Что такое амперы и вольты: Перевести амперы (А) в вольты (В): онлайн-калькулятор, формула

Содержание

умножение вольта на ампера, что значит, что измеряется, мощность

Вольт-ампер имеет русское обозначение — (В•А), а международное — (V•A) Это измерение мощности (P) в электрической цепи постоянного тока. Спецификация V•A также используется в цепях переменного тока, но она менее точна в этом приложении, потому представляет кажущуюся мощность, которая часто отличается от истинной, в связи с чем перед тем как правильно выбрать электрооборудование, нужно понимать, что измеряется в вольт амперах.

Суть явления

В цепи постоянного тока 1 VA является эквивалентом одного ватта (1 Вт). Мощность (P) (в ваттах) в цепи постоянного тока равна произведению напряжения (V) в вольтах и тока (I) в амперах:
P = VI

Вольт-ампер

В цепи переменного тока мощность и V•A означают одно и то же, когда нет реактивного сопротивления. Оно вводится, когда цепь содержит индуктор или конденсатор. Поскольку большинство цепей переменного тока содержат реактивное сопротивление, значение V•A превышает фактическую рассеиваемую или подаваемую мощность в ваттах. Это может вызвать путаницу в спецификациях для блоков питания.

Например, источник питания может быть рассчитан на 600 V•A. Это не означает, что оно может выдавать 600 Вт, если оборудование не имеет реактивного сопротивления. В реальной жизни номинальная P источника питания составляет от 1/2 до 2/3 реального показателя V•A.

Важно! При покупке источника бесперебойного питания, для использования с электронным оборудованием, включая компьютеры, мониторы и другие периферийные устройства, нужно убедиться, что спецификации V•A для оборудования используются при определении минимальных номинальных значений для него. Показатель V•A номинально в 1,67 раза (167 %) больше потребляет мощности в ваттах.

Мощность

Объект измерений

Для определения вольт-ампер (V•A) потребуется выполнить следующие измерения:

  1. Вначале потребуется измерить силу тока в амперах (A). Это единица I в системе СИ.
  2. Далее должно измеряться напряжение в единицах СИ — вольтах. Оно покажет силу, необходимую для протекания электрического тока в вольтах (V).
  3. Рассчитать P — количество энергии, произведенной током и вольтами вместе. Умножение ампер (A) на вольт (V) дает результирующую или энергию.

Измерение величин

Постоянный ток (—) или DC, присущ процессу, когда он течет в одном направлении, например, фонарик с аккумулятором использует постоянный показатель. Переменный ток (~) или AC относится к процессам с переменным направлением движения электронов, в связи с чем он периодически меняет свое направление. В Северной Америке и Западной Японии это происходит 60 раз в секунду с частотой 60 Гц. В России, ЕС, в большей части Австралии, Южной Америки, Африки и Азии частота составляет 50 Гц.

Формула закона Ватта

Для преобразования этих величин используется формула закона Ватта:

Мощность (P) = Ток (I) х Напряжение (V),
то же в единицах измерения: ватт = ампер х вольт.
Чтобы найти усилители, используют формулу Ватта в обратном порядке и делят мощность на напряжение:
Ток (I) = Мощность (P) ÷ Напряжение (V)
I = 600 Вт : 120 В, тогда значение I = 5А

Обратите внимание! Когда специалисты оперируют большими размерностями P, они используют киловатты (кВт), 1 кВт=1000 Вт.

Как измерять в вольт-амперах мощность

Прежде чем преобразовывать вольтампер (V•A) в усилители, нужно понять, что это за измерения. Вольт-амперная характеристика является кажущейся мерой мощности, в то время как ампер является мерой тока.

Вольт-амперная характеристика

Таким образом, для преобразования между ними нужно использовать формулу:

Мощность = Напряжение × Ток
Используя формулу P в качестве отправной точки и изменив ее, можно выполнить перевод мощности в V•A:
I (A) = мощность (V•A) : напряжение (V)
Например, нужно рассчитать усилители для однофазной электрической цепи с P = 1800 V•A при 120 вольт.
I (А) = 1800 V•A : 120 вольтов
I (А) = 15 А

Таким образом, схема с 1800 VA кажущейся мощности при 120 вольт имеет номинальный I в 15 ампер.

Преобразование VA в ток для трехфазной электрической цепи немного отличается. Для расчета используют измененную трехфазную формулу.

I (А) = Мощность (V•A) : (√3 × Напряжение (V))

Для трехфазной электрической цепи I в амперах равен мощности в вольт-амперах, деленной на квадратный корень из трех.

Реактивная мощность в VAR

Например, нужно найти усилители для трехфазной электрической цепи с P=33 255 В при напряжении 480 В.

I (A) = 33 255 V•A : (√3 × 480 V)
I (A) = 33 255 V•A : 831,38 V
I (A) = 40 А
Можно увидеть, что цепь с кажущейся мощностью 33 255 V•A при 480 V будет иметь номинальный I = 40 А.

Перевод V•A в Ватты

Для правильного определения размера, например, источника питания важно понимать отличие ватт от вольт ампер. Реальная мощность, измеряемая в ваттах — это часть потребляемого потока энергии и связана с сопротивлением в электрической цепи. Примером этого является нить накала в лампочке.

Перевод вольт ампер

Реактивная мощность, измеряемая в VAR или «вольт ампер реактивный» — это часть потока P накопленной энергии. Накопленная энергия связана с наличием индуктивности и емкости в электрической цепи. Кажущаяся мощность измеряется в V•A, представляет собой математическую комбинацию реальной и реактивной P.

Геометрическое соотношение между кажущейся, реактивной и реальной мощностью определяется треугольником P.  Математически реальная мощность (Вт) связана с кажущейся (V•A) с использованием числового отношения, называемого коэффициентом мощности (PF), который выражается в десятичной форме и имеет значение от 0 до 1,0. Для многих новых типов ИТ-оборудования, таких как компьютерные серверы, PF составляет 0,9 и выше. Для устаревших персональных компьютеров (ПК) — это значение может быть 0,60 — 0,75.

Поскольку многие типы оборудования рассчитаны на P в ваттах, важно учитывать PF при выборе размера ИБП. Если не принимать PF во внимание, можно уменьшить размер необходимого ИБП. Например, единица оборудования с мощностью 525 Вт и коэффициентом мощности 0.7, который нужно умножать на мощность, определяет минимальную мощность с нагрузкой 750 V•A.

750 V•A = 525 Вт / 0,7

Если ИБП рассчитан на 75%, то получится ИБП с номиналом 1000 V•A (750 ВА / 0,75 = 1000 V•A).

Ошибки при расчете V•A

Соотношения вольт ампер и ватт для определенных видов электроприборов и устройств, например, лампочки — идентично. Но когда разговор идет о компьютерах, показатели в ваттах и V•A будут отличаться, при этом V•A всегда будет большим или равным показателю в ваттах. Разрыв связан с коэффициентом мощности (PF), который разнится для устройств. Если его не учитывать, то при подборе элементов оборудования будет сделана ошибка и они не подойдут к основному устройству.

Если рассматривать выбор ИБП для персонального компьютера, а на паспортных данных номинал указан в voltamper — это затруднит подбор номинала во Вт. Когда нет точных показателей P, выполняют следующее — указанные на паспортной табличке данные по нагрузке принимают равными 60% от V•A показателя ИБП.

Калькулятор онлайн

Дополнительная информация. Для того чтобы точнее установить данные, можно воспользоваться онлайн-калькулятором. Некоторые веб-сайты предоставляют пользователю необходимую P, если нажать на тип устройства, например, телевизор или настольный компьютер. На таких сайтах часто показаны графические диаграммы, по которым легко измерить V•A различных приборов, от холодильников до компьютеров.

Можно сделать вывод, что V•A важная характеристика для современных электрических приборов и оборудования. Если при покупке электроустройств этот показатель учитываться не будет, они будут работать в режиме перегруза, что приведет к преждевременному выходу их из строя.

опаснее для человека Вольты или Амперы

Всем известно, что электричество опасно для здоровья и жизни людей. Об этом рассказывают в школе, на это указывают предупреждающие надписи та высоковольтных трансформаторах «Опасно для жизни, высокое напряжение!» и на розетках «220В».

Однако в ПТБЭЭП и других нормативных документах кроме напряжения указывается опасный ток. Даже УЗО и дифференциальные автоматы защищают не от попадания человека под напряжение, а от протекания через него тока, превышающего ток уставки. Так что же представляет бОльшую опасность и что убивает ток или напряжение?

Как возникает ток и напряжение

Для ответа на вопрос, что убивает ток или напряжение, необходимо разобраться, к каким физическим явлениям относятся эти термины. Несмотря на то, что они связаны между собой, это два разных понятия.

Что такое электрический ток

Согласно школьному курсу физики и Теоретическим Основам Электротехники (ТОЭ) электрическим током называется направленное движение электрических частиц. В металлах это электроны, а в жидкостях, в том числе организме человека, ионы солей, кислот и щелочей. Именно поэтому дистиллированная вода является изолятором.

Единицей измерения является 1 Ампер. Это около 6,24 × 1018 электронов, протекающих через проводник за 1 секунду.


Интересно! Воздействие токов небольшой величины применяются в медицине в установках УВЧ и для лечения некоторых заболеваний.

Что такое напряжение

Электрическое напряжение — это разность потенциалов между двумя точками или проводами. Этот потенциал приводит в движение заряженные частицы и вызывает появление электрического тока в проводнике. Говоря об опасном токе и напряжение для человека чаще всего подразумевается один из проводов и заземление.

При наличии только одного контакта разность потенциалов и напряжение отсутствует. Именно поэтому птицы могут сидеть на высоковольтных проводах, а сама линия электропередач монтируется так, чтобы исключить одновременное прикосновение пернатых к двум проводам или к проводу и опоре.

Отличие между током и напряжением

Различие между током и напряжением проще всего показать на примере водопровода и водонапорной башни. В данной системе аналогом напряжения является высота башни и давление в системе, а ток — это поток воды в трубах.

Чем выше башня и давление (напряжение) и больше сечение (меньше электрическое сопротивление), тем больше поток воды (ток).

Кроме того, напряжение как потенциал может существовать неопределённо долго, а ток протекает только при замкнутой цепи между точками с различным потенциалом.


Справка! Мощность электроприбора рассчитывается произведением тока и напряжения.

Воздействие тока и напряжения на организм

Для появления тока к проводнику необходимо подать напряжение и ток тем больше, чем оно выше. С точки зрения электротехники тело человека является раствором солей и других химических веществ в воде и ток, протекающий через него, так же подчиняется этому правилу, определяющему, что убивает человека сила тока или напряжение.

Протекание через организм человека электрического тока оказывает различные виды негативных воздействий:

  • термическое — нагрев организма по пути протекания, а при большой величине тока ожоги;
  • электролитическое — различные химические реакции в крови и биологических жидкостях;
  • биологическое — раздражение нервных окончаний в коже и других органах;
  • механическое — разрывы, вывихи и расслоения тканей из-за электродинамического эффекта.

Сами электротравмы делятся на общие, при которых поражается весь организм, и местные, при которых негативному воздействию подвергаются только отдельные участки кожи и ожоги глаз ультрафиолетовым излучением электрической дуги.

От чего зависит степень поражения

То, какое напряжение и ток опасны для жизни, зависит от различных факторов, главный из которых электрическое сопротивление кожи. Если её поверхность сухая и чистая, то сопротивление при напряжении 5-10В составляет около 100кОм, а при намокании оно падает до 1кОм. Его так же уменьшают порезы и царапины. Сопротивление внутренних органов 0,5-1кОм.

Сопротивление тела падает, а протекающий через организм ток растёт при увеличении напряжения, продолжительности воздействия, плохом состоянии здоровья и других факторах. При совпадении всех негативных факторов оно может понизиться до 0,8кОм.

Кроме напряжения степень поражения зависит так же от длительности и пути прохождения тока через организм. Самым опасным является путь прохождения тока рука-рука и рука-ноги, при которых ток проходит через область груди.

Чем выше напряжение и ток, тем меньше относительно безопасное время его протекания:

  • 65В — 1с;
  • 220В — 0,1с.

При более продолжительном нахождении человека под напряжением возрастает вероятность фибрилляции желудочков сердца с его последующей остановкой. В этом случае спасти жизнь пострадавшему могут только искусственное дыхание и непрямой массаж сердца.


Важно! Реанимационные действия производятся только после освобождения человека от воздействия электричества.

Опасный ток и напряжение для человека

Величина опасного для здоровья и жизни тока зависит, прежде всего, от рода тока — постоянный или переменный:

  • Постоянный ток менее опасен, ощущается при 12мА. Взявшись рукой за провод, находящийся под напряжением, его можно самостоятельно отпустить при токе до 25мА, остановка дыхания наступает при 110мА.
  • Переменный ток промышленной частоты более опасен. Ощущается при 0,6мА, причиняет боль при 15мА, при 50мА останавливается дыхание, смертельным является ток 90мА.
  • Переменный ток высокой частоты. Распространяется по поверхности тела, вызывает ожоги кожи, но не повреждает внутренние органы.

Самым высоким сопротивлением обладает верхний ороговевший слой сухой кожи. При низких напряжениях он составляет 40-100кОм, но при повышении происходит электрический пробой изоляции и сопротивление тела падает до 1кОм.

Оно так же понижается во влажных помещениях, поэтому максимально-допустимое напряжение в парных и саунах составляет 12В.

Понизить сопротивление поверхности тела может так же находящиеся на ней пот, загрязнения и другие факторы, в результате опасным может быть напряжение 50В. Поэтому питание переносных светильников ограничено величиной 36В.

При рассмотрении вопроса, что убивает сила тока или напряжение, необходимо учесть, что статическое электричество, за исключением специальных установок типа «лейденской банки» совершенно безопасно.

В бытовых условиях человек с ним сталкивается при ношении шерстяного свитера или поглаживании кошки. Его величина может достигать 35кВ, но из-за малой величины заряда ощущается как кратковременный укол. Это относится так же к пьезоподжигу в карманных зажигалках.

Вывод

Как видно из статьи, ответ на вопрос, что убивает ток или напряжение, не является однозначным. С одной стороны, без напряжения электрический ток отсутствует, а с другой стороны, само по себе высокое напряжение не опасно и при разомкнутой цепи, в том числе через тело человека, ток отсутствует.

