Мощность постоянного электрического тока | Формула мощности
Разомкнутые и замкнутые цепи
Начнем с самой простой схемы фонарика и от нее уже будет отталкиваться
Здесь мы видим три радиоэлемента: источник питания Bat, выключатель S и кругляшок с крестиком внутри, то есть лампочку. Все это вместе называется электрической цепью. Так как по цепи не бежит электрический ток, то такую цепь называют разомкнутой.
Но стоит нам щелкнуть выключатель, и у нас тут же загорится лампочка. Такая цепь уже будет называться замкнутой.
Электроэнергия и источник питания
Теперь давайте подробнее разберем нашу схему. Немного развернем ее в пространстве для удобства, игнорируя ГОСТ по обозначению источника питания:
Как мы помним с прошлой статьи, электрический ток бежит от точки с бОльшим потенциалом, то есть от плюса, к точке с мЕньшим потенциалом, то есть к минусу. Или говоря простым языком: от плюса к минусу. В настоящий момент у нас выключатель разомкнут. Можно сказать, что мы “оборвали” нашу цепь выключателем. В среде электриков и электронщиков говорят, что цепь ” в обрыве”. Ток не бежит, лампочка не горит.
Но вот мы ловким движением руки щелкаем выключатель и у нас цепь замыкается:
Дорога для электрического тока открыта, и он течет от плюса к минусу через лампочку накаливания, которая начинает ярко светиться.
Вроде бы все понятно, но не совсем. Кто или что заставляет светиться лампочку? Мало того, что она светит, она еще и греет!
Что самое первое появилось во Вселенной? Говорят, что время, хотя я думаю, что энергия). Энергия ниоткуда просто так не берется и никуда просто так не исчезает. Это и есть закон сохранения энергии, так что “побрейтесь” фанаты вечных двигателей).
В данном опыте у нас лампочка светит и греет. Получается, что лампочка излучает и тепловую и световую энергию. Вы ведь не забыли, что световые лучи передают энергию? В быту, например, мы используем солнечные панели, чтобы из лучиков получить электрический ток.
Но теперь вопрос такой. Если лампочка излучает световую и тепловую энергию, то откуда она ее получает? Разумеется, от источника питания. Фраза “источник питания” уже говорит сама за себя. Берет энергию наша лампочка прямо от источника питания через проводкИ. Энергия, которая течет через проводочки, называется электроэнергией.
А откуда берет электроэнергию источник питания? Здесь уже есть разные способы добычи электроэнергии. Это может быть падающий поток воды, который крутит мощные лопасти вертушки, которая работает как генератор. Это могут быть химические реакции в батарейках и акумах. Это может быть даже солнечная панелька или вообще какой-нибудь элемент, типа Пельтье, который может вырабатывать электрический ток под действием разности температур. Способов много, а эффект один. Сделать так, чтобы появилась ЭДС.
[quads id=1]
Электрический ток и нагрузка
В дело идет Закон Ома. Как я уже писал, это самый значимый закон во всей электронике. Что такое по сути лампочка? Это вольфрамовый проводок в стеклянной колбе с вакуумом. Вольфрам – это металл, следовательно, он может через себя проводить электрический ток. Но весь прикол в том, что при определенном напряжении он раскаляется и начинает светиться. То есть отдавать энергию в пространство в виде тепла и излучения.
В холодном состоянии вольфрамовая нить обладает меньшим сопротивлением, чем в раскаленном, более чем в десять раз. Следовательно, лампочка – это просто как сопротивление для электрической цепи. В этой статье я взял лампочку, чтобы визуально показать нагрузку. Нагрузка – от слова “нагружать”. Источнику питания не нравится, когда ему приходится отдавать электроэнергию. Он любит работать без нагрузки 😉
Теперь давайте представим все это с точки зрения гидравлики и механики.
Имеем трубу, по которой бурным поток течет вода. К трубе приделана вертушка, типа водяного колеса. Лопасти вертушки крутят вал.
Рисунок я чертил по всем догмам черчения: главный вид, и справа его разрез.
Если к валу ничего не цепляется, то поток воды бурно бежит по трубе и крутит колесо, а оно в свою очередь крутит вал. Такой режим можно назвать холостым режимом работы водяного колеса, то есть режимом без нагрузки.
Но что будет, если мы начнем использовать вращение вала себе во благо? Например, соединим с помощью муфты вал водяного колеса с валом мини-мельницы?
Думаю, многие из моих читателей сразу догадаются, что водяное колесо начнет притормаживать, так как мы его заставили работать. Крутиться со скоростью холостого хода у нашего вала уже не получится. Скорость будет меньше. То есть в нашем случае у нас на валу есть нагрузка. Что же будет происходить с потоком воды в трубе? Он будет тормозиться, так как лопасти вала не дадут водичке спокойно бежать по трубе. Поэтому, общий поток воды в трубе будет меньше, чем ДО холостого хода вала.
