прибрежные военно-воздушные силы, чтобы загнать в угол Волчью стаю и отбросить ее к берегам Норвегии, Германии и Дании. Благодаря этому с 1943 года рейды ограничились короткими.

    Беспроводной телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

    Гитлер планировал добавить к своим подводным лодкам ракеты Фау-2, чтобы их можно было использовать для атаки на восточное побережье США.Однако быстрое продвижение союзников на Западном и Восточном фронтах помешало ему сделать это.

    Современный флот сложно представить без авианосцев и атомных подводных лодок. Они питаются от ядерных реакторов, которые сочетают в себе технологии 19 века на основе пара, технологии 20 века на основе электричества и ядерные технологии 21 века. Энергетические системы атомных подводных лодок вырабатывают достаточно электроэнергии, чтобы удовлетворить потребности большого города в энергии.

    В дополнение к использованию электричества, которое мы уже обсуждали, недавно военно-морской флот начал рассматривать другие применения электричества, такие как использование рельсотрона. Рельсотрон — это электрическая пушка, которая использует снаряды кинетической энергии, которые обладают огромным разрушительным потенциалом.

    Джеймс Клерк Максвелл. Статуя Александра Стоддарта. Фото Ad Meskens / Wikimedia Commons

    Немного истории

    С развитием надежных источников энергии для постоянного тока (DC), таких как гальваническая батарея, созданная итальянским физиком Алессандро Вольта, многие выдающиеся ученые по всему миру начали изучать свойства электрический ток и вызываемые им физические явления, а также его практическое использование в науке и технике.«Звездный список» ученых включает Георга Ома, который вывел закон Ома для описания поведения электрического тока в основной электрической цепи; немецкий физик Густав Кирхгоф, разработавший расчеты для более сложных электрических цепей; и французский физик Андре Мари Ампер, открывший закон, описывающий свойства замкнутого контура, на который действует магнитное поле и через него проходит электрический ток. Этот закон известен теперь как круговой закон Ампера. Независимая работа английского физика Джеймса Прескотта Джоуля и русского ученого Генриха Ленца завершилась открытием закона джоулева нагрева, который количественно определяет тепловой эффект электрического тока.

    Хендрик Антун Лоренц, картина Менсо Камерлинг-Оннеса (1860–1925) в 1916 году.

    Работы Джеймса Клерка Максвелла были посвящены дальнейшему исследованию свойств электрического тока и заложили основу современной электродинамики. Теперь эти работы известны как уравнения Максвелла. Максвелл также разработал теорию электромагнитного излучения и предсказал многие явления, такие как электромагнитные волны, радиационное давление и другие. Позже существование электромагнитных волн было экспериментально доказано немецким физиком Генрихом Рудольфом Герцем.Его работы по отражению, интерференции, дифракции и поляризации электромагнитных волн были использованы при изобретении радио.

    Жан-Батист Био (1774–1862)

    Несколько экспериментальных работ французских физиков Жана-Батиста Био и Феликса Савара о проявлении магнетизма в присутствии электрического тока, обобщенных в законе Био – Савара, и исследованиях блестящего французского математика Пьера-Симона Лапласа, который обобщил приведенные выше экспериментальные результаты как математическую абстракцию, впервые установил связь между двумя сторонами одного явления и положил начало изучению электромагнетизма.Гениальный британский физик Майкл Фарадей продолжил их работу и открыл электромагнитную индукцию. Современная электротехника построена на работах Фарадея.

    Физик из Нидерландов Хендрик Лоренц внес ценный вклад в объяснение природы электрического тока. Он разработал классическую теорию электронов и предположил, что атомы состоят из более мелких заряженных частиц и что свет является результатом колебаний этих частиц. Он также вывел уравнение для описания силы, действующей на движущийся заряд изнутри электромагнитного поля.Эта сила известна как сила Лоренца.

    Определение электрического тока

    Электрический ток можно определить как упорядоченное движение заряженных частиц. Учитывая это определение, электрический ток измеряется количеством заряженных частиц, которые проходят через поперечное сечение проводника за заданную единицу времени.

    I = q / t , где q — заряд в кулонах, t — время в секундах, а I — электрический ток в амперах.

    Другое определение электрического тока зависит от свойств проводников и описывается законом Ома:

    I = V / R , где V — напряжение в вольтах, R — сопротивление в омах. , I — ток в амперах.

    Электрический ток измеряется в амперах (A) и единицах, производных от них, таких как наноампер (одна миллиардная часть ампера, нА), микроампер (одна миллионная часть ампера, мкА), миллиампер (тысячная часть ампера, мА). ), килоампер (тысяча ампер, кА) и мегаампер (миллион ампер, МА).

    В СИ единицей измерения электрического тока является

    [А] = [C] / [s]

    Поведение электрического тока в различных средах

    Алюминий является очень хорошим проводником и широко используется в электропроводке.

    Электрический ток в твердых материалах, включая металлы, полупроводники и диэлектрики

    При рассмотрении электрического тока мы должны учитывать среду, которая его переносит, в частности, заряженные частицы, присутствующие в материале или веществе в текущем состоянии.Этот материал или вещество может быть твердым, жидким или газообразным. Уникальным примером различных состояний вещества является монооксид дигидрогена или оксид водорода, известный нам просто как вода. Мы можем увидеть его твердым, если посмотрим на лед из морозильника, который мы сделали для охлаждения напитков — большинство из них основаны на воде. С другой стороны, при приготовлении чая или растворимого кофе мы используем кипяток. Если бы мы подождали, пока вода закипит, прежде чем налить ее в чайник, мы бы увидели «туман», выходящий из носика чайника — этот туман состоит из капель воды, образовавшихся из газообразного состояния воды (пара), которое выходит из носика и контактирует с холодным воздухом.

    Существует еще одно состояние вещества, известное как плазма. Низкотемпературная плазма составляет верхние слои звезд, ионосферу Земли, пламя, электрическую дугу и вещество внутри люминесцентных ламп, и это лишь несколько примеров. Трудно воссоздать высокотемпературную плазму в лаборатории, поскольку для этого требуются чрезвычайно высокие температуры, превышающие 1 000 000 К.

    Эти высоковольтные автоматические выключатели содержат два основных компонента: размыкающие контакты и изолятор, соединяющий два провода вместе.

    По своей структуре твердые материалы можно разделить на кристаллические и аморфные. Первые имеют структурированную кристаллическую решетку. Атомы и молекулы такого вещества образуют двух- или трехмерные кристаллические решетки. Кристаллические твердые тела включают металлы, их сплавы и полупроводники. Мы можем легко визуализировать кристаллические твердые тела, представляя снежинки, которые представляют собой кристаллы уникальной формы. Аморфные вещества не имеют кристаллической решетки. Диэлектрики обычно аморфны.

    В нормальных условиях электрический ток течет через твердые тела благодаря движению свободных электронов, которые становятся несвязанными в результате отрыва валентных электронов от атома. Мы также можем разделить твердые тела в зависимости от характера потока электричества внутри них на проводники, полупроводники и изоляторы. Свойства различных материалов определяются на основе дискретной электронной зонной структуры. Это зависит от ширины запрещенной зоны, в которой нет электронов.Изоляторы имеют самую широкую запрещенную зону, которая иногда может достигать 15 эВ. Изоляторы и полупроводники не имеют электронов в проводящем промежутке при температуре абсолютного нуля, но при комнатной температуре некоторые электроны были бы удалены из валентных зон из-за тепловой энергии. В проводниках, таких как металлы, зона проводимости перекрывается с валентными зонами. Вот почему даже при абсолютном нуле существует большое количество электронов, и это все еще верно, когда температура повышается до точки плавления.Эти электроны позволяют электрическому току проходить через материал. Полупроводники имеют небольшую ширину запрещенной зоны, и их способность проводить электричество во многом зависит от температуры, излучения и других факторов, таких как присутствие примесей.

    Трансформатор с ламинированным сердечником. По бокам хорошо видны двутавровые и Е-образные стальные листы.

    Сверхпроводники создают особые условия для электрического тока. Это материалы с нулевым сопротивлением прохождению электрического тока.Электроны проводимости этих материалов образуют группы частиц, которые связаны друг с другом за счет квантовых эффектов.

    Как следует из названия, изоляторы плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания электрического тока между проводящими поверхностями из разных материалов.

    В дополнение к электрическому току, протекающему по проводникам, когда магнитное поле постоянное, когда магнитное поле переменное, его изменения вызывают явление, известное как вихревые токи, которые также называются токами Фуко.Чем больше скорость изменения магнитного поля, тем сильнее вихревые токи. Они не текут по определенному маршруту, но вместо этого они текут в замкнутых контурах в проводнике.

    Вихревые токи вызывают скин-эффект, который представляет собой тенденцию протекания переменного электрического тока (AC) и магнитного потока в основном вдоль поверхностного слоя проводника, что приводит к потере энергии. Чтобы уменьшить эти потери на вихревые токи в сердечниках трансформаторов, их магнитные цепи разделены. Это делается путем наложения слоев тонких стальных изолированных пластин, которые образуют сердечник трансформатора.

    Хромированная пластиковая лейка для душа

    Электрический ток в жидкостях (электролитах)

    Все жидкости могут в определенной степени проводить электрический ток при приложении к ним электрического напряжения. Жидкости, проводящие электрический ток, называются электролитами. Электрический ток переносится положительно и отрицательно заряженными ионами, известными соответственно как катионы и анионы, которые присутствуют в жидкости из-за электролитической диссоциации. В электролитах ток течет из-за движения ионов по сравнению с током, возникающим из-за движения электронов в металлах.Этот ток в электролитах характеризуется перемещением вещества к электродам и образованием новых химических элементов вокруг электродов или отложением этих новых веществ на электроде.

    Это явление легло в основу электрохимии и позволяет количественно определять эквивалентный вес различных химических веществ. Это позволило превратить неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать химические источники энергии в виде первичных (или одноразовых) и аккумуляторных батарей и топливных элементов.Это, в свою очередь, позволило совершить скачок в развитии технологий. Просто заглянув под капот вашего автомобиля и изучив автомобильный аккумулятор, вы сможете увидеть результаты десятилетий работы исследователей и инженеров.

    Автомобильный аккумулятор, установленный в 2012 году Honda Civic

    Многие производственные процессы, зависящие от протекания электрического тока в электролитах, могут придать привлекательный вид конечному продукту (например, хромовое и никелевое гальваническое покрытие) и защитить объекты от коррозии.Электроосаждение и электротравление — фундаментальные процессы в современной электротехнике при создании различных электронных компонентов. Эти процессы очень часто используются, например, в микропроизводстве, и количество электронных компонентов, производимых с использованием этих технологий, достигает десятков миллиардов в год.

    Электрический ток в газах

    Поток электрического тока в газах зависит от количества в нем свободных электронов и ионов. Из-за большего расстояния между частицами газа по сравнению с жидкостями и твердыми телами молекулы и ионы в газах обычно проходят большие расстояния, прежде чем столкнуться.Из-за этого протекание электричества в газах в нормальных условиях затруднено. То же верно и для смесей газов. Примером смеси газов является воздух, который в электротехнике считается хорошим изолятором. В обычных условиях многие другие смеси газов также являются хорошими изоляторами.

    Неоновая лампа для проверки отвертки показывает наличие напряжения 220 В.

    Поток электричества в газах зависит от различных физических факторов, таких как давление, температура и компоненты, составляющие эту смесь.Кроме того, ионизирующее излучение тоже играет роль. Например, газ может проводить электричество, если его облучают ультрафиолетовым или рентгеновским излучением, если на него воздействуют катодные или анодные частицы или частицы, испускаемые радиоактивным веществом, или даже если температура этого газа высока.

    Когда энергия поглощается электрически нейтральными атомами или молекулами газа и когда образуются ионы, этот эндотермический процесс называется ионизацией. Когда энергия достигает определенного порога, электрон или группа электронов преодолевают потенциальный барьер и покидают атом или молекулу, становясь, таким образом, свободными электронами.Атом или молекула, которую оставили электроны, тоже больше не нейтральны, они заряжены положительно. Свободные электроны могут присоединяться к нейтрально заряженным атомам или молекулам и образовывать отрицательно заряженные ионы. Положительно заряженные ионы могут забирать отрицательно заряженные электроны при столкновении с ними и, таким образом, снова становиться нейтральными. Этот процесс называется рекомбинацией.

    Когда электрический ток течет через газ, его состояние изменяется. Это приводит к сложной зависимости между электрическим током и напряжением, которая более или менее регулируется законом Ома, но только при малых электрических токах.

    Электрические разряды в газах могут быть как несамостоятельными, так и самоподдерживающимися. Несамостоятельные разряды создают электрический ток, который возможен только при наличии внешних ионизирующих факторов. Когда они отсутствуют, электрический ток через газ не течет. С другой стороны, во время самоподдерживающихся разрядов электрический ток поддерживается за счет ионизации нейтральных атомов и молекул в газе, которые были ускорены электрическим полем при столкновении со свободными электронами и ионами.В этих условиях электрический ток возможен даже без внешних ионизирующих факторов.

    Вольт-амперные характеристики бесшумного разряда

    Когда разность потенциалов между анодом и катодом мала, несамостоятельный разряд называют тихим или таунсендовским. С увеличением напряжения увеличивается и сила тока. Сначала это увеличение пропорционально напряжению (участок OA на вольт-амперной характеристике бесшумного разряда), но постепенно скорость нарастания замедляется (участок AB на графике).Когда все оторвавшиеся частицы, которые высвободились в результате процесса ионизации, движутся к катоду и аноду одновременно, увеличения тока не происходит (участок BC на графике). Если напряжение снова увеличивается, ток также увеличивается, и бесшумный разряд становится несамостоятельным лавинным зарядом. Примером несамостоятельного разряда является тлеющий разряд в газоразрядных лампах высокого давления различного назначения.

    Когда несамостоятельный разряд трансформируется в самостоятельный разряд, электрический ток увеличивается (точка E на кривой).Этот момент известен как электрический пробой.

    Электронная фотовспышка с ксеноновой трубкой (красный прямоугольник)

    Все различные типы зарядов, описанные выше, являются стационарными или установившимися разрядами. Их свойства не зависят от времени. Помимо этих разрядов, существуют также нестабильные разряды, которые обычно возникают в очень неравномерных электрических полях, например, на заостренных или искривленных поверхностях проводников или электродов. Существует два типа неравномерных разрядов: коронный разряд и искровой разряд.

    Ионизация при коронном разряде не вызывает электрического пробоя. Этот разряд вызывает повторяющийся процесс запуска несамостоятельного разряда в небольшом ограниченном пространстве вокруг проводника. Хорошим примером коронного разряда является свечение в воздухе вокруг антенн, громоотводов или линий электропередач высоко над землей. Коронный разряд вокруг линий электропередач вызывает потерю энергии. Раньше это сияние было знакомо мореплавателям — свечение вокруг мачт кораблей было известно как св.Элмо огонь. Коронный разряд используется в лазерных принтерах и копировальных аппаратах. Он генерируется устройством, создающим коронный разряд, металлической струной, к которой приложено высокое напряжение. Коронный разряд ионизирует газ, который, в свою очередь, ионизирует светочувствительный барабан. В этом случае полезен коронный разряд.

    По сравнению с коронным разрядом электростатический разряд вызывает электрический пробой. Это похоже на прерывистые светлые нити, которые разветвляются и заполнены ионизированным газом. Они появляются и исчезают, производя большое количество тепла и света.Типичным примером естественного электростатического разряда является молния. Электрический ток в нем может достигать десятков килоампер. Прежде чем может произойти молния, необходимо создать нисходящую группу лидеров, известную как лидер или искра. Вместе со ступенчатым лидером он образует строение лидера. Молния обычно состоит из множественных электростатических разрядов в нисходящей формации лидера для разряда отрицательной молнии «облако-земля». В электронных вспышках в фотографии используется мощный электростатический разряд.Разряд здесь образуется между электродами импульсной лампы из кварцевого стекла, заполненного смесью благородных ионизированных газов.

    Когда электрический разряд сохраняется в течение длительного периода времени, он называется электрической дугой. Электрическая дуга используется в дуговой сварке, которая является незаменимой технологией в современном строительстве, используется для возведения стальных конструкций различного размера и назначения, от небоскребов до авианосцев и автомобилей. Электрическая дуга используется не только для соединения материалов, но и для их резки.Разница между этими двумя процессами заключается в силе используемого тока. Сварка происходит при относительно более низких токах, в то время как для резки требуются более высокие токи электрической дуги. Само порезание происходит при удалении расплавленного металла, и для его удаления используются разные методы.

    Еще одно применение электрической дуги в газах — газоразрядные лампы, которые отгоняют тьму на наших улицах, площадях и стадионах (в этих условиях обычно используются натриевые лампы).Металлогалогенные лампы, которые заменили лампы накаливания в автомобильных фарах, также используют эту технологию.

    Электрический ток в вакууме

    Вакуумная трубка в передающей станции. Канадский музей науки и техники, Оттава

    Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только в том случае, если свободные носители тока, такие как электроны или ионы, генерируются посредством термоэлектронной эмиссии, фотоэлектрической эмиссии или других способами.

    Подобные телекамеры использовались в 1980-х годах.Канадский музей науки и техники, Оттава

    Основным методом получения электрического тока в вакууме с использованием электронов является термоэлектрическая эмиссия электронов металлами. Когда электрод нагревается (он называется горячим катодом), он испускает электроны в трубку. Эти электроны вызывают электрический ток, пока присутствует другой электрод (называемый анодом), и пока между ними существует определенное напряжение требуемой полярности. Такие вакуумные лампы называются диодами и проводят электрический ток только в одном направлении.Они блокируют ток, если есть попытка заставить ток течь в обратном направлении. Это свойство используется для преобразования переменного тока (AC) в постоянный (DC) посредством процесса выпрямления. Это делается системой диодов.