Поэтому, несмотря на то, что убивает именно ток, опасным является высокое напряжение.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

От чего зависит ампер.

Величины ватт, вольт и ампер

Ампер-час (сокращенное обозначение а. ч) является единицей измерения электрической емкости гальванического элемента или аккумулятора.

Что же представляет собой эта единица измерения и почему она так называется?

Ампер (сокращенное обозначение а), как известно, является единицей измерения силы электрического тока. Под электрическим током подразумевается движение электричества (упорядоченное движение электронов) по проводнику. Чем большее количество электричества протекает через поперечное сечение проводника в секунду, тем больше ток в проводнике. Для измерения количества электричества имеется специальная единица — кулон (сокращенное обозначение к). Один кулон содержит вполне определенное количество электричества. Если через поперечное сечение проводника протекает в одну секунду один кулон электричества, то величина тока в этом проводнике равна одному амперу» Следовательно, по величине тока можно легко определить, какое количество электричества протекло по проводнику в течение любого времени.

Если при токе в 1 а в каждую секунду протекает через проводник 1 к электричества, то в течение 1 мин при том же токе будет протекать 60 к (1 кх60 сек), а в течение часа — 3 600 к. Таким образом, мы можем сказать, что 1 ампер-час равен 60 ампер-минутам, или 3 600 ампер-секундам, или 3 600 кулонам.
Как видим, электрическую емкость можно было бы выражать и в кулонах, но кулон является очень небольшой единицей и поэтому ею неудобно пользоваться на практике: пришлось бы иметь дело с очень большими числовыми выражениями.
Поэтому для практических измерений электрической емкости принята более крупная единица— ампер-час. В этих единицах всегда выражается емкость гальванических элементов и аккумуляторов.

Удобство пользования ампер-часом в качестве единицы измерения электрической емкости заключается еще и в том, что простым перемножением величины разрядного тока (выраженной в амперах) на время разряда (выраженное в часах) сразу определяется количество отданного элементом электричества. Допустим, что элемент разряжался в течение 100 час. током в 0,1 а. Следовательно, за это время элемент отдал количество электричества, соответствующее емкости 0,1X100=10 а-ч. Так мы всегда можем подсчитать, какую емкость отдал элемент, питавший лампы радиоприемника в продолжение всего времени своей работы.

У радиолюбителей может возникнуть вопрос: а каким образом определяют емкость элементов при их изготовлении на заводе, т. е. до их разряда?
Чтобы ответить на этот вопрос, вспомним, что причиной возникновения электрической энергии в элементе является растворение цинка во время электрохимической реакции, происходящей внутри элемента.

Знаменитым ученым Фарадеем был установлен закон, который гласит, что определенному количеству растворенного во время электрохимической реакции вещества соответствует строго определенное количество образовавшегося электричества и что это количество электричества зависит от природы растворенного вещества.

То количество вещества, какое необходимо растворить во время электрохимической реакции для получения одного кулона электричества, называется электрохимическим эквивалентом данного вещества.

Дли разных веществ величина электрохимического эквивалента будет различная, но строго определенная. Например» электрохимический эквивалент цинка равен 0,341, меди 0,329, серебра 1,118 мг (миллиграмма) и т. д.

Таким образом, чтобы получить 1 к электричества, необходимо растворить во время электрохимической реакции 0,341 мг цинка. Отсюда ясно, что для получения электричества в количестве 1 а – ч, равного 3 600 /с, теоретически нужно растворить цинка
0,341 . 3 600 = 1 228 мг – 1,228 г.
На практике расход цинка на один ампер-час получается в несколько раз больший. Объясняется это, во-первых, невозможностью полностью использовать весь цинк в элементе, поскольку по мере растворения отрицательного электрода начинает возрастать внутреннее сопротивление элемента. Поэтому, когда.растворится примерно половина или несколько больше половины цинка, элемент становится уже неработоспособным и считается окончательно разряженным. Во-вторых, не весь цинк, из которого состоит электрод, принимает участие в электрохимической реакции.

Повышенный расход цинка объясняется еще и тем, что он всегда содержит некоторое количество вредных примесей, как, например, железо или свинец. Такие примеси вместе с цинком образуют в самом электроде маленькие элементики, внутри которых все время будет протекать ток. Следовательно, в этих местах отрицательного электрода все время будет происходить растворение цинка независимо от того, замкнут или разомкнут сам элемент. Поэтому примеси являются одной из основных причин повышенного расхода цинка и электролита, увеличивают саморазряд гальванического элемента и вызывают резкое снижение его емкости и срока хранения.

Учитывая все эти факторы, завод может заранее определить, сколько нужно взять цинка, а также электролита и деполяризатора, чтобы собрать элемент определенной емкости.

Нужно иметь в виду, что емкость элементов не является величиной строго постоянной. Наоборот, она может значительно меняться в ту и другую сторону в зависимости от величины и разрядного тока, конечного разрядного напряжения, а также от способа разряда — непрерывного или прерывистого.

В заводском паспорте каждого элемента указывается величина сопротивления нагрузки, через которое рекомендуется разряжать данный элемент. Разделив напряжение элемента на это сопротивление, мы определим допустимую величину разрядного тока данного элемента. Однако при этом нужно учитывать еще и внутреннее сопротивление элемента. Если разряжать совершенно свежий элемент таким током вплоть до напряжения 0,7 в, то, по заводским данным, элемент отдаст полную свою емкость.

От элемента можно, конечно, потреблять ток и значительно больший, чем нормальный, в особенности при прерывистом разряде, но в этом случае элемент имеет меньшую емкость. Наоборот, если разряжать элемент током меньше предельного, притом с частыми и продолжительными перерывами, то он будет иметь емкость, несколько большую гарантируемой заводом.

На рис. 1 приведена кривая, показывающая изменение величины емкости в зависимости от разрядного тока у обычного сухого элемента при разряде его до одного и того же конечного напряжения. Как видно, с увеличением разрядного тока емкость значительно уменьшается. Так, например, если при разрядном токе в 0,1 а емкость элемента составляет 50 а ч, то при увеличении разрядного тока в два раза емкость уменьшается почти до 40 а. ч, а при токе в 0,5 а она снижается до 30 а ч что составляет лишь половину паспортной емкости элемента.

Такую картину мы наблюдаем при разряде элемента до конечного напряжения 0,7 в.
К сожалению, применяя гальванические элементы для питания радиоприемника, вообще невозможно использовать их полную емкость, потому что в этих условиях эксплуатации можно разрядить элементы только до 0,9 в; при падении рабочего напряжения у каждого элемента ниже 0,9 в батарею уже приходится заменять новой. Между тем если элементы будут разряжаться током предельной силы, то рабочее напряжение у них может сравнительно быстро упасть ниже 0,9 в и поэтому их придется заменить новыми, не использовав и половины их емкости.

Наглядной иллюстрацией сказанного может служить рис. 2, на котором приведена кривая изменения рабочего напряжения при непрерывном разряде сухого элемента с марганцево-воздушной деполяризацией. Элемент разряжался током, указанным в заводском паспорте, до конечного напряжения 0,7 е.

Как видно из этой кривой, уже на десятые сутки рабочее напряжение у элемента стало меньше 0,9 в, а примерно на 17-е сутки оно снизилось до 0,8 в и дальше кривая напряжения идет почти на этом же уровне, медленно снижаясь до 0,7 в.

Таким образом, при беспрерывном разряде элемента током, указанным в его заводском паспорте, уже после использования одной трети емкости рабочее напряжение у элемента падает ниже 0,9 в. Поэтому остальную емкость мы не можем использовать для питания радиоприемника. Правда, при прерывистом разряде (а именно в таком режиме всегда и работают элементы, питающие радиоприемник) рабочее напряжение у элемента будет значительно дольше удерживаться на уровне 0,9 в и, следовательно, величина емкости может быть заметно больше. Однако, если элемент будет работать с большой перегрузкой, то и при этих условиях рабочее его напряжение может сравнительно быстро упасть ниже критической величины, т. будут питать лампы приемника, но такая нагрузка для них будет чрезмерной, в особенности для блоков БНС-100, емкость которых значительно меньше емкости элементов 6С МВД.

Поэтому выгоднее и в первом и во втором случаях батарею составлять из трех-четырех параллельных групп элементов, не взирая на то, что по заводским данным от этих элементов можно потреблять ток до 250 ма.

Все сказанное здесь относительно емкости гальванических элементов в одинаковой мере относится и к анодным батареям. Убедительнее всего это подтверждает рис. 3, на котором приведены четыре кривые, характеризующие изменение величины емкости одной и той же батареи БАС-80 при разряде ее различными токами и до разных конечных напряжений.

Для большей наглядности сравним показания крайних характеристик (кривые верхняя и нижняя). Первая снята для случая наиболее глубокого разряда батареи (до напряжения 48 б), а вторая — для случая минимального разряда (до напряжения 70 в).

Из сопоставления их видим, что при одной и той же величине тока, допустим. 10 мау в первом случае батарея имеет емкость 1 а- чу а во втором — только 0,5 а ч. Этот пример показывает, насколько важно для получения большей емкости, а следовательно, и для продления срока службы батареи добиться возможности разряда ее до более низкого конечного напряжения и при нормальной величине тока.

При использовании гальванических батарей для питания радиоприемников редко соблюдается первое требование. Обычно радиолюбители для питания анодов ламп приемника применяют одну батарею напряжением 80 в. При таком напряжении приемник вначале работает удовлетворительно. Однако при понижении напряжения батареи до 70—65 в громкость и качество приема падают. Радиолюбитель считает, что анодная батарея уже полностью разрядилась, и поэтому заменяет ее новой, не использовав доброй половины ее емкости-Между тем нужно лишь присоединить последовательно к такой полуразряженной батарее дополнительную батарею с напряжением 20 или 40 в, и тогда первая батарея может еще работать до наступления полного разряда, т. е. до напряжения 48—42 в. Только после этого разрядившуюся батарею выключают. При этом дополнительная батарея может быть еще использована.

Не следует также к приемнику, нормально требующему, допустим, анодного напряжения 120 в, присоединять полностью две 80-вольтовые батареи, соединенные последовательно и дающие напряжение 160 в. При таком повышенном напряжении, во-первых, нарушается рабочий режим ламп, а, во-вторых, сильнее разряжаются батареи. В таких случаях выгоднее поступать так: вначале включить в приемник только полторы батареи, а затем, после понижения ее напряжения, подсоединить к ней и резервную половину второй батареи. Когда у такой батарей напряжение понизится до 85—80 в, то обе батареи окажутся разряженными полностью и их придется заменить новыми.

Применяя такое комбинированное соединение батарей, можно добиться максимального использования их емкостей. У большинства батарей типа БАС имеются промежуточные выводы (от середины или одной трети батареи), что позволяет легко осуществлять различные варианты соединения между собой двух или нескольких батарей для получения разной величины напряжения.

Итак, мы видим, что недостаточно знать величину емкости элемента или батареи, но нужно еще уметь возможно полнее использовать эту емкость для питания радиоприемника.

Спижевский И.И., Бурлянд В.А. – Хрестоматия радиолюбителя 1957

Ампер
есть сила неизменяющегося тока, который
при прохождении по двум параллельным
прямолинейным проводникам бесконечной
длины и ничтожно малой площади кругового
поперечного сечения, расположенным в
вакууме на расстоянии1 метр один от
другого, вызвал бы на каждом участке
проводника длиной 1 метр силу взаимодействия,
равную 2·10−7 ньютона.

Кулон
— это величина заряда, прошедшая через
проводник при силе тока 1 А за время 1
сек.

Ом
(обозначение: Ом, Ω)
— единица измерения
электрического сопротивления в
Международной системе единиц (СИ). Ом
равен электрическому сопротивлению
проводника, между концами которого
возникает напряжение 1 вольт при силе
постоянного тока 1 ампер.

Вольт
как
разность потенциалов между двумя точками
электростатического поля, при прохождении
которой над зарядом величиной 1 кулон
(Кл, C) совершается работа величиной 1
джоуль (Дж, J)

1 фарад
равен ёмкости конденсатора, при которой
заряд 1 кулон создаёт между его обкладками
напряжение 1 вольт:

Генри
Цепь имеет индуктивность один генри,
если изменение тока со скоростью один
ампер в секунду создаёт ЭДС индукции,
равную одному вольту.

Те́сла
(русское обозначение: Тл; международное
обозначение: T) — единица измерения
индукции магнитного поля в Международной
системе единиц (СИ), численно равная
индукции такого однородного магнитного
поля, в котором на 1 метр длины прямого
проводника, перпендикулярного вектору
магнитной индукции, с током силой 1 ампер
действует сила 1 ньютон.

Вебер
По определению, изменение магнитного
потока через замкнутый контур со
скоростью один вебер в секунду наводит
в этом контуре ЭДС, равную одному вольту

Один
электронвольт
равен энергии, необходимой
для переноса элементарного заряда в
электростатическом поле между точками
с разницей потенциалов в 1 В

Электри́ческая инду́кция
(электри́ческое смеще́ние) — векторная
величина, равная сумме вектора
напряжённости электрического поля и
вектора поляризации.

Закон
видемана
утверждает, что отношение
коэфф. теплопроводности c к уд.
электропроводности s для металлов при
одинаковой темп-ре постоянно: c/s=const

сли
в проводнике течет постоянный ток и
проводник остается неподвижным, то
работа сторонних сил расходуется на
его нагревание. Опыт показывает, что в
любом проводнике происходит выделение
теплоты, равное работе, совершаемой
электрическими силами по переносу
заряда вдоль проводника. Если на концах
участка проводника имеется разность
потенциалов
,
тогда работу по переносу заряда q на
этом участке равна

По
определению I= q/t. откуда q= I t. Следовательно

Так
как работа идет па нагревание проводника,
то выделяющаяся в проводнике теплота
Q равна работе электростатических сил

Соотношение
(17.13) выражает закон Джоуля-Ленца в
интегральной форме. Введем плотность
тепловой мощности
,
равную энергии выделенной за единицу
время прохождения тока в каждой единице
объема проводника

где
S — поперечное сечение проводника,

его длина. Используя (1.13) и соотношение,
получим

Но

плотность тока, а,
тогда

с
учетом закона Ома в дифференциальной
форме
,
окончательно получаем

Формула
(17.14) выражает закон Джоуля-Ленца в
дифференциальной форме: объемная
плотность тепловой мощности тока в
проводнике равна произведению его
удельной электрической проводимости
на квадрат напряженности электрического
поля.