А если нагрузить вал, чтобы тот поднимал грузовой лифт?
Думаю, вся конструкция тут же встанет колом. То есть большая нагрузка станет непосильна для вала. А если бы мы сделали лопасти вертушки такие, чтобы они полностью перекрывали диаметр трубы, то поток жидкости вообще бы остановился.
Давайте разберем еще один пример для понимания. Все тот же самый рисунок:
Предположим, что мы прицепили к валу наждак, а электродвигатель убрали с этой конструкции. И вот мы решили что-нибудь шлифануть.
Итак, что у нас в результате получается? Если мы будем слабо давить на шлифовальный круг, то у нас круг начнет притормаживаться и уже будет крутиться с другой скоростью. Если мы сильнее будем давить на круг, то скорость вала еще больше упадет. Если же мощность нашего вала слабовата, мы можем добиться того, что при сильном давлении на круг вообще остановить вал. Тогда и точиться ничего не будет…
Давайте снова вернемся к мини-мельнице
Что будет если поток воды в трубе увеличить в несколько раз? Мельница будет крутиться так, что ее порвет нахрен! А если поток воды в трубе будет очень слабый? Разумеется, мельница будет молоть одно-два зернышка в час. Хотя, опять же, с большим потоком воды мы вполне можем поднять лифт.
Понимаете к чему я веду? Все завязано друг с другом! Давление в трубе, скорость потока жидкости и нагрузка… Все они связаны воедино.
[quads id=1]
Мощность электрического тока
Для того, чтобы это показать что к чему, мы возьмем две лампы на 12 Вольт, но разной мощности. На блоке питания выставляю также 12 Вольт и собираю все это дело по схеме, которая мелькала в начале статьи
Мой блок питания может выдать в нагрузку 150 Ватт, не парясь. Беру лампочку от мопеда и цепляю ее к блоку питания
Смотрим потребление тока. 0,71 Ампер
Высчитываем сопротивление раскаленной нити лампочки из закона Ома I=U/R, отсюда R=U/I=12/0,71=16,9 Ом.
Беру галогенную лампу от фары авто и также цепляю ее к блоку питания
Смотрим потребление. 4,42 Ампера
Аналогично высчитываем сопротивление нити лампы. R=U/I=12/4,42=2,7 Ом.
А теперь давайте посчитаем, какая лампочка больше всех Ватт “отбирает” у источника питания. Вспоминаем школьную формулу P=UI. Итак, для маленькой лампочки мощность составит P=12×0,71=8,52 Ватта. А для большой лампочки мощность будет Р=12х4,42=53 Ватта. Ого! У нас получилось, что лампочка, которая обладала меньшим сопротивлением, на самом деле очень даже прожорливая.
Итак, если кто не помнит, что такое мощность, могу напомнить. Мощность – это отношение какой-то полезной работы к времени, в течение которого эта работа совершалась. Например, надо вскопать яму определенных размеров. Вы с лопатой, а ваш друг – на экскаваторе:
Кто быстрее справится с задачей за одинаковый промежуток времени? Разумеется экскаватор. В этом случае, можно сказать, что его мощность намного больше, чем мощность человека с лопатой.
А теперь представьте, что нам надо полностью под ноль сточить эту железяку:
Подумайте вот над таким вопросом… У нас есть в запасе 5 мин и нам надо сточить железяку по-максимому. В каком случае железяка сточится быстрее всего: если прижимать ее к абразивному кругу со всей дури, прижимать слегка, либо прижимать в полсилы? Не забывайте, что у нас абразивный круг подцеплен к валу, который крутит поток воды в трубе. И да, труба у нас небольшого диаметра.
Кто ответил, что если прижимать в полсилы, то оказался прав. Железяка в этом случае сточится быстрее. Если прижимать ее со всей дури, то можно вообще остановить круг. Еще раз, что у нас такое мощность? Полезная работа, совершаемая за какой-то промежуток времени. А в нашем опыте полезная работа это и есть стачивание железяки по максималке. Также не забывайте и тот момент, что если мы будем слегка прижимать железяку, то мы будем ее стачивать пол дня. Поэтому, золотая середина – это давить железяку в полсилы.
Ну вот мы и снова переходим к электронике 😉
Поток воды – сила тока, давление в трубе – напряжение, давление железяки на круг – сопротивление. И что в результате мы получили? А то, что лампочка с меньшим сопротивлением обладает большей мощностью, чем лампочка с большим сопротивлением. Не трудно догадаться, если просто посмотреть на фото, но вживую эффект лучше
Но обязательно ли то, что чем меньше сопротивление, тем больше мощности выделяется на нагрузке? Конечно же нет. Во всем нужен расчет, как и в прошлом опыте, где мы стачивали железяку за определенное время.
