Формула как найти ток: Закон Ома онлайн — формулы и калькулятор

Содержание

Формула тока. Как найти ток. Вычисляем и определяем ток по формуле закона Ома.

 

 

 

Тема: Как вычислить ток по формуле. Находим силу тока по формуле Ома и мощности.

 

Основополагающей формулой для нахождения силы тока является классический закон Ома, который гласит, что сила тока равна напряжение деленное на сопротивление. И эта основополагающая формула любого электрика и электроника, которая постоянно используется для быстрого вычисления силы тока той или иной цепи. Из любых двух известных величин закона Ома (это ток, напряжение и сопротивление) всегда можно найти третью. В случае нахождения напряжения мы перемножаем ток на сопротивление, ну а при вычислении тока или сопротивления всегда напряжение делим на ту величину, которая известная (сила тока или сопротивление).

 

Стоит сказать, что данная формула тока подходит как для переменного, так и для постоянного тока. Хотя для переменного имеются некоторые нюансы. А именно: это случаи, когда мы используем активную нагрузку (нагреватели, лампочки). Формула тока показывает зависимость напряжения, сопротивления, и собственно силы тока.

 

Поскольку немаловажной характеристикой, используемой в области электричества, является также электрическая мощность, то для нахождения силы тока применять можно и её. Электрическая мощность, это произведение силы тока на напряжение. И чтобы найти силу тока необходимо мощность поделить на известное напряжение. Например, нам известна мощность нагревательного элемента, которая равна 880 Вт. Мы также знаем напряжение, что будет подаваться на него, равное 220 В. Нам нужно найти силу тока, которая будет протекать по цепи питания данного нагревателя. Для этого мы просто 880 ватт делим на 220 вольт, что даст на силу тока в 4 ампера.

 

 

 

 

Теперь как можно вычислить по формуле тока (по закону Ома) этот самый ток зная напряжение и сопротивление. Итак, у нас всё то же напряжение 220 вольт, и есть тот же нагревательный элемент. Мы мультиметром, тестером измеряем сопротивление элемента (у нагревателя с мощностью 880 ватт и рассчитанного на напряжение 220 вольт оно будет 55 ом). И что бы найти силу тока мы напряжение 220 вольт делим на сопротивление нагревателя 55 ом, в итоге получаем всю ту же силу тока в 4 ампера.

 

Просто нужно хорошо запомнить эти две формулы тока (его нахождение через мощность и через сопротивление с известным напряжением). Тогда вы быстро и без труда в голове сможете вычислять как силу тока электрической цепи, так и любые другие электрические величины (напряжение, сопротивление, мощность).

 

 

Ну, а если вы больше практик, тогда просто берите в руки измерители и меряйте. Напомню, напряжение мы измеряем параллельным прикладыванием щупов тестера, мультиметра к контактам, на которых будет измерять величину разности потенциалов. Силу тока же мы меряем уже путем разрыва цепи, где нужно измерить силу тока, то есть разрываем электрическую цепь в начале (поближе к источнику питания) и между этим разрывом подсоединяем щупы нашего измерителя тока (амперметра). Не забывайте, что переменный ток должен соответствовать своему положению на переключателе тестера, а постоянный своему месту (иначе вы получите неверные значения измеряемого тока).

P.S. Для лучшего запоминания закона Ома вы просто держите в голове, что при делении напряжение всегда в верху, то есть если по закону Ома мы находим напряжение, то перемножаем ток на сопротивление, ну в двух других случаях (при нахождении сопротивления или тока) мы всегда напряжение делим на известную величину, получая вторую, которая ранее была неизвестна.

 

Электрический ток — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Электрический ток. Сила тока. Сопротивление

К оглавлению…

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

 

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению…

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

 

ЭДС. Закон Ома для полной цепи

К оглавлению…

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

 

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению. ..

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

 

Энергобаланс замкнутой цепи

К оглавлению…

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

 

Электролиз

К оглавлению…

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

 

Электрический ток в газах и в вакууме

К оглавлению…

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы. Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

основные понятия, нахождение через силу тока и сопротивление

При проектировании схем различных устройств радиолюбителю необходимо производить точные расчеты c помощью измерительных приборов и формул. В электротехнике используются формулы для вычислений величин электричества (формулы напряжения, сопротивления, силы тока и так далее).

Общие сведения об электрическом токе

Электрическим током является процесс движения заряженных частиц (свободных электронов), имеющий вектор направленности. Частицы перемещаются под действием напряженности электрического поля, имеющей векторное направление. Это поле совершает работу по перемещению этих частиц. Влияют на работу электрического поля сила тока, напряжение и сопротивление.

Физический смысл

Под физическим смыслом понимается работа тока на участке, соотносящаяся с величиной заряда. Положительный заряд перемещается из одной точки, обладающей одним потенциалом, в другую, причем потенциал в этой точке отличается от предыдущего. В результате этого и возникает разность потенциалов, именуемая напряжением или ЭДС (электродвижущей силой).

Для полного понимания этого физического процесса и выяснения физического смысла напряжения необходимо провести аналогию с трубой. Допустим, труба наполнена водой и к ней прикручен кран для слива воды. Эта труба также оборудована краном для заливания воды с помощью мощного насоса.

Для демонстрации аналогии нужно открыть кран полностью, вода начнет выливаться и можно сделать вывод о незначительном давлении. Во втором случае спускной кран открыт не полностью и происходит набор воды при помощи насоса. В трубе создается давление и напор усиливается. Насос, создающий давление, и является в этом примере напряженностью электрического поля.

Электричество, если его не контролировать и не знать о пагубном влиянии на организм человека, способно создать множество проблем начиная от сгорания приборов и пожаров, и заканчивая угрозой жизни и здоровью человека. Техника безопасности очень важна в любой сфере.

Пагубное влияние на человека

Электричество очень опасно и является причиной несчастных случаев. Радиолюбители подвержены риску поражения электрическим током довольно часто. Некоторые радиолюбители пробуют наличие напряжения пальцами и пренебрегают техникой безопасности. Большинство из них считает опасным для жизни напряжение от 500 В, а 110 и 220 — не наносящими вреда здоровью. Удары от маломощных источников тока (маломощный силовой трансформатор, конденсатор), по их мнению, являются неопасными.

Согласно технике безопасности при работах с электричеством, они ошибаются, но есть и другая сторона этого вопроса: организм каждого человека индивидуален, обладает разными параметрами. Из этого утверждения следует, что смертельные характеристики электричества (напряжение и ток) индивидуальны для каждого человека. Одних может ударить 36 В, а других не пробивает и 220 В.

Действие электричества на организм человека зависит от нескольких факторов: силы и частоты, времени и пути прохождения через организм, сопротивления организма или участка тела, по которому протекает ток.

Исследованиями ученых установлено, что величина смертельного тока, поражающего сердце, составляет более 100 мА. Токи от 50 мА до 100 мА вызывают потерю сознания при кратковременном касании к поверхности, которая проводит ток. Токи до 50 мА могут стать причиной травм, например, падения с лестницы, выпускания из рук токоведущего проводника и т. д.

Влияние на фактор поражения еще оказывает и сопротивление тела человека. Сопротивление для каждого индивида определить сложно и диапазон его составляет от 30 кОм до 200 кОм. Эта величина зависит от множества факторов: толщины кожи, влажности тела и окружающей среды, усталости, нервно-эмоционального состояния, болезни и других факторов. Сопротивление резко уменьшается при повышенной влажности воздуха и работе на влажных участках.

Формула расчета напряжения, опасного для жизни, предполагая, что Rч = 2кОм и I = 60 мА, выглядит так: U = I * R = 0,06 * 2000 = 120 В. В этой ситуации опасным напряжением можно считать 120 В и выше.

Частота тока является еще одной опасной характеристикой, обладающей поражающим действием. При увеличении частоты опасность уменьшается прямо пропорционально. Ток оказывает и тепловое действие, поэтому считать высокочастотные токи безопасными нельзя.

Травмы, происходящие из-за электричества, называются электротравмами. Каждая из них несет в себе меньшую или большую опасность. Наиболее опасными являются травмы, полученные от электрической дуги, которая обладает высокой температурой от 5 тыс. до 12 тыс. градусов по Цельсию. Виды электрических травм:

  1. Электрические ожоги происходят при тепловом воздействии на ткани организма человека, по которым течет ток.
  2. Обожженные участки на коже возникают при прямом контакте ее с токоведущей частью проводника. Пораженный участок приобретает серый или бледно-серый цвет.
  3. Металлизация кожи — пропитывание кожи частицами металла при коротком замыкании или сварке.
  4. Механические повреждения — самопроизвольная судорога мышц, приводящая к падению. При падении происходят переломы, ушибы вывихи суставов и т. д.
  5. Электроофтальмия — воспаление слизистой оболочки глаз при воздействии излучения электрической дуги.

Существует еще один вид поражения — электрический удар. Этот вид поражения можно условно разделить на 5 групп: без потери сознания; с потерей сознания, связанной с нарушением сердечной деятельности или без нее; клиническая смерть и электрический шок.