Объявления:

На проводник
с током, находящийся в магнитном поле,
действует сила, равная

F = I·L·B·sina

I — сила тока
в проводнике;

B — модуль
вектора индукции магнитного поля;

L — длина
проводника, находящегося в магнитном
поле;

a — угол между
вектором магнитного поля инаправлением
тока в проводнике.

Силу,
действующую на проводник с током в
магнитном поле, называют силой Ампера.

Максимальная
сила Ампера равна:

Формулировка
закона Био Савара Лапласа
имеет вид:
При прохождении постоянного тока по
замкнутому контуру, находящемуся в
вакууме, для точки, отстоящей на расстоянии
r0, от контура магнитная индукция будет
иметь вид.

Сила

F

действующая на частицу с электрическим
зарядом q
,
движущуюся с постоянной скоростью v
,
во внешнем электрическом E

и магнитном B

полях, такова:

где
×
векторное произведение. Все величины
выделенные жирным являются векторами.
Более явно:

где
r

радиус-вектор заряженной частицы, t

время, точкой обозначена производная
по времени.

Явл
Электромагнитная индукция
— явление
возникновения электрического тока в
замкнутом контуре при изменении
магнитного потока, проходящего через
него.

Иными
словами, ферромагнетик — такое вещество,
которое, при температуре ниже точки
Кюри, способно обладать намагниченностью
в отсутствие внешнего магнитного поля.

Дифракцией
света называется явление отклонения
света от прямолинейного направления
распространения при прохождении вблизи
препятствий.

Голография
основывается на двух физических явлениях
— дифракции и интереференции световых
волн.

Физическая
идея состоит в том, что при наложении
двух световых пучков, при определенных
условиях возникает интерференционная
картина, то есть, в пространстве возникают
максимумы и минимумы интенсивности
света (это подобно тому, как две системы
волн на воде при пересечении образуют
чередующиеся максимумы и минимумы
амплитуды волн)

Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.

Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.

Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.

Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.

Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.

Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.

Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.

Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.

Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.

Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.

Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.

Историческая справка

С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.

Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.

Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.

Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.

Электрический ток. Определения

Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:

I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах

Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:

I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах

Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).

Размерность тока в системе СИ определяется как

[А] = [Кл] / [сек]

Особенности протекания электрического тока в различных средах. Физика явлений

Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках

При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.

Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.

С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.

В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.

Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.

Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.

Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.

Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.

Электрический ток в жидкостях (электролитах)

Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.

Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.

Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.

Электрический ток в газах

Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.

Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.

Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.

Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.

Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.

Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.

Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.

Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.

При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.

Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.

Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.

Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.

Электрический ток в вакууме

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.

Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.

Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.

Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.

Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.

При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.

В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.

Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.

Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.

Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.

Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.

Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток
за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.

Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.

Электрический ток в биологии и медицине

Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.

При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.

Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.

В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.

Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.

К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.

Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.

Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.

У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.

Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.

Характеристики электрического тока, его генерация и применение

Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.

Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.

Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.

Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.

В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.

Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.

Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.

В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.

Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.

Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.

Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.

Измерение электрического тока

Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.

По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.

Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение тока I m — это наибольшее мгновенное значение тока за период.

Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.

Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.

Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.

Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.

Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма
напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение тока с помощью осциллографа

Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта R s =100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта R s . Значение сопротивления шунта выбирается из условия R s

Опыт 1

Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор R s определяется по закону Ома:

I RMS = U RMS /R = 0,31 В / 100 Ом = 3,1 мА,

что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен

I P-P = U P-P /R = 0,89 В / 100 Ом = 8,9 мА

Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить I RMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).

Опыт 2

Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:

I RMS = U RMS /R = 0,152 В / 100 Ом = 1,52 мА,

что приблизительно соответствует показаниям мультиметра (1,55 мА).

Опыт 3

Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.

Опыт 4

Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму
его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе R s =100 Ом.

Техника безопасности при измерении тока и напряжения

Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии

  • Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
  • Не проводить измерения токов, требующих определённых профессиональных навыков (при напряжении свыше 1000 В).
  • Не производить измерения токов в труднодоступных местах или на высоте.
  • При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  • Пользоваться исправным измерительным инструментом.
  • В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  • Пользоваться измерительным прибором с исправными щупами.
  • Строго следовать рекомендациям производителя по использованию измерительного прибора.

Что измеряют в амперах: амперы

Из школьного курса физики известно, что ампер – это одна из основных единиц измерения при изучении физики электрических явлений. В амперах меряют силу тока.

Суть ампера

Определение

Единица измерения силы взаимодействия электронов названа в честь ученого из Франции А. Ампера. Он проводил опыты, направленные на изучение воздействия магнита на проводник и выявил взаимозависимость между его длиной, количеством частиц, которое перемещается по нему в промежуток времени, направлением магнитного воздействия и углом между вектором воздействия и движением частиц по проводнику.

В 1948 году было принято решение Международной организации по мерам и весам о том, что такой показатель измеряется в амперах. Физическое значение данного параметра состоит в следующем:

  • Элементарные частицы постоянно текут по бесконечно тонким и длинным проводникам в одном направлении;
  • Цепь находится в вакууме, и потенциалы расположены параллельно друг к другу с расстоянием в один метр;
  • Сила притяжения или отталкивания между ними составляет 2*10-7 Ньютона.

На практике такие условия даже в лаборатории воспроизвести невозможно, поэтому для установления эталона и тарирования измерительных приборов специалисты мерили уровень взаимодействия, возникающий между двумя катушками с большим количеством проводов минимального сечения.

С 1992 года ситуация изменилась, и описываемое физическое явление стали определять на основании закона Ома. Теперь под одним ампером (обозначение 1А) понимается сила тока, при которой за 1 секунду по проводнику перемещается количество электронов, равное одному кулону.

Определение ампера

Что такое сила тока

Как известно, все материальные вещества состоят из молекул, которые, в свою очередь, состоят из атомов. Атом состоит из ядра и вращающихся вокруг него электронов. Когда происходит химическая реакция между двумя разными веществами, электроны из одних атомов переходят в другие. Это объясняется тем, что одни атомы обладают избыточным количеством электронов, а у других – их недостаточно. Перемещение электронов из одного вещества при контакте с другим веществом и является электрическим током. Если не оказывать внешнего воздействия, такой переток элементарных частиц будет происходить до тех пор, пока заряды у атомов, из которых состоят контактирующие вещества, не выровняются.

Однако, одного перемещения частиц недостаточно. Необходимо, чтобы их движение было в определенном направлении. Только в таком случае можно говорить об электричестве и его параметрах. Для этого между полюсами или окончаниями должна существовать разница потенциалов (на одном конце расположено вещество с избытком электронов, а на другом – с недостатком). Если такая разница не меняется в течение времени, ток называется постоянным (ярким примером является батарейка). Если же в процессе движения частиц потенциалы меняются местами, то он будет называться переменным.

Сила тока

Закон Ома

Количеством перемещаемых по проводнику частиц можно управлять. Это эмпирическим (опытным) путем установил немецкий физик Георг Ом. После ряда опытов он выявил, что чем выше разница потенциалов между полюсами (другими словами, напряжение), тем выше скорость движения элементарных частиц. Поэтому бытует мнение, что высокое напряжение способно убить человека.

С точки зрения науки, это совершенно не так. Во-первых, убивает не напряжение (это всего лишь разница потенциалов между полюсами), а электроны, перемещаемые по проводнику за единицу времени. Проходящие через человека частицы, в силу свойств электричества, выделяют тепло, что и приводит к ожогам либо химическим изменениям внутренних органов. Поэтому при работе с электрическими цепями в соответствии с требованиями охраны труда требуется надевать резиновые перчатки и сапоги (резина не проводит электричества, а, значит, поражения не будет).

Закон Ома для участка цепи

Вместе с тем, встречались случаи, когда человек даже после контакта с электричеством оставался живой и невредимый. Это объясняется сопротивлением. Скорость движения и количество перемещаемых частиц уменьшается по мере увеличения сопротивления, которым обладает каждое вещество. Таким образом, при необходимости уменьшить данные параметры можно просто увеличить сопротивление.

Сила тока в быту

Основное ее назначение в быту – передача энергии. Электроны, взаимодействуя с различными веществами, меняют их свойства. Например, вольфрам начинает излучать свечение (так устроена обыкновенная лампочка), а другим химическим элементам, у которых высокие значения сопротивления, электричество отдает тепло (так устроена электроплитка). В некоторых случаях происходит отделение веществ друг от друга (при производстве алюминия).

Очень важно при монтаже электрических цепей в квартире или на предприятии избегать контакта полюсов. Если это произойдет, наступит «короткое замыкание», в результате которого резко увеличится сила тока в проводнике. Это приведет к его резкому нагреву и, возможно, даже пожару.

Электричество в быту

Итак, ответ на вопрос, что такое амперы, может быть следующим: это отражение скорости движения электронов по проводнику за единицу времени. Чем она больше, тем выше опасность поражения, но тем большее количество энергии передается.

Видео

Оцените статью:

Международные ампер, вольт — Справочник химика 21





    Сравним мысленно прохождение электрического тока по проволоке с точением воды в трубке. Количество воды измеряется в литрах или кубических метрах количество электричества обычно измеряют в кулонах или эл.ст.ед. Скорость течения или поток воДы, т.е. количество ее, проходящее в данной точке трубки в единицу времени, измеряют в литрах в секунду или в кубических метрах в секунду силу электрического тока измеряют в амперах (кулонах в секунду) или в эл.ст.ед. в секунду. Скорость движения воды в трубке зависит от разности давления на концах трубки это давление выражается в килограммах на квадратны11 сантиметр. Сила электрического тока в проволоке зависит от электрической разности давления или от разности потенциалов (падения напряжения) между концами проволоки, обычно измеряемой в вольтах или эл.ст.ед. Единица измерения количества электричества (кулон) и единица измерения электрического потенциала (вольт) были приняты произвольно но международному соглашению. [c.57]









    Определенные выше единицы — ампер, вольт и ом носят также название абсолютных единиц (абсолютные ампер, вольт п ом), слегка отличающихся от бывших до недавнего времени (в СССР—до 1948 г.) в употреблении практических международных единиц, а именно  [c.388]

    Международные единицы. Электрические единицы, описанные в предыдущем разделе, выражаются с помощью таких количеств, которые нелегко измерить в лабораторных условиях, поэтому Международный комитет в 1908 г. принял иные определения практических единиц электричества. Международный ампер определяется как сила тока, при которой в течение 1 сек. из раствора соли серебра выделяется 1,11800 жг серебра. Международный ом есть сопротивление при 0° С столбика ртути длиной 106,3 см с сечением, одинаковым вдоль столбика, и весом 14,4521 г. Международный вольт определяется как разность потенциалов или э. д. с., необходимая для того, чтобы поддерживать силу тока в 1 международный ампер в системе с сопротивлением в 1 международный ом. Однако оказалось, что международные единицы, определенные таким путем, не соответствуют точно единицам, определенным на основании системы С. G. S. поэтому последние называются абсолютными. единицами в отличие от международных единиц. Международный ампер равен 0,99986 абсолютного ампера, а международный ом равен 1,00048 абсолютного ома, и таким образом международный вольт равен 1,00034 абсолютной практической единицы .  [c.28]

    Эти соотношения будут совершенно точными лишь в том случае, если в качестве ампера, вольта и ома взяты абсолют-шые единицы если же воспользоваться международными еди- ницами, получится небольшое расхождение, так как абсолютный вольт-кулон или джоуль отличается от соответствующего международного. Так как единица теплоты калория определяется как количество тепла, эквивалентное 4,1833 международным джоулям, то [c.29]

    За единицу разности потенциалов принят международный вольт, равный разности потенциалов при силе тока в один международный ампер и сопротивлении в один международный ом. [c.304]

    За единицу электрической энергии принят международный джоуль, (или ватт-секунда), равный энергии, производимой постоянным током в один международный ампер в течение одной секунды при разности потенциалов в один международный вольт. Международный джоуль на 0,038% больше абсолютного джоуля. Один джоуль равен 10 эргов. [c.305]

    В Международной системе единиц (СИ), применяемой ныне, основной электрической единицей является единица тока — ампер (см.). В систему СИ входят и другие электрические единицы кулон, Кл = А-с (для количества электричества) вольт, В = Дж/(А с) (для электрического потенциала) ом. Ом = В/А (для сопротивления) фарада, Ф = Кл/В (для емкости). [c.221]










    Международная система мер в качестве основных единиц для электрических измерений принимает ом и ампер и в качестве производной единицы вольт. [c.706]

    Прохождение электрического тока по проволоке можно сравнить с течением воды в трубе. Количество воды измеряют в литрах количество электричества обычно измеряют в кулонах (ампер-секундах) или стонеях. Скорость течения, или поток, воды, т. е. количество ее, проходящее через данное сечение трубы в единицу времени, измеряют в литрах в секунду силу электрического тока измеряют в амперах (кулонах в секунду). Скорость движения воды в трубе зависит от разности давления на концах трубы это давление выражается в атмосферах, или в килограммах на квадратный сантиметр. Электрический ток в проволоке зависит от разности электрического потенциала или от падения напряжения между концами проволоки эту разность потенциалов обычно измеряют в вольтах. Определения единицы количества электричества (кулон) и единицы электрического потенциала (вольт) были приняты в соответствии с международным соглашением. [c.51]

    Международным соглашением (1908) эталонизированы единица силы тока (ампер) и единица сопротивления (международный ом). Тогда единица электродвижущей силы (международный вольт) определяется, как падение напряжения 8 проводнике I рода с сопротивлением в 1 международный ом, через который проходит ток в 1 ампер. [c.263]


ток или напряжение, и почему это происходит?

Опасность электричества не миф, хуже того, несмотря на всеобщую осведомленность об этом факте, практически каждый человек может сказать, что ему доводилось при каких-то обстоятельствах ощутить на собственной шкуре электрический удар. Исход подобного воздействия не обязательно плачевен, однако, опасность летального исхода – это неотъемлемый спутник халатного обращения с электричеством.

Именно поэтому на электроустановках устанавливают предупреждающие плакаты, например, «Высокое напряжение! Опасно для жизни!» или «Не влезай! Убьет!». В связи с чем у многих возникает путаница, что убивает ток или напряжение, чего же им стоит опасаться.

В чем отличие между током и напряжением?