И еще один фактор, конечно, тоже надо учитывать. Это давление в трубе. Прикиньте, точим-точим мы железяку, и вдруг давление в трубе стало повышаться. Может быть переполнилась башня, или кто-то открыл краник на полную катушку. Что станет с наждаком? Его обороты ускорятся, так как сила потока воды в трубе увеличится, а следовательно, мы еще быстрее сточим нашу железку.
Формула мощности для постоянного электрического тока
Поэтому формулы мощности в электронике имеют вот такой вид:
Отсюда A=IUt
где,
А – это полезная работа, Джоули
t – время, секунды
U – напряжение, Вольты
I – сила тока, Амперы
P – собственно сама мощность, Ватты
R – сопротивление, Омы
Как вы можете заметить, формула P=I2 R говорит нам о том, что не всегда на маленьком сопротивлении вырабатывается большая мощность и то, что мощность очень сильно зависит от силы тока. А как поднять силу тока? Добавить напряжения ;-). Закон Ома работает всегда и везде.
А из формулы P=U2/R, можно увидеть, что чем меньше сопротивление и больше напряжение в цепи, тем больше мощность будет выделяться на нагрузке. А что такое выделение мощности на нагрузке? Это может быть тепло, свет, какая-либо механическая работа и тд. Короче говоря, выработка какой-либо полезной энергии для наших нужд.
Прописные истины для новичков. — Начинающим — Теория
Как рассчитать шунт для амперметра?
Почему, я намотал вторичную обмотку на 12 вольт, а блок питания у меня выдаёт 16 вольт?.
Как измерить, какую мощность выдаёт усилитель низкой частоты?
Такие вопросы порой часто возникают от новичков радиолюбителей. Кратко напомним им, чем нужно руководствоваться в своей практической деятельности.
Закон Ома.
Основным законом, которым руководствуются радиолюбители — является Закон Ома..
Георг Симон ОМ
Georg Simon Ohm, 1787–1854
Немецкий физик. Родился в Эрлангене 16 марта в 1787 году (по другим источникам он родился в 1789-м). Окончил местный университет. Преподавал математику и естественные науки. В академических кругах его признали достаточно поздно. В 1849 году стал профессором Мюнхенского университета, хотя уже в 1827 году он опубликовал закон, который теперь носит его имя. Помимо электричества занимался акустикой и изучением человеческого слуха.
Георг Ом экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, на который не действуют сторонние силы), пропорционально напряжению U на концах проводника.
I = U/R, где R — электрическое сопротивление проводника.
Уравнение это выражает закон Ома для участка цепи (не содержащего источника тока). Формулировка этого закона следующая:
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорционально его сопротивлению.
Единица электрического сопротивления системы СИ называется Ом в честь этого выдающегося ученого. Сопротивление проводника в 1 Ом будет в том случае, если при протекающем по нему токе в 1 Ампер, падение напряжения на нём будет 1 Вольт.
Так же при прохождении тока по проводнику, на нём выделяется мощность(он нагревается), и чем больше протекающий по нему ток, тем больше выделяемая на нём мощность.
Как Вы должны знать U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока в Ваттах.
Вывод: поскольку электрическая мощность «P» в одинаковой степени зависит от тока «I» и от напряжения «U», то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе.
Из всего этого вытекают следующие формулы для расчётов тока, напряжения, сопротивления, мощности.
Величины, проставляемые в этих формулах; напряжение в вольтах, сопротивление в омах, ток в амперах, мощность в ваттах.
Последняя формула определяет мощность тока и выведена на основании практических опытов, проделанных в 1841 году Д. П. Джоулем и независимо от него в 1842 году, опытами Э. Х. Ленца. Называется Законом Джоуля — Ленца. Звучит так;
Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка.
Для определения всех этих величин, есть очень интересная диаграмма (таблица), где отражены все эти формулы.
В центре искомые величины, а в секторах с соответствующими цветами — варианты решений в зависимости от известных величин.
Имеется ещё более упрощённая диаграмма для определения величин, исходя из закона Ома. Называется в простонародье — треугольник Ома.
Выглядит она следующим образом:
В этом треугольнике Ома, нужно закрыть искомую величину, и два других символа дадут формулу для ее вычисления.
Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:
- ,
- — ЭДС цепи,
- I — сила тока в цепи,
- R — сопротивление всех элементов цепи,
- r — внутреннее сопротивление источника питания.
Закон Ома для полной цепи звучит так — Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.
Электрические измерения.