Единицы измерения

Работа электрического поля по перемещению заряда измеряется в Дж (Джоуль), заряд в Кл (кулон). Вот, как обозначается напряжение или его единица измерения: отношение этих величин (работа по перемещению в Дж к электрическому заряду в Кл) и является разностью потенциалов, измеряется в вольтах (В) и обозначается U. Разность потенциалов бывает:

  1. Переменной (амплитуда и полярность изменяются с течением времени, в зависимости от характерной частоты).
  2. Постоянной (имеет постоянное значение амплитуды и полярность есть величина постоянная).

А также у единиц измерения есть приставки, например, кВ (Киловольт = 1000В) и МВ (мегавольт = 1000000В). Существуют о совсем низкие значения, например, мВ (милливольт = 0,001В).

Цепи переменного и постоянного тока

В цепях постоянного и переменного тока U обладает различными свойствами и производит иные влияния на проводники. Для постоянного напряжения существуют законы по вычислению его характеристик, но для переменного способы вычисления показателей заметно отличаются. Разберем более подробно все различия и сходства.

Расчет и анализ цепей выполняется при помощи закона Ома: сила тока полной цепи прямо пропорциональна напряжению и обратно пропорциональна сумме сопротивлений цепи и источника питания.

Следствие из закона при условии пренебрежения внутренним сопротивлением источника электричества: сила тока участка цепи прямо пропорциональна ЭДС и обратно пропорциональна сопротивлению этого участка.

Запись закона Ома, из которого следует формула напряжения, тока и сопротивления: I = U / (Rц + Rвн), где I — сила тока, U — ЭДС, Rц — сопротивление цепи, Rвн — внутреннее сопротивление источника питания.

Формула силы тока через сопротивление и напряжение: I = U / Rц.

Формула напряжения электрического тока: U = I * Rц.

Для расчета мощности необходимо U умножить на I: P = U * I = U * U / R, где P — мощность.

Переменное однофазное напряжение

В цепях для переменного тока происходят совершенно другие явления и процессы, для них справедливы другие законы. Различают такие основные виды:

  1. Мгновенное (разность потенциалов в конкретный промежуток времени: u = u (t)).
  2. Амплитудное значение (максимальное значение мгновенного U в момент времени: u (t) = Uм * sin (wt + f), где w — угловая частота, t — конкретный момент времени и f — угол начальной фазы напряжения).
  3. Среднее значение (для синусоиды равно нулю).
  4. Среднеквадратичное — Uq (U за весь период колебаний и для синусоиды имеет вид: Uq = 0,707 * Uм).
  5. Средневыпрямленное — Uv (среднее значение модуля U: Um примерно равно 0,9 * Uq).

В цепях 3-фазного тока различают 2 вида напряжений: линейное (фаза-фаза) и фазное (фаза-ноль). При соединении в цепь «треугольником» фазное и линейное U равны. В случае соединения «звездой» — фазное в 1,732050808 раз меньше линейного.

Рекомендации по выбору прибора

Для расчетов необходимо измерять значения величин электричества. Существуют специальные приборы, которые помогают произвести точные расчеты. Для измерения разности потенциалов применяют вольтметр.

Вольтметр (вольт — единица измерения ЭДС, метр — измеряю) — прибор для измерения ЭДС в цепи, подключаемый параллельно участку, на котором необходимо провести замер.

Для конкретного случая необходимо применять тот или иной прибор. Для более точных расчетов приобретаются приборы с высоким классом точности. Классификация вольтметров:

  1. Принцип действия: электромеханические (стрелочные) и электронные.
  2. Назначение: постоянного и переменного тока, импульсные, селективные и универсальные.
  3. Конструктивное исполнение: щитовые, переносные и стационарные.

Аналоговый электромеханический вольтметр имеет большие погрешности измерений в высокоомных цепях, но отлично зарекомендовал себя в низкоомных цепях и возможностью модернизации (увеличение значений измерения U за счет добавочного резистора).

Выпрямительный вольтметр обладает более высоким классом точности. Состоит из самого измерительного прибора (обладает чувствительностью к постоянному току) и выпрямительного устройства. Они получили не очень широкое распространение из-за высоких погрешностей, и применяются в качестве сигнальных приборов (примерное значение U).

Цифровые вольтметры применяются в комбинированных приборах-мультиметрах. Поступающее напряжение на клеммы (измерительные щупы) прибора преобразовывается в сигнал при помощи аналого-цифрового преобразователя (АЦП). Происходит отображение на цифровом табло. Этот вид приборов получил широкое применение благодаря высокой точности и универсальности.

Импульсный вольтметр необходимо применять при измерении амплитуд импульсных сигналов и одиночных импульсов.

Основным применением фазочувствительных вольтметров является измерение квадратурных составляющих комплексного напряжения (наличие мнимой и действительной частей) первичной гармоники. Они, как правило, снабжены 2-мя индикаторами для выявления мнимой и действительной частей. Они получили широкое применение в измерении АФХ (амплитудно-фазовая характеристика) для подбора деталей и настройки усилителей.

Для измерения номинала постоянного напряжения используются вольтметры подгруппы В2 (вольтметры для постоянного напряжения), а также В7 (универсальные).

Для определения переменного напряжения необходимо использовать устройства из подгруппы В3 или универсального типа (В7). Однако часто в этих вольтметрах применяются специальные преобразователи из переменного напряжения в постоянное.

В3 и В7 рассчитаны только для определения среднеквадратического гармонического напряжения. В этих электроизмерительных приборах возможно применение детекторов (преобразователей): пикового, выпрямительного и квадратичного. Оптимальным вариантом является вольтметр на квадратичном детекторе, при этом измеряемое значение выдается напрямую без всяких преобразований. Измерительные приборы на пиковых и выпрямительных детекторах пересчитывают значения, тем самым уменьшая точность измерений. Для измерения периодического негармонического напряжения выбирают вольтметр на квадратичном детекторе.

Таким образом, расчет напряжения играет важную роль в электротехнике. Расчеты для переменных и постоянных цепей электрического тока существенно отличаются, в результате чего необходимо определить сначала тип тока, а затем производить расчеты. Но также необходимо соблюдать технику безопасности при работах с электричеством. Ведь ее основные положения основаны на горьком опыте человечества.

Как найти общую силу тока в проводнике формулой

Электрическим током в электротехнике называется движение заряженных частиц по какому-либо проводнику. Эта величина не характеризуется лишь количеством энергии электричества, проходящей через проводник, так как за один и тот же проводник можно пропустить ток как разной, так и равной силы за разные промежутки времени. Именно поэтому не все так просто, как кажется. Рекомендуется ознакомиться с более развернутыми определениями электротока, чему он равен и как вычисляется. В этой статье будет объяснено, как найти силу тока в проводнике, будет дана формула этого уравнения.

Сила тока – что это

Рассматривая количество электроэнергии, которое протекает через определенный проводник за различные временные интервалы, станет ясно, что за малый промежуток ток протечет более интенсивно, поэтому нужно ввести еще одно определение. Оно означает силу тока, протекающую в проводнике за секунду времени.

Основные величины, характеризующие поток электронов

Если сформулировать определение на основе всего вышеперечисленного, то сила электротока – это количество электроэнергии, проходящее через поперечное сечение проводника за секунду. Маркируется величина латинской буквой «I».

Гальванометр для измерения небольшой силы тока

Важно! Специалисты определяют силу электротока, равную одному амперу, когда через поперечное сечение проводника проходит один кулон электричества за одну секунду.

Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее. Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль.

Схема, определяющая рассматриваемое понятие

Если известно количество электроэнергии, которое прошло через проводник за конкретный промежуток времени, то силу (не мощность) можно вычислить по формуле, изображенной на картинке.

Когда электросеть замкнута и не имеет никаких ответвлений, через каждое поперечное сечение за секунду протекает одно и то же количество электричества. Теоретически это обосновывается так: заряд не может накапливаться в определенном месте, и сила электротока везде одинакова.

Виды токов

Источники тока

Источником электротока называется такой электротехнический прибор, который конвертирует определенный вид энергии в электрическую. Такие устройства делятся на физические и химические.

Принцип действия химических источников основан на преобразовании химической энергии в электрическую. Это преобразование происходит самостоятельно и не требует участия извне. В зависимости от возобновляемости элементов и типа реакций, они делятся на:

  • Первичные (батарейки) Первичные источники нельзя использовать второй раз, если они разрядились, так как химические реакции, протекающие в них, необратимы. Они делятся на топливные и полутопливные элементы. Топливные аналогичны батарейкам, но химические вещества в них заправляются отдельно, как продукты химической реакции они выходят наружу. Это помогает им работать долгое время. Полутопливные включают в себя один из химических элементов, а второй постепенно поступает на протяжении всего использования. Их срок службы определяется запасом невозобновляемого вещества. Если для такого элемента возможна регенерация через зарядку, то он возобновляет свои возможности как аккумулятор.

Батарейки – как первичные химические источники тока

  • Вторичные (аккумуляторы) перед использованием проходят цикл зарядки. Заряд, который они получают в процессе, можно транспортировать вместе с устройствами. После расходования заряда возможна его регенерация за счет зарядки и обратимости химической реакции. Также к вторичным относятся возобновляемые элементы, которые механическим или химическим путем заряжаются и восстанавливают способность питать приборы. Они разработаны таким образом, что после определенного срока требуют замены определенных частей для продолжения реакции.