Если рассмотреть физический процесс, то электрическая энергия имеет множество различных характеристик, среди которых наиболее часто рассматриваются напряжение и ток. Сразу заметим, что это не одно и то же, но обе они взаимосвязаны.

В каждом веществе присутствует несчетное количество мельчайших атомов, в которых происходит электромагнитное взаимодействие между положительно заряженным ядром и отрицательно заряженными электронами, вращающимися вокруг ядра. В нормальном состоянии элементарные частицы находятся в балансе – заряд ядра полностью скомпенсирован зарядами электронов. Но, воздействие электромагнитного поля на атомы приводит наиболее удаленные электроны в движение, и атомы выходят из равновесия – получают определенный заряд.

Рис. 1. Строение атома

Под напряжением следует понимать разницу между двумя зарядами – в одной точке энергии больше, а в другой меньше. Можно провести аналогию с сообщающимися сосудами, если воды в одной трубке больше, а во второй меньше, то при их соединении вода из первой будет перетекать во вторую. Так же и с напряжением – потенциально в каждой точке имеется определенный заряд энергии, созданный электромагнитным полем, но до тех пор, пока эти точки не соединятся электрической цепью, заряженные частицы не начнут направленного движения.

Рис. 2. Что такое напряжение

Но, с появлением связующей цепи, напряжение между двумя точками приведет к направленному движению заряженных частиц. Это явление получило название электрического тока.

В зависимости от особенностей источника электрической энергии напряжение и ток могут носить:

  • постоянный характер – не зависимо от наличия или отсутствия нагрузки, величина напряжения не меняется, относится к источникам неограниченной мощности;
  • изменяться в зависимости от величины нагрузки – относятся к источника с ограниченной мощностью, где величина питающего напряжения снижается при замыкании цепи;
  • временный – при подключении нагрузки к источнику питания заряд полностью рассеивается через короткий промежуток времени, это конденсаторы, в некоторых ситуациях наведенное напряжение.

Поэтому ток не может протекать без наличия напряжения на участке цепи, но именно ток определяет интенсивность воздействия электрической энергии на человека.

Воздействие тока и напряжения на организм

Чтобы определить степень воздействия на человека, следует отметить, что тело представляет собой проводник электрической энергии, через который может свободно протекать электрический ток. Однако, согласно закону Ома, сила тока на любом участке электрической цепи  прямо пропорциональна напряжению, приложенному к этому участку и обратно пропорциональна сопротивлению:

I = U/R;

где

  • I – сила тока;  
  • U – величина приложенного напряжения;
  • R – сопротивление тела человека.

Рис. 3: от чего зависит сила тока

Как можно судить из вышеприведенного выражения, чем больше омическое сопротивление, тем меньше ток, протекающий через человека. Напряжение электрической сети – величина постоянная и мало зависящая от того, что к ней подключено.

А вот на сопротивление человека влияют многие факторы:

  • состояние кожных покровов в местах прикосновения к токоведущим частям;
  • увлажненность кожи;
  • общее физиологическое состояние организма;
  • состав крови.

Помимо этого прохождение тока будет зависеть и от состава напольного покрытия, если цепь замкнется через ноги. В среднем, сопротивление человека принимается равным 1000 Ом, сухая кожа может иметь сопротивление в 100 000 Ом, но рассчитывать на такой показатель не стоит. Если рассмотреть ситуацию, когда 220 вольт приложено к человеку с сопротивлением 1000 Ом, то удар током достигнет 0,22А  или 220 мА, а это опасная величина.

Чтобы представлять себе всю картину, нужно знать следующее:

  • при 1 – 10 мА удар электрическим током не ощущается, человек свободно отпустит токоведущий элемент без угрозы для собственной жизни;
  • от 15 – 50 мА воздействие электричества вызывает сокращения мышц и болезненные ощущения, самостоятельное освобождение человека может оказаться затруднительным;
  • от 50 – 100 мА воздействие электрического тока затрагивает сердце, поэтому становится опасным для жизни;
  • от 100 – 200 мА поражение электрической энергией может нанести летальный урон организму.

Вышеприведенные данные справедливы для переменного тока частотой 50 Гц, это обуславливается наличием амплитудных составляющих и пикового значения, как в положительную, так и в отрицательную сторону.  При постоянном токе опасное для жизни значение считается от 300 мА и выше.

Более детально о воздействии электрического тока на организм человека было изложено в нашей статье: https://www.asutpp.ru/dejstvie-elektricheskogo-toka-na-organizm-cheloveka.html

Подводя итоги

Как видите, токовая составляющая, воздействующая на человека, и определяет, какие ситуации считаются опасными, а какие нет. Но, в то же время, без разности потенциалов электрический ток вообще протекать через человека не будет. Прямой тому пример – выполнение работ под напряжением, когда человек свободно касается проводов, а смертельно опасное электричество его не бьет. Проблема решается изолирующей вставкой между землей и ногами человека, которая разрывает электрическую цепь.

Рис. 4. Работа под напряжением с изолированной вышки

Помимо этого существует целый разряд электроустановок, которые относятся к безопасным за счет питания низким напряжением. Так, потенциально безопасными можно назвать уровни не более 42 В переменного и 100 В постоянного, а все остальные относятся к опасному или высокому напряжению.  Но не испытывайте судьбу, лучше перестраховаться и воспользоваться средствами индивидуальной защиты, а в любой непонятной ситуации воздержаться от взаимодействия с электроустановкой, оборванными проводами или корпусом поломанного бытового прибора, включенного в сеть.

Видео пояснение

Амперы разделить на вольты — Вместе мастерим

Международный ом — сопротивление, оказываемое неизменяющемуся электрическому току при температуре тающего льда ртутным столбом, имеющим повсюду одинаковое поперечное сечение, длину 106,300 см и массу в 14,4521 г
0м подразделяется на 1 000 000 микромов
1000 000 омов составляют мегом

Ампер

Международный ампер — сила неизменяющегося электрического тока, который отлагает 0,00111800 г серебра в секунду, проходя через водный раствор азотно-кислого серебра.
Ампер подразделяется на 1 000 миллиампер или на 1 000 000 микроампер

Вольт

Международный вольт — электрическое напряжение, которое в проводнике, имеющем сопротивление в один ом, производит ток силою в 1 ампер.
Вольт подразделяется на 1 000 милливольт или на 1 000 000 микровольт

Международный ватт — мощность неизменяющегося электрического тока силою в 1 ампер при напряжении в 1 вольт.
1 000 ватт составляют киловатт

Кулон

Международный кулон (или ампер-секунда) — количество электричества, протекающее по проводнику в течение одной секунды при токе силою в 1 ампер.
3 600 кулонов составляют ампер-час

Джоуль

Ваттсекунда (международный джоуль) — работа, совершаемая электрическим током в течение 1 секунды при мощности тока в 1 ватт.
3 600 ваттсекунд составляют ваттчас, 100 ваттчасов составляют гектоваттчас, 1 000 ваттчасов составляют киловаттчас

Фарада

Международная фарада — емкость конденсатора, заряжаемого до напряжения в 1 вольт одним кулоном.
Фарада подразделяется на 1 000 000 микрофарад

Генри

Международный генри — самоиндукция цепи, в которой индуктируется напряжение в 1 вольт при изменении тока в этой цепи со скоростью 1 ампера в секунду.
Генри подразделяется на 1 000 миллигенри или на 1 000 000 микрогенри

При обычных практических электрических измерениях слово — «международный» в названиях электрических единиц может опускаться

Основные величины при переменном токе

Проводник, обладающий сопротивлением для постоянного тока R и самоиндукцией L, при переменном токе частоты n (n периодов или 2n перемен в секунду) имеет полное сопротивление

Если в цепи находится еще и емкость С, то полное сопротивление будет

Между током и приложенным напряжением имеется разность, фаз определяемая уравнением

Закон Ома для цепи переменного тока имеет форму J = E/Rs

Мощность в цепи переменного тока определяется выражением Е • I • cos Ψ; cos Ψ называется коэффициентом мощности

Если в цепи переменного тока 2πn • L = 1/2πn • C или (2πn) 2 L • C = 1, то Rs = R, то в такой цепи имеется резонанс, и для нее имеет силу простой закон Ома

Таблицы соотношений ампер, вольт, ватт, ом

Постоянный ток

ВольтыВатты : Амперы = Амперы х Омы = √ (Ватты х Омы)
Амперы(Ватты : Вольты) = √(Ватты : Омы) = Вольты : Омы
ОмыВольты : Амперы = Ватты : (Амперы) 2 = (Вольты) 2 : Ватты
ВаттыАмперы х Вольты = (Амперы) 2 х Омы = (Вольты) 2 : Омы

Переменный ток

ВольтыВатты : (Амперы х cos Ψ) = Амперы х Омы х cos Ψ = √(Ватты х Омы)
АмперыВатты : (Вольты х cos Ψ) = 1/cos Ψ х √(Ватты : Омы) = Вольты : (Омы х cos Ψ)
ОмыВольты : (Амперы х cos Ψ) = Ватты : (Амперы) 2 • cos 2 Ψ = (Вольты) 2 : Ватты
ВаттыВольты х Амперы х cos Ψ = (Амперы) 2 х Омы х cos 2 Ψ = (Вольты) 2 : Омы

Для cos Ψ можно брать в приблизительных подсчетах: для осветительных установок 0,85, для моторных установок 0,7

Электрическое сопротивление

т. е. проводник длиной в l метров и сечением F кв. миллиметров имеет сопротивление ρ • F/l омов
Здесь ρ — постоянная, зависящая от материала и температуры проводника — удельное сопротивление;
величина l/ρ — называется удельной электропроводностью

В таблицах помещены данные относительного сопротивления различных веществ, от величины которого зависит их пригодность в качестве проводников или изоляторов

Металлы для проводников

Сопротивление в омах на 1 м длины и 1 мм 2 сечения; при 20° С

Алюминий0,029Ртуть0,058
Алюминиевая бронза0,13Серебро0,016
Бронза0,17Сталь мягкая0,1-0,2
Железо0,086Сталь закаленная0,4-0,75
Медь чистая0,017Свинец0,21
Медь обыкновенная0,018Тантал0,12
Никкель0,070Цинк0,06
Платина0,107

Материалы для сопротивлений

Графит4,0-12,0Кокс50
Константин0,50Круппин0,85
Манганин0,43Нейзильбер0,16-0,4
Никкелин0,40Никкель0,34
Реотан0,45Уголь60

Изолирующие материалы

Сопротивление в мегомах (1 мегом — 1000000 омов) куба в 1 см 3

Кварц плавленный5.10 12Церезин5.10 12
Парафин3.10 12Эбонит1.10 12
Прессшпан1.10 5Каучук1.10 8
Стекло5.10 7Сера1.10 11
Черное дерево4.10 7Слюда белая3.10 10
Линолеум1.10 7Янтарь5.10 10
Тополь парафинированный5.10 5Клен парафинированный3.10 4
Кварц перпендикулярно к оптической оси3.10 10Кварц параллельно к оптической оси1.10
Шеллак1.10 10Целлулоид белый2.10 4
Сургуч8.10 9Шифер1.10 2
Воск желтый2.10 9Фибра красная5.10 2
Фарфор неглазированный3.10 8

Жидкие сопротивления

Сопротивление в омах куба в 1 см 3 при 15° С

Серная кислота 5%4,80Серная кислота 10%2,55
Серная кислота 20%1,53Серная кислота 30%1,35
Аммиак 1,6%15,22Аммиак 8,0%9,63
Аммиак 16,2%15,82Раствор поваренной соли 5%14,92
Раствор поваренной соли 10%8,27Раствор поваренной соли 15%6,10
Раствор поваренной соли 20%5,11Раствор цинкового купороса 5%52,4
Раствор цинкового купороса 10%31,2Раствор цинкового купороса 15%24,1
Раствор цинкового купороса 20%21,3Раствор медного купороса 5%52,9
Раствор медного купороса 10%31,3Раствор медного купороса 15%23,8
Раствор сернокислого магния 5%83,0Раствор сернокислого магния 10%23,2
Раствор сернокислого магния 15%20,8Раствор сернокислого магния 20%21,0

Сопротивление пробою

Переменный ток напряжением в 20 000 вольт пробивает изолирующий слой следующей толщины, мм:

Есть такой закон Ома, он выражает связь между Напряжением (Вольты) E, Током (Амперы) I и Сопротивлением (Омы) R

I = E/R

E/I = R — вольт делить на ампер = Ом

значит, вольт делить на ампер — это ом.

Опубликовано: Январь 4, 2017

Тэги: физика

© Контрольная работа РУ — примеры решения задач

Вольт-ампер имеет русское обозначение — (В•А), а международное — (V•A) Это измерение мощности (P) в электрической цепи постоянного тока. Спецификация V•A также используется в цепях переменного тока, но она менее точна в этом приложении, потому представляет кажущуюся мощность, которая часто отличается от истинной, в связи с чем перед тем как правильно выбрать электрооборудование, нужно понимать, что измеряется в вольт амперах.

Суть явления

В цепи постоянного тока 1 VA является эквивалентом одного ватта (1 Вт). Мощность (P) (в ваттах) в цепи постоянного тока равна произведению напряжения (V) в вольтах и тока (I) в амперах:
P = VI

В цепи переменного тока мощность и V•A означают одно и то же, когда нет реактивного сопротивления. Оно вводится, когда цепь содержит индуктор или конденсатор. Поскольку большинство цепей переменного тока содержат реактивное сопротивление, значение V•A превышает фактическую рассеиваемую или подаваемую мощность в ваттах. Это может вызвать путаницу в спецификациях для блоков питания.

Например, источник питания может быть рассчитан на 600 V•A. Это не означает, что оно может выдавать 600 Вт, если оборудование не имеет реактивного сопротивления. В реальной жизни номинальная P источника питания составляет от 1/2 до 2/3 реального показателя V•A.

Важно! При покупке источника бесперебойного питания, для использования с электронным оборудованием, включая компьютеры, мониторы и другие периферийные устройства, нужно убедиться, что спецификации V•A для оборудования используются при определении минимальных номинальных значений для него. Показатель V•A номинально в 1,67 раза (167 %) больше потребляет мощности в ваттах.