Нарисуем простейшую электрическую цепь, состоящую из батареи «В» и нагрузки «R», и рассмотрим, как необходимо измерять протекающий по цепи ток, и напряжение на нагрузке.
Что бы измерить протекающий в цепи ток, необходимо в разрыв источника питания и нагрузки включить измерительный прибор (амперметр).
Для того, что бы на измеряемую цепь было как можно меньше влияний и для повышения точности измерения, амперметры изготавливают с очень малым внутренним сопротивлением, то есть если включить амперметр в разрыв проверяемой цепи, то он практически не добавит к измеряемой цепи дополнительного сопротивления, и протекающий по цепи ток практически не изменится, или уменьшится на очень незначительную величину не оказывающую значительного влияния на конечный результат измерения.
Поэтому категорически нельзя измерять «ток приходящий на нагрузку» путём подключения амперметра параллельно нагрузке, или непосредственно у источника питания (без нагрузки) и таким образом попытаться замерить выходной ток выдаваемый источником питания или осветительной сетью.
Это равносильно тому, что подключить параллельно нагрузке или источнику питания обычный провод. Попросту сказать — закоротить цепь.
Если источник питания обладает хорошей мощностью — будет очень сильный Б А Х !!! Последствия могут быть самыми разными, от выхода из строя измерительного прибора (амперметра), что обычно и случается, и до выбитых пробок (АЗС) в квартире и обесточивания помещения и возможного поражения током.
Для измерения напряжения на нагрузке необходимо, что бы подключаемый к ней вольтметр не шунтировал нагрузку и не оказывал заметного влияния на результат измерения. Для этого вольтметры изготавливают с очень высоким входным сопротивлением и их наоборот подключают параллельно измеряемой цепи. Благодаря высокому входному сопротивлению вольтметра — сопротивление измеряемой цепи практически не изменяется, или изменяется очень не значительно, не оказывая заметного влияния на результат измерения.
На рисунке выше показан порядок включения амперметра и вольтметра для измерения напряжения на нагрузке и протекающего через неё тока. Так же указана полярность подключения измерительных приборов в измеряемую цепь.
Постоянный и переменный ток.
Кратко напомню — постоянный ток (DC), это такой ток, который в течении определённого промежутка времени не изменяет своей величины и направления.
Переменный ток (AC) — это ток, который в течении определённого промежутка времени периодически изменяется как по величине, так и по направлению.
На рисунке выше, на графиках изображены диаграммы постоянного (а), и переменного (б) тока.
Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.
Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.
В течение одного периода своего изменения,ток дважды достигает максимального значения.
Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.
Действующее (эффективное) и амплитудное значение переменного синусоидального тока (напряжения).
Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Возникает вопрос, как же его измерять? Для его измерения и введено понятие — «Действующее (или эффективное) значение» переменного тока.
Что же такое действующее (или эффективное) и амплитудное значение переменного тока?
Как Вам попроще объяснить, чтобы было понятно.
Действующее (эффективное) значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время, выделяет такое же количество энергии.
То есть если к какой либо активной нагрузке (нагревательный элемент, лампа накаливания, резистор и т.д.) подключить переменный ток, который за определённый промежуток времени (например 10 секунд) выделит на активной нагрузке то-же количество энергии, тепла на нагревательном элементе, резисторе, или разогреет спираль лампы накаливания до точно такой же светоотдачи, что и постоянный ток какой-то определённой величины за тот же промежуток времени (тоже 10 секунд) — то тогда действующее (эффективное) значение такого переменного тока будет равняться величине постоянного тока.
Все электроизмерительные приборы (амперметры, вольтметры), отградуированы для измерения действующего значения синусоидального тока или напряжения.
Что такое «Амплитудное значение» переменного тока?
Если объяснять попроще, то это самое максимальное значение (величина) синусоидального тока на самом пике (максимуме) синусоиды.
Амплитудное значение переменного тока можно измерить электронно — лучевым осциллографом, так как все осциллографы откалиброваны на измерение амплитудных значений.
Поскольку действующее значение переменного синусоидального тока пропорционально квадратному корню из площади, то оно получается в 1,41 раза меньше его амплитудного значения.
Проще говоря — если измерить величину переменного тока (напряжения) электроизмерительными приборами, отградуированными для измерения переменного синусоидального тока (напряжения), то есть например замерить величину переменного напряжения на вторичной обмотке трансформатора, — то амплитудное значение напряжения на этой обмотке будет соответственно в 1,41 раз больше замеренного.
Это справедливо только для переменного синусоидального тока (напряжения).
Все конденсаторы в выпрямительных фильтрах соответственно заряжаются до величины амплитудного значения.