    Если рядом с катодом добавить дополнительный электрод, известный как сетка, мы получим устройство, называемое триодом, которое значительно усиливает даже небольшие изменения напряжения в управляющей сетке относительно катода. В результате это изменяет ток и напряжение на нагрузке, которая последовательно подключена к вакуумной лампе, относительно источника питания.Эта система, называемая усилителем, используется для усиления различных сигналов.

    Использование электронных ламп с большим количеством управляющих сеток, таких как тетроды, пентоды и даже пятиэлектродные преобразователи с семью электродами, было революционным в создании и усилении радиосигналов и позволило создать современные системы радио- и телевещания.

    Современный видеопроектор

    Исторически радио было разработано первым, потому что было относительно легко разработать методы преобразования и передачи относительно низкочастотных сигналов, а также разработать схему для приемных устройств, которые могут усиливать и смешивать радиочастоты для их преобразования. в акустический сигнал посредством процесса демодуляции.

    Когда было изобретено телевидение, электронные лампы, называемые иконоскопами, использовались для испускания электронов за счет фотоэлектрического эффекта падающего на них света. Дальнейшее усиление сигнала производилось ламповым усилителем. Для просмотра захваченного и переданного изображения использовались электронно-лучевые трубки (ЭЛТ), которые также были электронными лампами. В ЭЛТ изображение создавалось на экране путем обратного преобразования сигнала. Это было сделано путем ускорения электронов до высокой скорости с помощью одной (или трех для цветного телевидения) электронных пушек в сильном электрическом поле.Поле создавалось приложением большого напряжения между катодом электронной пушки и анодом ЭЛТ. Пучки высокоскоростных электронов направлялись на экран, покрытый люминесцентным материалом, и с него излучался видимый свет. Изображение было создано двумя взаимно синхронизированными системами: одна считывала сигнал с иконоскопа, а другая выполняла растровое сканирование. Первые электронно-лучевые трубки были монохромными.

    SU3500 Сканирующий электронный микроскоп. Департамент материаловедения и инженерии.Университет Торонто

    Вскоре после этого было разработано цветное телевидение. Иконоскопы в цветном телевидении были гибридными системами, которые реагировали только на свет определенного цвета, будь то красный, синий или зеленый. Цветные люминофорные точки электронно-лучевых трубок телевизора излучали свет за счет электрического тока, создаваемого электронной пушкой. Они реагировали на ударяющие по ним ускоренные электроны и излучали свет определенного цвета и яркости. Были использованы специальные теневые маски, чтобы лучи каждой цветной электронной пушки попадали на точки люминофора правильного цвета.

    Современные технологии теле- и радиовещания используют более современные материалы на основе полупроводников, которые потребляют меньше энергии.

    Одним из широко используемых методов получения изображения внутренних органов является рентгеноскопия. Катод испускает электроны, которые разгоняются до такой скорости, что при попадании на анод генерируют рентгеновское излучение, которое может проникать в мягкие ткани человеческого тела. Рентгенограммы дают врачам уникальную информацию о состоянии костей, зубов и некоторых внутренних органов и даже могут помочь определить такие заболевания, как рак легких.

    Лампа бегущей волны С-диапазона. Канадский музей науки и техники, Оттава

    В общем, электрические токи, образованные движением электронов в вакууме, находят широкое применение. Вакуумные лампы, ускорители частиц, масс-спектрометры, электронные микроскопы, генераторы вакуума высокой частоты, такие как лампы бегущей волны, клистроны и резонаторные магнетроны, — это лишь некоторые из примеров того, как мы используем этот тип электрического тока. Следует отметить, что именно магнетроны нагревают и готовят пищу в микроволновых печах.

    Недавняя очень ценная технология, использующая электрический ток в вакууме, — это осаждение тонких пленок в вакууме. Эти пленки выполняют декоративную или защитную функцию. Материалы, используемые в этой технике, — это металлы, их сплавы и их соединения с кислородом, азотом и углеродом. Эти пленки либо изменяют, либо сочетают в себе электрические, оптические, механические, магнитные, каталитические и связанные с коррозией свойства поверхности, которую они покрывают.

    Для получения комплексного соединения пленки используется технология ионно-лучевого осаждения.Некоторыми примерами этой технологии являются катодно-дуговое напыление и его коммерческий вариант мощного импульсного магнетронного распыления. В конце концов, именно электрический ток создает пленочное покрытие на поверхности благодаря ионам.

    Ионно-лучевое распыление создает пленки из нитридов, карбидов и оксидов металлов, которые обладают необычайным набором механических, теплофизических и оптических свойств, включая твердость, долговечность, электро- и теплопроводность и оптическую плотность.Другим способом добиться этих результатов невозможно.

    Электрический ток в биологии и медицине

    Макет операционной в Институте знаний Ли Ка Шинг, Торонто, Канада. Пациенты-роботы-манекены, которые могут моргать, дышать, плакать, истекать кровью и моделировать болезни, используются для обучения

    Понимание поведения электрического тока внутри биологических систем дает биологам и врачам мощный инструмент для исследований, диагностики и лечения.

    С точки зрения электрохимии все биологические объекты содержат электролиты, независимо от их структуры.

    При рассмотрении того, как электрический ток проходит через биологический объект, мы должны учитывать состояние клеток этого объекта. В этом отношении клеточная мембрана является важной структурой, которую необходимо учитывать. Это внешний слой каждой клетки, который защищает клетку от негативного воздействия окружающей среды за счет избирательной проницаемости для различных веществ. Другими словами, он пропускает одни вещества, а другие останавливает. С точки зрения физики, мы можем рассматривать эту мембрану как эквивалентную схему, которая состоит из параллельного соединения конденсатора с несколькими цепями, которые имеют последовательное соединение между источником электрического тока и резистором.Благодаря такой структуре электропроводность этого биологического объекта зависит от частоты приложенного напряжения и типов напряжения.

    Трехмерное изображение волоконных путей, соединяющих различные области мозга. Это изображение было получено с использованием метода неинвазивной диффузионной тензорной визуализации (DTI)

    Биологическая ткань состоит из клеток, внеклеточной жидкости, кровеносных сосудов и нервных клеток. При подаче электрического тока нервные клетки возбуждаются и посылают сигналы о сокращении или расслаблении мышц и кровеносных сосудов животного.Следует отметить, что течение электрического тока в биологических тканях нелинейно.

    Классическим примером воздействия электрического тока на биологический объект является серия экспериментов итальянского врача, физика и биолога Луиджи Гальвани, который считается одним из отцов-основателей электрохимии. В этих экспериментах он пропустил электрический ток по нервам лягушачьей лапы, и это вызвало сокращение мышц и движение ноги. В 1791 году его открытия были описаны в отчете об электрических силах в движении мышц.Долгое время в учебниках явление, открытое Гальвани, именовалось гальванизмом. Даже сейчас этот термин иногда используется для обозначения определенных процессов и устройств.

    Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году британский хирург и врач Ричард Кейтон и русский врач Василий Данилевский независимо друг от друга показали, что мозг может генерировать электричество. Другими словами, они обнаружили ионный ток, протекающий в мозгу.

    Биологические объекты могут генерировать не только микротоки, но также значительные напряжения и токи в рамках своего повседневного функционирования.Задолго до работ Гальвани британский биолог Джон Уолш доказал электрическую природу защитной системы электрического луча. Шотландский хирург и физиолог Джон Хантер подробно описал механизм, с помощью которого электрические лучи генерируют электричество. Результаты их исследования были опубликованы в 1773 году.

    Функциональная магнитно-резонансная томография (фМРТ) — это неинвазивный метод, который позволяет врачам измерять активность мозга, обнаруживая изменения в кровотоке.

    Современная медицина и биология используют различные методы для исследования. живые организмы, которые включают как инвазивные, так и неинвазивные методы.

    Классическим примером инвазивного метода является исследование крыс, которые бегают по лабиринту или выполняют другие задания с имплантированными в их мозг электродами.

    С другой стороны, неинвазивные методы — это такие широко известные методы диагностики, как электроэнцефалография и электрокардиография. В этих процедурах электроды, контролирующие электрические токи в головном мозге или сердце, используются для измерения на коже человека или животного под наблюдением. Чтобы улучшить контакт с электродами, на кожу наносят физиологический раствор, поскольку он является хорошим электролитом и может хорошо проводить электрический ток.

    Помимо использования электрического тока для исследований и наблюдения за состоянием различных химических процессов и реакций, одним из наиболее эффективных способов использования электричества является дефибрилляция, которая в фильмах иногда изображается как «перезапуск» сердца, которое уже остановилось. работающий.

    Тренировочный автоматический внешний дефибриллятор (AED)

    Действительно, запуск кратковременного импульса значительной величины может иногда (но очень редко) перезапустить сердце. Однако чаще используются дефибрилляторы, чтобы скорректировать аритмическое биение сердца и вернуть его к норме.Хаотические аритмические сокращения известны как фибрилляция желудочков, и поэтому устройство, которое возвращает сердце в норму, называется дефибриллятором. Современные автоматизированные внешние дефибрилляторы могут регистрировать электрическую активность сердца, определять фибрилляцию желудочков сердца, а затем рассчитывать силу тока, необходимую пациенту, на основе этих факторов. Во многих общественных местах теперь есть дефибрилляторы, и медицинское сообщество надеется, что эта мера предотвратит множество смертей, вызванных дисфункцией сердца пациента.

    Медработники обучены определять физиологическое состояние сердечной мышцы по электрокардиограмме и быстро принимать решения о лечении, намного быстрее, чем это могут сделать автоматические внешние дефибрилляторы, доступные для населения.

    Отдельно стоит упомянуть об искусственных кардиостимуляторах, контролирующих сердечные сокращения. Эти устройства имплантируются под кожу или под грудную мышцу пациента и передают импульсы электрического тока напряжением около 3 В через электрод в сердечную мышцу.Это стимулирует нормальный сердечный ритм. Современные кардиостимуляторы могут проработать 6–14 лет, прежде чем потребуется их замена.

    Характеристики электрического тока, его генерация и использование

    Электрический ток характеризуется его величиной и типом. В зависимости от его поведения типы электрического тока делятся на постоянный или постоянный ток (он не изменяется со временем), гармонический ток (он изменяется случайным образом со временем) и переменный ток или переменный ток (он изменяется со временем в соответствии с определенной схемой, обычно это регулируется периодическим законом).Для некоторых задач требуется как постоянный, так и переменный ток. В данном случае мы говорим об переменном токе с постоянной составляющей.

    Термоядерный реактор Токамак де Варенн. Варенн, Квебек, 1981. Канадский музей науки и техники, Оттава

    Исторически первый трибоэлектрический генератор электрического тока, машина Вимшерста, создавала его, натирая шерстью кусок янтаря. Более совершенные генераторы того же типа теперь называются генераторами Ван де Граафа — они названы в честь изобретателя самой ранней из этих машин.

    Как мы уже говорили ранее, электрохимический генератор был изобретен итальянским физиком Алессандро Вольта. Этот генератор получил дальнейшее развитие в современных сухих аккумуляторных батареях, аккумуляторных батареях и топливных элементах. Мы до сих пор используем их, потому что это очень удобные источники энергии для всех видов устройств, от часов и смартфонов до автомобильных аккумуляторов и аккумуляторов электромобилей Tesla.

    В дополнение к генераторам постоянного тока, описанным выше, существуют также генераторы, использующие ядерное деление изотопов, известные как атомные батареи, а также магнитогидродинамические генераторы, которые сегодня имеют очень ограниченное применение из-за их низкой мощности и технических ограничений. их конструкции и по ряду других причин.Тем не менее генераторы радионуклидов используются в энергонезависимых системах, например, в космосе, в автономных подводных аппаратах и ​​гидроакустических станциях, в маяках, внутри маяковых буев, а также в Арктике и Антарктике.

    Коммутатор в мотор-генераторной установке, 1904. Канадский музей науки и техники, Оттава

    В электротехнике генераторы делятся на генераторы постоянного и переменного тока.

    Все эти генераторы работают благодаря электромагнитной индукции, открытой Майклом Фарадеем в 1831 году.Фарадей построил первый униполярный генератор малой мощности, который генерировал постоянный ток. Что касается первого генератора переменного тока, то история гласит, что он был описан Фарадею в 1832 году в анонимном письме, подписанном как «П. М. » После публикации этого письма Фарадей через год получил еще одно, в котором он благодарил и предлагал усовершенствовать конструкцию, добавив стальное кольцо для переноса магнитного потока магнитных полюсов катушек. Однако неясно, соответствует ли эта история действительности.

    В то время применение переменного тока еще не было найдено, поскольку для всех практических применений электричества в то время требовался постоянный ток, включая ток, используемый в минной войне, электрохимии, недавно разработанном электротелеграфии и первых электродвигателях.Вот почему многие изобретатели сосредоточились пока на улучшении генераторов постоянного тока, изобретая для этого различные коммутационные устройства.

    Одним из первых генераторов, получивших практическое применение, был магнитоэлектрический генератор, созданный немецким и российским исследователем Морицем фон Якоби, работавшим в России с 1835 по 1874 год. Он использовался минными отрядами ВМФ Российской армии для воспламенения взрывателей. морских мин. Улучшенные генераторы этого типа используются и по сей день для активации мин, и их часто можно увидеть в фильмах о Второй мировой войне, где партизаны или диверсанты используют их для взрыва мостов, схода с рельсов поездов и других подобных приложений.

    Линза лазера с приводом компакт-дисков

    С тех пор ведущие инженеры соревновались друг с другом в улучшении генераторов переменного и постоянного тока, создав окончательное противостояние между двумя титанами современной области производства электроэнергии, с Томасом Эдисоном из General Electric на одном с другой стороны, Никола Тесла из Westinghouse. Победил больший капитал, и технологии Tesla для генерации, транспортировки и преобразования переменного тока стали наследием американского общества. Это дало значительный толчок к развитию экономики США и вывело страну на лидирующие позиции в мире.

    В дополнение к способности производить электричество для различных нужд, которая зависела от преобразования механического движения в электричество из-за обратимости электрических машин, стала реальностью еще одна возможность обратного преобразования электрического тока в механическое движение. Это было сделано с помощью электрических двигателей, работающих на постоянном и переменном токе. Можно сказать, что эти типы машин являются одними из наиболее широко используемых технологий, и они включают стартеры автомобилей и мотоциклов, приводы коммерческих машин и станков, а также бытовые устройства и электронику.Благодаря этим устройствам мы научились выполнять различные задачи, такие как резка, сверление и формование. Благодаря этим технологиям мы также используем оптические диски, такие как компакт-диски и жесткие диски, в наших компьютерах — без них мы не смогли бы создать миниатюрные прецизионные электродвигатели постоянного тока.

    Помимо привычных нам электромеханических двигателей, ионные двигатели также работают за счет электрического тока. Эти двигатели используют принцип движения за счет испускания ускоренных ионов данного вещества.В настоящее время они используются в космосе в основном для вывода на орбиту небольших спутников. Очень вероятно, что будущие технологии 22-го века, такие как фотонные лазерные двигатели, которые все еще разрабатываются и которые будут вести наши межзвездные корабли на скоростях, приближающихся к скорости света, также будут зависеть от электрического тока.

    Аналоговый мультиметр со снятой верхней крышкой

    Генераторы постоянного тока можно также использовать для выращивания кристаллов для электронных компонентов.Этот процесс требует дополнительных стабильных генераторов постоянного тока. Такие прецизионные твердотельные генераторы электрического тока называются стабилизаторами тока.

    Измерение электрического тока

    Следует отметить, что устройства для измерения электрического тока, такие как микроамперметры, миллиамперметры и амперметры, сильно отличаются друг от друга, в зависимости от их конструкции и принципов измерения, которые они используют. К ним относятся амперметры постоянного тока, амперметры переменного тока низкой частоты и амперметры переменного тока высокой частоты.

    Измерительные механизмы этих устройств можно разделить на подвижную катушку, подвижное железо, подвижный магнит, электродинамические, индукционные, термоанемометрические и цифровые амперметры. Большинство аналоговых амперметров включает подвижную или неподвижную раму с намотанной катушкой и неподвижными или подвижными магнитами. Благодаря такой конструкции типичный амперметр имеет эквивалентную схему, которая представляет собой последовательное соединение катушки индуктивности и резистора с конденсатором, подключенным параллельно им. Из-за этого аналоговые амперметры недостаточно чувствительны для измерения высокочастотного тока.

    Подвижная катушка с иглой и спиральными пружинами измерителя, использованная в аналоговом мультиметре выше. Некоторые люди по-прежнему предпочитают аналоговые мультиметры, которые практически не изменились с 1890-х годов.

    Основное измерительное устройство амперметра состоит из миниатюрного гальванометра. Его диапазоны измерения создаются за счет использования дополнительных шунтирующих резисторов с малым сопротивлением, и это сопротивление ниже, чем у обычного гальванометра. Таким образом, используя одно устройство в качестве основы, можно создавать различные измерительные устройства для измерения токов с разными диапазонами, включая микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

    Обычно при электрических измерениях важно поведение тока. Он может быть измерен как функция времени и иметь разные типы, например постоянный, гармонический, гармонический, импульсный и т. Д. Его величина характеризует способ работы электронных схем и устройств. Идентифицируются следующие значения тока:

    • мгновенное,
    • размах амплитуды,
    • среднее,
    • среднеквадратичная амплитуда.

    Мгновенный ток I i — значение тока в любой момент времени.Его можно просмотреть на экране осциллографа и измерить для каждого момента времени, глядя на осциллограф.

    Размах амплитуды тока I м — наибольшее мгновенное значение тока за данный период времени.

    Среднеквадратичное значение амплитуды тока I находится как квадратный корень из среднего арифметического квадратов мгновенных токов для периода формы сигнала.

    Все аналоговые амперметры обычно измеряют среднеквадратичное значение амплитуды тока.

    Среднее значение тока — это среднее значение всех значений мгновенного тока за время измерения.

    Разница между максимальным и минимальным значением электрического тока называется размахом сигнала.

    В наши дни для измерения электрического тока широко используются мультиметры и осциллографы. Оба этих устройства предоставляют информацию не только о форме , тока или напряжения, но и о других важных характеристиках сигнала.К ним относятся частота периодических сигналов, и поэтому важно знать предел частоты измерительного устройства при измерении электрического тока.