Виды источников питания электрическим током

Важно! Следует понимать, что разделение на батарейки и аккумуляторы условно. Свойства аккумулятора могут проявляться, например, у щелочных батарей, которые можно реанимировать при определенной степени заряда.

Также по типу реагентов химические источники делятся на:

  • Кислотные.
  • Солевые.
  • Щелочные.

Физические же источники электротока основаны на преобразовании механической, а также ядерной, тепловой или световой энергии в электрическую.

Промышленный генератор трехфазного тока

Сила тока – чему равна, в каких единицах она измеряется, как найти силу тока по формуле

Как уже стало понятно, сила электротока – это физическая величина, показывающая заряд, который проходит через проводник за единицу времени. Основная формула для ее вычисления выглядит так: I = q/t, где q – это заряд, который идет по проводнику в кулонах, а t  – это временной интервал в секундах.

Рассчитать силу электротока можно и с помощью закона Ома. Он гласит, что эта величина равна напряжению сети в вольтах, деленному на ее сопротивление в омах. В связи с этим имеет место формула такого рода — I = U/R. Этот закон применим для расчета значений постоянного тока.

Чтобы вычислить переменные параметры электричества, нужно разделить найденные величины на квадратный корень из двух.

К сведению! Это более практичный метод измерения, и им приходится пользоваться часто, так как все приборы в доме или в офисе работают от розеток, которые подают переменный ток. Делается это из-за того, что с ним легче работать, его удобнее трансформировать.

 

Закон Ома в таблице

Важно! Наглядный пример работы переменного электротока можно наблюдать при включении люминесцентных ламп. Пока они полностью не загорятся, они будут моргать, потому что ток  двигается в них то туда, то сюда.

Единицей измерения силы тока является ампер. Он определяется как сила неизменяющегося тока, который проходит по бесконечным параллельным проводникам с наименьшим круговым сечением (с минимальной площадью кругового сечения), отдаленным друг от друга на 1 метр и расположенным в безвоздушном вакуумном пространстве. Это взаимодействие на одном метре длины этих проводников, равное 2 × 10 в минус 7-й степени Ньютона. Если в проводнике за одну секунду времени проходит один кулон заряда, то сила тока в нем равна одному амперу.

Аккумуляторы являются вторичными источниками, но неразрывно связаны с батарейками

Зачем нужно измерять силу тока

Силу тока в проводнике или на участке электрической цепи измеряют для того, чтобы иметь понятие о характеристиках данного проводника или цепи. Так как сила тока – один из основных параметров электричества, он неразрывно связан с другими значениями по типу напряжения и сопротивления. Более того, как уже стало понятно, три этих величины могут пропорционально определять друг друга.

Солнечная панель также является источником, преобразующим световую энергию

Расчеты силы электротока делаются в разных случаях:

  • При прокладке электрических сетей.
  • При создании приборов.
  • В образовательных целях.
  • При выборе подходящих деталей для совершения тех или иных действий.

Схема устройства генератора тока

Электроприбор для измерения силы тока

Для измерения силы электротока используют специальный прибор под названием амперметр. Если требуется измерить токи самых разных сил, то прибегают к использованию миллиамперметров и макроамперметров. Чтобы измерить им требуемую величину, его подключают в цепь последовательно. Ток, который проходит через устройство, будет изменяться им, и данные будут выведены на цифровой дисплей или аналоговые шкалы.

Важно! Стоит помнить, что включать амперметр можно на любом участке сети, поскольку сила тока в простой замкнутой цепи без ответвлений одинакова во всех точках.

Современные тестеры и мультиметры содержат функцию измерения силы электротока, поэтому нет необходимости прибегать к габаритным приборам, предназначенным для промышленного использования

Силу тока в домашних условиях можно измерить с помощью мультиметра

Таким образом, сила электротока – это основополагающая характеристика движущихся частиц. Она не только дает понять, какое в сети напряжение и сопротивление, но и определяет другие важные величины по типу ЭДС и т. д.

Формула силы тока

ОПРЕДЕЛЕНИЕ


Сила тока определяется как отношение количества заряда, прошедшего через какую-то поверхность, ко времени прохождения.

   

В формуле – сила тока, – количество заряда, – время.

Единица измерения силы тока – А (ампер).

Обычно под поверхностью, через которую прошёл заряд, понимают сечение проводника. В цепях с постоянным током силу тока находят по закону Ома:

   

Где – напряжение, – сопротивление проводника. Прибор, которой используется для измерения силы тока, называют амперметром.

Примеры решения задач по теме «Сила тока»

ПРИМЕР 1




ЗаданиеНайти силу тока в проводнике, если за 50 сек через него прошёл заряд 43 кКл.
РешениеНапомним, что кКл = Кл. Подставим численные значения в формулу:

   

ОтветСила тока была равна 860 Ампер.

ПРИМЕР 2




ЗаданиеЧерез сечение проводника за 1 минуту прошёл заряд 10 Кл. Найти сопротивление участка цепи, если напряжение в нём 50 В.
РешениеНайдём силу тока через заряд:

   

По закону Ома:

   

Сопоставим формулы:

   

Подставим числа:

(Ом)

ОтветСопротивление цепи равно 300 Ом.



Понравился сайт? Расскажи друзьям!



Основные расчетные электротехнические формулы

Электрическое сопротивление материала определяется по формулам:

Электрическое сопротивление, Ом, материала

R = U/I, где U — напряжение, В; I — сила тока, А.

Удельное электрическое сопротивление, Ом·м,

ρ=Rs/l. S – сечение проводника, м² ; l – длина проводника, м.

Под удельным электрическим сопротивлением материала понимают сопротивление проводника длиной 1 м и сечением
1 м² при 20°С.

Величина, обратная удельному сопротивлению, называется проводимостью:

v=1/ρ.

Если вместо сечения проводника S задан его диаметр D, то сечение, м², находят по формуле

S= πD²/4, где π =3,14.

Сопротивление материала зависит от температуры. Если материал нагрет до температуры t°С, то его
сопротивление, Ом, при этой температуре равно:

Rt= R0[1 + α (t – t0)],

где R0 – сопротивление при начальной температуре t0°С, Ом; α – температурный коэффициент.

Далее приводятся значения α для различных материалов.

Медь,
алюминий,
вольфрам
0,004
Сталь0,006
Латунь0,002

Сопротивление нескольких проводников зависит от способа их соединения. Например, при параллельном
соединении сопротивление трех проводников определяется по формуле:

Rоб=R1*R2*R3/(R1R2+R2R3+R3R1)

При последовательном соединении:

Rоб=R1+R2+R3.

Постоянный ток

Постоянный ток применяют для питания устройств связи, транзисторных приборов, стартеров автомобилей,
электрокар, а также, для зарядки аккумуляторов.

В качестве источников постоянного тока используют гальванические элементы, солнечные батареи,
термоэлектрогенераторы, генераторы постоянного тока.

При параллельном соединении нескольких проводников с током с равными напряжениями:

Iоб = I1+I2+…+In Uоб=U1=U2=…=Un

При последовательном соединении: Iоб = Imin; – где Imin, ток наименьшего по мощности источника тока
(генератора, аккумуляторной батареи).

Uоб = U1+U2+…+Un

Основные параметры цепей однофазного переменного тока

Однофазный переменный ток промышленной частоты имеет 50 периодов колебаний в секунду, или 50 Гц. Его
применяют для питания небольших вентиляторов, электробытовых приборов, электроинструмента, при электросварке
и для питания большинства осветительных приборов.

Частота переменного тока, Гц:

f= 1/T = np/60, где п — частота вращения генератора, мин -1; р – число пар полюсов
генератора.

Мощность однофазного переменного тока:

активная, Вт, Ра = IUcosφ;

реактивная, вар, Q = IUsinφ;

кажущаяся, В А, S = IU =√ (P 2α+Q 2)

Если в цепь переменного однофазного тока включено только активное сопротивление (например, нагревательные
элементы или электрические лампы), то значение силы тока и мощности в каждый момент времени определяют по
закону Ома:

I=U/R; Рa = IU = I²R=U²/R.

Коэффициент мощности в цепи с индуктивной нагрузкой

Cosφ= Рa/IU= Рa/S.

Основные параметры цепей трехфазного переменного тока

Трехфазный переменный ток используют для питания большинства промышленных электроприемников. Частота
трехфазного переменного тока 50 Гц.

В трехфазных системах обмотки генератора и электроприемника соединяют по схемам «звезда» или «треугольник».
При соединении в звезду концы всех трех обмоток генератора (или электроприемника) объединяют в общую точку,
называемую нулевой или нейтралью (рис. 5а).

При соединении в треугольник начало первой обмотки соединяют с концом второй, начало второй обмотки — с
концом третьей и начало третьей — с концом первой обмотки (рис. 5б).

Если от генератора отходят только три провода, то такая система называется трехфазной трехпроводной; если
от него отходит еще и четвертый нулевой провод, то систему называют трехфазной четырехпроводной.