Объект измерений

Для определения вольт-ампер (V•A) потребуется выполнить следующие измерения:

  1. Вначале потребуется измерить силу тока в амперах (A). Это единица I в системе СИ.
  2. Далее должно измеряться напряжение в единицах СИ — вольтах. Оно покажет силу, необходимую для протекания электрического тока в вольтах (V).
  3. Рассчитать P — количество энергии, произведенной током и вольтами вместе. Умножение ампер (A) на вольт (V) дает результирующую или энергию.

Постоянный ток (—) или DC, присущ процессу, когда он течет в одном направлении, например, фонарик с аккумулятором использует постоянный показатель. Переменный ток (

) или AC относится к процессам с переменным направлением движения электронов, в связи с чем он периодически меняет свое направление. В Северной Америке и Западной Японии это происходит 60 раз в секунду с частотой 60 Гц. В России, ЕС, в большей части Австралии, Южной Америки, Африки и Азии частота составляет 50 Гц.

Для преобразования этих величин используется формула закона Ватта:

Мощность (P) = Ток (I) х Напряжение (V),
то же в единицах измерения: ватт = ампер х вольт.
Чтобы найти усилители, используют формулу Ватта в обратном порядке и делят мощность на напряжение:
Ток (I) = Мощность (P) ÷ Напряжение (V)
I = 600 Вт : 120 В, тогда значение I = 5А

Обратите внимание! Когда специалисты оперируют большими размерностями P, они используют киловатты (кВт), 1 кВт=1000 Вт.

Как измерять в вольт-амперах мощность

Прежде чем преобразовывать вольтампер (V•A) в усилители, нужно понять, что это за измерения. Вольт-амперная характеристика является кажущейся мерой мощности, в то время как ампер является мерой тока.

Таким образом, для преобразования между ними нужно использовать формулу:

Мощность = Напряжение × Ток
Используя формулу P в качестве отправной точки и изменив ее, можно выполнить перевод мощности в V•A:
I (A) = мощность (V•A) : напряжение (V)
Например, нужно рассчитать усилители для однофазной электрической цепи с P = 1800 V•A при 120 вольт.
I (А) = 1800 V•A : 120 вольтов
I (А) = 15 А

Таким образом, схема с 1800 VA кажущейся мощности при 120 вольт имеет номинальный I в 15 ампер.

Преобразование VA в ток для трехфазной электрической цепи немного отличается. Для расчета используют измененную трехфазную формулу.

I (А) = Мощность (V•A) : (√3 × Напряжение (V))

Для трехфазной электрической цепи I в амперах равен мощности в вольт-амперах, деленной на квадратный корень из трех.

Например, нужно найти усилители для трехфазной электрической цепи с P=33 255 В при напряжении 480 В.

I (A) = 33 255 V•A : (√3 × 480 V)
I (A) = 33 255 V•A : 831,38 V
I (A) = 40 А
Можно увидеть, что цепь с кажущейся мощностью 33 255 V•A при 480 V будет иметь номинальный I = 40 А.

Перевод V•A в Ватты

Для правильного определения размера, например, источника питания важно понимать отличие ватт от вольт ампер. Реальная мощность, измеряемая в ваттах — это часть потребляемого потока энергии и связана с сопротивлением в электрической цепи. Примером этого является нить накала в лампочке.

Реактивная мощность, измеряемая в VAR или «вольт ампер реактивный» — это часть потока P накопленной энергии. Накопленная энергия связана с наличием индуктивности и емкости в электрической цепи. Кажущаяся мощность измеряется в V•A, представляет собой математическую комбинацию реальной и реактивной P.

Геометрическое соотношение между кажущейся, реактивной и реальной мощностью определяется треугольником P. Математически реальная мощность (Вт) связана с кажущейся (V•A) с использованием числового отношения, называемого коэффициентом мощности (PF), который выражается в десятичной форме и имеет значение от 0 до 1,0. Для многих новых типов ИТ-оборудования, таких как компьютерные серверы, PF составляет 0,9 и выше. Для устаревших персональных компьютеров (ПК) — это значение может быть 0,60 — 0,75.

Поскольку многие типы оборудования рассчитаны на P в ваттах, важно учитывать PF при выборе размера ИБП. Если не принимать PF во внимание, можно уменьшить размер необходимого ИБП. Например, единица оборудования с мощностью 525 Вт и коэффициентом мощности 0.7, который нужно умножать на мощность, определяет минимальную мощность с нагрузкой 750 V•A.

750 V•A = 525 Вт / 0,7

Если ИБП рассчитан на 75%, то получится ИБП с номиналом 1000 V•A (750 ВА / 0,75 = 1000 V•A).

Ошибки при расчете V•A

Соотношения вольт ампер и ватт для определенных видов электроприборов и устройств, например, лампочки — идентично. Но когда разговор идет о компьютерах, показатели в ваттах и V•A будут отличаться, при этом V•A всегда будет большим или равным показателю в ваттах. Разрыв связан с коэффициентом мощности (PF), который разнится для устройств. Если его не учитывать, то при подборе элементов оборудования будет сделана ошибка и они не подойдут к основному устройству.

Если рассматривать выбор ИБП для персонального компьютера, а на паспортных данных номинал указан в voltamper — это затруднит подбор номинала во Вт. Когда нет точных показателей P, выполняют следующее — указанные на паспортной табличке данные по нагрузке принимают равными 60% от V•A показателя ИБП.

Дополнительная информация. Для того чтобы точнее установить данные, можно воспользоваться онлайн-калькулятором. Некоторые веб-сайты предоставляют пользователю необходимую P, если нажать на тип устройства, например, телевизор или настольный компьютер. На таких сайтах часто показаны графические диаграммы, по которым легко измерить V•A различных приборов, от холодильников до компьютеров.

Можно сделать вывод, что V•A важная характеристика для современных электрических приборов и оборудования. Если при покупке электроустройств этот показатель учитываться не будет, они будут работать в режиме перегруза, что приведет к преждевременному выходу их из строя.

Разница между ампер, вольт и ватт

Термин «ватты» часто описывает мощность или электричество.
Возможно, вашему торшеру дома нужны лампочки на 60 или 90 ватт. Однако сделайте
вы знаете, сколько ватт необходимо вашей кофеварке для эффективной работы?

Кроме того, подобные термины, такие как «амперы» и «вольт», можно быстро спутать с ваттами. Вы знаете, на сколько ампер рассчитана ваша посудомоечная машина? Или для таких устройств, как системы бесперебойного питания (ИБП), в которых почти не упоминается ватт, вы называете их «вольт-ампер»?

Что именно означают ампер, вольт и ватт? Что
их отличия? Могут ли они использоваться как взаимозаменяемые? В следующем содержании
мы распаковываем каждый электрический термин, как это определено Международной системой единиц
(SI) и Международное бюро Poids et Mesures (BIPM).

Полезная, заболоченная аналогия

Изображение воды, протекающей в замкнутой системе, например
трубка. Цепь, образованная водой, представляет собой электрический поток. Электричество,
подобно воде, движется по проводнику непрерывно по кругу, являясь примером
провод. Каждый отдельный электрический термин — амперы, вольты и ватты — играет роль
важная роль в потоке электроэнергии.

Что такое сила тока?

Ампер — это термин, который обычно сокращается до «ампер» или классифицируется.
как.”В аналогии с водой, описанной выше, амперы будут определять объем
вода движется мимо любой конкретной точки в определенный момент.

В электрической цепи амперы измеряют
электрический ток, или объем (не скорость) присутствующих электронов. Например,
бытовая посудомоечная машина может иметь номинал около 10 ампер. Чтобы представить это в перспективе,
сила одного удара молнии составляет примерно 20 000 ампер.

Что такое напряжение?

Напряжение можно сравнить с давлением воды.Вольт
представляют собой скорость, с которой электроны проходят определенную точку в замкнутом
схема. Напряжение, также обозначаемое как «В» или обозначаемое как «В», представляет собой
разница в потенциале. Возможная разница существует между двумя точками
проводник обычно делается из проволоки и последовательно проводит ток. В
постоянный ток равен 1 амперам, а энергия, рассеиваемая между точками
составляет 1 ватт.

В чем разница между вольтами и амперами?

Ампер и вольт дополняют друг друга
со своими собственными отдельными функциями в электрической цепи.Ампер
измеряет электричество. Вольт представляют собой разность потенциалов, управляющих током.
протекать по замкнутому контуру. Следовательно, в то время как амперы представляют собой объем
воды, вольт переносит воду по контуру.

Что такое вольт-амперы?

Вольт-ампер — это единицы измерения «кажущегося» электрического
мощность, рассчитанная умножением напряжения на силу тока. VA часто используются для
упростить номинальную мощность, помогая определить, какую мощность будет иметь ток
рисовать при использовании.

Что такое ватты?

Полученный по формуле V x A = W, ватт — это скорость
потока мощности, который возникает в результате протекания тока через электродвигатель вольт
сила. Ватты измеряют мощность, которая фактически генерируется в электрическом
система. Например, если описанная выше водная система использовалась для работы
мельницы, ватты будут представлять энергию, создаваемую для питания мельницы.

Разница между вольт-амперами и ваттами

Если и вольт-амперы, и ватты получены умножением напряжения на силу тока, как эти понятия различаются? Хотя верно, что и ватты, и вольт-амперы измеряют электрическую мощность, тип измеряемой мощности отличается.

Как уже упоминалось, VAs
измеряют «кажущуюся мощность», а ватты — «реальную мощность». Настоящий
мощность определяет, сколько энергии (тепла) потребляется или генерируется. Полная мощность
вычисляет, сколько электроэнергии потребляет ток в активном состоянии.

Что такое Ом?

Ом определяет электрическое сопротивление. В пределах
электрическая цепь, сопротивление получается из любого материала или объекта, который
уменьшает электрический поток. Омы измеряют именно это сопротивление. В
гидравлическая аналогия, омы представляют размер трубы.Например, меньше воды будет
иметь возможность течь через узкую трубу, чем через широкую, при том же давлении.
Широкая труба на менее устойчива на , чем узкая.

Полезный, заболоченный обзор

Снова представьте, как электричество течет по проводнику, как вода, протекающая по замкнутой системе труб.

  • Амперы представляют собой объем воды
    настоящее время.
  • Напряжение соответствует давлению воды
  • Ватт — энергия, создаваемая замкнутым
    система, которая приводит в действие мельницу.
  • Ом представляют собой величину сопротивления
    создается размером трубы.

При отключении замкнутой системы трубопроводов, вольт-амперы
может использоваться для описания потенциальной энергии, которая будет создана после того, как цепь
в движении.

Системы EatonUPS

В FGC Equipment разбираться в тонкостях электричества — это наша работа. При экспертной помощи технических консультантов мы помогаем в процессе выбора правильной системы бесперебойного питания (ИБП) для вашего приложения — наши консультанты рассмотрят для вас спецификации, правильные размеры, выбор напряжения и расчет времени работы.

Не стесняйтесь обращаться с любыми вопросами
о системе ИБП Eaton. 844.501.1887 или через нашу онлайн-форму связи
Cегодня.

Что такое усилители (и ампер-часы) и почему они имеют значение?

Маркетинг


3 марта 2021 г.

Все мы используем электроэнергию в наших домах, наших домах на колесах, лодках и многом другом. Мы жаждем власти, когда живем, работаем и путешествуем. Используем ли мы его вне розетки или от батарей, важно иметь общее представление о концепции усилителя или электрического тока.Но если вы планируете использовать автономное питание или построить электрическую систему, очень важно разработать безопасную систему с проводами правильного сечения.

Итак, давайте углубимся в то, что такое усилители и почему они так важны!

Что такое ток в электричестве?

Слово «ампер» (А) является сокращением от «ампер», одной из стандартных единиц измерения, используемых для определения измерения электричества. Ампер — это единица постоянного электрического тока. «Сила тока» — это сила этого тока, выраженная в амперах (или «амперах»).Если представить электричество как воду из шланга, то водой будут усилители.

Электрические усилители похожи на поток воды

Ампера против. Вольт, Ом и Вт

Чтобы лучше понять значение усилителей, давайте кратко рассмотрим вольты, омы, ватты (близкие родственники усилителей) и то, как все они работают вместе, чтобы помочь нам удовлетворить наши потребности в электричестве!

Создавая сцену, мы установили, что ампер — это единица измерения постоянного электрического тока.

Вольт

Вольт (В) — это единица измерения электрического потенциала, поэтому «напряжение» — это потенциал движения энергии.Это довольно абстрактная концепция для понимания, поэтому мы можем думать о ней как о давлении воды. Тогда напряжение будет похоже на воду, текущую по трубам.

Напряжение похоже на давление воды, высокое напряжение = высокое давление.

Слово «напряжение» используется для обозначения доступной энергии (на единицу заряда). «Ток» (I) — это скорость потока, измеряемая в амперах. По аналогии с водой, усилители — это реальный поток воды. Теперь мы начинаем видеть отношения!

Ом

Еще одна часть электрического уравнения — «омы».Ом — это мера сопротивления, поэтому в нашей аналогии омы будут соответствовать размеру водопроводной трубы.

Таким образом, используя нашу аналогию с потоком воды, мы можем думать об омах (сопротивлении) следующим образом: увеличение сопротивления (Ом) похоже на уменьшение размера водяной трубы, что, в свою очередь, уменьшит поток воды (ток , измеряется в амперах), который управляется через цепь напряжением (давлением воды).

Думайте о большой трубе как о проволоке с низким сопротивлением, пропускающей большой поток.Ограниченная труба будет пропускать меньший поток и похожа на электрическую цепь с высоким сопротивлением, которая пропускает через нее меньшую силу тока.

Теперь все вместе! Чтобы объединить команду электриков, нам нужно понять еще один термин в этих отношениях — ватты!

Вт

Ватт (Вт) — это мера мощности. Более конкретно, один ватт — это один джоуль энергии, используемой в секунду, поэтому ватт — это норма потребляемой энергии. Например, электрическая лампочка мощностью 60 Вт потребляет энергию в размере 60 Вт!

А теперь вернемся к усилителям и посмотрим, как все эти термины работают вместе.

Как измерить ток?

Для измерения ампер нам понадобится инструмент, называемый «амперметр».

Амперметр (или амперметр) измеряет электрический ток в амперах. Он может измерять постоянный ток (DC) или переменный ток (AC), но в любом случае он измеряет ток в амперах (амперах). Таким образом, амперметр — это инструмент, который измеряет токи в амперах. (Вы можете увидеть амперметры, представленные кружком с буквой «A» внутри.)