Можно посчитать, что при действующем напряжении сети 220 В, амплитудное его значение будет составлять 310 вольт (220 помножить на 1,41).
Отсюда вытекает, что если собрать выпрямитель переменного действующего напряжения 220 вольт, то конденсаторы фильтра необходимо применять на рабочее напряжение не менее чем на 350 вольт, так как они заряжаются до амплитудного (максимального) значения переменного напряжения, а ещё лучше не менее 400 вольт, для обеспечения надёжности работы выпрямителя.
Для действующего значения переменного синусоидального напряжения (тока) — справедливы формулы для расчётов сопротивлений, мощности, действующих токов и напряжений — приведённые выше в Законе Ома для постоянного тока.
Ответим на вопросы в начале статьи;
Как рассчитать шунт для амперметра?
Большинство отечественных измерительных головок для амперметров, рассчитываются на полное отклонение при подведении к ним напряжения в 75 мВ (0,075 вольта). У них на шкале имеется надпись «НШ — 75 мВ», или «Наружный шунт 75 мв», или что-то подобное.
Нам стало известно две величины, а именно — необходимый нам ток полного отклонения и напряжение полного отклонения измерительной головки.
Например, нам нужно рассчитать шунт на 20 ампер. По Закону Ома 0,075 делим на 20 = 0,00375 Ом.
Изготовить такой шунт можно из медной проволоки, посмотрев её удельное сопротивление по таблице ЗДЕСЬ . Только необходимо брать проволоку, диаметром желательно не менее 1,5 мм, так как шунт при большом токе будет греться, и показания прибора будет изменяться (при нагреве проволоки увеличится её внутреннее сопротивление).
Почему из 12 вольт переменного напряжения, стало около 16 вольт постоянного — надеюсь Вам стало понятно. У переменного напряжения 12 вольт (действующее его значение) — амплитудное значение будет в 1,41 раз больше, то есть 16,92 вольта, минус около вольта падение напряжения на диодах. В итоге получается около 16 вольт — до которых и заряжаются электролитические конденсаторы фильтра.
Как правильно измерить мощность УНЧ?
Давайте для начала вспомним теорию.
Выходная мощность усилителей НЧ измеряется на синусоидальном сигнале. У идеального двухтактного выходного каскада, максимальное амплитудное значение синусоидального сигнала на выходе может приблизиться к величине равной половине напряжения источника питания.
У каскада по мостовой схеме, выходное напряжение может приблизиться к величине напряжения источника питания.
Говоря другими словами, у автомобильной магнитолы при напряжении питания 13,5 вольт, для двухтактного выходного каскада максимальное выходное напряжение (синус) будет 6,5 вольт, а его действующее значение 4,6 вольта, для мостовой схемы соответственно 13 В. и 9,2 вольта.
Возьмём минимальную нагрузку для этих усилителей 2 Ома, соответственно максимальная выходная мощность (исходя из Закона Джоуля — Ленца) для первой магнитолы, которую она выдаст теоретически — будет 10,6 ватта, для второй — 42,3 ватта (это для нагрузки 2 Ома). На практике не более 10 и не более 40, или и того меньше. Для 4-х Ом соответственно ещё в два раза меньше. Я не говорю уже об искажениях, здесь мы просто измеряем максимальную выходную мощность.
В бытовых условиях измерять выходной сигнала усилителя (при подаче на вход синусоидального сигнала), лучше обычными «цешками» или бытовыми «цифровиками», так как они сразу измеряют действующее значение синусоидального сигнала. На выход усилителя лучше включать при замерах эквивалент нагрузки, то есть сопротивления с мощностью рассеивания, не менее максимально расчётной мощности усилителя, и с сопротивлением, равному сопротивлению предполагаемой нагрузки (это, что-бы не раздражать себя и соседей звуками во время замеров). Дальше, зная максимальное выходное напряжение и сопротивление нагрузки, рассчитываем мощность по вышеприведённым формулам, то есть напряжение в квадрате делённое на сопротивление нагрузки.
Так, что если Вы в магазине увидите подобный аппарат, и продавец Вас будет уверять, что на канал он выдаёт по 60-80 ватт — это развод, рекламный ход и т.д., если только для питания этого усилителя не применяется повышающий преобразователь.
Мощность электрического тока
04 Апреля 2017
5856
Привет друзья, продолжаем!
Часто, в быту используется понятие мощность источника питания, мощность потребления бытовых приборов и прочих электрических устройств. Особенно, это многим хорошо знакомо по обычной лампочке (лампа накаливания). Эти лампочки отличаются друг от друга мощностью (50 Вт, 100 Вт, 150 Вт и т. д.) и соответственно освещением.
Для того, чтобы разобраться с мощностью источника питания или потребляемого устройства, мы разберем, что такое — мощность электрического тока.