Трехфазные трехпроводные сети используют для питания трехфазных силовых потребителей, а четырехпроводные
сети – для питания преимущественно осветительных и бытовых нагрузок.

В трехфазных системах различают фазные и линейные токи и напряжения. При соединении фаз звездой линейный I
и фазный Iφ токи равны:

а напряжение U =√3Uφ

При соединении треугольником

I =√3Iφ

а напряжение U = Uφ.

Мощность переменного трехфазного тока:

генератора:

  • активная, Вт, Рг =√3IUcosφ ,
  • реактивная, вар, Q=√3IUsinφ
  • полная, ВА, S = √3IU.

где φ – угол сдвига фаз между фазным напряжением генератора и током в той же фазе приемника, который
равен току в линии при соединении обмоток генератора звездой.

приемника:

  • активная, Вт, Рп =3UφIcosφп=√3 IUcosφп ,
  • реактивная, вар, Q=√3 UφIsinφп=√3 UIsinφ
  • полная, ВА, S = √3UI.

где φ – угол сдвига фаз между фазным напряжением приемника и током в той же фазе приемника, который
равен току линейному только при соединении звездой.

Подсчет количества теплоты, выделяемой при протекании электрического тока по проводнику.

Количество теплоты, Дж, выделяемой электрическим током в проводнике,

Q=I²Rt где t — время, с.

При определении теплового действия электрического тока учитывают, что 1 кВт·ч выделяет 864 ккал (3617 кДж).

Если у Вас остались вопросы – обращайтесь к нам, в авторизованный сервисный центр “Эл
Ко-сервис” Мы всегда рады помочь Вам в решении возникших у Вас проблем.

Инженерно-технический отдел авторизованного сервисного центра “Эл Ко-сервис”

ЭДС. Закон Ома для полной цепи

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.

До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.

Как мы знаем, положительный заряд :

• уходит во внешнюю цепь с положительной клеммы источника;

• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;

• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила , направленная против движения заряда (т.е. против направления тока).

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :

(1)

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2).

Рис. 2. Полная цепь

Наша задача — найти силу тока в цепи и напряжение на резисторе .

За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:

(2)

Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:

(3)

Итак, , и мы приравниваем правые части формул (2) и (3):

После сокращения на получаем:

Вот мы и нашли ток в цепи:

(4)

Формула (4) называется законом Ома для полной цепи.

Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

Зная силу тока (формула (4)), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:

(5)

Это напряжение является разностью потенциалов между точками и (рис. 2). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5), что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт .

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от , и формула (5) снова даёт нам .

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

КПД электрической цепи

Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .

Если сила тока в цепи равна , то

Некоторое количество теплоты выделяется также на источнике тока:

Полное количество теплоты, которое выделяется в цепи, равно:

КПД электрической цепи — это отношение полезного тепла к полному:

КПД цепи равен единице лишь в том случае, если источник тока идеальный .

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3показан неоднородный участок, содержащий резистор и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:

Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):

Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .

Подставляем сюда выражения для , и закон Джоуля–Ленца:

Сокращая на , получаем закон Ома для неоднородного участка цепи:

(6)

или, что то же самое:

(7)

Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

Отметим два следствия выведенных формул (6) и (7).

1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4. Здесь ток, идущий от к , направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току:

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

Тогда закон Ома для неоднородного участка примет вид:

(8)

или:

где по-прежнему — напряжение на участке.

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Электрический ток: определение, единица, формула, типы (с примерами)

Обновлено 28 декабря 2020 г.

Кевин Бек

Электрический заряд: Какую автоматическую реакцию вызывает эта фраза, когда вы ее читаете? Может быть, ощущение покалывания или образ молнии, раскалывающего небо? Красочный дисплей мигающих огней в таком городе, как Париж или Лас-Вегас? Возможно, даже насекомое, которое каким-то образом светится в темноте, пробираясь через ваш лагерь?

До недавних столетий ученые не только не имели возможности измерить скорость света, но и не знали, какие физические явления лежат в основе того, что сейчас известно как «электричество».В 1800-х годах физики впервые узнали о мельчайших частицах, участвующих в потоке тока (свободные электроны), а также о природе сил, заставляющих их двигаться. Было ясно, что электричество может принести значительную пользу, если оно может быть безопасно «изготовлено» или «захвачено», а электрическая энергия используется для выполнения работы.

Поток электрического заряда легко возникает в веществах, классифицируемых как проводящие материалы , тогда как в изоляторах этому препятствуют.В металлическом проводе, таком как медный провод, например, можно создать разность потенциалов на концах провода, вызывая поток заряда и создавая ток.

Определение электрического тока

Электрический ток — это средняя скорость потока электрического заряда (то есть заряда в единицу времени) через точку в пространстве. Этот заряд переносится электронами, движущимися по проводу в электрической цепи.Чем больше электронов проходит через эту точку за секунду, тем больше величина тока.

Единицей измерения тока в системе СИ является ампер (А), часто неофициально называемый «ампер». Сам электрический заряд измеряется в кулонах (Кл).

  • Заряд одного электрона составляет -1,60 × 10 -19 Кл, а заряд протона равен , но положительный знак . Это число считается фундаментальным зарядом e .Таким образом, основная единица ампер — кулоны в секунду (Кл / с).

По соглашению, электрический ток течет в направлении, противоположном потоку электронов . Это связано с тем, что направление тока было описано до того, как ученые узнали, какие носители заряда двигались под действием электрического поля. Для всех практических целей положительные заряды, движущиеся в положительном направлении, дают тот же физический (вычислительный) результат, что и отрицательные заряды, движущиеся в отрицательном направлении, когда дело касается электрического тока.

Электроны движутся к положительному выводу в электрической цепи. Таким образом, поток электронов или движущийся заряд находится далеко от отрицательного вывода. Движение электронов в медной проволоке или другом проводящем материале также создает магнитное поле , направление и величина которого определяются направлением электрического тока и, следовательно, движением электронов; это принцип, на котором построен электромагнит .

Формула электрического тока

Для базового сценария обычного тока заряда, движущегося по проводу, формула для тока имеет следующий вид:

I = neAv_d

, где n — количество зарядов на кубический метр (м 3 ), e — основной заряд, A — площадь поперечного сечения провода, а v d Скорость дрейфа .

Хотя ток имеет как величину, так и направление, это скалярная величина, а не векторная величина, поскольку она не подчиняется законам сложения векторов.

Формула закона Ома

Закон Ома дает формулу для определения тока, который будет протекать через проводник:

I- \ frac {V} {R}

где V — это напряжение или разность электрических потенциалов , измеренная в вольтах, а R — электрическое сопротивление току, измеренное в Ом (Ом).

Подумайте о напряжении как о «тянущей силе» (хотя эта «электродвижущая сила» не является буквально силой), специфичной для электрических зарядов. Когда противоположные заряды разделены, они притягиваются друг к другу таким образом, что уменьшается с увеличением расстояния между ними. Это примерно аналог гравитационной потенциальной энергии в классической механике; гравитация «хочет» падения высоких предметов на Землю, а напряжение «хочет», чтобы разделенные (противоположные) заряды столкнулись вместе.

Значение напряжения

Вольт эквивалентно джоулям на кулон или Дж / Кл.Таким образом, у них есть единицы энергии на единицу заряда. Таким образом, ток, умноженный на напряжение, дает единицы (Кл / с) (Дж / Кл) = (Дж / с), которые переводятся в единицы (в данном случае электрической) мощности:

P = IV

Объединение этого с законом Ома дает переходят к другим полезным математическим соотношениям, связанным с протеканием тока: P = I 2 R и P = V 2 / R. Они показывают, среди прочего, что при фиксированном уровне тока мощность пропорциональна сопротивлению, тогда как при фиксированном напряжении мощность обратно пропорциональна сопротивлению .

В то время как движущиеся заряды (ток) индуцируют магнитное поле, магнитное поле само может индуцировать напряжение в проводе.

Типы тока

  • Постоянный ток (DC): Это происходит, когда все электроны непрерывно текут в одном направлении. Это тип тока в цепи, подключенной к стандартной батарее. Батареи, конечно, могут поставлять и поставляют лишь исчезающе малое количество энергии, необходимой для питания человеческой цивилизации, хотя постоянно совершенствующиеся технологии в области солнечных элементов сулят более высокий потенциал для хранения энергии.
  • Переменный ток (AC): Здесь электроны колеблются вперед и назад (в некотором смысле «покачиваются») очень быстро. Этот тип тока часто легче генерировать на электростанции, и он также приводит к меньшим потерям энергии на большом расстоянии, поэтому он является стандартом, используемым сегодня. Все лампочки и другие электроприборы в стандартном доме начала 21 века питаются от сети переменного тока.

При переменном токе напряжение изменяется синусоидальным образом и в любой момент задается t выражением V = V 0 sin (2πft), где V 0 — это начальное напряжение, а f — частота или количество полных циклов напряжения (от максимального до минимального и обратно к максимальному значению) в каждую секунду.