Как работает амперметр

Амперметр измеряет ток, проходящий через компонент.Чтобы использовать его, вы должны подключить амперметр последовательно к компоненту. «Последовательно» означает одно за другим.

Амперметром вы измеряете ток, то есть электричество, проходящее через счетчик.

Есть два основных типа амперметров:

Шунтирующий измеритель

Электрический шунтирующий амперметр обычно используется в электрических установках постоянного тока (постоянного тока). Эти устройства подключены последовательно к отрицательной стороне электрической цепи, и весь ток в системе протекает через них.Затем шунт считывает наблюдаемый ток.

Весь ток будет проходить через это устройство, чтобы оно могло его прочитать.

Подобные шунты обычно используются в качестве измерителей заряда батареи, поскольку они также считывают напряжение в цепи. Как мы узнали ранее (Амперы x Вольт = Ватты), шунт также может определять, сколько энергии (в ваттах) потребляет электрическая система или заряжается от батарей. Подробнее об этом позже.

Датчик Холла (зажим усилителя)

Другой способ измерения ампер — датчик Холла.Этим устройствам не нужно разрывать провод для установки, и они обычно используются в портативных устройствах для измерения ампер, которые мы называем амперными зажимами.

Это амперные клещи в действии, измеряющие ток в проводе, просто зажимая их вокруг провода.

Амперные клещи имеют шарнирные зажимы, встроенные в измеритель, чтобы зажимать измеритель на кабеле, проводе или другом компоненте для измерения тока в этой цепи.

Название «датчик Холла» происходит от термина «эффект Холла», который датчик использует для определения силы тока.Термин «эффект Холла» относится к природе тока в проводнике. Датчик Холла (или датчик Холла) представляет собой амперметр, который измеряет как переменный, так и постоянный ток.

В измерителе используются сильные железные губки, которые плотно зажимают измеряемый проводник, чтобы сконцентрировать магнитное поле вокруг этого проводника. Когда ток течет по проводнику, магнитное поле проходит через токоизмерительные клещи на эффекте Холла и создает напряжение, которое преобразуется в цифровые показания измерителя.

Когда бы вы использовали амперметр?

Электрики, инженеры-электрики и энтузиасты-электрики используют амперметры для поиска и устранения неисправностей, проектирования и построения электрических цепей. Они могут быть очень полезны для определения того, где и сколько тока течет в отдельных проводах.

Переносные цифровые мультиметры

доступны для поиска и устранения неисправностей и проверки схем. Они позволяют убедиться, что ток соответствует ожидаемому для конкретной цепи. Цифровые мультиметры измеряют напряжение (Вольт), ток (Ампер) и сопротивление (Ом).Эти мультиметры широко доступны на рынке в различных ценовых диапазонах. Вы можете найти накладные цифровые измерители или измерители с пробниками, в зависимости от того, что вы хотите измерить.

Использование зажима усилителя с пробниками.

Во многих мобильных энергосистемах используется амперметр для измерения силы тока на входе и выходе из домашней батареи / батарей с течением времени. Вы можете использовать это, чтобы узнать, сколько ампер-часов осталось в вашей батарее / батареях, в какой степени они заряжены и сколько времени требуется для их зарядки различными способами.Эта информация критически важна для автофургона или лодочника, потому что батареи обеспечивают питание практически для всего в энергосистеме.

Что такое шунт?

Постоянная установка шунта амперметра для постоянного измерения уровня заряда аккумулятора или аккумуляторов — это один из способов внимательно следить за чрезвычайно важными ампер-часами.

Шунт действует как соединение с низким сопротивлением между двумя точками в электрической цепи. Таким образом, в нашем приложении RV целью установки шунта было бы иметь цифровое считывание внутри RV, давая нам постоянное отображение состояния заряда нашей аккумуляторной системы.

Стрелка на этом изображении указывает на установленный шунт в аккумуляторной электрической системе. Этот шунт используется для измерения силы тока и уровня заряда батареи.

Шунт должен подключаться к батарее RV через отрицательный провод и к дисплею внутри RV. Он будет измерять токи, входящие и выходящие из батареи / батарей RV. Это говорит вам, сколько вы используете и восстанавливаете емкость аккумулятора, а также сколько энергии остается для использования.

Шунт подключается к экрану или использует Bluetooth для передачи своей информации.

Что такое проходимость?

Термин «допустимая нагрузка» относится к номиналу проводов и устройств, используемых в системе для конкретного применения. Пропускная способность важна, потому что она относится к максимальной величине тока, которую кабель или провод может безопасно переносить. (Чем больше провода, тем выше допустимая нагрузка.)

Эти маленькие провода имеют низкую допустимую нагрузку. У этого большого провода гораздо более высокая допустимая нагрузка.

Компании, производящие электрические компоненты, довольно часто маркируют устройства по размеру или диапазону нагрузки в ваттах, амперах или вольтах. Вы можете использовать эту информацию для расчета допустимой нагрузки, разделив мощность на напряжение.

Эту важную информацию стоит повторить: мощность, деленная на напряжение, = амперы. Емкость устройства должна быть выше, чем ток через него.

Знание этой информации и соответствующее определение размера провода или кабеля может иметь решающее значение для вашей безопасности с точки зрения предотвращения электрического пожара, поскольку перегрузка провода или устройства может привести к сильному нагреву и возможному возгоранию.

Важно помнить, что провода большего размера = более высокая допустимая нагрузка.

Являются ли усилители переменного тока и постоянного тока одинаковыми?

Хотя верно, что и переменный, и постоянный ток относятся к типам протекания тока в цепи, это не одно и то же. Постоянный ток (постоянный ток) относится к электрическому заряду (току), который течет только в одном направлении. Переменный ток (переменный ток) относится к току, который меняет направление определенное количество раз в секунду (60 в США).

Вы можете измерять оба типа, но электрические устройства рассчитаны на использование только одного типа.Не подключайте устройства постоянного тока к переменному току и наоборот без инвертора или зарядного устройства между ними.

Для мобильных приложений, таких как жилые автофургоны и лодки, электрические розетки имеют номиналы в амперах: 50, 30, 20 ампер. Это максимальные значения ампер, которые могут обеспечить эти розетки до того, как сработает их прерыватель. Многие путают эти усилители с аккумуляторными, но это переменный ток с более высоким напряжением. (120 или 240 В)

Это 50 ампер при 120 вольт, что в 10 раз больше мощности цепи на 12 вольт и 50 ампер.

В то время как ток 50 А может быть таким же в батарее, помните, что напряжение — это давление, а давление батареи составляет всего 12 вольт.Таким образом, ток может быть таким же, но мощность более высоких напряжений намного выше.

Что такое ампер-час?

Термин «ампер-час» относится к единице электрического заряда. Например, когда речь идет о батареях для жилых автофургонов, мы будем использовать термин «ампер-час», чтобы описать, сколько силы тока батарея может обеспечить в течение одного часа.

Давайте посмотрим, что это означает с точки зрения реального использования:

Теоретически батарея емкостью 1 ампер-час должна обеспечивать непрерывный ток 1 ампер на нагрузку (устройство или прибор, потребляющие электроэнергию) в течение ровно 1 часа, прежде чем она разрядится.В качестве альтернативы та же батарея на 1 ампер-час может обеспечить непрерывный ток 2 ампера на нагрузку в течение получаса. Или он может обеспечить ампер-часа на нагрузку в течение 3 часов. Вы уловили идею.

Почему усилители важны при проектировании электрических систем?

При проектировании электрической системы очень важно учитывать токи, чтобы знать сечение проводов, которые вы должны использовать для обеспечения безопасности.

Для более высокого тока требуются провода большего размера

Как вы помните, чем выше ток, тем больше требуется проводов для безопасного обслуживания системы.Вы должны правильно рассчитать размеры проводов и кабелей не только для обеспечения качественной электроэнергии, но и для предотвращения возникновения электрических пожаров.

Более высокий ток увеличивает падение напряжения

Падение напряжения происходит, когда напряжение на конце кабеля ниже, чем в начале кабеля. Это падение часто происходит, например, на конце очень длинного кабеля.

Самый простой способ уменьшить падение напряжения — увеличить диаметр проводника (или проволоки). Все электрические кабели обеспечивают некоторое сопротивление потоку в цепи, но при проектировании электрической системы важно предпринять все возможные меры для уменьшения этого сопротивления.

Наконец, для жилых автофургонов и лодок люди стараются максимально экономить заряд батареи. Поэтому важно помнить, что более высокий ток сжигает больше энергии батареи.

Более высокое напряжение снижает ток

Высокий ток — это не всегда хорошо, потому что провода и устройства должны быть очень большими. Чтобы избежать использования больших проводов, увеличение напряжения приведет к уменьшению силы тока при той же мощности. В следующем примере показано, как это сделать.

  • 120 Вт при 12 В = 12 А
  • 120 Вт при 24 В = 6 А
  • 120 Вт при 120 В = 1 А

При проектировании вашей электрической системы лучше учитывать, что работа большой, толстой, тяжелой провода на большие расстояния добавляют вес вашей установке. С проводами также может быть очень трудно работать из-за присущей им недостаточной гибкости.

Общие сведения об усилителях для проектирования надлежащей электрической системы

Как видите, усилители представляют только одну часть электрического уравнения, но имеют решающее значение для понимания.Чтобы спроектировать правильную электрическую систему, нам также необходимо лучше понимать вольты и ватты, потому что все они должны работать вместе, чтобы стать нашим желанным источником питания!

Хотите узнать больше об электрических системах и литиевых батареях?

Мы знаем, что строительство или модернизация электрической системы может быть сложной задачей, поэтому мы здесь, чтобы помочь. Наши специалисты по продажам и обслуживанию клиентов из Рино, штат Невада, готовы ответить на ваши вопросы по телефону (855) 292-2831!

Также присоединяйтесь к нам в Facebook, Instagram и YouTube, чтобы узнать больше о том, как системы с литиевыми батареями могут способствовать вашему образу жизни, увидеть, как другие построили свои системы, и обрести уверенность, чтобы выйти на рынок и остаться там.

В чем разница между усилителями, вольтами и ваттами

Ампер, ватт и вольт, в чем разница?

Очевидно, наша жизнь была бы немыслима без электричества. Сегодня почти все в нашей жизни вращается вокруг использования электроэнергии. Растущее использование электроэнергии является решающей предпосылкой для устойчивого и быстрого развития промышленности, транспорта и сельского хозяйства.Возможно, несколько примеров расскажут вам, насколько важно электричество в нашей жизни.

Без использования электроэнергии не было бы систем телевидения, радиовещания, телефонной связи и даже телеграфии. Более того, ваши системы отопления и охлаждения, домашние кинотеатры, ноутбуки, электрические духовки и многие другие бытовые приборы устареют. Проще говоря, нельзя недооценивать важность электричества.

Любой, кто когда-либо покупал какое-либо электрическое устройство, должен знать термины, силу тока (амперы), мощность (ватты) и напряжение (вольт).К сожалению, не каждый домовладелец знает и понимает всестороннее значение этих терминов.

Четкое понимание ватт, ампер и вольт не только делает вас информированным гражданином, но и потенциально может позволить вам сэкономить значительную сумму денег на ежемесячных счетах за электроэнергию.

Возможно, это основная причина, по которой мы подумали, что крайне важно объяснить вам в мучительных деталях, что означают эти три электрических термина. В конце концов, не каждый может быть инженером-электриком.Однако, как преданный лидер отрасли, мы здесь, чтобы проинформировать и рассказать вам о различиях.

Определения

Вольт — Это показатель силы, с которой электрическая энергия протекает через определенную электрическую линию. Значительное количество австралийских бытовых устройств рассчитано на 230 В, что является стандартным распределительным напряжением. Проще говоря, следует отметить, что электрическое устройство с более высоким номинальным напряжением может потреблять больше энергии в минуту по сравнению с устройством с более низким номинальным напряжением.

Ампер — Это показатель того, сколько электроэнергии подается через определенную электрическую линию.

Вт — Это можно определить как общую рабочую мощность электрической энергии. Это достигается путем нахождения произведения ампер и вольт. Возможно, это наиболее часто используемый термин из трех.

В конце каждого месяца ваша электроэнергетическая компания выставляет вам счет на общую сумму потребленной вами электроэнергии.Обычно это значение в киловаттах. Один киловатт равен тысяче ватт. Отсюда мы можем с уверенностью заключить, что чем больше вольт и ампер требуется для работы ваших бытовых электрических устройств, тем выше будут ваши ежемесячные счета за электроэнергию.

Теперь, когда вы знаете значения этих трех электрических терминов, мы обсудим, как они соотносятся друг с другом.

Рассмотрим случай водопроводной трубы. Здесь давление воды эквивалентно напряжению, тогда как скорость потока воды эквивалентна величине тока, а размер трубы является сопротивлением.

В мире физики у нас есть основное простое уравнение, которое определяет, что эти три члена связаны между собой. Обычно в нем говорится, что ток, протекающий по проводнику между двумя точками, прямо пропорционален общему напряжению в тех же двух точках. Проще говоря, в нем говорится, что ток должен быть равен доступному напряжению, деленному на сопротивление.

Следовательно, уравнение принимает следующий вид: I = V / R, где I — ток, V — вольт, а R — сопротивление.Это уравнение также известно как закон Ома. Следует отметить, что закон был назван в честь известного немецкого врача Ома Георга, придумавшего всю концепцию.

Так применима ли эта концепция к нашему сантехническому делу?

Когда вы увеличиваете давление воды в трубе, определенно больше воды будет выталкиваться из трубы. В нашей иллюстрации мы приравняли давление воды к напряжению. Это означает, что в электрическом режиме, если вы увеличиваете напряжение, большее количество тока будет течь через это устройство.С другой стороны, если вы увеличите диаметр водопровода, из трубы будет выходить больше воды. Это то же самое, что и уменьшение сопротивления внутри электрического компонента. Это приведет к увеличению электрического тока.

Если вы все еще не уверены в различиях, не бойтесь. Вот почему наши квалифицированные электрики из Gordon’s Powers готовы помочь вам. Наши аварийные электрики могут помочь вам быстро восстановить электроэнергию в вашем доме и приехать к вам на место в течение 60 минут.

Разница между напряжением и силой тока? Лисбург, штат Вирджиния, электрики

Разница между силой тока и напряжением?