    Измерение электрического тока с помощью осциллографа

    Проиллюстрируем сказанное выше серией экспериментов по измерению активных и пиковых значений тока синусоидального и треугольного сигналов. Мы будем использовать генератор сигнала, осциллограф и мультиметр.

    Схема эксперимента 1 показана ниже:

    Генератор сигналов FG подключен к нагрузке, которая состоит из мультиметра (MM), соединенного последовательно с шунтом Rs и нагрузочным резистором R.Сопротивление шунтирующего резистора R s составляет 100 Ом, а сопротивление нагрузочного резистора R — 1 кОм. Осциллограф ОС подключен параллельно шунтирующему резистору R s . Номинал шунтирующего резистора выбирается из условия R s << R. Проводя этот эксперимент, помним, что рабочая частота осциллографа намного выше рабочей частоты мультиметра.

    Тест 1

    Подаем на нагрузочный резистор синусоидальный сигнал частотой 60 Гц и амплитудой 9 В.Современные осциллографы имеют очень удобную кнопку Auto Set, которая позволяет отображать любой измеренный сигнал, не касаясь других органов управления осциллографа. Нажимаем кнопку Auto Set и наблюдаем за сигналом на экране, как на иллюстрации 1. Здесь диапазон сигнала составляет около пяти больших делений, а значение каждого деления составляет 200 мВ. Мультиметр показывает значение электрического тока как 3,1 мА. Осциллограф определяет среднеквадратичную амплитуду на резисторе как U = 312 мВ. Среднеквадратичное значение тока на резисторе R s можно определить по закону Ома:

    I RMS = U RMS / R = 0.31 В / 100 Ом = 3,1 мА,

    , что соответствует значению 3,1 мА на мультиметре. Обратите внимание, что диапазон тока в нашей цепи, состоящей из двух последовательно включенных резисторов и мультиметра, равен

    I PP = U PP / R = 0,89 В / 100 Ом = 8,9 мА

    Мы знаем, что пиковый и фактические значения электрического тока и напряжения отличаются в √2 раза. Если мы умножим I RMS = 3,1 мА на √2, мы получим 4,38. Удвоим это значение — получим 8.8 мА, что очень близко к измеренному осциллографом току (8,9 мА).

    Test 2

    Теперь уменьшим генерируемый сигнал вдвое. Диапазон сигнала на осциллографе также уменьшится примерно вдвое (463 мВ), а мультиметр покажет значение, которое также примерно уменьшено вдвое и составляет 1,55 мА. Определим значение активного тока на осциллографе:

    I RMS = U RMS / R = 0,152 В / 100 Ом = 1,52 мА,

    что примерно такое же значение, которое показывает мультиметр (1 .55 мА).

    Test 3

    Теперь увеличим частоту генератора до 10 кГц. Изображение на осциллографе изменится, но диапазон сигнала останется прежним. Значение на мультиметре уменьшится — это связано с диапазоном частот мультиметра.

    Тест 4

    Давайте снова воспользуемся начальной частотой 60 Гц и напряжением 9 В, но изменим форму сигнала на генераторе с синусоидальной на треугольную. Диапазон сигнала на осциллографе остается прежним, но значение на мультиметре уменьшается по сравнению со значением тока, которое он показал в тесте 1.Это связано с изменением среднеквадратичного значения тока. Осциллограф показывает приведенное значение среднеквадратичного напряжения, измеренного на резисторе R s = 100 Ом.

    Меры безопасности при измерении электрического тока и напряжения

    Пьедестал для самостоятельной камеры с телесуфлером и тремя мониторами для домашней видеостудии

    • При измерении тока и напряжения мы должны помнить, что в зависимости от того, насколько безопасно здание, например, относительно малое напряжение 12–36 В может быть опасным и даже опасным для жизни.Поэтому крайне важно соблюдать следующие меры безопасности.
    • Не измеряйте токи, если для измерения требуются специальные навыки (например, измерение токов в цепях с напряжением выше 1000 В).
    • Не измеряйте токи в труднодоступных местах и ​​на высоте.
    • При измерении токов в жилой распределительной сети используйте специальные средства защиты, такие как резиновые перчатки, коврики или ботинки.
    • Не используйте сломанные или поврежденные измерительные приборы.
    • При использовании мультиметров убедитесь, что установлены параметры измерения и правильный диапазон измерения.
    • Не используйте измерительный прибор со сломанными зондами.
    • Тщательно следуйте инструкциям производителя по использованию измерительного прибора.

    Эту статью написал Сергей Акишкин

    У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    Перевести миллиампер [мА] в ампер [А] • Преобразователь электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстоянияМассовый преобразователь Конвертер сухого объема и общих измерений при приготовлении пищиПреобразователь площадиОбъема и общих измерений при приготовлении пищиПреобразователь температурыДавление, напряжение, модуль Юнга Конвертер энергии и работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углаКонвертер топливной экономичности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиКонвертер мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения преобразователя инерции Преобразователь момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты C Конвертер температурного интервалаПреобразователь коэффициента теплового расширенияКонвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер абсолютных величин потока Конвертер массового расхода ) Конвертер вязкостиКинематический преобразователь вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL )Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния: оптическая сила Преобразователь (диоптрий) в увеличение (X) Преобразователь электрического зарядаПреобразователь линейной плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь плотности электрического токаПреобразователь линейной плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивления КонвертерПреобразование уровней в дБмВт, дБВ, ваттах и ​​других единицахПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровых изображенийКонвертер единиц измерения объёма древесиныКалькулятор молярной массыПериодическая таблица

    Обзор

    Чесменское сражение Ивана Айвазовского

    Мы обязаны комфортом нашей повседневной жизни электрическому току. Он генерирует излучение в видимом спектре и не только освещает наши дома, но также готовит и разогревает пищу в различных электроприборах, таких как электрические плиты, микроволновые печи и тостеры.Поскольку у нас есть электричество, нам не нужно добывать топливо, чтобы зажечь огонь. Благодаря электричеству мы также можем быстро перемещаться по горизонтальной плоскости внутри поездов, поездов метро и высокоскоростных поездов, а также по вертикальным плоскостям на эскалаторах и лифтах. Мы обязаны теплом и комфортом в наших домах электрическому току, потому что он питает наши электрические обогреватели, кондиционеры и вентиляторы. Различные машины с электрическим приводом значительно упрощают нашу работу как в повседневной жизни, так и в различных отраслях промышленности.Действительно, мы живем в эпоху электричества, потому что именно электричество позволяет нам использовать наши компьютеры, смартфоны, Интернет, телевидение и другие интеллектуальные электронные технологии. Учитывая, насколько удобно использовать электричество как форму энергии, неудивительно, что мы тратим столько усилий на ее выработку.

    Может показаться необычным, но идея практического использования электричества впервые была воспринята некоторыми из наиболее консервативных членов общества — военно-морскими офицерами. В этом элитарном обществе было трудно продвигаться вверх, и столь же трудно было убедить адмиралов, которые начинали юнгой в эпоху парусного спорта, в необходимости перехода на бронированные боевые корабли с паровыми двигателями, но молодые офицеры предпочитали и поддерживали инновации.Благодаря успеху использования огневых кораблей во время русско-турецкой войны 1770 года, которая привела к победе в Чесменской битве, военно-морской флот начал рассматривать возможность модернизации систем защиты порта за счет использования старой береговой артиллерии в сочетании с военно-морскими минами, которые были новаторскими в то время.

    Корабельная радиостанция, ок. 1910. Канадский музей науки и техники, Оттава

    Разработка различных типов морских мин началась в начале XIX века, и наиболее успешные разработки включали автономные мины, активируемые электричеством.В 1870-х годах немецкий физик Генрих Герц разработал устройство для подрыва поставленных на якорь мин с помощью электричества. Одна из разновидностей этого устройства, морская рогатая мина, широко известна и часто появляется в исторических фильмах о войне. Его свинцовый «рог» имеет емкость с электролитом, который разрушается при контакте с корпусом корабля. Электролит питает простую батарею, которая, в свою очередь, подрывает мину.

    Радиостанция Hudson’s Bay Company, ок. 1937. Канадский музей науки и техники, Оттава

    Морские офицеры были одними из первых, кто оценил потенциал свечей Яблочкова, первых источников электрического света.Они были далеки от совершенства, но излучали свет от электрической дуги и раскаленного добела положительного электрода, сделанного из угля. Они использовались для сигнализации поля боя и для освещения поля боя. Использование мощных прожекторов давало преимущество стороне, использовавшей их, для освещения поля боя в ночных боях или для передачи информации и координации действий различных военно-морских частей во время морских сражений. Прожекторы, используемые в маяках, улучшили навигацию в опасных прибрежных водах.

    Вакуумная лампа, ок. 1921. Канадский музей науки и технологий, Оттава

    Неудивительно, что военно-морской флот также был взволнован, чтобы адаптировать технологии, которые позволили беспроводную передачу информации. Большой размер первых передающих устройств не был проблемой для военно-морского флота, потому что на их кораблях было достаточно места для размещения этих удобных, но порой больших машин.

    Электрическое оборудование использовалось для упрощения заряжания пушек на борту кораблей, в то время как силовые электрические механизмы использовались для вращения пушечных турелей и повышали точность и эффективность пушек.Телеграф машинного приказа позволял экипажу общаться и повышал его эффективность, что давало значительное преимущество в бою.

    Одним из самых ужасных случаев использования электрического тока в военно-морском сражении было использование Третьим рейхом подводных лодок рейдеров. Подводные лодки Гитлера, которые действовали с использованием тактики «Волчьей стаи», потопили многие транспортные конвои союзников. Известная история Convoy PQ 17 — один из примеров.

    Drummondville Радиопередатчик, ок. 1926. Канадский музей науки и техники, Оттава

    Британский флот смог получить несколько машин Enigma, используемых немцами для кодирования сообщений, и им удалось взломать их код с помощью Алана Тьюринга, известного как отец современные вычисления.Союзники перехватили радиосвязь немецкого адмирала Карла Дёница, и с этой информацией смогли использовать прибрежные военно-воздушные силы, чтобы загнать в угол Волчью стаю и отбросить ее к берегам Норвегии, Германии и Дании. Благодаря этому с 1943 года рейды ограничились короткими.

    Беспроводной телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

    Гитлер планировал добавить к своим подводным лодкам ракеты Фау-2, чтобы их можно было использовать для атаки на восточное побережье США.Однако быстрое продвижение союзников на Западном и Восточном фронтах помешало ему сделать это.

    Современный флот сложно представить без авианосцев и атомных подводных лодок. Они питаются от ядерных реакторов, которые сочетают в себе технологии 19 века на основе пара, технологии 20 века на основе электричества и ядерные технологии 21 века. Энергетические системы атомных подводных лодок вырабатывают достаточно электроэнергии, чтобы удовлетворить потребности большого города в энергии.

    В дополнение к использованию электричества, которое мы уже обсуждали, недавно военно-морской флот начал рассматривать другие применения электричества, такие как использование рельсотрона. Рельсотрон — это электрическая пушка, которая использует снаряды кинетической энергии, которые обладают огромным разрушительным потенциалом.

    Джеймс Клерк Максвелл. Статуя Александра Стоддарта. Фото Ad Meskens / Wikimedia Commons

    Немного истории

    С развитием надежных источников энергии для постоянного тока (DC), таких как гальваническая батарея, созданная итальянским физиком Алессандро Вольта, многие выдающиеся ученые по всему миру начали изучать свойства электрический ток и вызываемые им физические явления, а также его практическое использование в науке и технике.«Звездный список» ученых включает Георга Ома, который вывел закон Ома для описания поведения электрического тока в основной электрической цепи; немецкий физик Густав Кирхгоф, разработавший расчеты для более сложных электрических цепей; и французский физик Андре Мари Ампер, открывший закон, описывающий свойства замкнутого контура, на который действует магнитное поле и через него проходит электрический ток. Этот закон известен теперь как круговой закон Ампера. Независимая работа английского физика Джеймса Прескотта Джоуля и русского ученого Генриха Ленца завершилась открытием закона джоулева нагрева, который количественно определяет тепловой эффект электрического тока.

    Хендрик Антун Лоренц, картина Менсо Камерлинг-Оннеса (1860–1925) в 1916 году.

    Работы Джеймса Клерка Максвелла были посвящены дальнейшему исследованию свойств электрического тока и заложили основу современной электродинамики. Теперь эти работы известны как уравнения Максвелла. Максвелл также разработал теорию электромагнитного излучения и предсказал многие явления, такие как электромагнитные волны, радиационное давление и другие. Позже существование электромагнитных волн было экспериментально доказано немецким физиком Генрихом Рудольфом Герцем.Его работы по отражению, интерференции, дифракции и поляризации электромагнитных волн были использованы при изобретении радио.

    Жан-Батист Био (1774–1862)

    Несколько экспериментальных работ французских физиков Жана-Батиста Био и Феликса Савара о проявлении магнетизма в присутствии электрического тока, обобщенных в законе Био – Савара, и исследованиях блестящего французского математика Пьера-Симона Лапласа, который обобщил приведенные выше экспериментальные результаты как математическую абстракцию, впервые установил связь между двумя сторонами одного явления и положил начало изучению электромагнетизма.Гениальный британский физик Майкл Фарадей продолжил их работу и открыл электромагнитную индукцию. Современная электротехника построена на работах Фарадея.

    Физик из Нидерландов Хендрик Лоренц внес ценный вклад в объяснение природы электрического тока. Он разработал классическую теорию электронов и предположил, что атомы состоят из более мелких заряженных частиц и что свет является результатом колебаний этих частиц. Он также вывел уравнение для описания силы, действующей на движущийся заряд изнутри электромагнитного поля.Эта сила известна как сила Лоренца.

    Определение электрического тока

    Электрический ток можно определить как упорядоченное движение заряженных частиц. Учитывая это определение, электрический ток измеряется количеством заряженных частиц, которые проходят через поперечное сечение проводника за заданную единицу времени.

    I = q / t , где q — заряд в кулонах, t — время в секундах, а I — электрический ток в амперах.

    Другое определение электрического тока зависит от свойств проводников и описывается законом Ома:

    I = V / R , где V — напряжение в вольтах, R — сопротивление в омах. , I — ток в амперах.

    Электрический ток измеряется в амперах (A) и единицах, производных от них, таких как наноампер (одна миллиардная часть ампера, нА), микроампер (одна миллионная часть ампера, мкА), миллиампер (тысячная часть ампера, мА). ), килоампер (тысяча ампер, кА) и мегаампер (миллион ампер, МА).

    В СИ единицей измерения электрического тока является

    [А] = [C] / [s]

    Поведение электрического тока в различных средах

    Алюминий является очень хорошим проводником и широко используется в электропроводке.

    Электрический ток в твердых материалах, включая металлы, полупроводники и диэлектрики

    При рассмотрении электрического тока мы должны учитывать среду, которая его переносит, в частности, заряженные частицы, присутствующие в материале или веществе в текущем состоянии.Этот материал или вещество может быть твердым, жидким или газообразным. Уникальным примером различных состояний вещества является монооксид дигидрогена или оксид водорода, известный нам просто как вода. Мы можем увидеть его твердым, если посмотрим на лед из морозильника, который мы сделали для охлаждения напитков — большинство из них основаны на воде. С другой стороны, при приготовлении чая или растворимого кофе мы используем кипяток. Если бы мы подождали, пока вода закипит, прежде чем налить ее в чайник, мы бы увидели «туман», выходящий из носика чайника — этот туман состоит из капель воды, образовавшихся из газообразного состояния воды (пара), которое выходит из носика и контактирует с холодным воздухом.

    Существует еще одно состояние вещества, известное как плазма. Низкотемпературная плазма составляет верхние слои звезд, ионосферу Земли, пламя, электрическую дугу и вещество внутри люминесцентных ламп, и это лишь несколько примеров. Трудно воссоздать высокотемпературную плазму в лаборатории, поскольку для этого требуются чрезвычайно высокие температуры, превышающие 1 000 000 К.

    Эти высоковольтные автоматические выключатели содержат два основных компонента: размыкающие контакты и изолятор, соединяющий два провода вместе.

    По своей структуре твердые материалы можно разделить на кристаллические и аморфные. Первые имеют структурированную кристаллическую решетку. Атомы и молекулы такого вещества образуют двух- или трехмерные кристаллические решетки. Кристаллические твердые тела включают металлы, их сплавы и полупроводники. Мы можем легко визуализировать кристаллические твердые тела, представляя снежинки, которые представляют собой кристаллы уникальной формы. Аморфные вещества не имеют кристаллической решетки. Диэлектрики обычно аморфны.

    В нормальных условиях электрический ток течет через твердые тела благодаря движению свободных электронов, которые становятся несвязанными в результате отрыва валентных электронов от атома. Мы также можем разделить твердые тела в зависимости от характера потока электричества внутри них на проводники, полупроводники и изоляторы. Свойства различных материалов определяются на основе дискретной электронной зонной структуры. Это зависит от ширины запрещенной зоны, в которой нет электронов.Изоляторы имеют самую широкую запрещенную зону, которая иногда может достигать 15 эВ. Изоляторы и полупроводники не имеют электронов в проводящем промежутке при температуре абсолютного нуля, но при комнатной температуре некоторые электроны были бы удалены из валентных зон из-за тепловой энергии. В проводниках, таких как металлы, зона проводимости перекрывается с валентными зонами. Вот почему даже при абсолютном нуле существует большое количество электронов, и это все еще верно, когда температура повышается до точки плавления.Эти электроны позволяют электрическому току проходить через материал. Полупроводники имеют небольшую ширину запрещенной зоны, и их способность проводить электричество во многом зависит от температуры, излучения и других факторов, таких как присутствие примесей.

    Трансформатор с ламинированным сердечником. По бокам хорошо видны двутавровые и Е-образные стальные листы.