Измерение тока

Амперметр — это устройство, которое используется для измерения тока путем последовательного, а не параллельного подключения в электрическую цепь. (Параллельная схема имеет несколько проводов между соединениями — другими словами, у источника питания, конденсаторов и резисторов — в цепи.) Она работает по принципу, согласно которому ток одинаков во всех частях провода между двумя соединениями.

Амперметр имеет известное низкое внутреннее сопротивление и настроен на полное отклонение (FSD) при заданном уровне тока, часто равном 0.015 А или 15 мА. Если вы знаете напряжение и управляете сопротивлением с помощью функции шунтирующего сопротивления амперметра, вы можете определить ток; вы знаете, какое значение тока должно иметь , используя закон Ома.

Примеры электрического тока

1. Вычислите скорость дрейфа электронов в цилиндрическом медном проводе радиусом 1 мм (0,001 м), по которому течет ток 15 А, учитывая, что для меди n = 8,342 × 10 28 э / м 3 .{-4} \ text {m / s}

  • Отрицательный знак указывает, что направление противоположно направлению тока, как и ожидалось для электронов.

2. Найдите ток I в цепи на 120 В, в которой последовательно подключены резисторы 2 Ом, 4 Ом и 6 Ом.

Последовательные резисторы являются просто аддитивными (в параллельных схемах сумма общего сопротивления является суммой обратных величин отдельных значений сопротивления). Таким образом:

I = \ frac {V} {R} = \ frac {120} {2 + 4 + 6} = 10 \ text {A}

3.2 \ times 15 = 6000 \ text {W} \ text {и} V = IR = 20 \ times 15 = 300 \ text {V}

Формула коэффициента тока — Примеры, как рассчитать коэффициент тока

Что такое ток Соотношение?

Коэффициент текущей ликвидности, также известный как оборотный капитал Чистый оборотный капитал Чистый оборотный капитал (NWC) — это разница между текущими активами компании (за вычетом денежных средств) и текущими обязательствами (за вычетом долга) на ее балансе. Коэффициент, измеряет способность бизнеса выполнять свои краткосрочные обязательства, которые подлежат погашению в течение года.Коэффициент учитывает вес общих оборотных активов Текущие активы Текущие активы — это все активы, которые компания ожидает преобразовать в денежные средства в течение одного года. Они обычно используются для измерения ликвидности по сравнению с общей суммой текущих обязательств Текущие обязательства Текущие обязательства — это финансовые обязательства хозяйствующего субъекта, срок погашения которых наступает в течение года. Компания показывает их на. Он указывает на финансовое состояние компании и на то, как она может максимизировать ликвидность своих оборотных активов для урегулирования задолженности и кредиторской задолженности.Формулу коэффициента текущей ликвидности (см. Ниже) можно использовать для простого измерения ликвидности компании.

Изображение: Курс CFI по основам финансового анализа

Формула коэффициента текущей ликвидности

Формула коэффициента текущей ликвидности:

Коэффициент текущей ликвидности = текущие активы / текущие обязательства

Пример формулы коэффициента текущей ликвидности

Если компания владеет:

  • Денежные средства = 15 миллионов долларов США
  • Рыночные ценные бумаги = 20 миллионов долларов США
  • Запасы = 25 миллионов долларов США
  • Краткосрочная задолженность = 15 миллионов долларов США
  • Кредиторская задолженность = 15 миллионов долларов США

Текущие активы = 15 + 20 + 25 = 60 миллионов

Текущие обязательства = 15 + 15 = 30 миллионов

Коэффициент текущей ликвидности = 60 миллионов / 30 миллионов = 2.0x

У компании в настоящее время коэффициент текущей ликвидности равен 2, что означает, что она может легко выплатить каждый доллар по ссуде или кредиторской задолженности дважды. Оценка более 1 говорит о финансовом благополучии компании. В отношении того, что «слишком много», нет верхнего предела, поскольку он может сильно зависеть от отрасли, однако очень высокий коэффициент текущей ликвидности может указывать на то, что компания оставляет неиспользованными лишние денежные средства, а не инвестирует в развитие своего бизнеса.

Загрузите бесплатный шаблон формулы коэффициента текущей ликвидности

Введите свое имя и адрес электронной почты в форму ниже и загрузите бесплатный шаблон прямо сейчас! Вы можете просмотреть все бесплатные шаблоны Excel Шаблоны Excel и финансовых моделейЗагрузить бесплатные шаблоны финансовых моделей — библиотека электронных таблиц CFI включает шаблон финансовой модели с 3 отчетами, модель DCF, график долга, график амортизации, капитальные затраты, проценты, бюджеты, расходы, прогнозирование, диаграммы, графики , расписания, оценка, сопоставимый анализ компании, другие шаблоны Excel, чтобы найти больше способов помочь в вашем финансовом анализе.

Формула коэффициента текущей ликвидности — что такое оборотные активы?

Оборотные активы — это ресурсы, которые можно быстро конвертировать в наличные в течение года или меньше. К ним относятся следующие:

  • Денежные средства — законные платежные средства, монеты, неотложные чеки клиентов, текущие и сберегательные счета, мелкие денежные средства.
  • Эквиваленты денежных средств. Эквиваленты денежных средств. Наличные деньги и их эквиваленты являются наиболее ликвидными из всех активов на балансе.Эквиваленты денежных средств включают ценные бумаги денежного рынка, банковские акцепты — Корпоративные или государственные ценные бумаги со сроком погашения 90 дней или менее
  • Рыночные ценные бумаги Рыночные ценные бумаги Рыночные ценные бумаги представляют собой неограниченные краткосрочные финансовые инструменты, которые выпускаются либо для долевых ценных бумаг, либо для долговых ценных бумаг компании, акции которой котируются на бирже. Компания-эмитент создает эти инструменты специально для сбора средств для дальнейшего финансирования коммерческой деятельности и расширения.- Обыкновенные акции, привилегированные акции, государственные и корпоративные облигации со сроком погашения 1 год или менее
  • Дебиторская задолженность Дебиторская задолженность Дебиторская задолженность (AR) представляет собой продажи бизнеса в кредит, которые еще не были получены от клиентов. Компании допускают — Деньги, причитающиеся компании со стороны клиентов и подлежащие выплате в течение года — Эта чистая стоимость должна быть после вычета резерва на сомнительные счета (плохой кредит). на предъявителя право на получение суммы, указанной в договоре.- Задолженность со сроком погашения в течение года
  • Прочая дебиторская задолженность — Страховые выплаты, денежные авансы сотрудникам, возмещение налога на прибыль
  • Запасы Запасы Запасы — это счет текущих активов, указанный в балансе, состоящий из всего сырья, незавершенного производства и готовая продукция, которая а — Сырье, незавершенное производство, готовая продукция, производственные / упаковочные материалы
  • Канцелярские товары — Канцелярские ресурсы, такие как бумага, ручки и оборудование, которые предполагается израсходовать в течение года
  • Предоплаченные расходы Предоплаченные расходы Предоплаченные расходы представляют расходы, которые еще не были учтены компанией как расходы, но оплачены заранее.В другом — Неистекшие страховые взносы, авансовые платежи по будущим покупкам

Формула коэффициента текущей ликвидности — Что такое текущие обязательства?

Краткосрочные обязательства — это деловые обязательства перед поставщиками и кредиторами, а также другие платежи, подлежащие оплате в течение года. Сюда входят:

  • Векселя к оплате Примечания к оплате Примечания к оплате — это письменные соглашения (векселя), в которых одна сторона соглашается выплатить другой стороне определенную сумму наличными.- Проценты и основная часть ссуд, срок погашения которых наступает в течение одного года.
  • Счета к оплате. Счета к оплате. Счета к оплате — это обязательство, возникающее, когда организация получает товары или услуги от своих поставщиков в кредит. Кредиторская задолженность или Торговая кредиторская задолженность — Кредит, возникший в результате покупки товаров, сырья, материалов или использования услуг и коммунальных услуг
  • Начисленные расходы Накопленные расходы Накопленные расходы — это расходы, которые признаются, даже если денежные средства не были оплачены.Эти расходы обычно сопоставляются с выручкой с помощью принципа сопоставления из GAAP (общепринятых принципов бухгалтерского учета). — Налоги на заработную плату, подлежащие уплате налоги на прибыль, проценты к уплате и все остальное, что было начислено. не получено
  • Доходы будущих периодов Доходы будущих периодов Доходы будущих периодов генерируются, когда компания получает оплату за товары и / или услуги, которые она еще не заработала.В учете по методу начисления — Выручка, за которую компании заплатили, будет получена в будущем, когда компания удовлетворит требования признания выручки. Признание выручки. Признание выручки — это принцип бухгалтерского учета, который описывает конкретные условия, при которых признается выручка. Теоретически есть требования

Зачем использовать формулу коэффициента текущей ликвидности?

Этот коэффициент текущей ликвидности классифицируется вместе с несколькими другими финансовыми показателями, известными как коэффициенты ликвидности. Все эти коэффициенты оценивают деятельность компании с точки зрения ее финансовой устойчивости по отношению к ее непогашенному долгу.Знание коэффициента текущей ликвидности жизненно важно для принятия решений инвесторами, кредиторами и поставщиками компании. Коэффициент текущей ликвидности является важным инструментом оценки жизнеспособности их деловых интересов.