Мощность электрического тока
Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.
Давайте, теперь разберем это определение. Соберем простую электрическую цепь.
наведите или кликните мышкой, для анимации
Как нам уже известно, по цепи за единицу времени протекают определенное количество заряженных частиц — это показатель силы тока, также расходуется сила для движения частиц — это напряжение тока, но помимо этого при движении совершается «работа».
Вот тут необходимо обратить внимание, «работа» в данном случае может быть разной. В проводнике — это нагревание, то есть электрическая энергия перешла в тепловую. В потребляемых устройствах, то есть в нагрузке — это может быть освещение, нагревание, вращение двигателей и т.д.
Исходя из определения мощности тока, запишем формулу: P = W/t
P — мощность электрического тока (Вт)
W — работа электрического тока (Дж)
t — время протекания тока (с)
Единица измерения мощности Ватт (Вт), 1 Вт это совершение «работы» в 1 джоуль за 1 секунду времени.
Ну эта формула, не совсем нам интересна. Нам нужно понять, как связана мощность с известными нам величинами — силой тока, напряжением тока и сопротивлением нагрузки.
Формула для определения мощности тока в замкнутой цепи: P = UI
Таким образом, чем больше напряжение и сила тока в цепи, тем больше мощность тока. Я думаю это понятно, так как при большом токе, через поперечное сечение проводника и нагрузки, проходит больше частиц, тем самым совершатся больше «работы». Так же с напряжением, больше силы для движения частиц, больше совершается «работа.
Так же, можно вывести разные формулы:
для определения мощности тока через напряжение и сопротивление
для определения мощности тока через ток и сопротивление
Разобрали, что такое мощность электрического тока. Для того, чтобы еще было понятнее рекомендую ознакомиться следующей статьей. В которой подытожим раздел основы радиотехники.
формула формула мощности электрического тока
Электрический ток является физическим процессом. Если говорить упрощенно, то это упорядоченное движение заряженных частиц. Его протекание можно измерить и соответственно выразить в символьном и цифровом виде. Формула электрического тока, представляет собой выражение качественных и количественных параметров через сопротивление проводника, напряжение или разность потенциалов, а также через его силу. Так как любое перемещение чего-либо, подразумевает под собой совершение работы, то дополнительно можно вести разговор об электричестве используя формулу мощности электрического тока.
Основные понятия и формулы характеризующие электрический ток
Количественным параметром электрического тока является его сила, представляющая собой скалярную величину и выражающуюся в отношении заряда (принято обозначать буквой q) к периоду времени (t), за которое он пересекает сечение проводника. Следовательно, формула электрического тока, а если говорить правильно его сила, будет выглядеть следующим образом — I=q/t. Измеряется данный параметр в амперах. Так как скалярные величины являются действительными числами и определяются только значением, сила тока не может иметь отрицательный знак. С учетом того, что величина заряда не является постоянным параметром для разных электрических цепей, было введено понятие – плотность электрического тока (j), формула которой выглядят так – j=I/S, где S – площадь, пересекаемая зарядами. Следовательно, при увеличении силы тока и уменьшении поперечного сечения проводника плотность тока возрастает и наоборот. Как отмечалось выше, важными параметрами электричества, вернее электрической цепи являются напряжение в ней и сопротивление проводящих ток элементов.
Формула выражения силы электрического тока через сопротивление и напряжение
В отличие от фундаментальных исследований, в основе которых лежат теоретические выкладки данная зависимость была выведена практическим путем. Автором открытия является физик Ом, в честь которого закон и получил свое имя. По результатам своих опытов и экспериментов Ом пришел к выводу что сила тока (I) напрямую зависит от величины напряжения (U)и имеет обратную зависимость от сопротивления (R) элементов и деталей, включенных в электрическую цепь. Эту связь можно представить в виде – I=U/R. Путем несложных преобразований, формулы сопротивления и напряжения, выраженные через силу тока, будут выглядеть следующим образом – R=U/I и U=IxR, соответственно.
Формула силы электрического тока
Сопротивление электрического тока: формула
Формула напряжения электрического тока
Работа и мощность электрического тока
Формула мощности (Р) электрического тока напрямую зависит от его работы (А). Под работой тока подразумевается преобразование электрической энергии в механический, тепловой, световой или иной ее вид. Величина данного процесса напрямую зависит от времени его протекания, силы тока и напряжения в сети. Это можно выразить следующей формулой – А=IxUxt. Произведение (IxU) является ничем иным как мощностью. Следовательно, чем выше напряжение или сила тока в сети, тем большую мощность имеет электрический ток и большую работу он может совершить за единицу времени. Формула мощности электрического тока имеет следующий вид – Р=А/t или Р=IxU.