    Сверхпроводники создают особые условия для электрического тока. Это материалы с нулевым сопротивлением прохождению электрического тока.Электроны проводимости этих материалов образуют группы частиц, которые связаны друг с другом за счет квантовых эффектов.

    Как следует из названия, изоляторы плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания электрического тока между проводящими поверхностями из разных материалов.

    В дополнение к электрическому току, протекающему по проводникам, когда магнитное поле постоянное, когда магнитное поле переменное, его изменения вызывают явление, известное как вихревые токи, которые также называются токами Фуко.Чем больше скорость изменения магнитного поля, тем сильнее вихревые токи. Они не текут по определенному маршруту, но вместо этого они текут в замкнутых контурах в проводнике.

    Вихревые токи вызывают скин-эффект, который представляет собой тенденцию протекания переменного электрического тока (AC) и магнитного потока в основном вдоль поверхностного слоя проводника, что приводит к потере энергии. Чтобы уменьшить эти потери на вихревые токи в сердечниках трансформаторов, их магнитные цепи разделены. Это делается путем наложения слоев тонких стальных изолированных пластин, которые образуют сердечник трансформатора.

    Хромированная пластиковая лейка для душа

    Электрический ток в жидкостях (электролитах)

    Все жидкости могут в определенной степени проводить электрический ток при приложении к ним электрического напряжения. Жидкости, проводящие электрический ток, называются электролитами. Электрический ток переносится положительно и отрицательно заряженными ионами, известными соответственно как катионы и анионы, которые присутствуют в жидкости из-за электролитической диссоциации. В электролитах ток течет из-за движения ионов по сравнению с током, возникающим из-за движения электронов в металлах.Этот ток в электролитах характеризуется перемещением вещества к электродам и образованием новых химических элементов вокруг электродов или отложением этих новых веществ на электроде.

    Это явление легло в основу электрохимии и позволяет количественно определять эквивалентный вес различных химических веществ. Это позволило превратить неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать химические источники энергии в виде первичных (или одноразовых) и аккумуляторных батарей и топливных элементов.Это, в свою очередь, позволило совершить скачок в развитии технологий. Просто заглянув под капот вашего автомобиля и изучив автомобильный аккумулятор, вы сможете увидеть результаты десятилетий работы исследователей и инженеров.

    Автомобильный аккумулятор, установленный в 2012 году Honda Civic

    Многие производственные процессы, зависящие от протекания электрического тока в электролитах, могут придать привлекательный вид конечному продукту (например, хромовое и никелевое гальваническое покрытие) и защитить объекты от коррозии.Электроосаждение и электротравление — фундаментальные процессы в современной электротехнике при создании различных электронных компонентов. Эти процессы очень часто используются, например, в микропроизводстве, и количество электронных компонентов, производимых с использованием этих технологий, достигает десятков миллиардов в год.

    Электрический ток в газах

    Поток электрического тока в газах зависит от количества в нем свободных электронов и ионов. Из-за большего расстояния между частицами газа по сравнению с жидкостями и твердыми телами молекулы и ионы в газах обычно проходят большие расстояния, прежде чем столкнуться.Из-за этого протекание электричества в газах в нормальных условиях затруднено. То же верно и для смесей газов. Примером смеси газов является воздух, который в электротехнике считается хорошим изолятором. В обычных условиях многие другие смеси газов также являются хорошими изоляторами.

    Неоновая лампа для проверки отвертки показывает наличие напряжения 220 В.

    Поток электричества в газах зависит от различных физических факторов, таких как давление, температура и компоненты, составляющие эту смесь.Кроме того, ионизирующее излучение тоже играет роль. Например, газ может проводить электричество, если его облучают ультрафиолетовым или рентгеновским излучением, если на него воздействуют катодные или анодные частицы или частицы, испускаемые радиоактивным веществом, или даже если температура этого газа высока.

    Когда энергия поглощается электрически нейтральными атомами или молекулами газа и когда образуются ионы, этот эндотермический процесс называется ионизацией. Когда энергия достигает определенного порога, электрон или группа электронов преодолевают потенциальный барьер и покидают атом или молекулу, становясь, таким образом, свободными электронами.Атом или молекула, которую оставили электроны, тоже больше не нейтральны, они заряжены положительно. Свободные электроны могут присоединяться к нейтрально заряженным атомам или молекулам и образовывать отрицательно заряженные ионы. Положительно заряженные ионы могут забирать отрицательно заряженные электроны при столкновении с ними и, таким образом, снова становиться нейтральными. Этот процесс называется рекомбинацией.

    Когда электрический ток течет через газ, его состояние изменяется. Это приводит к сложной зависимости между электрическим током и напряжением, которая более или менее регулируется законом Ома, но только при малых электрических токах.

    Электрические разряды в газах могут быть как несамостоятельными, так и самоподдерживающимися. Несамостоятельные разряды создают электрический ток, который возможен только при наличии внешних ионизирующих факторов. Когда они отсутствуют, электрический ток через газ не течет. С другой стороны, во время самоподдерживающихся разрядов электрический ток поддерживается за счет ионизации нейтральных атомов и молекул в газе, которые были ускорены электрическим полем при столкновении со свободными электронами и ионами.В этих условиях электрический ток возможен даже без внешних ионизирующих факторов.

    Вольт-амперные характеристики бесшумного разряда

    Когда разность потенциалов между анодом и катодом мала, несамостоятельный разряд называют тихим или таунсендовским. С увеличением напряжения увеличивается и сила тока. Сначала это увеличение пропорционально напряжению (участок OA на вольт-амперной характеристике бесшумного разряда), но постепенно скорость нарастания замедляется (участок AB на графике).Когда все оторвавшиеся частицы, которые высвободились в результате процесса ионизации, движутся к катоду и аноду одновременно, увеличения тока не происходит (участок BC на графике). Если напряжение снова увеличивается, ток также увеличивается, и бесшумный разряд становится несамостоятельным лавинным зарядом. Примером несамостоятельного разряда является тлеющий разряд в газоразрядных лампах высокого давления различного назначения.

    Когда несамостоятельный разряд трансформируется в самостоятельный разряд, электрический ток увеличивается (точка E на кривой).Этот момент известен как электрический пробой.

    Электронная фотовспышка с ксеноновой трубкой (красный прямоугольник)

    Все различные типы зарядов, описанные выше, являются стационарными или установившимися разрядами. Их свойства не зависят от времени. Помимо этих разрядов, существуют также нестабильные разряды, которые обычно возникают в очень неравномерных электрических полях, например, на заостренных или искривленных поверхностях проводников или электродов. Существует два типа неравномерных разрядов: коронный разряд и искровой разряд.

    Ионизация при коронном разряде не вызывает электрического пробоя. Этот разряд вызывает повторяющийся процесс запуска несамостоятельного разряда в небольшом ограниченном пространстве вокруг проводника. Хорошим примером коронного разряда является свечение в воздухе вокруг антенн, громоотводов или линий электропередач высоко над землей. Коронный разряд вокруг линий электропередач вызывает потерю энергии. Раньше это сияние было знакомо мореплавателям — свечение вокруг мачт кораблей было известно как св.Элмо огонь. Коронный разряд используется в лазерных принтерах и копировальных аппаратах. Он генерируется устройством, создающим коронный разряд, металлической струной, к которой приложено высокое напряжение. Коронный разряд ионизирует газ, который, в свою очередь, ионизирует светочувствительный барабан. В этом случае полезен коронный разряд.

    По сравнению с коронным разрядом электростатический разряд вызывает электрический пробой. Это похоже на прерывистые светлые нити, которые разветвляются и заполнены ионизированным газом. Они появляются и исчезают, производя большое количество тепла и света.Типичным примером естественного электростатического разряда является молния. Электрический ток в нем может достигать десятков килоампер. Прежде чем может произойти молния, необходимо создать нисходящую группу лидеров, известную как лидер или искра. Вместе со ступенчатым лидером он образует строение лидера. Молния обычно состоит из множественных электростатических разрядов в нисходящей формации лидера для разряда отрицательной молнии «облако-земля». В электронных вспышках в фотографии используется мощный электростатический разряд.Разряд здесь образуется между электродами импульсной лампы из кварцевого стекла, заполненного смесью благородных ионизированных газов.

    Когда электрический разряд сохраняется в течение длительного периода времени, он называется электрической дугой. Электрическая дуга используется в дуговой сварке, которая является незаменимой технологией в современном строительстве, используется для возведения стальных конструкций различного размера и назначения, от небоскребов до авианосцев и автомобилей. Электрическая дуга используется не только для соединения материалов, но и для их резки.Разница между этими двумя процессами заключается в силе используемого тока. Сварка происходит при относительно более низких токах, в то время как для резки требуются более высокие токи электрической дуги. Само порезание происходит при удалении расплавленного металла, и для его удаления используются разные методы.

    Еще одно применение электрической дуги в газах — газоразрядные лампы, которые отгоняют тьму на наших улицах, площадях и стадионах (в этих условиях обычно используются натриевые лампы).Металлогалогенные лампы, которые заменили лампы накаливания в автомобильных фарах, также используют эту технологию.

    Электрический ток в вакууме

    Вакуумная трубка в передающей станции. Канадский музей науки и техники, Оттава

    Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только в том случае, если свободные носители тока, такие как электроны или ионы, генерируются посредством термоэлектронной эмиссии, фотоэлектрической эмиссии или других способами.

    Подобные телекамеры использовались в 1980-х годах.Канадский музей науки и техники, Оттава

    Основным методом получения электрического тока в вакууме с использованием электронов является термоэлектрическая эмиссия электронов металлами. Когда электрод нагревается (он называется горячим катодом), он испускает электроны в трубку. Эти электроны вызывают электрический ток, пока присутствует другой электрод (называемый анодом), и пока между ними существует определенное напряжение требуемой полярности. Такие вакуумные лампы называются диодами и проводят электрический ток только в одном направлении.Они блокируют ток, если есть попытка заставить ток течь в обратном направлении. Это свойство используется для преобразования переменного тока (AC) в постоянный (DC) посредством процесса выпрямления. Это делается системой диодов.

    Если рядом с катодом добавить дополнительный электрод, известный как сетка, мы получим устройство, называемое триодом, которое значительно усиливает даже небольшие изменения напряжения в управляющей сетке относительно катода. В результате это изменяет ток и напряжение на нагрузке, которая последовательно подключена к вакуумной лампе, относительно источника питания.Эта система, называемая усилителем, используется для усиления различных сигналов.

    Использование электронных ламп с большим количеством управляющих сеток, таких как тетроды, пентоды и даже пятиэлектродные преобразователи с семью электродами, было революционным в создании и усилении радиосигналов и позволило создать современные системы радио- и телевещания.

    Современный видеопроектор

    Исторически радио было разработано первым, потому что было относительно легко разработать методы преобразования и передачи относительно низкочастотных сигналов, а также разработать схему для приемных устройств, которые могут усиливать и смешивать радиочастоты для их преобразования. в акустический сигнал посредством процесса демодуляции.

    Когда было изобретено телевидение, электронные лампы, называемые иконоскопами, использовались для испускания электронов за счет фотоэлектрического эффекта падающего на них света. Дальнейшее усиление сигнала производилось ламповым усилителем. Для просмотра захваченного и переданного изображения использовались электронно-лучевые трубки (ЭЛТ), которые также были электронными лампами. В ЭЛТ изображение создавалось на экране путем обратного преобразования сигнала. Это было сделано путем ускорения электронов до высокой скорости с помощью одной (или трех для цветного телевидения) электронных пушек в сильном электрическом поле.Поле создавалось приложением большого напряжения между катодом электронной пушки и анодом ЭЛТ. Пучки высокоскоростных электронов направлялись на экран, покрытый люминесцентным материалом, и с него излучался видимый свет. Изображение было создано двумя взаимно синхронизированными системами: одна считывала сигнал с иконоскопа, а другая выполняла растровое сканирование. Первые электронно-лучевые трубки были монохромными.

    SU3500 Сканирующий электронный микроскоп. Департамент материаловедения и инженерии.Университет Торонто

    Вскоре после этого было разработано цветное телевидение. Иконоскопы в цветном телевидении были гибридными системами, которые реагировали только на свет определенного цвета, будь то красный, синий или зеленый. Цветные люминофорные точки электронно-лучевых трубок телевизора излучали свет за счет электрического тока, создаваемого электронной пушкой. Они реагировали на ударяющие по ним ускоренные электроны и излучали свет определенного цвета и яркости. Были использованы специальные теневые маски, чтобы лучи каждой цветной электронной пушки попадали на точки люминофора правильного цвета.

    Современные технологии теле- и радиовещания используют более современные материалы на основе полупроводников, которые потребляют меньше энергии.

    Одним из широко используемых методов получения изображения внутренних органов является рентгеноскопия. Катод испускает электроны, которые разгоняются до такой скорости, что при попадании на анод генерируют рентгеновское излучение, которое может проникать в мягкие ткани человеческого тела. Рентгенограммы дают врачам уникальную информацию о состоянии костей, зубов и некоторых внутренних органов и даже могут помочь определить такие заболевания, как рак легких.

    Лампа бегущей волны С-диапазона. Канадский музей науки и техники, Оттава

    В общем, электрические токи, образованные движением электронов в вакууме, находят широкое применение. Вакуумные лампы, ускорители частиц, масс-спектрометры, электронные микроскопы, генераторы вакуума высокой частоты, такие как лампы бегущей волны, клистроны и резонаторные магнетроны, — это лишь некоторые из примеров того, как мы используем этот тип электрического тока. Следует отметить, что именно магнетроны нагревают и готовят пищу в микроволновых печах.

    Недавняя очень ценная технология, использующая электрический ток в вакууме, — это осаждение тонких пленок в вакууме. Эти пленки выполняют декоративную или защитную функцию. Материалы, используемые в этой технике, — это металлы, их сплавы и их соединения с кислородом, азотом и углеродом. Эти пленки либо изменяют, либо сочетают в себе электрические, оптические, механические, магнитные, каталитические и связанные с коррозией свойства поверхности, которую они покрывают.

    Для получения комплексного соединения пленки используется технология ионно-лучевого осаждения.Некоторыми примерами этой технологии являются катодно-дуговое напыление и его коммерческий вариант мощного импульсного магнетронного распыления. В конце концов, именно электрический ток создает пленочное покрытие на поверхности благодаря ионам.

    Ионно-лучевое распыление создает пленки из нитридов, карбидов и оксидов металлов, которые обладают необычайным набором механических, теплофизических и оптических свойств, включая твердость, долговечность, электро- и теплопроводность и оптическую плотность.Другим способом добиться этих результатов невозможно.

    Электрический ток в биологии и медицине

    Макет операционной в Институте знаний Ли Ка Шинг, Торонто, Канада. Пациенты-роботы-манекены, которые могут моргать, дышать, плакать, истекать кровью и моделировать болезни, используются для обучения

    Понимание поведения электрического тока внутри биологических систем дает биологам и врачам мощный инструмент для исследований, диагностики и лечения.

    С точки зрения электрохимии все биологические объекты содержат электролиты, независимо от их структуры.

    При рассмотрении того, как электрический ток проходит через биологический объект, мы должны учитывать состояние клеток этого объекта. В этом отношении клеточная мембрана является важной структурой, которую необходимо учитывать. Это внешний слой каждой клетки, который защищает клетку от негативного воздействия окружающей среды за счет избирательной проницаемости для различных веществ. Другими словами, он пропускает одни вещества, а другие останавливает. С точки зрения физики, мы можем рассматривать эту мембрану как эквивалентную схему, которая состоит из параллельного соединения конденсатора с несколькими цепями, которые имеют последовательное соединение между источником электрического тока и резистором.Благодаря такой структуре электропроводность этого биологического объекта зависит от частоты приложенного напряжения и типов напряжения.

    Трехмерное изображение волоконных путей, соединяющих различные области мозга. Это изображение было получено с использованием метода неинвазивной диффузионной тензорной визуализации (DTI)

    Биологическая ткань состоит из клеток, внеклеточной жидкости, кровеносных сосудов и нервных клеток. При подаче электрического тока нервные клетки возбуждаются и посылают сигналы о сокращении или расслаблении мышц и кровеносных сосудов животного.Следует отметить, что течение электрического тока в биологических тканях нелинейно.

    Классическим примером воздействия электрического тока на биологический объект является серия экспериментов итальянского врача, физика и биолога Луиджи Гальвани, который считается одним из отцов-основателей электрохимии. В этих экспериментах он пропустил электрический ток по нервам лягушачьей лапы, и это вызвало сокращение мышц и движение ноги. В 1791 году его открытия были описаны в отчете об электрических силах в движении мышц.Долгое время в учебниках явление, открытое Гальвани, именовалось гальванизмом. Даже сейчас этот термин иногда используется для обозначения определенных процессов и устройств.

    Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году британский хирург и врач Ричард Кейтон и русский врач Василий Данилевский независимо друг от друга показали, что мозг может генерировать электричество. Другими словами, они обнаружили ионный ток, протекающий в мозгу.

    Биологические объекты могут генерировать не только микротоки, но также значительные напряжения и токи в рамках своего повседневного функционирования.Задолго до работ Гальвани британский биолог Джон Уолш доказал электрическую природу защитной системы электрического луча. Шотландский хирург и физиолог Джон Хантер подробно описал механизм, с помощью которого электрические лучи генерируют электричество. Результаты их исследования были опубликованы в 1773 году.

    Функциональная магнитно-резонансная томография (фМРТ) — это неинвазивный метод, который позволяет врачам измерять активность мозга, обнаруживая изменения в кровотоке.

    Современная медицина и биология используют различные методы для исследования. живые организмы, которые включают как инвазивные, так и неинвазивные методы.

    Классическим примером инвазивного метода является исследование крыс, которые бегают по лабиринту или выполняют другие задания с имплантированными в их мозг электродами.

    С другой стороны, неинвазивные методы — это такие широко известные методы диагностики, как электроэнцефалография и электрокардиография. В этих процедурах электроды, контролирующие электрические токи в головном мозге или сердце, используются для измерения на коже человека или животного под наблюдением. Чтобы улучшить контакт с электродами, на кожу наносят физиологический раствор, поскольку он является хорошим электролитом и может хорошо проводить электрический ток.