При разработке схемы электропроводки необходимо учесть напряжений, силы тока, ватт и другие параметры. Что означают все эти термины? Это просто разные слова для обозначения одного и того же?

В этом посте мы рассмотрим две системы измерения, с которыми вам следует познакомиться. Напряжение и сила тока — оба показателя электричества, но они измеряют разные вещи.

Что такое напряжение?

Напряжение — это величина давления, создаваемого вашим электрическим током. Электрики используют символ V или термин вольт для описания разности потенциалов между двумя точками проводника. Если постоянный ток равен 1 ампер, выделяемая им энергия равна одному ватту.

Проще говоря, напряжение аналогично давлению воды . Это мера того, насколько быстро ток проходит через провод или проводник.

Почему это важно знать? Многие люди с осторожностью относятся к мощным приборам, и всегда разумно быть осторожным с электричеством.На самом деле, однако, именно напряжение может повредить вам во время поражения электрическим током. Электричество, которое движется под высоким давлением и высоким напряжением, более опасно, чем электричество, которое движется медленно или под низким давлением.

Что такое сила тока?

Ампер означает количество тока, проходящего через ток. Электрики используют термин «амперы» для измерения объема, а не скорости мощности в проводнике. Каждый прибор или осветительный прибор рассчитан на определенное количество ампер.Чтобы дать вам конкретные примеры, учтите, что средний верхний свет в комнате потребляет четыре ампера, вентилятор печи — девять ампер, а комнатный кондиционер — 13 ампер.

Как они работают вместе?

ампер обеспечивают необходимое количество тока для каждого осветительного прибора, прибора, электронного устройства и телевизора в вашем доме. Напряжение, протекающее по вашим проводам, выталкивает эти усилители в нужное время для каждого из этих устройств, приспособлений или приборов. Вольт управляют усилителями по цепям и доставляют усилители туда, где они необходимы.

Умножив напряжение на силу тока, вы получите ватты. Он измеряет количество энергии, которое конкретное устройство потребляет от тока. Электрики используют еще один термин, называемый вольт-ампер, для оценки мощности, потребляемой конкретным элементом.

Как это связано с электробезопасностью?

При измерении уровня электричества важно знать силу тока розетки или проводника. Сила тока определяет, сколько электричества будет поглощено вашим телом.

Символ мА обозначает миллиампер или одну тысячную ампер.Типичная бытовая цепь передает от 15 до 20 ампер или от 15 000 до 20 000 мА.

Что могут вызвать разные уровни усиления? Вот несколько примеров.

  • Один мА : Вы почувствуете легкое покалывание.
  • 5 мА : вы почувствуете более резкое покалывание. Вы можете почувствовать боль, но вы сможете отпустить проволоку.
  • От 6 до 30 мА : На этом уровне шок будет болезненным. Вы также можете столкнуться с так называемыми «токами замораживания», что означает, что вы не можете отпустить провода.Диапазон от 6 до 16 мА иногда называют диапазоном «отпускания».
  • от 50 до 150 мА : Вы почувствуете сильную боль и мышечные сокращения. Замораживающие токи не позволят вам уронить провода.
  • 200–2000 мА : На этом уровне вы столкнетесь с остановкой сердца, тяжелыми ожогами и вероятной смертью.
  • 2000 и выше : Смерть на этом уровне почти неизбежна.

Оставайтесь в курсе с SESCOS

В SESCOS мы стремимся держать вас в курсе последних новинок в области электротехники .Мы также делаем все возможное, чтобы вы были в безопасности. Если у вас есть вопросы по вашей электрической системе, свяжитесь с нами сегодня.

Разница между током и напряжением

Имея дело с электричеством, многие люди сбивают с толку разницу между ампером и вольтом, и им часто трудно понять назначение каждого из них. В этой статье мы рассмотрим различия между ними и дадим вам лучшее представление о том, как они применяются к различным бытовым приборам в вашем доме.Мы также кратко коснемся того, как безопасно управлять приборами и избегать иногда опасных перегрузок цепи.

Амперы x Вольт = Ватты

Давайте установим, говоря языком непрофессионала, как работают вольты и амперы. Представьте себе шланг. Ампер — это давление воды, протекающей через шланг, а вольт — это диаметр шланга. Ватт — это объем воды, выходящей из шланга. Проще говоря, Амперы x Вольт = Ватты.

В США все жилые дома подключены к цепям 110-вольт для всех второстепенных электроприборов (например, кофеварок и настольных ламп) и по 220-вольтовой цепи для основных приборов, таких как сушилка для белья, плита и воздух. -кондиционер.Думайте о ваших основных приборах как о том, что им требуется больше энергии, поэтому для работы им требуется более крупная «труба».

Circuit Smarts

Помните об этой концепции при эксплуатации нескольких устройств в одной цепи домашней розетки. В более новых домах общая схема электропроводки обычно указывается рядом с каждым автоматическим выключателем на вашей монтажной панели. К счастью, с внедрением и соблюдением строительных норм и правил города и округа правильно подключенный дом стал более распространенным явлением, чем 30 с лишним лет назад.

Например, в доме, построенном после 1990 года, каждый выключатель связан с определенной зоной дома, то есть кухней и ванной в одной, спальней в другой и т. Д. в более старом доме, как и я, ваша проводка не всегда имеет смысл. Например, половина розеток в моем подвале подключена к половине моей кухни, а другая половина подключена к игровой зоне моих детей и столовой.

При этом, когда кто-то включает фен и пытается одновременно смотреть телевизор в моем доме, свет будет тускнеть, а то и полностью погаснуть.Автоматические выключатели сконструированы таким образом, чтобы справляться с перегрузкой и «хлопком», если проводится слишком большая мощность.

Обратите внимание на красные флажки

Если вы начинаете замечать избыточное энергопотребление при подключении определенных устройств, это красный флаг. Либо проводка плохая, либо цепь где-то перегружена. Не позволяйте этой ситуации сохраняться; исследуйте и исправьте это. С уважением относитесь к своим электроприборам и проводке. Поддерживайте их в хорошем состоянии, придерживайтесь ограничений по мощности, и вы многое сделаете для защиты своего дома от опасностей пожара.

Безопасность прежде всего

Помните об этих фактах при использовании тостера или микроволновой печи. Они могут помочь вам избежать неприятностей или осложнений и подготовить вас к устранению неполадок, если что-то пойдет не так. Если у вас есть какие-либо опасения по поводу автоматического выключателя или энергопотребления цепи, не стесняйтесь обращаться к лицензированному электрику. Помните старую поговорку: «Лучше перестраховаться, чем сожалеть».

Вт, амперы, вольт и др.

Электричество — важная часть нашей повседневной жизни.Мы заряжаем наши многочисленные устройства, сушим волосы, стираем одежду, нагреваем воду и освещаем наши комнаты — все благодаря электричеству. Если вы похожи на меня, вы, вероятно, используете электричество, не думая о мощности, амперах или вольтах, но эти три термина измерения энергии являются важным компонентом вашей электрической системы, и их понимание, в свою очередь, поможет вам интерпретировать ваш счет за электроэнергию.

В этой статье мы рассмотрим базовую электрическую терминологию и то, как она применима к вашему дому и к вашему кошельку.

Гарантия лучшего выбора для наших компаний. Позвоните сегодня!

Электрическая терминология

Прежде чем вдаваться в подробности того, как электричество работает в вашем доме, важно сначала понять, что такое электричество. Основные компоненты электричества включают мощность (измеряемую в ватт, ), напряжение (измеряемую в вольт, ), ток (измеряемую в ампер, ) и сопротивление (измеряемое в омах).

Примеры того, как работает электричество, часто описывают воду, текущую по трубам.В этом примере ватты — это мощность или энергия, которую обеспечивает вода, вольт — это давление воды в трубах, а амперы — это количество воды, протекающей по трубам.

Определения ватт, вольт и ампер

Вт измеряет количество потребляемой или генерируемой энергии. Мощность определяется умножением напряжения на силу тока.

вольт измеряет напряжение, которое представляет собой электрическое давление, или потенциальную энергию между двумя точками.

Ампер — это единица измерения силы тока, то есть электрического тока или скорости, с которой протекает электричество.

Использование электричества в вашем доме

Мы можем знать, какие сейчас ватты, амперы и вольт, но как они применяются в домашних условиях? Давайте взглянем.

Мощность лампочки

Большинство людей думают о ваттах только тогда, когда приходит время покупать новую лампочку для светильника. Разные светильники имеют разную максимальную мощность. Другими словами, у светильников есть ограничение на количество энергии, которое они могут безопасно использовать. Превышение этого максимального рейтинга увеличивает риск возгорания.

Вт не указывают на яркость лампочки, поэтому не беспокойтесь, когда увидите новые модные светодиодные лампы с мощностью намного ниже, чем вы привыкли покупать.Помните, что ватты измеряют количество потребляемой энергии. Меньшая мощность — это хорошо. Если максимальная мощность вашей настольной лампы составляет 60 Вт, то светодиодные лампы мощностью 8,5 Вт, обозначенные как сменные лампы мощностью 60 Вт, будут работать нормально и экономить энергию.

Мощность и напряжение прибора

Различные типы приборов потребляют разную мощность и работают от разного напряжения. Более крупные приборы потребляют больше ватт, а некоторые работают от более высокого напряжения. Вот почему некоторые приборы, например духовки, подключаются к розеткам, которые выглядят не так, как обычная настенная розетка.Обычно домашние розетки выдерживают напряжение 120 вольт, а розетки для более мощных бытовых приборов — 240 вольт.

На сайте

Energy.gov есть удобный инструмент для расчета стоимости работающей бытовой техники в течение года. Просто введите мощность прибора и количество, которое вы используете. Этот инструмент также может помочь вам сравнить модели с разной мощностью, когда вы покупаете новую бытовую технику (и помните, что меньшее потребление энергии приведет к снижению счетов за электричество).

Электрическая сервисная панель, сила тока и напряжение

Стандартные электрические сервисные панели в новых домах сегодня обеспечивают ток до 200 ампер.Это означает, что через главный прерыватель панели может протекать до 200 ампер без отключения прерывателя.

Каждый автоматический выключатель в электрической сервисной панели имеет разную номинальную силу тока. Однополюсные автоматические выключатели являются наиболее распространенным типом выключателей. Они подают 120 вольт и рассчитаны на ток от 15 до 20 ампер. Двухполюсные автоматические выключатели обычно предназначены для более крупных устройств. Они подают в цепь 240 вольт и рассчитаны на ток от 15 до 200 ампер, хотя большинство из них находятся в диапазоне от 30 до 50.

Как читать счет за электричество

В большинстве счетов за электроэнергию ежемесячное потребление энергии указывается в киловатт-часах или кВтч. Киловатт-часы определяются путем умножения киловатт на количество часов использования (киловатт равен 1000 ватт). Ваша энергетическая компания умножает киловатт-часы на определенный коэффициент, и в результате получается сумма, указанная в вашем счете.

Советы по снижению потребления энергии

1. Покупайте больше энергоэффективных лампочек. Новые светодиодные фонари имеют гораздо меньшую мощность, что означает, что они потребляют меньше энергии.У вас есть светильники по всему дому. Замена всех лампочек может показаться сложной задачей, но преобразование старых ламп накаливания в новые светодиоды позволит сэкономить энергию.

2. Отключите от электросети устройства, которые вы не используете. Некоторые приборы потребляют энергию, когда они подключены к сети, даже когда они не используются. Для вашей развлекательной системы или других областей, где трудно отключить все, что вы не используете, подумайте о приобретении продвинутого удлинителя. Они предназначены для защиты вашей электроники от потребления энергии, когда она выключена.

3. Установите более энергоэффективные модели , когда пришло время заменить крупную бытовую технику. Ищите этикетку Energy Star для продуктов, которые разработаны в соответствии с определенными стандартами эффективности, которые превышают федеральные минимальные стандарты. Также обратите внимание на этикетку EnergyGuide, черно-желтую этикетку, на которой отображается информация об использовании энергии.

4. Сократите использование мощных электроприборов. Системы кондиционирования, сушилки и водонагреватели потребляют много ватт, поэтому, если вы можете сократить использование этих трех приборов, вы можете значительно сократить количество киловатт-часов на своем счете.

Вт, Ом, Вольт и Ампер


Оооо, хороший вопрос. Некоторая информация находится на
ЭЛЕКТРИЧЕСТВО FAQ, также
Электричество — это не энергия и
Заблуждения об электричестве. Но ни у одного из них нет прямого
ответ на ваш вопрос. Полезный ответ будет ОГРОМНЫМ. Имейте в виду!
(ухмылка)

Вот предельно короткий ответ. Напряжение проталкивает заряды через
объект, который имеет электрическое сопротивление, и это нагревает резистивный
объект. Расход зарядов измеряется в амперах, расход заряда
электрическая энергия и тепловая мощность измеряются в ваттах, а сопротивление
измеряется в омах.

Сначала ватты и амперы. Это несколько сбивает с толку, потому что они
являются названиями потоков, но мы никогда не говорим о ВЕЩЕСТВАХ, которые текут.
Электрический ток не
прочее, электрический ток — это поток из штука. Как тебя зовут
из материала? Заряжать.

АМПЕР

Что течет в проводах?

  • Начисления
  • Электроны
  • «Заряд-материал»

Количество заряда измеряется в единицах, называемых КУЛОМБАМИ, а
слово «ампер» означает то же, что и «кулон заряда, протекающего на
второй.«Почему я говорю, что амперы сбивают с толку?
у воды нет названия, но наши учителя хотели, чтобы мы узнали о «потоке жидкости».
Предположим, нам всем нужно было узнать о «галлонах в секунду», но без
зная что-либо о галлонах, или о воде, или о самой идее
«жидкости». Если бы вы никогда не выучили слово «галлон», и если бы у вас не было
идея, что вода вообще существует, как вы могли понять «течения»?
Это проблема с электричеством и амперами.

Мы сможем понять поток (амперы), только если сначала поймем
то, что течет по проводам: заряд, кулоны.

ЗАРЯД

«Заряд» — это вещество внутри проводов, но обычно нам никто не говорит, что ВСЕ
МЕТАЛЛЫ полны заряда. Всегда. Кусок металла похож на полный бак
воды, а «вода» — это подвижный электрический заряд внутри нее. В
уроки физики мы
назовите это «электронным морем» или даже «электрической жидкостью». Это обвинение
часть всего
металлы. В меди электрическая жидкость — это внешние электроны всех
атомы меди.