Другие важные коэффициенты ликвидности включают:

  • Коэффициент кислотного теста Коэффициент кислотного теста Коэффициент ликвидности, также известный как коэффициент быстрой ликвидности, представляет собой коэффициент ликвидности, который измеряет, насколько краткосрочные активы компании могут покрыть текущие обязательства. Коэффициент быстрой ликвидности Коэффициент быстрой ликвидности, также известный как кислотный тест, измеряет способность бизнеса оплачивать свои краткосрочные обязательства активами, легко конвертируемыми в наличные

Ниже приведено видеообъяснение того, как рассчитать коэффициент текущей ликвидности и почему он вопросы при проведении анализа финансовой отчетностиАнализ финансовой отчетностиКак проводить анализ финансовой отчетности.Это руководство научит вас выполнять анализ финансового отчета и отчета о прибылях и убытках.

Видео: Курсы CFI по финансовому анализу

Дополнительные ресурсы

Спасибо за то, что прочитали это руководство для понимания формулы коэффициента текущей ликвидности. CFI — официальный глобальный провайдер сертификации аналитика финансового моделирования и оценки (FVMA) ®FMVA®. Присоединяйтесь к более чем 850 000 студентов, которые работают в таких компаниях, как Amazon, J.П. Морган и обозначение Ferrari. Чтобы продолжить обучение и продвигать свою финансовую карьеру, вам будут полезны следующие ресурсы CFI:

  • Шаблон коэффициента быстрой ликвидности Шаблон быстрого коэффициентаЭтот шаблон быстрого коэффициента поможет вам рассчитать коэффициент быстрой ликвидности с учетом суммы денежных средств, рыночных ценных бумаг, дебиторской и кредиторской задолженности. Коэффициент быстрой ликвидности, также известный как кислотный тест или коэффициент ликвидности, измеряет способность бизнеса оплачивать свои краткосрочные обязательства за счет наличия активов, которые легко доступны
  • Ликвидация чистых активов Ликвидация чистых активов Ликвидация чистых активов или ликвидация чистых активов — это процесс при которой бизнес продает свои активы и после этого прекращает свою деятельность.Чистые активы — это превышение стоимости активов фирмы над ее обязательствами. Однако выручка от продажи чистых активов на рынке может отличаться от их балансовой стоимости.
  • Шаблон ликвидационной стоимостиШаблон ликвидационной стоимостиЭтот шаблон ликвидационной стоимости помогает вычислить ликвидационную стоимость с учетом общих обязательств и активов компании, выставленных на аукционе. Ликвидационная стоимость — это оценка окончательной стоимости, которую получит держатель финансовых инструментов при продаже актива, как правило, в процессе быстрой продажи.A busi
  • Что такое финансовое моделирование? Что такое финансовое моделирование Финансовое моделирование выполняется в Excel для прогнозирования финансовых показателей компании. Обзор того, что такое финансовое моделирование, как и зачем его создавать.

Какая формула для расчета коэффициента текущей ликвидности?

Что такое коэффициент текущей ликвидности?

Коэффициент текущей ликвидности — это популярный показатель, используемый в отрасли для оценки краткосрочной ликвидности компании в отношении имеющихся активов и незавершенных обязательств.Другими словами, он отражает способность компании генерировать достаточно денег, чтобы погасить все свои долги при наступлении срока их погашения. Он используется во всем мире как способ измерения общего финансового состояния компании.

В то время как диапазон приемлемых коэффициентов тока варьируется в зависимости от конкретного типа отрасли, соотношение между 1,5 и 3 обычно считается нормальным. Значение коэффициента ниже 1 может указывать на проблемы с ликвидностью для компании, хотя компания все еще может не столкнуться с серьезным кризисом, если она сможет обеспечить другие формы финансирования.Коэффициент более 3 может указывать на то, что компания неэффективно использует свои оборотные активы или не управляет своим оборотным капиталом должным образом.

Как рассчитать коэффициент текущей ликвидности

Коэффициент текущей ликвидности рассчитывается с использованием двух стандартных показателей, которые компания сообщает в квартальных и годовых финансовых результатах, которые доступны на балансе компании: текущие активы и текущие обязательства. Формула для расчета коэффициента текущей ликвидности выглядит следующим образом:

Взаимодействие с другими людьми

Текущее соотношение

знак равно

Текущие активы

Текущие обязательства

\ begin {выравнивание} \ text {Коэффициент текущей ликвидности} = \ frac {\ text {Текущие активы}} {\ text {Текущие обязательства}} \\ \ end {выравнивание}
Коэффициент текущей ликвидности = текущие обязательства Текущие активы

Составляющие коэффициента текущей ликвидности

Оборотные активы

Оборотные активы можно найти на балансе компании и представить стоимость всех активов, которые она может разумно ожидать конвертировать в денежные средства в течение одного года.Ниже приведены примеры оборотных активов:

Например, анализ годового баланса ведущего американского гиганта розничной торговли Walmart Inc. (WMT) за финансовый год, закончившийся в январе 2018 года, показывает, что у компании были наличные и краткосрочные инвестиции на сумму 6,76 млрд долларов, а общая дебиторская задолженность — 5,61 млрд долларов. , $ 43,78 млрд запасов и $ 3,51 млрд прочих оборотных активов. Оборотные активы Walmart за отчетный период представляют собой сумму этих статей баланса: 59,66 миллиарда долларов.Взаимодействие с другими людьми

Показатель оборотных активов отличается от аналогичного показателя, называемого общими активами, который также включает чистую недвижимость, оборудование, долгосрочные инвестиции, долгосрочные векселя к получению, нематериальные активы и другие материальные активы.

Краткосрочные обязательства

Краткосрочные обязательства — это долги или обязательства компании со сроком погашения в течение одного года, отображаемые на балансе компании. Ниже приведены примеры текущих обязательств:

Например, за финансовый год, закончившийся в январе 2018 года, у Walmart был краткосрочный долг в размере 5 долларов.26 миллиардов, кредиторская задолженность на сумму 46,09 миллиарда долларов, прочие текущие обязательства на сумму 22,12 миллиарда долларов и задолженность по налогу на прибыль в размере 645 миллионов долларов. Таким образом, общие текущие обязательства Walmart за этот период составили 78,53 миллиарда долларов.

Реальные примеры коэффициента текущей ликвидности

На основе вышеупомянутых цифр для Walmart коэффициент текущей ликвидности для розничного гиганта рассчитывается как 59,66 доллара США / 78,52 доллара США = 0,76.

Аналогичным образом, технологический лидер Microsoft Corp. (MSFT) сообщил об общих оборотных активах в 169 долларов.66 миллиардов, а общие текущие обязательства — 58,49 миллиарда долларов за финансовый год, заканчивающийся в июне 2018 года. Коэффициент текущей ликвидности составляет 2,90 (169,66 долларов / 58,49 долларов).

Инвесторы и аналитики считают, что коэффициент текущей ликвидности Microsoft, равный 2,90, является финансово превосходным и здоровым по сравнению с коэффициентом 0,76 у Walmart, поскольку он указывает на то, что технологический гигант имеет больше возможностей для погашения своих обязательств.

Однако следует отметить, что обе компании принадлежат к разным отраслям промышленности и имеют разные операционные модели, бизнес-процессы и денежные потоки, которые влияют на расчет коэффициента текущей ликвидности.Как и в случае с другими финансовыми коэффициентами, коэффициент текущей ликвидности следует использовать для сравнения компаний с их отраслевыми аналогами, имеющими аналогичные бизнес-модели. Сравнение текущих соотношений компаний в разных отраслях может не привести к продуктивным выводам.

Коэффициент текущей ликвидности — это один из нескольких показателей, указывающих на финансовое здоровье компании, но не единственный и окончательный. Его необходимо использовать вместе с другими коэффициентами ликвидности, поскольку ни одна цифра не может дать исчерпывающего представления о компании.

Ток, электричество и условный ток

Современное электричество — это движущиеся заряженные частицы. Если вы позволите заряду, который накапливается в статическом электричестве, течь, вы получите ток.

Ток — это скорость потока заряда; — это количество заряда, протекающего через проводник в секунду.

Уравнение для расчета тока:

Где:

I = ток (амперы, A)

Q = заряд, протекающий через точку в контуре (кулоны, Кл)

t = время, необходимое для протекания заряда (секунды, с)

Таким образом, ток в 1 ампер равен 1 кулону заряда, проходящего через точку каждую секунду.

Точно так же кулон — это то же самое, что и ампер-секунда!

( Примечание: , если вы построите график зависимости тока от времени, площадь под графиком будет равна перемещенному заряду.)

Ну, сначала вам нужно иметь проводник, чтобы он протекал через него, а затем вам нужно притягивать или отталкивать заряженные частицы, чтобы заставить их двигаться. Величина вашего притяжения или отталкивания измеряется в вольтах и ​​называется напряжением или разностью потенциалов (стр.d. коротко).

Эти заряженные частицы заставляют их двигаться, поэтому напряжение является мерой количества энергии, выделяемой на один кулон заряда.

1 вольт = 1 джоуль на кулон.