    Помимо использования электрического тока для исследований и наблюдения за состоянием различных химических процессов и реакций, одним из наиболее эффективных способов использования электричества является дефибрилляция, которая в фильмах иногда изображается как «перезапуск» сердца, которое уже остановилось. работающий.

    Тренировочный автоматический внешний дефибриллятор (AED)

    Действительно, запуск кратковременного импульса значительной величины может иногда (но очень редко) перезапустить сердце. Однако чаще используются дефибрилляторы, чтобы скорректировать аритмическое биение сердца и вернуть его к норме.Хаотические аритмические сокращения известны как фибрилляция желудочков, и поэтому устройство, которое возвращает сердце в норму, называется дефибриллятором. Современные автоматизированные внешние дефибрилляторы могут регистрировать электрическую активность сердца, определять фибрилляцию желудочков сердца, а затем рассчитывать силу тока, необходимую пациенту, на основе этих факторов. Во многих общественных местах теперь есть дефибрилляторы, и медицинское сообщество надеется, что эта мера предотвратит множество смертей, вызванных дисфункцией сердца пациента.

    Медработники обучены определять физиологическое состояние сердечной мышцы по электрокардиограмме и быстро принимать решения о лечении, намного быстрее, чем это могут сделать автоматические внешние дефибрилляторы, доступные для населения.

    Отдельно стоит упомянуть об искусственных кардиостимуляторах, контролирующих сердечные сокращения. Эти устройства имплантируются под кожу или под грудную мышцу пациента и передают импульсы электрического тока напряжением около 3 В через электрод в сердечную мышцу.Это стимулирует нормальный сердечный ритм. Современные кардиостимуляторы могут проработать 6–14 лет, прежде чем потребуется их замена.

    Характеристики электрического тока, его генерация и использование

    Электрический ток характеризуется его величиной и типом. В зависимости от его поведения типы электрического тока делятся на постоянный или постоянный ток (он не изменяется со временем), гармонический ток (он изменяется случайным образом со временем) и переменный ток или переменный ток (он изменяется со временем в соответствии с определенной схемой, обычно это регулируется периодическим законом).Для некоторых задач требуется как постоянный, так и переменный ток. В данном случае мы говорим об переменном токе с постоянной составляющей.

    Термоядерный реактор Токамак де Варенн. Варенн, Квебек, 1981. Канадский музей науки и техники, Оттава

    Исторически первый трибоэлектрический генератор электрического тока, машина Вимшерста, создавала его, натирая шерстью кусок янтаря. Более совершенные генераторы того же типа теперь называются генераторами Ван де Граафа — они названы в честь изобретателя самой ранней из этих машин.

    Как мы уже говорили ранее, электрохимический генератор был изобретен итальянским физиком Алессандро Вольта. Этот генератор получил дальнейшее развитие в современных сухих аккумуляторных батареях, аккумуляторных батареях и топливных элементах. Мы до сих пор используем их, потому что это очень удобные источники энергии для всех видов устройств, от часов и смартфонов до автомобильных аккумуляторов и аккумуляторов электромобилей Tesla.

    В дополнение к генераторам постоянного тока, описанным выше, существуют также генераторы, использующие ядерное деление изотопов, известные как атомные батареи, а также магнитогидродинамические генераторы, которые сегодня имеют очень ограниченное применение из-за их низкой мощности и технических ограничений. их конструкции и по ряду других причин.Тем не менее генераторы радионуклидов используются в энергонезависимых системах, например, в космосе, в автономных подводных аппаратах и ​​гидроакустических станциях, в маяках, внутри маяковых буев, а также в Арктике и Антарктике.

    Коммутатор в мотор-генераторной установке, 1904. Канадский музей науки и техники, Оттава

    В электротехнике генераторы делятся на генераторы постоянного и переменного тока.

    Все эти генераторы работают благодаря электромагнитной индукции, открытой Майклом Фарадеем в 1831 году.Фарадей построил первый униполярный генератор малой мощности, который генерировал постоянный ток. Что касается первого генератора переменного тока, то история гласит, что он был описан Фарадею в 1832 году в анонимном письме, подписанном как «П. М. » После публикации этого письма Фарадей через год получил еще одно, в котором он благодарил и предлагал усовершенствовать конструкцию, добавив стальное кольцо для переноса магнитного потока магнитных полюсов катушек. Однако неясно, соответствует ли эта история действительности.

    В то время применение переменного тока еще не было найдено, поскольку для всех практических применений электричества в то время требовался постоянный ток, включая ток, используемый в минной войне, электрохимии, недавно разработанном электротелеграфии и первых электродвигателях.Вот почему многие изобретатели сосредоточились пока на улучшении генераторов постоянного тока, изобретая для этого различные коммутационные устройства.

    Одним из первых генераторов, получивших практическое применение, был магнитоэлектрический генератор, созданный немецким и российским исследователем Морицем фон Якоби, работавшим в России с 1835 по 1874 год. Он использовался минными отрядами ВМФ Российской армии для воспламенения взрывателей. морских мин. Улучшенные генераторы этого типа используются и по сей день для активации мин, и их часто можно увидеть в фильмах о Второй мировой войне, где партизаны или диверсанты используют их для взрыва мостов, схода с рельсов поездов и других подобных приложений.

    Линза лазера с приводом компакт-дисков

    С тех пор ведущие инженеры соревновались друг с другом в улучшении генераторов переменного и постоянного тока, создав окончательное противостояние между двумя титанами современной области производства электроэнергии, с Томасом Эдисоном из General Electric на одном с другой стороны, Никола Тесла из Westinghouse. Победил больший капитал, и технологии Tesla для генерации, транспортировки и преобразования переменного тока стали наследием американского общества. Это дало значительный толчок к развитию экономики США и вывело страну на лидирующие позиции в мире.

    В дополнение к способности производить электричество для различных нужд, которая зависела от преобразования механического движения в электричество из-за обратимости электрических машин, стала реальностью еще одна возможность обратного преобразования электрического тока в механическое движение. Это было сделано с помощью электрических двигателей, работающих на постоянном и переменном токе. Можно сказать, что эти типы машин являются одними из наиболее широко используемых технологий, и они включают стартеры автомобилей и мотоциклов, приводы коммерческих машин и станков, а также бытовые устройства и электронику.Благодаря этим устройствам мы научились выполнять различные задачи, такие как резка, сверление и формование. Благодаря этим технологиям мы также используем оптические диски, такие как компакт-диски и жесткие диски, в наших компьютерах — без них мы не смогли бы создать миниатюрные прецизионные электродвигатели постоянного тока.

    Помимо привычных нам электромеханических двигателей, ионные двигатели также работают за счет электрического тока. Эти двигатели используют принцип движения за счет испускания ускоренных ионов данного вещества.В настоящее время они используются в космосе в основном для вывода на орбиту небольших спутников. Очень вероятно, что будущие технологии 22-го века, такие как фотонные лазерные двигатели, которые все еще разрабатываются и которые будут вести наши межзвездные корабли на скоростях, приближающихся к скорости света, также будут зависеть от электрического тока.

    Аналоговый мультиметр со снятой верхней крышкой

    Генераторы постоянного тока можно также использовать для выращивания кристаллов для электронных компонентов.Этот процесс требует дополнительных стабильных генераторов постоянного тока. Такие прецизионные твердотельные генераторы электрического тока называются стабилизаторами тока.

    Измерение электрического тока

    Следует отметить, что устройства для измерения электрического тока, такие как микроамперметры, миллиамперметры и амперметры, сильно отличаются друг от друга, в зависимости от их конструкции и принципов измерения, которые они используют. К ним относятся амперметры постоянного тока, амперметры переменного тока низкой частоты и амперметры переменного тока высокой частоты.

    Измерительные механизмы этих устройств можно разделить на подвижную катушку, подвижное железо, подвижный магнит, электродинамические, индукционные, термоанемометрические и цифровые амперметры. Большинство аналоговых амперметров включает подвижную или неподвижную раму с намотанной катушкой и неподвижными или подвижными магнитами. Благодаря такой конструкции типичный амперметр имеет эквивалентную схему, которая представляет собой последовательное соединение катушки индуктивности и резистора с конденсатором, подключенным параллельно им. Из-за этого аналоговые амперметры недостаточно чувствительны для измерения высокочастотного тока.

    Подвижная катушка с иглой и спиральными пружинами измерителя, использованная в аналоговом мультиметре выше. Некоторые люди по-прежнему предпочитают аналоговые мультиметры, которые практически не изменились с 1890-х годов.

    Основное измерительное устройство амперметра состоит из миниатюрного гальванометра. Его диапазоны измерения создаются за счет использования дополнительных шунтирующих резисторов с малым сопротивлением, и это сопротивление ниже, чем у обычного гальванометра. Таким образом, используя одно устройство в качестве основы, можно создавать различные измерительные устройства для измерения токов с разными диапазонами, включая микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

    Обычно при электрических измерениях важно поведение тока. Он может быть измерен как функция времени и иметь разные типы, например постоянный, гармонический, гармонический, импульсный и т. Д. Его величина характеризует способ работы электронных схем и устройств. Идентифицируются следующие значения тока:

    • мгновенное,
    • размах амплитуды,
    • среднее,
    • среднеквадратичная амплитуда.

    Мгновенный ток I i — значение тока в любой момент времени.Его можно просмотреть на экране осциллографа и измерить для каждого момента времени, глядя на осциллограф.

    Размах амплитуды тока I м — наибольшее мгновенное значение тока за данный период времени.

    Среднеквадратичное значение амплитуды тока I находится как квадратный корень из среднего арифметического квадратов мгновенных токов для периода формы сигнала.

    Все аналоговые амперметры обычно измеряют среднеквадратичное значение амплитуды тока.

    Среднее значение тока — это среднее значение всех значений мгновенного тока за время измерения.

    Разница между максимальным и минимальным значением электрического тока называется размахом сигнала.

    В наши дни для измерения электрического тока широко используются мультиметры и осциллографы. Оба этих устройства предоставляют информацию не только о форме , тока или напряжения, но и о других важных характеристиках сигнала.К ним относятся частота периодических сигналов, и поэтому важно знать предел частоты измерительного устройства при измерении электрического тока.

    Измерение электрического тока с помощью осциллографа

    Проиллюстрируем сказанное выше серией экспериментов по измерению активных и пиковых значений тока синусоидального и треугольного сигналов. Мы будем использовать генератор сигнала, осциллограф и мультиметр.

    Схема эксперимента 1 показана ниже:

    Генератор сигналов FG подключен к нагрузке, которая состоит из мультиметра (MM), соединенного последовательно с шунтом Rs и нагрузочным резистором R.Сопротивление шунтирующего резистора R s составляет 100 Ом, а сопротивление нагрузочного резистора R — 1 кОм. Осциллограф ОС подключен параллельно шунтирующему резистору R s . Номинал шунтирующего резистора выбирается из условия R s << R. Проводя этот эксперимент, помним, что рабочая частота осциллографа намного выше рабочей частоты мультиметра.

    Тест 1

    Подаем на нагрузочный резистор синусоидальный сигнал частотой 60 Гц и амплитудой 9 В.Современные осциллографы имеют очень удобную кнопку Auto Set, которая позволяет отображать любой измеренный сигнал, не касаясь других органов управления осциллографа. Нажимаем кнопку Auto Set и наблюдаем за сигналом на экране, как на иллюстрации 1. Здесь диапазон сигнала составляет около пяти больших делений, а значение каждого деления составляет 200 мВ. Мультиметр показывает значение электрического тока как 3,1 мА. Осциллограф определяет среднеквадратичную амплитуду на резисторе как U = 312 мВ. Среднеквадратичное значение тока на резисторе R s можно определить по закону Ома:

    I RMS = U RMS / R = 0.31 В / 100 Ом = 3,1 мА,

    , что соответствует значению 3,1 мА на мультиметре. Обратите внимание, что диапазон тока в нашей цепи, состоящей из двух последовательно включенных резисторов и мультиметра, равен

    I PP = U PP / R = 0,89 В / 100 Ом = 8,9 мА

    Мы знаем, что пиковый и фактические значения электрического тока и напряжения отличаются в √2 раза. Если мы умножим I RMS = 3,1 мА на √2, мы получим 4,38. Удвоим это значение — получим 8.8 мА, что очень близко к измеренному осциллографом току (8,9 мА).

    Test 2

    Теперь уменьшим генерируемый сигнал вдвое. Диапазон сигнала на осциллографе также уменьшится примерно вдвое (463 мВ), а мультиметр покажет значение, которое также примерно уменьшено вдвое и составляет 1,55 мА. Определим значение активного тока на осциллографе:

    I RMS = U RMS / R = 0,152 В / 100 Ом = 1,52 мА,

    что примерно такое же значение, которое показывает мультиметр (1 .55 мА).

    Test 3

    Теперь увеличим частоту генератора до 10 кГц. Изображение на осциллографе изменится, но диапазон сигнала останется прежним. Значение на мультиметре уменьшится — это связано с диапазоном частот мультиметра.

    Тест 4

    Давайте снова воспользуемся начальной частотой 60 Гц и напряжением 9 В, но изменим форму сигнала на генераторе с синусоидальной на треугольную. Диапазон сигнала на осциллографе остается прежним, но значение на мультиметре уменьшается по сравнению со значением тока, которое он показал в тесте 1.Это связано с изменением среднеквадратичного значения тока. Осциллограф показывает приведенное значение среднеквадратичного напряжения, измеренного на резисторе R s = 100 Ом.

    Меры безопасности при измерении электрического тока и напряжения

    Пьедестал для самостоятельной камеры с телесуфлером и тремя мониторами для домашней видеостудии

    • При измерении тока и напряжения мы должны помнить, что в зависимости от того, насколько безопасно здание, например, относительно малое напряжение 12–36 В может быть опасным и даже опасным для жизни.Поэтому крайне важно соблюдать следующие меры безопасности.
    • Не измеряйте токи, если для измерения требуются специальные навыки (например, измерение токов в цепях с напряжением выше 1000 В).
    • Не измеряйте токи в труднодоступных местах и ​​на высоте.
    • При измерении токов в жилой распределительной сети используйте специальные средства защиты, такие как резиновые перчатки, коврики или ботинки.
    • Не используйте сломанные или поврежденные измерительные приборы.
    • При использовании мультиметров убедитесь, что установлены параметры измерения и правильный диапазон измерения.
    • Не используйте измерительный прибор со сломанными зондами.
    • Тщательно следуйте инструкциям производителя по использованию измерительного прибора.

    Эту статью написал Сергей Акишкин

    У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    Перевести миллиампер [мА] в ампер [А] • Преобразователь электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстоянияМассовый преобразователь Конвертер сухого объема и общих измерений при приготовлении пищиПреобразователь площадиОбъема и общих измерений при приготовлении пищиПреобразователь температурыДавление, напряжение, модуль Юнга Конвертер энергии и работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углаКонвертер топливной экономичности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиКонвертер мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения преобразователя инерции Преобразователь момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты C Конвертер температурного интервалаПреобразователь коэффициента теплового расширенияКонвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер абсолютных величин потока Конвертер массового расхода ) Конвертер вязкостиКинематический преобразователь вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL )Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния: оптическая сила Преобразователь (диоптрий) в увеличение (X) Преобразователь электрического зарядаПреобразователь линейной плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь плотности электрического токаПреобразователь линейной плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивления КонвертерПреобразование уровней в дБмВт, дБВ, ваттах и ​​других единицахПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровых изображенийКонвертер единиц измерения объёма древесиныКалькулятор молярной массыПериодическая таблица

    Обзор

    Чесменское сражение Ивана Айвазовского

    Мы обязаны комфортом нашей повседневной жизни электрическому току. Он генерирует излучение в видимом спектре и не только освещает наши дома, но также готовит и разогревает пищу в различных электроприборах, таких как электрические плиты, микроволновые печи и тостеры.Поскольку у нас есть электричество, нам не нужно добывать топливо, чтобы зажечь огонь. Благодаря электричеству мы также можем быстро перемещаться по горизонтальной плоскости внутри поездов, поездов метро и высокоскоростных поездов, а также по вертикальным плоскостям на эскалаторах и лифтах. Мы обязаны теплом и комфортом в наших домах электрическому току, потому что он питает наши электрические обогреватели, кондиционеры и вентиляторы. Различные машины с электрическим приводом значительно упрощают нашу работу как в повседневной жизни, так и в различных отраслях промышленности.Действительно, мы живем в эпоху электричества, потому что именно электричество позволяет нам использовать наши компьютеры, смартфоны, Интернет, телевидение и другие интеллектуальные электронные технологии. Учитывая, насколько удобно использовать электричество как форму энергии, неудивительно, что мы тратим столько усилий на ее выработку.

    Может показаться необычным, но идея практического использования электричества впервые была воспринята некоторыми из наиболее консервативных членов общества — военно-морскими офицерами. В этом элитарном обществе было трудно продвигаться вверх, и столь же трудно было убедить адмиралов, которые начинали юнгой в эпоху парусного спорта, в необходимости перехода на бронированные боевые корабли с паровыми двигателями, но молодые офицеры предпочитали и поддерживали инновации.Благодаря успеху использования огневых кораблей во время русско-турецкой войны 1770 года, которая привела к победе в Чесменской битве, военно-морской флот начал рассматривать возможность модернизации систем защиты порта за счет использования старой береговой артиллерии в сочетании с военно-морскими минами, которые были новаторскими в то время.

    Корабельная радиостанция, ок. 1910. Канадский музей науки и техники, Оттава

    Разработка различных типов морских мин началась в начале XIX века, и наиболее успешные разработки включали автономные мины, активируемые электричеством.В 1870-х годах немецкий физик Генрих Герц разработал устройство для подрыва поставленных на якорь мин с помощью электричества. Одна из разновидностей этого устройства, морская рогатая мина, широко известна и часто появляется в исторических фильмах о войне. Его свинцовый «рог» имеет емкость с электролитом, который разрушается при контакте с корпусом корабля. Электролит питает простую батарею, которая, в свою очередь, подрывает мину.