Подвижный заряд внутри металлов придает им серебристый цвет.
цвет.Можно даже сказать, что зарядка подобна серебряной жидкости (при
по крайней мере, когда он внутри металла, он серебристый.)

Обратите внимание, что этот заряд «незаряженный», он нейтральный. Это невозможно?
Нет. Заряд внутри металлов нейтрален, потому что каждый электрон имеет
соответствующий протон рядом, а поля от противоположных зарядов
отменяет. Списание отменяется, но это не означает, что
заряд-материал пропал! Даже если заряд внутри металла отменен
, мы все еще можем заставить его течь.Мы можем сделать металлы собственными
электроны проходят мимо его протонов.

ЭЛЕКТРИЧЕСКИЙ ТОК

Когда заряд внутри металлов вынужден течь, электрические токи
созданы. Мы измеряем токи в амперах. Чем быстрее
Зарядное устройство движется, тем выше сила тока. Кроме того, БОЛЬШЕ зарядного материала
который течет (через провод большего диаметра), чем выше сила тока. Быстрый поток
заряда через узкий провод может быть таким же током, как и медленный поток
заряжайте через больший.

Вот способ визуализировать это. Согните металлический стержень, чтобы получилось кольцо, и приварите
концы вместе. Помните, что все металлы наполнены «жидким» зарядом.
Если вы вдавите полюс магнита в это кольцо,
магнитные силы заставят электронное вещество внутри кольца повернуться, как
колесо (как если бы кольцо содержало подвижный приводной ремень). Перемещая
Магнит, мы качаем заряды, и заряды текут. Вот как электрический
генераторы работают.

Генераторы представляют собой зарядовые насосы с магнитным приводом.Движущийся
магнитные поля толкают заряды провода, создавая
в амперах, но это происходит только при наличии полной цепи.
Разорвите кольцо, и вы создадите блокировку, так как заряды не могут быть легко
перепрыгнуть разрыв в кольце. Полное кольцо
представляет собой простую электрическую схему. Разрежьте кольцо и установите аккумулятор в
разрез, и аккумулятор может качать заряд кольца по кругу.
Сделайте еще один разрез, установите лампочку, и «трение» узкой
нить накала против протекающего заряда создает высокие температуры, и
проволока накаливания внутри лампы накаляется добела.

Важное примечание: заряд очень медленно течет по проводам,
медленнее сантиметров в минуту. Амперы очень медленные,
круговой поток. См. СКОРОСТЬ ЭЛЕКТРИЧЕСТВА.
для информации.

ВАТТ

«Ватты» имеют те же проблемы, что и амперы. Это имя
электрический поток, а при чем тут текущий? Энергия. «Ватт» — это просто
причудливый способ сказать «количество электроэнергии, протекающей в секунду».
Но что такое количество энергии? Количество энергии измеряется в
Джоули.Джоуль электрической энергии может перемещаться с места на место вдоль
провода. Когда ты
переносят один джоуль через канал каждую секунду, скорость потока
энергия составляет 1 Джоуль / сек, а «один Джоуль в секунду» означает «один ватт».

Что есть сила? Слово «сила»
означает «поток энергии». Это может помочь вам не думать о «силе».
на старте. Если вы сначала научитесь думать в терминах потока энергии
вместо власти, и
джоулей в секунду вместо ватт, со временем вы получите хороший
понимание.Как только вы поймете, о чем говорите, тогда
вы можете начать говорить стенографически. Чтобы использовать сокращение, не говорите
«поток энергии», скажем «сила». И скажите «ватты» вместо «джоулей на
второй. «Но если вы начнете с слов» мощность «и» ватты «, вы никогда не сможете
действительно узнать, что это за вещи, потому что вы никогда не узнали о
поток энергии.

ТЕЧЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Хорошо, тогда что такое электрическая энергия? У него другое название:
электромагнетизм. Электроэнергия — это то же самое, что радиоволны и
свет.это
состоит из магнитных полей и электростатических полей. Джоуль радио
волны — это то же самое, что и джоуль электрической энергии. Что у этого есть
что делать с пониманием электрических схем? Немного! Но я приду
вернемся к этому позже.

Чем электрический ток отличается от потока энергии?
Возьмем снова наше медное кольцо; тот, с батареей и светом
лампочка. Батарея впрыскивает в кольцо джоули энергии, и свет
лампочка снова их вынимает. Джоули потока энергии между батареей и
лампочка.Они текут почти со скоростью света, и если мы растянем
звоните, пока не пройдете тысячи миль, лампочка все равно будет вращаться
выключается сразу после извлечения аккумулятора. Ну не СРАЗУ.
По проводам все еще будет перемещаться джоулей, поэтому лампочка будет
оставайтесь на крошечной доле секунды, пока вся энергия
прибывает. Вытащите аккумулятор, и лампочка ПОЧТИ погаснет.
немедленно.

АМПЕР НЕ ЯВЛЯЕТСЯ ПОТОКОМ ЭНЕРГИИ

Обратите внимание, что джоули энергии текли ОДНОМУ ПО ОБОИМ проводам.В
батарея создала их, а лампочка поглотила их. Это не было
круговой поток. Энергия переходила от батареи к лампочке, и ничего не возвращалось.
В то же время заряд медленно двигался по кругу внутри
звенеть. Вот и разница между амперами и ваттами. В
кулоны текут медленно по кругу, а джоули быстро текут из
«источник энергии» к «поглотителю энергии». Амперы медленные и круговые, в то время как
ватты быстрые и односторонние. Амперы — это поток зарядов меди, а
ватты — это поток энергии, создаваемый батареей или генератором.

Но ЧТО ТАКОЕ ДЖОЛЫ? Вот где
приходит электромагнетизм.
Когда джоули энергии проходят между батареей и лампочкой, они
сделаны из полей. Энергия частично состоит из магнитных полей.
окружающий
провода. Это также сделано из электрических полей, которые распространяются между
два провода.
Электрическая ЭНЕРГИЯ течет в пространстве вокруг проводов, в то время как
электрический
ТОК течет внутри проводов.

ВОЛЬТ

Между амперами и ваттами существует связь.Они не совсем
отдельный. Чтобы понять это, нам нужно добавить «напряжение». У тебя есть
наверное слышал
что
напряжение похоже на электрическое давление. Чему обычно не учат, так это тому, что
напряжение является частью статического электричества. Если я хватаю электроны за проволоку,
в этом проводе останутся лишние протоны. Если я помещу эти
электроны в
другой провод, затем два моих провода имеют противоположный несбалансированный заряд. Они
иметь напряжение
между ними тоже, и статическое электрическое поле, распространяющееся через пространство
между ними.ЭТО ПОЛЕ — НАПРЯЖЕНИЕ. Электростатические поля
измеряется в вольтах / расстоянии, и если у вас есть поле, вы всегда
есть напряжение. Чтобы создать напряжение, снимите заряд с одного предмета и
воткни их в другую.

Помните батарею в медном кольце сверху? Батарея действовала как
зарядный насос. Он вытащил заряд с одной стороны кольца, и
толкнул его в другую сторону. Это привело к появлению разницы напряжений.
между
две стороны кольца.Это также привело к появлению электростатического поля.
появляются в пространстве, окружающем кольцо. И, наконец, это вызвало
зарядите вещество внутри нити накаливания лампочки, чтобы начать течь. Этим способом
напряжение похоже на давление. Путем проталкивания зарядов с одного провода на
другое, напряжение заставляет два провода становиться
положительный и отрицательный. В
лампочка обеспечила путь для их повторного разряда, и это
создал поток заряда в нити накаливания лампочки. Батарея толкает
заряд через себя, и это также заставляет заряд течь через
лампочка накаливания.Но где энергия?
в это? Чтобы понять это, мы должны знать об электрическом трении.
или же
«сопротивление».

ОМ

Представьте себе резервуар для воды под давлением. Подсоедините к нему узкий шланг и откройте
клапан. Вы получите определенный поток воды, потому что шланг
определенного размера и длины. А теперь самое интересное: сделайте шланг вдвое больше.
долго, а расход воды уменьшается ровно в два раза. Имеет смысл?
Если представить, что шланг имеет «трение», то, удвоив его длину, мы
удвойте его трение.(Это происходит независимо от того, течет вода или нет.)
Теперь предположим, что мы подключили очень тонкий провод между концами батареи. В
батарея будет обеспечивать свое давление накачки (свое «напряжение»), и это будет
заставьте заряд тонкого провода начать двигаться. Удвоить
длина проволоки, и вы удвоите трение. Экстра сокращает
заряжать
расход (в амперах) пополам. ТРЕНИЕ — ЭТО «ОМ», ЭТО ЭТО
ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ. Чтобы изменить поток заряда, мы можем изменить
сопротивление нашего куска проволоки за счет изменения ее длины.Но мы также можем
изменить расход, изменив давление. Добавьте еще одну батарею последовательно.
Это дает вдвое большую разницу давлений, приложенную к концам проволоки. Который
удваивает поток. Мы только что открыли «закон Ома», который гласит, что
расход прямо пропорционален разности давлений, и если
давление повышается, расход увеличивается пропорционально. Это также означает, что если
то
сопротивление увеличивается, поток уменьшается на пропорциональную величину. В
чем сильнее вы толкаете, тем быстрее он течет. Чем больше сопротивление, тем
меньший поток (если давление остается прежним.) Это закон Ома.

Уф. СЕЙЧАС мы можем получить
вернуться к потоку энергии.

ВОЛЬТ, АМПЕР, ОМ, ПОТОК ЭНЕРГИИ

Вернемся к кольцу с батареей и лампочкой. Допустим аккумулятор
захватывает заряд с одной стороны кольца и проталкивает его в
Другие. Это заставляет заряды течь по кругу, а также посылает энергию.
к лампочке. Требуется напряжение, чтобы заставить заряды течь, и
лампочка предлагает «трение» или сопротивление потоку.Все эти вещи
связаны, но как? (Попробуйте велосипедное колесо
аналогия.)

Вот простейшее электрическое соотношение: чем жестче толчок, тем быстрее.
ТЕЧЕНИЕ. Это называется «Закон Ома», и мы можем записать его как
это:


ВОЛЬТ / ОМ = КУЛОМБЫ / СЕК.

Он говорит, что большое напряжение заставляет кулоны заряда течь быстрее.
через провод. Но мы обычно думаем о токе с точки зрения усилителя, а не
с точки зрения текущего заряда.Вот обычный способ написать закон Ома:

ВОЛЬТ / ОМ = АМПЕР

Напряжение, разделенное на сопротивление, равно току. Сделайте напряжение
в два раза больше, то заряды текут быстрее, и вы получаете вдвое больше
Текущий. Сделайте напряжение меньше, и ток станет меньше.

У закона Ома есть еще одна особенность: чем больше у вас трения, тем медленнее
ТЕЧЕНИЕ. Если вы сохраните напряжение прежним (другими словами, продолжайте использовать
тот же аккумулятор для питания вашей лампочки), и если вы удвоите
сопротивление, то заряды текут медленнее, и вы получаете вдвое меньше
Текущий.Увеличить сопротивление легко: просто зацепите больше одного
лампочка в последовательной цепи. Чем больше лампочек, тем больше
трение, что означает, что каждая лампочка светится тусклее. в
по аналогии с велосипедным колесом, упомянутой выше, цепь лампочек похожа на
несколько больших пальцев трутся об одну и ту же вращающуюся шину.

Вот третий способ взглянуть на закон Ома: КОГДА ПОСТОЯННЫЙ ТОК
ВСТРЕЧАЕТСЯ ТРЕНИЕМ, ПОЯВЛЯЕТСЯ НАПРЯЖЕНИЕ. Мы можем переписать закон Ома, чтобы показать
это:

АМПЕР x ОМ = НАПРЯЖЕНИЕ

Чем больше ток, тем больше вольт.Или, если ток вынужден
оставайтесь прежними, и вы увеличиваете трение, появляется больше вольт.
Поскольку большинство источников питания обеспечивают постоянное напряжение, а не
постоянного тока, приведенное выше уравнение используется реже. Обычно мы знаем
напряжение, и мы хотим найти силу тока. Однако транзистор
в цепях используются постоянные токи, поэтому приведенные выше идеи очень полезны.

А как насчет ватт? Когда заряд проталкивается через электрический
сопротивление, электрическая энергия теряется и создается тепло.Определенный
количество энергии поступает в резистор каждую секунду. Если мы
увеличивая напряжение, больше энергии поступает в резистор и получает
превращается в тепло. Если мы увеличим поток заряда, то же самое: больше
тепло уходит в секунду. Вот как это написать:

ВОЛЬТЫ x КУЛОМБЫ / СЕКУНДА = ДЖОЛЫ / СЕКУНДА

На каждый кулон заряда, прошедшего через резистор, определенная
количество джоулей электрической энергии втекает в резистор, и они текут
как тепло.

Поток заряда и поток энергии обычно записывают в амперах и ваттах.
Это скрывает тот факт, что количество «материала» течет. Но однажды
вы понимаете, что на самом деле происходит внутри схемы, проще
напишите амперы потока заряда и ватты потока энергии. ЕСЛИ МЫ УВЕЛИЧИМ
НАПРЯЖЕНИЕ, ПОТОК ЗАРЯДА УВЕЛИЧИВАЕТСЯ, А ПОТОК ЭНЕРГИИ ДАЖЕ УВЕЛИЧИВАЕТСЯ.
БОЛЕЕ. Причина удвоения напряжения-давления

ВОЛЬТЫ x АМПЕР = ВАТТ

Мы тоже можем задействовать Ом.Просто объедините это уравнение с
Закон Ома. Если вы увеличиваете напряжение, это увеличивает поток заряда
через устройство электрического трения. Но поскольку напряжение И ток
оба становятся больше одновременно, поток энергии увеличивается еще больше. Если
напряжение удваивается, ток удваивается, а мощность не просто удваивается, а
удвоение тоже удваивается (мощность увеличивается на четыре). Запишите это так:

ВОЛЬТ x ВОЛЬТ / ОМ = ВАТТ

Итак, если вы удвоите напряжение, поток энергии увеличится в четыре раза, но если вы
двойной
трение при неизменном напряжении, поток энергии сокращается вдвое
(не в 1/4.