Уравнение для расчета напряжения:

Где:

Вт = количество энергии (джоуль, Дж)

В = напряжение (вольт, В)

Q = заряд (кулон, Кл)

Когда заряженные частицы обтекают контур, они не расходуются; это энергия, которую переносят заряженные частицы, которая уменьшается при движении по цепи.

(бегуны, бегающие по беговой дорожке длиной 400 м, бегают полностью, но при беге теряют энергию).

Таким образом, ток не расходуется. — если у вас есть 12 ампер, выходящих из батареи, в цепи будет 12 ампер, а 12 ампер возвращаются в батарею.

Напряжение изменяется при перемещении заряда по цепи. Потенциальная энергия, передаваемая заряду, в контуре превращается в тепловую энергию. Электрон может покинуть батарею с напряжением 6 В, но вернется к батарее с напряжением 0 В.Это дает изменение потенциала на 6 В, отсюда и слова «разность потенциалов».

Существует два основных типа схем, о которых вам нужно знать, и у каждой из них есть два правила, упрощающих вычисления:

Последовательные цепи:

В последовательной цепи …

  • ток одинаковый по всей цепи.
  • напряжение делится между компонентами в цепи.

Параллельные цепи:

В параллельной цепи …

  • ток делится, чтобы пройти по каждой петле.
  • : напряжение в каждом контуре одинаковое.

Первоначально ученые полагали, что в цепях текут положительно заряженные частицы, и поэтому цепи всегда помечены током, протекающим от положительного к отрицательному выводу ячейки в цепи.Мы называем этот ток обычным током. На самом деле электроны текут в противоположном направлении!

Нажмите на кнопки ниже, чтобы увидеть это в действии:

Обычный ток — это поток положительных частиц. Все ссылки на ток в диаграммах и в вопросах на уровне A относятся к обычному току, если в вопросе специально не указано иное.

Для измерения тока используется амперметр . Он включен последовательно в цепь для измерения количества заряда, протекающего через него за секунду. (Вы можете сравнить это с турникетом, подсчитывающим людей на стадионе.)

Для измерения напряжения используем вольтметр. Он размещается параллельно для сравнения потенциала в двух разных точках по обе стороны от компонента. Затем он может измерить разность потенциалов или напряжение на компоненте.

Как использовать теорему Тевенина | ОРЕЛ

Существует множество методов, доступных для анализа сложных электрических цепей, например, анализ сетки, узловой анализ или законы Кирхгофа для цепей.Проблема в том, что при проектировании сети постоянного тока у вас будет нагрузка, значение которой будет меняться по мере развития процесса проектирования. Вместо того, чтобы пересчитывать ток и напряжение всей вашей цепи каждый раз при изменении нагрузки, вы можете упростить этот процесс с помощью теоремы Тевенина. В этом блоге мы рассмотрим, как упростить любую сложную линейную схему до единого источника напряжения и последовательного сопротивления. Оттуда мы можем использовать нашу эквивалентную схему Тевенина для быстрого расчета тока и напряжения.Давайте начнем.

Что такое теорема Тевенина?

Как и все другие математические и научные теории / законы, теорема Тевенина была изобретена самим человеком, Леоном Шарлем Тевенином, французским телеграфным инженером, родившимся в Мо, Франция. После прохождения службы в корпусе инженеров-телеграфистов, Тевенин был назначен инспектором по обучению в Высшей школе телеграфии в 1882 году. Именно здесь он заинтересовался измерением электрических цепей с использованием двух доступных в то время методов — схемы Кирхгофа. Законы и закон Ома.

Леон Шарль Тевенин (Источник изображения)

Стремясь упростить анализ сложных схем для каждого инженера, Тевенин разработал свою теперь известную теорему Тевенина, которая сводит сложные схемы к упрощенным эквивалентным схемам Тевенина.

Эта теорема утверждает, что вы можете взять любую линейную схему, которая может содержать несколько ЭДС и резистивных компонентов, и упростить схему до одного источника напряжения и последовательного сопротивления, подключенного к нагрузке.

Упрощенная эквивалентная схема Тевенина с одним источником напряжения и сопротивлением. (Источник изображения)

В данном случае линейная цепь — это цепь, которая включает в себя пассивные компоненты, такие как резисторы, катушки индуктивности и конденсаторы. Однако если вы работаете со схемой, которая включает газоразрядные или полупроводниковые компоненты, то у вас нелинейная схема. Теорема Тевенина не для этого годилась. Так зачем использовать эту теорему для анализа линейных цепей?

  • КПД .Теорема Тевенина обеспечивает простой метод анализа силовых цепей, которые обычно имеют нагрузку, которая меняет значение в процессе анализа. Эта теорема обеспечивает эффективный способ вычисления напряжения и тока, протекающих через нагрузку, без необходимости заново рассчитывать всю схему.
  • Фокус . Теорема Тевенина также предоставляет эффективный способ сосредоточить анализ на определенной части схемы. Это позволяет рассчитать напряжение и ток на конкретном терминале, упростив остальную часть схемы с помощью эквивалента Тевенина.

Посмотрите на приведенный ниже пример схемы. Здесь у нас есть резистор R2 в качестве нагрузки. Мы хотим рассчитать напряжение и ток, протекающие через этот резистор, без необходимости использовать трудоемкие методы анализа, такие как Branch Current, Mesh Current и т. Д., Каждый раз, когда изменяется значение резистора нагрузки.

(Источник изображения)

Чтобы упростить эту задачу, мы можем использовать теорему Тевенина, чтобы удалить сопротивление нагрузки и напряжения. Затем мы упрощаем остальную часть схемы как единый источник напряжения и последовательное сопротивление.В этой упрощенной схеме Тевенина два резистора R1 и R3 вместе с вторичным напряжением B2 упрощены до единого источника напряжения и последовательного сопротивления. Что касается нагрузочного резистора, то упрощенные напряжение и сопротивление будут работать так же, как и наша исходная схема. Теперь у нас есть только две простые переменные, с которыми мы будем работать в наших расчетах.

(Источник изображения)

Теорема Тевенина в действии

Давайте посмотрим на пример схемы и вычислим ток, протекающий через нагрузочный резистор между двумя выводами.Процесс анализа цепи постоянного тока с использованием теоремы Тевенина требует следующих шагов:

  1. Найдите сопротивление Тевенину, отключив все источники напряжения и нагрузочный резистор.
  2. Найдите напряжение Thevenin, подключив напряжение.
  3. Используйте сопротивление и напряжение Тевенина, чтобы найти ток, протекающий через нагрузку.

Вот пример схемы, с которой мы будем работать:

(Источник изображения)

Шаг 1 — Сопротивление Тевенину

Сначала нам нужно снять нагрузочный резистор 40 Ом, соединяющий клеммы A и B, вместе со всеми источниками напряжения.Это даст нам разомкнутую цепь при нулевом напряжении, в результате чего останется только два резистора, подключенных последовательно.

(Источник изображения)

Чтобы рассчитать общее сопротивление тевенину, мы можем использовать следующий процесс:

Шаг 2 — Напряжение Thevenin

Затем мы можем использовать закон Ома для вычисления полного тока, протекающего по цепи, следующим образом:

Поскольку эти резисторы соединены последовательно, они будут иметь одинаковый 0.33 ампера. Мы можем использовать эти значения резисторов и наш ток для расчета падения напряжения, которое составляет:

Шаг 3 — Ток нагрузки

Теперь, когда у нас есть сопротивление и напряжение Тевенина, мы можем соединить нашу эквивалентную схему Тевенина с нашим исходным нагрузочным резистором, как показано ниже.

Отсюда мы можем использовать закон Ома для расчета полного тока, протекающего через нагрузочный резистор, следующим образом:

Готовы проверить свои навыки? Используйте теорему Тевенина, чтобы найти iload и vload для схемы ниже!

Запомните трехэтапный процесс:

  1. Найдите сопротивление Тевенину, отключив все источники напряжения и нагрузку.
  2. Найдите напряжение Thevenin, повторно подключив источники напряжения.
  3. Используйте сопротивление и напряжение Тевенина, чтобы найти полный ток, протекающий через нагрузку.

Сохраняйте простоту

Планируете разработать схему питания постоянного тока? Скорее всего, вы включите нагрузку, значение которой изменится во время анализа схемы. Вместо того, чтобы пересчитывать всю схему каждый раз, когда вы меняете значение этой нагрузки, теперь у вас есть теорема Тевенина, которая упрощает вашу работу.

Эта теорема позволяет вам взять любую сложную линейную схему с множеством резистивных компонентов и ЭДС и упростить ее до эквивалентной схемы Тевенина. С помощью этой упрощенной схемы вы можете легко рассчитать полный ток и напряжение, протекающие через нагрузку. Это огромная экономия времени для любого инженера, которому необходимо эффективно анализировать схемы для силовых схем и других сложных приложений.

Тем из вас, кто изучает визуальное / кинестетическое мышление, обязательно посмотрите видео ниже, в котором показано, как использовать теорему Тевенина шаг за шагом.

Готовы спроектировать свою первую силовую цепь? Попробуйте Autodesk EAGLE бесплатно сегодня!