    Радиостанция Hudson’s Bay Company, ок. 1937. Канадский музей науки и техники, Оттава

    Морские офицеры были одними из первых, кто оценил потенциал свечей Яблочкова, первых источников электрического света.Они были далеки от совершенства, но излучали свет от электрической дуги и раскаленного добела положительного электрода, сделанного из угля. Они использовались для сигнализации поля боя и для освещения поля боя. Использование мощных прожекторов давало преимущество стороне, использовавшей их, для освещения поля боя в ночных боях или для передачи информации и координации действий различных военно-морских частей во время морских сражений. Прожекторы, используемые в маяках, улучшили навигацию в опасных прибрежных водах.

    Вакуумная лампа, ок. 1921. Канадский музей науки и технологий, Оттава

    Неудивительно, что военно-морской флот также был взволнован, чтобы адаптировать технологии, которые позволили беспроводную передачу информации. Большой размер первых передающих устройств не был проблемой для военно-морского флота, потому что на их кораблях было достаточно места для размещения этих удобных, но порой больших машин.

    Электрическое оборудование использовалось для упрощения заряжания пушек на борту кораблей, в то время как силовые электрические механизмы использовались для вращения пушечных турелей и повышали точность и эффективность пушек.Телеграф машинного приказа позволял экипажу общаться и повышал его эффективность, что давало значительное преимущество в бою.

    Одним из самых ужасных случаев использования электрического тока в военно-морском сражении было использование Третьим рейхом подводных лодок рейдеров. Подводные лодки Гитлера, которые действовали с использованием тактики «Волчьей стаи», потопили многие транспортные конвои союзников. Известная история Convoy PQ 17 — один из примеров.

    Drummondville Радиопередатчик, ок. 1926. Канадский музей науки и техники, Оттава

    Британский флот смог получить несколько машин Enigma, используемых немцами для кодирования сообщений, и им удалось взломать их код с помощью Алана Тьюринга, известного как отец современные вычисления.Союзники перехватили радиосвязь немецкого адмирала Карла Дёница, и с этой информацией смогли использовать прибрежные военно-воздушные силы, чтобы загнать в угол Волчью стаю и отбросить ее к берегам Норвегии, Германии и Дании. Благодаря этому с 1943 года рейды ограничились короткими.

    Беспроводной телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

    Гитлер планировал добавить к своим подводным лодкам ракеты Фау-2, чтобы их можно было использовать для атаки на восточное побережье США.Однако быстрое продвижение союзников на Западном и Восточном фронтах помешало ему сделать это.

    Современный флот сложно представить без авианосцев и атомных подводных лодок. Они питаются от ядерных реакторов, которые сочетают в себе технологии 19 века на основе пара, технологии 20 века на основе электричества и ядерные технологии 21 века. Энергетические системы атомных подводных лодок вырабатывают достаточно электроэнергии, чтобы удовлетворить потребности большого города в энергии.

    В дополнение к использованию электричества, которое мы уже обсуждали, недавно военно-морской флот начал рассматривать другие применения электричества, такие как использование рельсотрона. Рельсотрон — это электрическая пушка, которая использует снаряды кинетической энергии, которые обладают огромным разрушительным потенциалом.

    Джеймс Клерк Максвелл. Статуя Александра Стоддарта. Фото Ad Meskens / Wikimedia Commons

    Немного истории

    С развитием надежных источников энергии для постоянного тока (DC), таких как гальваническая батарея, созданная итальянским физиком Алессандро Вольта, многие выдающиеся ученые по всему миру начали изучать свойства электрический ток и вызываемые им физические явления, а также его практическое использование в науке и технике.«Звездный список» ученых включает Георга Ома, который вывел закон Ома для описания поведения электрического тока в основной электрической цепи; немецкий физик Густав Кирхгоф, разработавший расчеты для более сложных электрических цепей; и французский физик Андре Мари Ампер, открывший закон, описывающий свойства замкнутого контура, на который действует магнитное поле и через него проходит электрический ток. Этот закон известен теперь как круговой закон Ампера. Независимая работа английского физика Джеймса Прескотта Джоуля и русского ученого Генриха Ленца завершилась открытием закона джоулева нагрева, который количественно определяет тепловой эффект электрического тока.

    Хендрик Антун Лоренц, картина Менсо Камерлинг-Оннеса (1860–1925) в 1916 году.

    Работы Джеймса Клерка Максвелла были посвящены дальнейшему исследованию свойств электрического тока и заложили основу современной электродинамики. Теперь эти работы известны как уравнения Максвелла. Максвелл также разработал теорию электромагнитного излучения и предсказал многие явления, такие как электромагнитные волны, радиационное давление и другие. Позже существование электромагнитных волн было экспериментально доказано немецким физиком Генрихом Рудольфом Герцем.Его работы по отражению, интерференции, дифракции и поляризации электромагнитных волн были использованы при изобретении радио.

    Жан-Батист Био (1774–1862)

    Несколько экспериментальных работ французских физиков Жана-Батиста Био и Феликса Савара о проявлении магнетизма в присутствии электрического тока, обобщенных в законе Био – Савара, и исследованиях блестящего французского математика Пьера-Симона Лапласа, который обобщил приведенные выше экспериментальные результаты как математическую абстракцию, впервые установил связь между двумя сторонами одного явления и положил начало изучению электромагнетизма.Гениальный британский физик Майкл Фарадей продолжил их работу и открыл электромагнитную индукцию. Современная электротехника построена на работах Фарадея.

    Физик из Нидерландов Хендрик Лоренц внес ценный вклад в объяснение природы электрического тока. Он разработал классическую теорию электронов и предположил, что атомы состоят из более мелких заряженных частиц и что свет является результатом колебаний этих частиц. Он также вывел уравнение для описания силы, действующей на движущийся заряд изнутри электромагнитного поля.Эта сила известна как сила Лоренца.

    Определение электрического тока

    Электрический ток можно определить как упорядоченное движение заряженных частиц. Учитывая это определение, электрический ток измеряется количеством заряженных частиц, которые проходят через поперечное сечение проводника за заданную единицу времени.

    I = q / t , где q — заряд в кулонах, t — время в секундах, а I — электрический ток в амперах.

    Другое определение электрического тока зависит от свойств проводников и описывается законом Ома:

    I = V / R , где V — напряжение в вольтах, R — сопротивление в омах. , I — ток в амперах.

    Электрический ток измеряется в амперах (A) и единицах, производных от них, таких как наноампер (одна миллиардная часть ампера, нА), микроампер (одна миллионная часть ампера, мкА), миллиампер (тысячная часть ампера, мА). ), килоампер (тысяча ампер, кА) и мегаампер (миллион ампер, МА).

    В СИ единицей измерения электрического тока является

    [А] = [C] / [s]

    Поведение электрического тока в различных средах

    Алюминий является очень хорошим проводником и широко используется в электропроводке.

    Электрический ток в твердых материалах, включая металлы, полупроводники и диэлектрики

    При рассмотрении электрического тока мы должны учитывать среду, которая его переносит, в частности, заряженные частицы, присутствующие в материале или веществе в текущем состоянии.Этот материал или вещество может быть твердым, жидким или газообразным. Уникальным примером различных состояний вещества является монооксид дигидрогена или оксид водорода, известный нам просто как вода. Мы можем увидеть его твердым, если посмотрим на лед из морозильника, который мы сделали для охлаждения напитков — большинство из них основаны на воде. С другой стороны, при приготовлении чая или растворимого кофе мы используем кипяток. Если бы мы подождали, пока вода закипит, прежде чем налить ее в чайник, мы бы увидели «туман», выходящий из носика чайника — этот туман состоит из капель воды, образовавшихся из газообразного состояния воды (пара), которое выходит из носика и контактирует с холодным воздухом.

    Существует еще одно состояние вещества, известное как плазма. Низкотемпературная плазма составляет верхние слои звезд, ионосферу Земли, пламя, электрическую дугу и вещество внутри люминесцентных ламп, и это лишь несколько примеров. Трудно воссоздать высокотемпературную плазму в лаборатории, поскольку для этого требуются чрезвычайно высокие температуры, превышающие 1 000 000 К.

    Эти высоковольтные автоматические выключатели содержат два основных компонента: размыкающие контакты и изолятор, соединяющий два провода вместе.

    По своей структуре твердые материалы можно разделить на кристаллические и аморфные. Первые имеют структурированную кристаллическую решетку. Атомы и молекулы такого вещества образуют двух- или трехмерные кристаллические решетки. Кристаллические твердые тела включают металлы, их сплавы и полупроводники. Мы можем легко визуализировать кристаллические твердые тела, представляя снежинки, которые представляют собой кристаллы уникальной формы. Аморфные вещества не имеют кристаллической решетки. Диэлектрики обычно аморфны.

    В нормальных условиях электрический ток течет через твердые тела благодаря движению свободных электронов, которые становятся несвязанными в результате отрыва валентных электронов от атома. Мы также можем разделить твердые тела в зависимости от характера потока электричества внутри них на проводники, полупроводники и изоляторы. Свойства различных материалов определяются на основе дискретной электронной зонной структуры. Это зависит от ширины запрещенной зоны, в которой нет электронов.Изоляторы имеют самую широкую запрещенную зону, которая иногда может достигать 15 эВ. Изоляторы и полупроводники не имеют электронов в проводящем промежутке при температуре абсолютного нуля, но при комнатной температуре некоторые электроны были бы удалены из валентных зон из-за тепловой энергии. В проводниках, таких как металлы, зона проводимости перекрывается с валентными зонами. Вот почему даже при абсолютном нуле существует большое количество электронов, и это все еще верно, когда температура повышается до точки плавления.Эти электроны позволяют электрическому току проходить через материал. Полупроводники имеют небольшую ширину запрещенной зоны, и их способность проводить электричество во многом зависит от температуры, излучения и других факторов, таких как присутствие примесей.

    Трансформатор с ламинированным сердечником. По бокам хорошо видны двутавровые и Е-образные стальные листы.

    Сверхпроводники создают особые условия для электрического тока. Это материалы с нулевым сопротивлением прохождению электрического тока.Электроны проводимости этих материалов образуют группы частиц, которые связаны друг с другом за счет квантовых эффектов.

    Как следует из названия, изоляторы плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания электрического тока между проводящими поверхностями из разных материалов.

    В дополнение к электрическому току, протекающему по проводникам, когда магнитное поле постоянное, когда магнитное поле переменное, его изменения вызывают явление, известное как вихревые токи, которые также называются токами Фуко.Чем больше скорость изменения магнитного поля, тем сильнее вихревые токи. Они не текут по определенному маршруту, но вместо этого они текут в замкнутых контурах в проводнике.

    Вихревые токи вызывают скин-эффект, который представляет собой тенденцию протекания переменного электрического тока (AC) и магнитного потока в основном вдоль поверхностного слоя проводника, что приводит к потере энергии. Чтобы уменьшить эти потери на вихревые токи в сердечниках трансформаторов, их магнитные цепи разделены. Это делается путем наложения слоев тонких стальных изолированных пластин, которые образуют сердечник трансформатора.

    Хромированная пластиковая лейка для душа

    Электрический ток в жидкостях (электролитах)

    Все жидкости могут в определенной степени проводить электрический ток при приложении к ним электрического напряжения. Жидкости, проводящие электрический ток, называются электролитами. Электрический ток переносится положительно и отрицательно заряженными ионами, известными соответственно как катионы и анионы, которые присутствуют в жидкости из-за электролитической диссоциации. В электролитах ток течет из-за движения ионов по сравнению с током, возникающим из-за движения электронов в металлах.Этот ток в электролитах характеризуется перемещением вещества к электродам и образованием новых химических элементов вокруг электродов или отложением этих новых веществ на электроде.

    Это явление легло в основу электрохимии и позволяет количественно определять эквивалентный вес различных химических веществ. Это позволило превратить неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать химические источники энергии в виде первичных (или одноразовых) и аккумуляторных батарей и топливных элементов.Это, в свою очередь, позволило совершить скачок в развитии технологий. Просто заглянув под капот вашего автомобиля и изучив автомобильный аккумулятор, вы сможете увидеть результаты десятилетий работы исследователей и инженеров.

    Автомобильный аккумулятор, установленный в 2012 году Honda Civic

    Многие производственные процессы, зависящие от протекания электрического тока в электролитах, могут придать привлекательный вид конечному продукту (например, хромовое и никелевое гальваническое покрытие) и защитить объекты от коррозии.Электроосаждение и электротравление — фундаментальные процессы в современной электротехнике при создании различных электронных компонентов. Эти процессы очень часто используются, например, в микропроизводстве, и количество электронных компонентов, производимых с использованием этих технологий, достигает десятков миллиардов в год.

    Электрический ток в газах

    Поток электрического тока в газах зависит от количества в нем свободных электронов и ионов. Из-за большего расстояния между частицами газа по сравнению с жидкостями и твердыми телами молекулы и ионы в газах обычно проходят большие расстояния, прежде чем столкнуться.Из-за этого протекание электричества в газах в нормальных условиях затруднено. То же верно и для смесей газов. Примером смеси газов является воздух, который в электротехнике считается хорошим изолятором. В обычных условиях многие другие смеси газов также являются хорошими изоляторами.

    Неоновая лампа для проверки отвертки показывает наличие напряжения 220 В.

    Поток электричества в газах зависит от различных физических факторов, таких как давление, температура и компоненты, составляющие эту смесь.Кроме того, ионизирующее излучение тоже играет роль. Например, газ может проводить электричество, если его облучают ультрафиолетовым или рентгеновским излучением, если на него воздействуют катодные или анодные частицы или частицы, испускаемые радиоактивным веществом, или даже если температура этого газа высока.

    Когда энергия поглощается электрически нейтральными атомами или молекулами газа и когда образуются ионы, этот эндотермический процесс называется ионизацией. Когда энергия достигает определенного порога, электрон или группа электронов преодолевают потенциальный барьер и покидают атом или молекулу, становясь, таким образом, свободными электронами.Атом или молекула, которую оставили электроны, тоже больше не нейтральны, они заряжены положительно. Свободные электроны могут присоединяться к нейтрально заряженным атомам или молекулам и образовывать отрицательно заряженные ионы. Положительно заряженные ионы могут забирать отрицательно заряженные электроны при столкновении с ними и, таким образом, снова становиться нейтральными. Этот процесс называется рекомбинацией.

    Когда электрический ток течет через газ, его состояние изменяется. Это приводит к сложной зависимости между электрическим током и напряжением, которая более или менее регулируется законом Ома, но только при малых электрических токах.

    Электрические разряды в газах могут быть как несамостоятельными, так и самоподдерживающимися. Несамостоятельные разряды создают электрический ток, который возможен только при наличии внешних ионизирующих факторов. Когда они отсутствуют, электрический ток через газ не течет. С другой стороны, во время самоподдерживающихся разрядов электрический ток поддерживается за счет ионизации нейтральных атомов и молекул в газе, которые были ускорены электрическим полем при столкновении со свободными электронами и ионами.В этих условиях электрический ток возможен даже без внешних ионизирующих факторов.

    Вольт-амперные характеристики бесшумного разряда

    Когда разность потенциалов между анодом и катодом мала, несамостоятельный разряд называют тихим или таунсендовским. С увеличением напряжения увеличивается и сила тока. Сначала это увеличение пропорционально напряжению (участок OA на вольт-амперной характеристике бесшумного разряда), но постепенно скорость нарастания замедляется (участок AB на графике).Когда все оторвавшиеся частицы, которые высвободились в результате процесса ионизации, движутся к катоду и аноду одновременно, увеличения тока не происходит (участок BC на графике). Если напряжение снова увеличивается, ток также увеличивается, и бесшумный разряд становится несамостоятельным лавинным зарядом. Примером несамостоятельного разряда является тлеющий разряд в газоразрядных лампах высокого давления различного назначения.

    Когда несамостоятельный разряд трансформируется в самостоятельный разряд, электрический ток увеличивается (точка E на кривой).Этот момент известен как электрический пробой.

    Электронная фотовспышка с ксеноновой трубкой (красный прямоугольник)

    Все различные типы зарядов, описанные выше, являются стационарными или установившимися разрядами. Их свойства не зависят от времени. Помимо этих разрядов, существуют также нестабильные разряды, которые обычно возникают в очень неравномерных электрических полях, например, на заостренных или искривленных поверхностях проводников или электродов. Существует два типа неравномерных разрядов: коронный разряд и искровой разряд.

    Ионизация при коронном разряде не вызывает электрического пробоя. Этот разряд вызывает повторяющийся процесс запуска несамостоятельного разряда в небольшом ограниченном пространстве вокруг проводника. Хорошим примером коронного разряда является свечение в воздухе вокруг антенн, громоотводов или линий электропередач высоко над землей. Коронный разряд вокруг линий электропередач вызывает потерю энергии. Раньше это сияние было знакомо мореплавателям — свечение вокруг мачт кораблей было известно как св.Элмо огонь. Коронный разряд используется в лазерных принтерах и копировальных аппаратах. Он генерируется устройством, создающим коронный разряд, металлической струной, к которой приложено высокое напряжение. Коронный разряд ионизирует газ, который, в свою очередь, ионизирует светочувствительный барабан. В этом случае полезен коронный разряд.

    По сравнению с коронным разрядом электростатический разряд вызывает электрический пробой. Это похоже на прерывистые светлые нити, которые разветвляются и заполнены ионизированным газом. Они появляются и исчезают, производя большое количество тепла и света.Типичным примером естественного электростатического разряда является молния. Электрический ток в нем может достигать десятков килоампер. Прежде чем может произойти молния, необходимо создать нисходящую группу лидеров, известную как лидер или искра. Вместе со ступенчатым лидером он образует строение лидера. Молния обычно состоит из множественных электростатических разрядов в нисходящей формации лидера для разряда отрицательной молнии «облако-земля». В электронных вспышках в фотографии используется мощный электростатический разряд.Разряд здесь образуется между электродами импульсной лампы из кварцевого стекла, заполненного смесью благородных ионизированных газов.