Работа электрического тока формула
Формула мощности электрического тока
Поэтому, если необходимо вычислить, какую работу производит ток, протекая по цепи в течение определенного времени, необходимо умножить мощность на временной промежуток, выраженный в секундах. Рассмотрим применение формул расчета работы и мощности электрического тока на примере электрического двигателя, подключенного к сети 220 В, а сила тока, измеренная амперметром для этого участка, составила 10А.
Р (мощность двигателя) = 10А (сила тока) х 220В (напряжение в сети) = 2200 Вт = 2,2 кВт.
Зная данный показатель, а также реальное или предполагаемое время функционирования электродвигателя можно определить какую работу он совершит за этот отрезок времени или другим словами сколько будет потрачено электроэнергии. Если двигатель был включен, например, 1 час, то можно найти искомое значение.
А (работа, совершенная двигателем) = 2,2 кВт (мощность) х 1 (время работы в часах) = 2,2 кВт ч. Именно этот показатель будет отражен на приборе учета расхода электроэнергии.
Исходя из того, что электрический ток является физическим процессом, то какой-либо его неизвестный параметр можно определить, зная его остальные характеристики. Приведем наиболее распространенные формулы для определения характеристик электрической цепи применяемые в электротехнике.
Напряжение или разность потенциалов
- U = RxI
- U = P/I
- U = (P*R)1/2
Сила электрического тока
Сопротивление
- R = U / I
- R = U2/ P
- R = P / I2
Мощность
В заключение отметим, что приведенная информация справедлива для цепей с постоянным электрическим током. Формулы, применяемые для расчета характеристик переменного тока, будут отличаться за счет введения дополнительных переменных и характеристик свойственных данному типу электричества.
Работа и мощность тока | Физика
1.
Работа тока. Закон Джоуля-Ленца
Работа тока
Работу электрического поля по перемещению свободных зарядов в проводнике называют работой тока. При перемещении заряда q вдоль проводника поле совершает работу A = qU (см. § 53), где U – разность потенциалов на концах проводника. Поскольку q = It, работу тока можно записать в виде
A = UIt.
Закон Джоуля-Ленца
Рассмотрим практически важный случай, когда основным действием тока является тепловое действие. В таком случае согласно закону сохранения энергии количество теплоты, выделившееся в проводнике, равно работе тока: Q = A. Поэтому
Q = IUt. (1)
? 1. Докажите, что количество теплоты Q, выделившееся в проводнике с током, выражается также формулами
Q = I2Rt, (2)
Q = (U2/R)t. (3)
Подсказка. Воспользуйтесь формулой (1) и законом Ома для участка цепи.
Мы вывели формулы (1) – (3), используя закон сохранения энергии, но исторически соотношение Q = I2Rt независимо друг от друга установили на опыте российский ученый Эмилий Христианович Ленц и английский ученый Дж. Джоуль за несколько лет до открытия закона сохранения энергии.
Закон Джоуля – Ленца: количество теплоты, выделившееся за время t в проводнике сопротивлением R, сила тока в котором равна I, выражается формулой
Q = I2Rt.
Применение закона Джоуля – Ленца к последовательно и параллельно соединенным проводникам
Выясним, в каких случаях для сравнения количества теплоты, выделившейся в проводниках, удобнее пользоваться формулой (2), а в каких случаях – формулой (3).
Формулу Q = I2Rt удобно применять, когда сила тока в проводниках одинакова, то есть когда они соединены последовательно (рис. 58.1).
Из этой формулы видно, что при последовательном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого больше. При этом
Q1/Q2 = R1/R2.
Формулу Q = (U2/R)t удобно применять, когда напряжение на концах проводников одинаково, то есть когда они соединены параллельно (рис. 58.2).
Из этой формулы видно, что при параллельном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого меньше. При этом
Q1/Q2 = R2/R1.
? 2. При последовательном соединении в первом проводнике выделилось в 3 раза большее количество теплоты, чем во втором. В каком проводнике выделится большее количество теплоты при их параллельном соединении? Во сколько раз большее?
? 3. Имеются два проводника сопротивлением R1 = 1 Ом и R2 = 2 Ом. Их подключают к источнику напряжения 6 В. Какое количество теплоты выделится за 10 с, если:
а) подключить только первый проводник?
б) подключить только второй проводник?
в) подключить оба проводника последовательно?
г) подключить оба проводника параллельно?
д) чему равно отношение значений количества теплоты Q1/Q2, если проводники включены последовательно? Параллельно?
Поставим опыт
Будем включать в сеть две лампы накаливания с разными сопротивлениями нити накала параллельно и последовательно (рис. 58.3, а, б). Мы увидим, что при параллельном соединении ламп ярче светит одна лампа, а при последовательном – другая.