Как рассчитать текущую доходность облигации | Малый бизнес

Уильям Адкинс Обновлено 1 февраля 2019 г.

Когда инвесторы покупают облигации, они делают это в первую очередь для получения дохода. Ожидаемая годовая норма доходности называется текущей доходностью и является функцией текущей цены и суммы процентов, выплачиваемых по облигации. Однако облигации, выпущенные правительствами и корпорациями, покупаются и продаются на рынке облигаций.Это означает, что цены меняются. Инвесторам необходимо понимать взаимосвязь между ценой и доходностью, а также научиться определять текущую доходность.

Общие сведения о купонной ставке

Корпорации и правительства на всех уровнях часто занимают средства, продавая облигации. По каждой облигации ежегодно выплачивается фиксированная сумма денег, называемая купоном. Обычно это выражается в процентах от номинальной стоимости облигации, называемой купонной ставкой. Например, облигация с номинальной стоимостью 1000 долларов и купоном на 50 долларов имеет купонную ставку 5 процентов.

Доходность облигаций по сравнению со ставкой купона

Когда облигации первоначально выпускаются, они обычно продаются по номинальной стоимости или близкой к ней, поэтому ставка купона — это, по сути, норма доходности, которую может ожидать инвестор. Однако, если облигация позже приобретается на вторичном рынке, цена, как правило, другая, а это означает, что доходность также будет другой. Например, если вы покупаете облигацию номинальной стоимостью 1000 долларов США с купоном на 50 долларов на 800 долларов, фактическая процентная ставка или доходность составляет 6,25 процента.

Обратное соотношение цена / доходность

Цена и доходность облигации изменяются обратно пропорционально. То есть, когда цена снижается, доходность повышается, а когда цена повышается, доходность снижается. Текущая доходность — это просто доход, который вы получите, если купите облигацию по текущей рыночной цене. Текущая доходность, хотя и простая, является важной мерой, поскольку она определяет норму прибыли на ваши инвестиции, пока вы владеете облигацией.

Определение цены облигации

Прежде чем вы сможете рассчитать текущую доходность, вы должны определить текущую цену.Инвесторов, плохо знакомых с облигациями, может смутить то, как котируются цены. Это связано с тем, что цена указана в процентах от номинальной стоимости, а не в долларах. Например, облигация номинальной стоимостью 5000 долларов с текущей ценой 4500 долларов будет котироваться на уровне 90 процентов.

Определить долларовую стоимость котировки облигации несложно. Умножьте номинальную стоимость облигации на указанный процент. Предположим, облигация на сумму 5000 долларов котируется по 85,0%. Умножьте 85 процентов на 5000 долларов, чтобы вычислить долларовую стоимость 4250 долларов.

Расчет текущей доходности

После определения текущей цены облигации вычислить ее текущую доходность не составит труда. Текущая доходность равна годовой процентной ставке, деленной на текущую цену облигации. Предположим, что текущая цена облигации составляет 4000 долларов, а купон — 300 долларов. Разделите 300 долларов на 4000, что равно 0,075. Умножьте 0,075 на 100, чтобы получить текущую доходность 7,5%.

Как рассчитать значения тока, напряжения и сопротивления в цепи?

Я обсуждал в Bright Hub ряд интересных электронных схем и проектов — некоторые из них очень простые, а другие не такие простые.Хотя я изо всех сил старался ответить и решить проблемы и проявил любопытство читателей, поскольку электронная тема была настолько обширной, что представленные до сих пор объяснения выглядят неполными.

В ходе этой продолжающейся работы я попытался написать еще одну статью — эту! — посвященную одному из запросов читателя Патрика Ваза о том, как можно вычислить значения тока, напряжения и сопротивления в цепи. без использования сложных для понимания и сложных формул или просто с помощью простых и понятных выражений.

Давайте начнем обсуждение с рисунка ниже. Он показывает простейшую форму электрической цепи, состоящей из лампы и батареи (электродвижущая сила). Рассчитать падение потенциала (напряжение на нагрузке), ток и сопротивление здесь очень просто, как мы все знаем, это можно сделать с помощью закона Ома:

Er = RI,

Где Er — Падение напряжения на нагрузке, здесь лампочка (резистивная), пропорционально I , мгновенному току, а R — константа пропорциональности, более известная как сопротивление.

Если мы предположим, что приложенное напряжение здесь составляет 3 вольта, а ток, потребляемый лампой, равен 200 мА, тогда сопротивление, используя приведенную выше формулу, можно рассчитать как: 3 = R × 0,2, поэтому R = 15 Ом — довольно элементарно, не правда ли?

Цепи, включающие катушки индуктивности и конденсаторы, более сложны по своему поведению. Обычно индуктор всегда будет противодействовать изменению тока, проходящего через него, по механической аналогии это можно сравнить с инерцией, генерируемой в движущейся массе.Что касается следующей схемы, которая включает катушку индуктивности, согласно закону Ома падение напряжения на катушке индуктивности пропорционально скорости изменения тока во времени.

Следовательно, Eɩ = LdI / dt , где L — константа пропорциональности. Она называется индуктивностью и измеряется в генри.

Для конденсатора падение напряжения пропорционально мгновенному электрическому заряду на конденсаторе, то есть Ec = Q / C , где C — емкость, а Q — заряд.C измеряется в фарадах, а Q — в кулонах

Что такое реактивное сопротивление в индукторах и конденсаторах?

Как обсуждалось в предыдущем разделе, катушка индуктивности всегда противодействует и пытается сбалансировать изменение тока. Анализируя этот коэффициент с помощью диаграммы, показанной ниже, мы обнаруживаем, что индуктор L при воздействии переменного тока уравновешивает увеличение величины тока за счет создания противоположного противоположного потенциала (отрицательного напряжения), и когда значение тока падает, индуктор пытается подтяните его к исходной величине, подав положительный потенциал с потоком тока.Построенный график просто показывает диаграмму напряжения и тока на катушке индуктивности. Эта тенденция индуктора называется его реактивным сопротивлением и определяется как:

X__ɩ = 2__πfL

Где f — частота напряжения в Гц, L — это индуктивность в мельничных генри, а — в Ом. Таким образом, в основном для катушек индуктивности и конденсаторов значение реактивного сопротивления эквивалентно «сопротивлению», возникающему на пути приложенного переменного потенциала. После расчета реактивного сопротивления ток в цепи можно просто рассчитать, используя закон Ома.

Для катушек индуктивности реактивное сопротивление прямо пропорционально наведенной частоте.

Однако для конденсаторов реактивное сопротивление задается как:

X__ɩ = 1 / 2__πfC, , что ясно показывает, что оно обратно пропорционально наведенной частоте, что означает, что с увеличением частоты реактивное сопротивление уменьшается, и наоборот.

Мы можем применить приведенные выше формулы для расчета напряжения, тока, сопротивления (реактивного сопротивления для конденсаторов и катушек индуктивности) в следующем примере; это поможет нам универсально понять приложения для многих других конфигураций.

Пример принципиальной схемы, показанной ниже, представляет собой инновационную конструкцию емкостного источника питания; два конденсатора на двух входах гарантируют, что источник питания будет изолирован от опасных потенциалов переменного тока и защищен от поражения электрическим током (разработано мной).

Здесь нам может быть интересно сначала узнать токоподводящую способность схемы. Для этого становится важным найти сопротивление или импеданс, обеспечиваемый конденсаторами приложенному переменному току. Поскольку конденсаторы включены последовательно, чистая емкость может быть рассчитана как:

Предполагая, что Ca и Cb оба = 1 мк / 400 В

1 / C = 1 / Ca + 1 / Cb

= 1/1 + 1/1 = 2

Следовательно, полезная емкость = 0.5 мкФ или 0,0000005F

Используя формулу реактивного сопротивления для конденсаторов:

X__ɩ = 1 / 2__πfC = ½ × 3,14 × 50 × (0,0000005 ) = 6369,4 Ом,

Теперь используя закон Ома:

Er = RI,

220 = 6369,4I,

Следовательно, I = 35 мА,

Приведенный выше результат предоставляет информацию о максимальном выходном токе источника питания при 220 В после выпрямления на выходе становится 220 В постоянного тока, 35 мА.Хотя напряжение может выглядеть огромным, практически обнаружено, что из-за ограничения максимального тока при 35 мА напряжение резко падает при подключении нагрузки. Однако, поскольку для светодиода даже этот выход может быть потенциально опасным, добавление резистора становится обязательным. Значение сопротивления можно рассчитать по следующей формуле:

R = (напряжение питания VS — прямое напряжение светодиода VF) / ток светодиода IL,

Следовательно, R = (220 — 3,5) / 0,020 = 10825 Ом. или 10 K , однако на практике вы обнаружите, что любое значение выше 100 Ом работает достаточно хорошо из-за низкого тока в цепи.Если вы используете несколько светодиодов последовательно, прямое напряжение просто необходимо соответствующим образом изменить, а остальные параметры можно оставить без изменений. Например, если используются шесть светодиодов, прямое падение напряжения на них становится = 3,5 × 6 = 21 вольт, что можно использовать в приведенной выше формуле для расчета номинала последовательного резистора.