    Когда электрический разряд сохраняется в течение длительного периода времени, он называется электрической дугой. Электрическая дуга используется в дуговой сварке, которая является незаменимой технологией в современном строительстве, используется для возведения стальных конструкций различного размера и назначения, от небоскребов до авианосцев и автомобилей. Электрическая дуга используется не только для соединения материалов, но и для их резки.Разница между этими двумя процессами заключается в силе используемого тока. Сварка происходит при относительно более низких токах, в то время как для резки требуются более высокие токи электрической дуги. Само порезание происходит при удалении расплавленного металла, и для его удаления используются разные методы.

    Еще одно применение электрической дуги в газах — газоразрядные лампы, которые отгоняют тьму на наших улицах, площадях и стадионах (в этих условиях обычно используются натриевые лампы).Металлогалогенные лампы, которые заменили лампы накаливания в автомобильных фарах, также используют эту технологию.

    Электрический ток в вакууме

    Вакуумная трубка в передающей станции. Канадский музей науки и техники, Оттава

    Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только в том случае, если свободные носители тока, такие как электроны или ионы, генерируются посредством термоэлектронной эмиссии, фотоэлектрической эмиссии или других способами.

    Подобные телекамеры использовались в 1980-х годах.Канадский музей науки и техники, Оттава

    Основным методом получения электрического тока в вакууме с использованием электронов является термоэлектрическая эмиссия электронов металлами. Когда электрод нагревается (он называется горячим катодом), он испускает электроны в трубку. Эти электроны вызывают электрический ток, пока присутствует другой электрод (называемый анодом), и пока между ними существует определенное напряжение требуемой полярности. Такие вакуумные лампы называются диодами и проводят электрический ток только в одном направлении.Они блокируют ток, если есть попытка заставить ток течь в обратном направлении. Это свойство используется для преобразования переменного тока (AC) в постоянный (DC) посредством процесса выпрямления. Это делается системой диодов.

    Если рядом с катодом добавить дополнительный электрод, известный как сетка, мы получим устройство, называемое триодом, которое значительно усиливает даже небольшие изменения напряжения в управляющей сетке относительно катода. В результате это изменяет ток и напряжение на нагрузке, которая последовательно подключена к вакуумной лампе, относительно источника питания.Эта система, называемая усилителем, используется для усиления различных сигналов.

    Использование электронных ламп с большим количеством управляющих сеток, таких как тетроды, пентоды и даже пятиэлектродные преобразователи с семью электродами, было революционным в создании и усилении радиосигналов и позволило создать современные системы радио- и телевещания.

    Современный видеопроектор

    Исторически радио было разработано первым, потому что было относительно легко разработать методы преобразования и передачи относительно низкочастотных сигналов, а также разработать схему для приемных устройств, которые могут усиливать и смешивать радиочастоты для их преобразования. в акустический сигнал посредством процесса демодуляции.

    Когда было изобретено телевидение, электронные лампы, называемые иконоскопами, использовались для испускания электронов за счет фотоэлектрического эффекта падающего на них света. Дальнейшее усиление сигнала производилось ламповым усилителем. Для просмотра захваченного и переданного изображения использовались электронно-лучевые трубки (ЭЛТ), которые также были электронными лампами. В ЭЛТ изображение создавалось на экране путем обратного преобразования сигнала. Это было сделано путем ускорения электронов до высокой скорости с помощью одной (или трех для цветного телевидения) электронных пушек в сильном электрическом поле.Поле создавалось приложением большого напряжения между катодом электронной пушки и анодом ЭЛТ. Пучки высокоскоростных электронов направлялись на экран, покрытый люминесцентным материалом, и с него излучался видимый свет. Изображение было создано двумя взаимно синхронизированными системами: одна считывала сигнал с иконоскопа, а другая выполняла растровое сканирование. Первые электронно-лучевые трубки были монохромными.

    SU3500 Сканирующий электронный микроскоп. Департамент материаловедения и инженерии.Университет Торонто

    Вскоре после этого было разработано цветное телевидение. Иконоскопы в цветном телевидении были гибридными системами, которые реагировали только на свет определенного цвета, будь то красный, синий или зеленый. Цветные люминофорные точки электронно-лучевых трубок телевизора излучали свет за счет электрического тока, создаваемого электронной пушкой. Они реагировали на ударяющие по ним ускоренные электроны и излучали свет определенного цвета и яркости. Были использованы специальные теневые маски, чтобы лучи каждой цветной электронной пушки попадали на точки люминофора правильного цвета.

    Современные технологии теле- и радиовещания используют более современные материалы на основе полупроводников, которые потребляют меньше энергии.

    Одним из широко используемых методов получения изображения внутренних органов является рентгеноскопия. Катод испускает электроны, которые разгоняются до такой скорости, что при попадании на анод генерируют рентгеновское излучение, которое может проникать в мягкие ткани человеческого тела. Рентгенограммы дают врачам уникальную информацию о состоянии костей, зубов и некоторых внутренних органов и даже могут помочь определить такие заболевания, как рак легких.

    Лампа бегущей волны С-диапазона. Канадский музей науки и техники, Оттава

    В общем, электрические токи, образованные движением электронов в вакууме, находят широкое применение. Вакуумные лампы, ускорители частиц, масс-спектрометры, электронные микроскопы, генераторы вакуума высокой частоты, такие как лампы бегущей волны, клистроны и резонаторные магнетроны, — это лишь некоторые из примеров того, как мы используем этот тип электрического тока. Следует отметить, что именно магнетроны нагревают и готовят пищу в микроволновых печах.

    Недавняя очень ценная технология, использующая электрический ток в вакууме, — это осаждение тонких пленок в вакууме. Эти пленки выполняют декоративную или защитную функцию. Материалы, используемые в этой технике, — это металлы, их сплавы и их соединения с кислородом, азотом и углеродом. Эти пленки либо изменяют, либо сочетают в себе электрические, оптические, механические, магнитные, каталитические и связанные с коррозией свойства поверхности, которую они покрывают.

    Для получения комплексного соединения пленки используется технология ионно-лучевого осаждения.Некоторыми примерами этой технологии являются катодно-дуговое напыление и его коммерческий вариант мощного импульсного магнетронного распыления. В конце концов, именно электрический ток создает пленочное покрытие на поверхности благодаря ионам.

    Ионно-лучевое распыление создает пленки из нитридов, карбидов и оксидов металлов, которые обладают необычайным набором механических, теплофизических и оптических свойств, включая твердость, долговечность, электро- и теплопроводность и оптическую плотность.Другим способом добиться этих результатов невозможно.

    Электрический ток в биологии и медицине

    Макет операционной в Институте знаний Ли Ка Шинг, Торонто, Канада. Пациенты-роботы-манекены, которые могут моргать, дышать, плакать, истекать кровью и моделировать болезни, используются для обучения

    Понимание поведения электрического тока внутри биологических систем дает биологам и врачам мощный инструмент для исследований, диагностики и лечения.

    С точки зрения электрохимии все биологические объекты содержат электролиты, независимо от их структуры.

    При рассмотрении того, как электрический ток проходит через биологический объект, мы должны учитывать состояние клеток этого объекта. В этом отношении клеточная мембрана является важной структурой, которую необходимо учитывать. Это внешний слой каждой клетки, который защищает клетку от негативного воздействия окружающей среды за счет избирательной проницаемости для различных веществ. Другими словами, он пропускает одни вещества, а другие останавливает. С точки зрения физики, мы можем рассматривать эту мембрану как эквивалентную схему, которая состоит из параллельного соединения конденсатора с несколькими цепями, которые имеют последовательное соединение между источником электрического тока и резистором.Благодаря такой структуре электропроводность этого биологического объекта зависит от частоты приложенного напряжения и типов напряжения.

    Трехмерное изображение волоконных путей, соединяющих различные области мозга. Это изображение было получено с использованием метода неинвазивной диффузионной тензорной визуализации (DTI)

    Биологическая ткань состоит из клеток, внеклеточной жидкости, кровеносных сосудов и нервных клеток. При подаче электрического тока нервные клетки возбуждаются и посылают сигналы о сокращении или расслаблении мышц и кровеносных сосудов животного.Следует отметить, что течение электрического тока в биологических тканях нелинейно.

    Классическим примером воздействия электрического тока на биологический объект является серия экспериментов итальянского врача, физика и биолога Луиджи Гальвани, который считается одним из отцов-основателей электрохимии. В этих экспериментах он пропустил электрический ток по нервам лягушачьей лапы, и это вызвало сокращение мышц и движение ноги. В 1791 году его открытия были описаны в отчете об электрических силах в движении мышц.Долгое время в учебниках явление, открытое Гальвани, именовалось гальванизмом. Даже сейчас этот термин иногда используется для обозначения определенных процессов и устройств.

    Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году британский хирург и врач Ричард Кейтон и русский врач Василий Данилевский независимо друг от друга показали, что мозг может генерировать электричество. Другими словами, они обнаружили ионный ток, протекающий в мозгу.

    Биологические объекты могут генерировать не только микротоки, но также значительные напряжения и токи в рамках своего повседневного функционирования.Задолго до работ Гальвани британский биолог Джон Уолш доказал электрическую природу защитной системы электрического луча. Шотландский хирург и физиолог Джон Хантер подробно описал механизм, с помощью которого электрические лучи генерируют электричество. Результаты их исследования были опубликованы в 1773 году.

    Функциональная магнитно-резонансная томография (фМРТ) — это неинвазивный метод, который позволяет врачам измерять активность мозга, обнаруживая изменения в кровотоке.

    Современная медицина и биология используют различные методы для исследования. живые организмы, которые включают как инвазивные, так и неинвазивные методы.

    Классическим примером инвазивного метода является исследование крыс, которые бегают по лабиринту или выполняют другие задания с имплантированными в их мозг электродами.

    С другой стороны, неинвазивные методы — это такие широко известные методы диагностики, как электроэнцефалография и электрокардиография. В этих процедурах электроды, контролирующие электрические токи в головном мозге или сердце, используются для измерения на коже человека или животного под наблюдением. Чтобы улучшить контакт с электродами, на кожу наносят физиологический раствор, поскольку он является хорошим электролитом и может хорошо проводить электрический ток.

    Помимо использования электрического тока для исследований и наблюдения за состоянием различных химических процессов и реакций, одним из наиболее эффективных способов использования электричества является дефибрилляция, которая в фильмах иногда изображается как «перезапуск» сердца, которое уже остановилось. работающий.

    Тренировочный автоматический внешний дефибриллятор (AED)

    Действительно, запуск кратковременного импульса значительной величины может иногда (но очень редко) перезапустить сердце. Однако чаще используются дефибрилляторы, чтобы скорректировать аритмическое биение сердца и вернуть его к норме.Хаотические аритмические сокращения известны как фибрилляция желудочков, и поэтому устройство, которое возвращает сердце в норму, называется дефибриллятором. Современные автоматизированные внешние дефибрилляторы могут регистрировать электрическую активность сердца, определять фибрилляцию желудочков сердца, а затем рассчитывать силу тока, необходимую пациенту, на основе этих факторов. Во многих общественных местах теперь есть дефибрилляторы, и медицинское сообщество надеется, что эта мера предотвратит множество смертей, вызванных дисфункцией сердца пациента.

    Медработники обучены определять физиологическое состояние сердечной мышцы по электрокардиограмме и быстро принимать решения о лечении, намного быстрее, чем это могут сделать автоматические внешние дефибрилляторы, доступные для населения.

    Отдельно стоит упомянуть об искусственных кардиостимуляторах, контролирующих сердечные сокращения. Эти устройства имплантируются под кожу или под грудную мышцу пациента и передают импульсы электрического тока напряжением около 3 В через электрод в сердечную мышцу.Это стимулирует нормальный сердечный ритм. Современные кардиостимуляторы могут проработать 6–14 лет, прежде чем потребуется их замена.

    Характеристики электрического тока, его генерация и использование

    Электрический ток характеризуется его величиной и типом. В зависимости от его поведения типы электрического тока делятся на постоянный или постоянный ток (он не изменяется со временем), гармонический ток (он изменяется случайным образом со временем) и переменный ток или переменный ток (он изменяется со временем в соответствии с определенной схемой, обычно это регулируется периодическим законом).Для некоторых задач требуется как постоянный, так и переменный ток. В данном случае мы говорим об переменном токе с постоянной составляющей.

    Термоядерный реактор Токамак де Варенн. Варенн, Квебек, 1981. Канадский музей науки и техники, Оттава

    Исторически первый трибоэлектрический генератор электрического тока, машина Вимшерста, создавала его, натирая шерстью кусок янтаря. Более совершенные генераторы того же типа теперь называются генераторами Ван де Граафа — они названы в честь изобретателя самой ранней из этих машин.

    Как мы уже говорили ранее, электрохимический генератор был изобретен итальянским физиком Алессандро Вольта. Этот генератор получил дальнейшее развитие в современных сухих аккумуляторных батареях, аккумуляторных батареях и топливных элементах. Мы до сих пор используем их, потому что это очень удобные источники энергии для всех видов устройств, от часов и смартфонов до автомобильных аккумуляторов и аккумуляторов электромобилей Tesla.

    В дополнение к генераторам постоянного тока, описанным выше, существуют также генераторы, использующие ядерное деление изотопов, известные как атомные батареи, а также магнитогидродинамические генераторы, которые сегодня имеют очень ограниченное применение из-за их низкой мощности и технических ограничений. их конструкции и по ряду других причин.Тем не менее генераторы радионуклидов используются в энергонезависимых системах, например, в космосе, в автономных подводных аппаратах и ​​гидроакустических станциях, в маяках, внутри маяковых буев, а также в Арктике и Антарктике.

    Коммутатор в мотор-генераторной установке, 1904. Канадский музей науки и техники, Оттава

    В электротехнике генераторы делятся на генераторы постоянного и переменного тока.

    Все эти генераторы работают благодаря электромагнитной индукции, открытой Майклом Фарадеем в 1831 году.Фарадей построил первый униполярный генератор малой мощности, который генерировал постоянный ток. Что касается первого генератора переменного тока, то история гласит, что он был описан Фарадею в 1832 году в анонимном письме, подписанном как «П. М. » После публикации этого письма Фарадей через год получил еще одно, в котором он благодарил и предлагал усовершенствовать конструкцию, добавив стальное кольцо для переноса магнитного потока магнитных полюсов катушек. Однако неясно, соответствует ли эта история действительности.

    В то время применение переменного тока еще не было найдено, поскольку для всех практических применений электричества в то время требовался постоянный ток, включая ток, используемый в минной войне, электрохимии, недавно разработанном электротелеграфии и первых электродвигателях.Вот почему многие изобретатели сосредоточились пока на улучшении генераторов постоянного тока, изобретая для этого различные коммутационные устройства.

    Одним из первых генераторов, получивших практическое применение, был магнитоэлектрический генератор, созданный немецким и российским исследователем Морицем фон Якоби, работавшим в России с 1835 по 1874 год. Он использовался минными отрядами ВМФ Российской армии для воспламенения взрывателей. морских мин. Улучшенные генераторы этого типа используются и по сей день для активации мин, и их часто можно увидеть в фильмах о Второй мировой войне, где партизаны или диверсанты используют их для взрыва мостов, схода с рельсов поездов и других подобных приложений.

    Линза лазера с приводом компакт-дисков

    С тех пор ведущие инженеры соревновались друг с другом в улучшении генераторов переменного и постоянного тока, создав окончательное противостояние между двумя титанами современной области производства электроэнергии, с Томасом Эдисоном из General Electric на одном с другой стороны, Никола Тесла из Westinghouse. Победил больший капитал, и технологии Tesla для генерации, транспортировки и преобразования переменного тока стали наследием американского общества. Это дало значительный толчок к развитию экономики США и вывело страну на лидирующие позиции в мире.

    В дополнение к способности производить электричество для различных нужд, которая зависела от преобразования механического движения в электричество из-за обратимости электрических машин, стала реальностью еще одна возможность обратного преобразования электрического тока в механическое движение. Это было сделано с помощью электрических двигателей, работающих на постоянном и переменном токе. Можно сказать, что эти типы машин являются одними из наиболее широко используемых технологий, и они включают стартеры автомобилей и мотоциклов, приводы коммерческих машин и станков, а также бытовые устройства и электронику.Благодаря этим устройствам мы научились выполнять различные задачи, такие как резка, сверление и формование. Благодаря этим технологиям мы также используем оптические диски, такие как компакт-диски и жесткие диски, в наших компьютерах — без них мы не смогли бы создать миниатюрные прецизионные электродвигатели постоянного тока.

    Помимо привычных нам электромеханических двигателей, ионные двигатели также работают за счет электрического тока. Эти двигатели используют принцип движения за счет испускания ускоренных ионов данного вещества.В настоящее время они используются в космосе в основном для вывода на орбиту небольших спутников. Очень вероятно, что будущие технологии 22-го века, такие как фотонные лазерные двигатели, которые все еще разрабатываются и которые будут вести наши межзвездные корабли на скоростях, приближающихся к скорости света, также будут зависеть от электрического тока.

    Аналоговый мультиметр со снятой верхней крышкой

    Генераторы постоянного тока можно также использовать для выращивания кристаллов для электронных компонентов.Этот процесс требует дополнительных стабильных генераторов постоянного тока. Такие прецизионные твердотельные генераторы электрического тока называются стабилизаторами тока.

    Измерение электрического тока

    Следует отметить, что устройства для измерения электрического тока, такие как микроамперметры, миллиамперметры и амперметры, сильно отличаются друг от друга, в зависимости от их конструкции и принципов измерения, которые они используют. К ним относятся амперметры постоянного тока, амперметры переменного тока низкой частоты и амперметры переменного тока высокой частоты.

    Измерительные механизмы этих устройств можно разделить на подвижную катушку, подвижное железо, подвижный магнит, электродинамические, индукционные, термоанемометрические и цифровые амперметры. Большинство аналоговых амперметров включает подвижную или неподвижную раму с намотанной катушкой и неподвижными или подвижными магнитами. Благодаря такой конструкции типичный амперметр имеет эквивалентную схему, которая представляет собой последовательное соединение катушки индуктивности и резистора с конденсатором, подключенным параллельно им. Из-за этого аналоговые амперметры недостаточно чувствительны для измерения высокочастотного тока.

    Подвижная катушка с иглой и спиральными пружинами измерителя, использованная в аналоговом мультиметре выше. Некоторые люди по-прежнему предпочитают аналоговые мультиметры, которые практически не изменились с 1890-х годов.

    Основное измерительное устройство амперметра состоит из миниатюрного гальванометра. Его диапазоны измерения создаются за счет использования дополнительных шунтирующих резисторов с малым сопротивлением, и это сопротивление ниже, чем у обычного гальванометра. Таким образом, используя одно устройство в качестве основы, можно создавать различные измерительные устройства для измерения токов с разными диапазонами, включая микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

    Обычно при электрических измерениях важно поведение тока. Он может быть измерен как функция времени и иметь разные типы, например постоянный, гармонический, гармонический, импульсный и т. Д. Его величина характеризует способ работы электронных схем и устройств. Идентифицируются следующие значения тока:

    • мгновенное,
    • размах амплитуды,
    • среднее,
    • среднеквадратичная амплитуда.

    Мгновенный ток I i — значение тока в любой момент времени.Его можно просмотреть на экране осциллографа и измерить для каждого момента времени, глядя на осциллограф.

    Размах амплитуды тока I м — наибольшее мгновенное значение тока за данный период времени.

    Среднеквадратичное значение амплитуды тока I находится как квадратный корень из среднего арифметического квадратов мгновенных токов для периода формы сигнала.

    Все аналоговые амперметры обычно измеряют среднеквадратичное значение амплитуды тока.

    Среднее значение тока — это среднее значение всех значений мгновенного тока за время измерения.

    Разница между максимальным и минимальным значением электрического тока называется размахом сигнала.

    В наши дни для измерения электрического тока широко используются мультиметры и осциллографы. Оба этих устройства предоставляют информацию не только о форме , тока или напряжения, но и о других важных характеристиках сигнала.К ним относятся частота периодических сигналов, и поэтому важно знать предел частоты измерительного устройства при измерении электрического тока.

    Измерение электрического тока с помощью осциллографа

    Проиллюстрируем сказанное выше серией экспериментов по измерению активных и пиковых значений тока синусоидального и треугольного сигналов. Мы будем использовать генератор сигнала, осциллограф и мультиметр.

    Схема эксперимента 1 показана ниже:

    Генератор сигналов FG подключен к нагрузке, которая состоит из мультиметра (MM), соединенного последовательно с шунтом Rs и нагрузочным резистором R.Сопротивление шунтирующего резистора R s составляет 100 Ом, а сопротивление нагрузочного резистора R — 1 кОм. Осциллограф ОС подключен параллельно шунтирующему резистору R s . Номинал шунтирующего резистора выбирается из условия R s << R. Проводя этот эксперимент, помним, что рабочая частота осциллографа намного выше рабочей частоты мультиметра.

    Тест 1

    Подаем на нагрузочный резистор синусоидальный сигнал частотой 60 Гц и амплитудой 9 В.Современные осциллографы имеют очень удобную кнопку Auto Set, которая позволяет отображать любой измеренный сигнал, не касаясь других органов управления осциллографа. Нажимаем кнопку Auto Set и наблюдаем за сигналом на экране, как на иллюстрации 1. Здесь диапазон сигнала составляет около пяти больших делений, а значение каждого деления составляет 200 мВ. Мультиметр показывает значение электрического тока как 3,1 мА. Осциллограф определяет среднеквадратичную амплитуду на резисторе как U = 312 мВ. Среднеквадратичное значение тока на резисторе R s можно определить по закону Ома:

    I RMS = U RMS / R = 0.31 В / 100 Ом = 3,1 мА,

    , что соответствует значению 3,1 мА на мультиметре. Обратите внимание, что диапазон тока в нашей цепи, состоящей из двух последовательно включенных резисторов и мультиметра, равен

    I PP = U PP / R = 0,89 В / 100 Ом = 8,9 мА

    Мы знаем, что пиковый и фактические значения электрического тока и напряжения отличаются в √2 раза. Если мы умножим I RMS = 3,1 мА на √2, мы получим 4,38. Удвоим это значение — получим 8.8 мА, что очень близко к измеренному осциллографом току (8,9 мА).

    Test 2

    Теперь уменьшим генерируемый сигнал вдвое. Диапазон сигнала на осциллографе также уменьшится примерно вдвое (463 мВ), а мультиметр покажет значение, которое также примерно уменьшено вдвое и составляет 1,55 мА. Определим значение активного тока на осциллографе:

    I RMS = U RMS / R = 0,152 В / 100 Ом = 1,52 мА,

    что примерно такое же значение, которое показывает мультиметр (1 .55 мА).

    Test 3

    Теперь увеличим частоту генератора до 10 кГц. Изображение на осциллографе изменится, но диапазон сигнала останется прежним. Значение на мультиметре уменьшится — это связано с диапазоном частот мультиметра.

    Тест 4

    Давайте снова воспользуемся начальной частотой 60 Гц и напряжением 9 В, но изменим форму сигнала на генераторе с синусоидальной на треугольную. Диапазон сигнала на осциллографе остается прежним, но значение на мультиметре уменьшается по сравнению со значением тока, которое он показал в тесте 1.Это связано с изменением среднеквадратичного значения тока. Осциллограф показывает приведенное значение среднеквадратичного напряжения, измеренного на резисторе R s = 100 Ом.

    Меры безопасности при измерении электрического тока и напряжения

    Пьедестал для самостоятельной камеры с телесуфлером и тремя мониторами для домашней видеостудии

    • При измерении тока и напряжения мы должны помнить, что в зависимости от того, насколько безопасно здание, например, относительно малое напряжение 12–36 В может быть опасным и даже опасным для жизни.Поэтому крайне важно соблюдать следующие меры безопасности.
    • Не измеряйте токи, если для измерения требуются специальные навыки (например, измерение токов в цепях с напряжением выше 1000 В).
    • Не измеряйте токи в труднодоступных местах и ​​на высоте.
    • При измерении токов в жилой распределительной сети используйте специальные средства защиты, такие как резиновые перчатки, коврики или ботинки.
    • Не используйте сломанные или поврежденные измерительные приборы.
    • При использовании мультиметров убедитесь, что установлены параметры измерения и правильный диапазон измерения.
    • Не используйте измерительный прибор со сломанными зондами.
    • Тщательно следуйте инструкциям производителя по использованию измерительного прибора.

    Эту статью написал Сергей Акишкин

    У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    Ампер (А) Преобразование единиц электрического тока

    Ампер — это единица измерения электрического тока. Используйте один из приведенных ниже калькуляторов преобразования, чтобы преобразовать в другую единицу измерения, или прочтите, чтобы узнать больше об амперах.

    Калькулятор преобразования ампер

    Выберите единицу измерения электрического тока, в которую нужно преобразовать.

    Единицы СИ

    Сантиметр – Грамм – секунда

    Другие единицы

    Сопутствующие калькуляторы

    Ампер Определение и использование

    Ампер, обычно называемый «ампер», представляет собой постоянный электрический ток, равный расходу одного кулона в секунду.

    Ранее ампер определялся как постоянный ток, который при прохождении через два прямых и параллельных проводника, расположенных на расстоянии одного метра друг от друга,
    создаст силу, равную 0,0000002 ньютона на метр длины.

    В 2019 году ампер был переопределен как электрический ток, соответствующий потоку 1 / (1,602 176 634 × 10 -19 ) элементарных зарядов в секунду. [1]

    Ампер — это основная единица СИ для электрического тока в метрической системе.Иногда ампер также называют усилителем. Амперы можно обозначить как A ; например, 1 ампер можно записать как 1 А.

    Закон Ома гласит, что ток между двумя точками проводника пропорционален напряжению и обратно пропорционален сопротивлению.
    Используя закон Ома, можно выразить ток в амперах как выражение, используя сопротивление и напряжение.

    I A = V V R Ом

    Ток в амперах равен разности потенциалов в вольтах, деленной на сопротивление в омах.

    Предпосылки и происхождение

    Ампер назван в честь французского физика Андре-Мари Ампера в честь его работ в области электромагнетизма и электродинамики.
    Первоначально ампер определялся как одна десятая ампера, но с тех пор его определение несколько раз менялось.

    Перевести амперы в миллиампера

    Укажите значения ниже для преобразования ампер [А] в миллиампер [мА] или наоборот .

    Ампер

    Определение: Ампер (символ: A), часто называемый просто ампер, является базовой единицей электрического тока в Международной системе единиц (СИ).Ампер формально определяется на основе фиксированного значения элементарного заряда, е, равного 1,602176634 × 10 -19 , когда он выражается в единицах С, что равно А · с. Второй определяется на основе частоты цезия ΔνCs. Это определение действует с 2019 года и является значительным изменением по сравнению с предыдущим определением ампера.

    История / происхождение: Ампер назван в честь Андре-Мари Ампер, французского математика и физика. В системе единиц сантиметр-грамм-секунда ампер был определен как одна десятая единицы электрического тока времени, которая теперь известна как абампер.Размер единицы был выбран таким, чтобы она удобно помещалась в системе единиц метр-килограмм-секунда. До 2019 года ампер формально определялся как постоянный ток, при котором сила 2 × 10 -7 ньютонов на метр длины создавалась бы между двумя проводниками, где проводники параллельны, имеют бесконечную длину, помещены в вакуум. , и имеют пренебрежимо малые круглые сечения. В единицах измерения заряда СИ, кулонах, один ампер определяется как один кулон заряда, проходящий через заданную точку за одну секунду.Это определение было трудно реализовать с высокой точностью, и поэтому оно было изменено на более интуитивное и более простое для понимания. Ранее, поскольку определение включало ссылку на силу, необходимо было определить кг, метр и секунду в системе СИ, прежде чем можно было определить ампер. Теперь это зависит только от определения второго. Одним из потенциальных недостатков переопределения является то, что проницаемость вакуума, диэлектрическая проницаемость вакуума и импеданс свободного пространства были точными до переопределения, но теперь будут подвержены экспериментальной ошибке.

    Использование тока: В качестве базовой единицы измерения электрического тока в системе СИ, ампер используется во всем мире почти для всех приложений, связанных с электрическим током. Ампер можно выразить в виде ватт / вольт или Вт / В, так что ампер равен 1 Вт / В, поскольку мощность определяется как произведение тока и напряжения.

    Миллиампер

    Определение: Миллиампер (обозначение: мА) является частью основной единицы измерения электрического тока в системе СИ — ампера. Он определяется как одна тысячная ампер.

    История / происхождение: Миллиампер берет свое начало от ампера. Префикс «милли» указывает одну тысячную от базовой единицы, которой она предшествует, в данном случае ампера. Амперу может предшествовать любой из метрических префиксов, чтобы указать единицы нужной величины.

    Текущее использование: Миллиампер, являющийся частью единицы СИ, используется во всем мире, часто для небольших измерений электрического тока. Есть много устройств, которые измеряют единицы в миллиамперах, таких как гальванометры и амперметры, хотя эти устройства не измеряют исключительно миллиамперы.

    Таблица преобразования Ампер в Миллиампер

    мА

    9132 мА

    Ампер [А] Миллиампер [мА]
    0,01 А 10 мА
    0,1 А 10033 1328 100 мА
    2 A 2000 мА
    3 A 3000 мА
    5 A 5000 мА
    10 A 10000 мА 9132
    50 A 50000 мА
    100 A 100000 мА
    1000 A 1000000 мА

    Как преобразовать ампер в миллиампер 1

    192

    мА = 0.001 A

    Пример: преобразование 15 А в мА:
    15 А = 15 × 1000 мА = 15000 мА

    Популярные преобразования единиц тока

    Преобразование ампер в другие единицы тока

    Расчет переменного тока в постоянный ток через инвертор

    Итак, у вас есть электроприбор, который нужно запустить, но нет места для его подключения. Когда вам нужно запустить обычное бытовое электрическое устройство в районе, где нет постоянной электросети, этот калькулятор поможет вам выяснить аккумулятор какого размера и инвертор вам нужен!

    Добро пожаловать в наш инструмент преобразования постоянного тока в переменный (с инвертором).Этот калькулятор разработан, чтобы помочь вам определить количество потребляемой мощности при преобразовании одной формы мощности в другую с помощью инвертора постоянного тока в переменный.

    Просто введите цифры мощности в поля ниже, и мы сделаем расчеты за вас, включая типичную неэффективность и все прочие технические характеристики, которые вы, возможно, не хотите вычислять. Если вы не уверены в своих числах, взгляните на иллюстрации с пошаговыми инструкциями ниже при вводе чисел.

    Если вы хотите подобрать аккумуляторную батарею инвертора, то сначала необходимо определить силу постоянного тока, которую вы будете выдавать из аккумуляторной батареи через инвертор.Этот калькулятор может помочь вам определить потребляемую мощность постоянного тока через инвертор, чтобы вы могли точно рассчитать размер аккумуляторной батареи инвертора.

    Введите рейтинг устройства переменного тока

    Найдите аккумулятор Выберите свой инвертор

    Прохождение

    Пример Напряжение переменного тока — Многие приложения имеют диапазон входного напряжения переменного тока. В США оно может составлять от 100 до 125 В переменного тока. В Европе обычно 200-240.В этом примере мы будем использовать стандарт США 120 вольт переменного тока.
    Пример Сила переменного тока — Входная сила тока — это сила тока, потребляемого приложением от сети переменного тока. Это число обычно измеряется в амперах. Если ток указан в миллиамперах (мАч), вы можете преобразовать его в амперы, разделив число на 1000. Например, в нашем примере приложение потребляет 300 миллиампер, что равно 0,3 ампера.
    Пример Мощность — мощность — это общая мощность, потребляемая приложением.Он рассчитывается путем умножения напряжения на силу тока. Следовательно, 120 В переменного тока x 0,3 А равны 36 Вт.
    Пример Напряжение постоянного тока — выходное напряжение — это номинальное значение вашей аккумуляторной системы, обычно от одной 12-вольтовой батареи. Мы используем 12,5 вольт для 12-вольтовых аккумуляторных систем.
    Пример DC Amperage — Теперь мы знаем, что наше приложение потребляет 36 Вт общей мощности. Если вы возьмете эту мощность от источника постоянного тока 12,5 В, то общая требуемая сила тока увеличится до 3.31 ампер или 3310 миллиампер. Поскольку у аккумуляторов ограниченная емкость или ампер-часы, важно, чтобы размер аккумулятора был достаточно большим, чтобы справиться с потребностью в силе тока для вашего приложения.

    Найдите аккумулятор Выберите свой инвертор

    Была ли эта информация полезной? Подпишитесь, чтобы получать обновления и предложения.

    Написано 29 октября 2019 г. в 10:32

    Преобразование кВА в амперы: калькулятор + 3 примера

    кВА (киловольт-ампер) — составная единица.Он состоит из электрического потенциала (вольт) и электрического тока (ампер). 1 кВА — часто используемая единица; он составляет 1000 вольт-ампер. Во многих случаях полезно преобразовать кВА в усилители.

    Самый частый вопрос здесь: «Сколько ампер x кВА» . Для расчета ампер мы должны использовать формулу кВА:

    I (Ампер) = S (ВА) / В (Вольт)

    S означает полную мощность ; то, что измеряется, — это вольт-амперы (ВА).По сути, вы, возможно, уже догадались, что Вольт-Ампер эквивалентно Ватту (1 Вт = 1 А * В = 1 AV).

    Используя эту формулу, мы подготовили калькулятор для преобразования кВА в амперы.

    Ниже калькулятора вы найдете таблицу кВА в усилители (необходимо знать напряжение — обычно 220 В) , а также 2 решенных примера преобразования кВА в усилители . Вы можете использовать его здесь:

    кВА к калькулятору ампер (с таблицей)

    Теперь мы можем рассчитать таблицу кВА в амперы:

    кВА (полная мощность) Напряжение (220 В) Сила тока (А)
    Сколько ампер в 1 кВА? 220 В 4.55 ампер
    Сколько ампер в 5 кВА? 220 В 22,73 А
    Сколько ампер в 10 кВА? 220 В 45,45 А
    Сколько ампер в 20 кВА? 220 В 90,91 А
    Сколько ампер в 30 кВА? 220 В 136,36 А
    Сколько ампер в 45 кВА? 220 В 204,55 А
    Сколько ампер в 60 кВА? 220 В 272.73 ампер
    Сколько ампер в 90 кВА? 220 В 409,09 А
    Сколько ампер в 120 кВА? 220 В 545,45 А

    Чтобы продемонстрировать, как работает расчет отношения кВА к амперам, давайте рассмотрим эти 3 примера:

    Пример 1: Сколько ампер у генератора 65 кВА?

    Одним из распространенных примеров преобразования кВА в амперы является генератор. Например, у вас есть генератор Americas Generators 65 кВА (на 220 В), и вы хотите знать, сколько ампер вы можете получить от него.

    Давайте воспользуемся приведенным выше калькулятором кВА в усилители, чтобы ответить на этот вопрос:

    Как мы видим, генератор на 65 кВА при 220 В может создать ток почти 300 ампер.

    Пример 2: Что такое 1 кВА в амперах?

    Чтобы рассчитать ампер для себя, полезно знать, что такое 1 кВА в амперах. Конечно, это также зависит от напряжения, которое вы используете. Допустим, у нас есть стандартное напряжение (220 В). Вот сколько ампер вы получите от устройства на 1 кВА:

    Вы можете использовать эту информацию, чтобы подсчитать, сколько ампер вы получаете от устройств с несколькими кВА.

    Пример 3: Генератор для кондиционера 5000 БТЕ

    Допустим, у вас есть небольшой портативный кондиционер на 5000 БТЕ, и вы хотите купить генератор для его работы. Блоку переменного тока мощностью 5000 БТЕ требуется около 500 Вт электроэнергии.