? 4. У какой из ламп (1 или 2) сопротивление больше? Поясните ваш ответ.
? 5. Объясните, почему при последовательном соединении накал нити каждой лампы меньше, чем накал этой же лампы при параллельном соединении.
? 6. Почему при включении лампы в осветительную сеть нить накала раскаляется добела, а последовательно соединенные в нею соединительные провода почти не нагреваются?
2. Мощность тока
Мощностью тока P называют отношение работы тока A к промежутку времени t, в течение которого эта работа совершена:
P = A/t. (4)
Единица мощности – ватт (Вт). Мощность тока равна Вт, если совершаемая током за 1 с работа равна 1 Дж. Часто используют производные единицы, например киловатт (кВт).
? 7. Докажите, что мощность тока можно выразить формулами
P = IU, (5)
P = I2R, (6)
P = U2/R. (7)
Подсказка. Воспользуйтесь формулой (4) и законом Ома для участка цепи.
? 8. Какой из формул (5) – (7) удобнее пользоваться при сравнении мощности тока:
а) в последовательно соединенных проводниках?
б) в параллельно соединенных проводниках?
? 9. Имеются проводники сопротивлением R1 и R2. Объясните, почему при последовательном соединении этих проводников
P1/P2 = R1/R2,
а при параллельном
P1/P2 = R2/R1.
? 10. Сопротивление первого резистора 100 Ом, а второго – 400 Ом. В каком резисторе мощность тока будет больше и во сколько раз больше, если включить их в цепь с заданным напряжением:
а) последовательно?
б) параллельно?
в) Чему будет равна мощность тока в каждом резисторе при параллельном соединении, если напряжение в цепи 200 В?
г) Чему при том же напряжении цепи равна суммарная мощность тока в двух резисторах, если они соединены: последовательно? параллельно?
Мощностью электроприбора называют мощность тока в этом приборе. Так, мощность электрочайника – примерно 2 кВт.
Обычно мощность прибора указывают на самом приборе.
Ниже приведены примерные значения мощности некоторых приборов.
Лампа карманного фонарика: около 1 Вт
Лампы осветительные энергосберегающие: 9-20 Вт
Лампы накаливания осветительные: 25-150 Вт
Электронагреватель: 200-1000 Вт
Электрочайник: до 2000 Вт
Все электроприборы в квартире включаются параллельно, поэтому напряжение на них одинакова.
? 11. В сеть напряжением 220 В включен электрочайник мощностью 2 кВт.
а) Чему равно сопротивление нагревательного элемента в рабочем режиме (когда чайник включен)?
б) Чему равна при этом сила тока?
? 12. На цоколе первой лампы написано «40 Вт», а на цоколе второй – «100 Вт». Это – значения мощности ламп в рабочем режиме (при раскаленной нити накала).
а) Чему равно сопротивление нити накала каждой лампы в рабочем режиме, если напряжение в цепи 220 В?
б) Какая из ламп будет светить ярче, если соединить эти лампы последовательно и подключить к той же сети? Будет ли эта лампа светить так же ярко, как и при параллельном подключении?
? 13. В электронагревателе имеются два нагревательных элемента сопротивлением R1 и R2, причем R1 > R2. Используя переключатель, элементы нагревателя можно включать в сеть по отдельности, а также последовательно или параллельно. Напряжение в сети равно U.
а) При каком включении элементов мощность нагревателя будет максимальной? Чему она при этом будет равна?
б) При каком включении элементов мощность нагревателя будет минимальной (но не равной нулю)? Чему она при этом будет равна?
в) Чему равно отношение R1/R2, если максимальная мощность в 4,5 раза больше минимальной?
Дополнительные вопросы и задания
14. На рисунке 58.4 изображена электрическая схема участка цепи, состоящего из четырех одинаковых резисторов. Напряжение на всем участке цепи постоянно. Примите, что зависимостью сопротивления резистора от температуры можно пренебречь.
а) На каком резисторе напряжение самое большое? самое маленькое?
б) В каком резисторе сила тока самая большая? самая маленькая?
в) В каком резисторе выделяется самое большое количество теплоты? самое маленькое количество теплоты?
г) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если резистор 1 замкнуть накоротко (то есть заменить проводником с очень малым сопротивлением)?
д) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если отсоединить провод от резистора 1 (то есть заменить этот резистор проводником с очень большим сопротивлением)?
Знать взаимосвязь между мощностью и сопротивлением
Способ визуализации зависимости мощности и сопротивления — представить себе источник постоянного напряжения или батарею. Когда в цепи большое сопротивление, может протекать очень небольшой ток, поэтому батарея выдает очень мало энергии, и резистор не будет слишком горячим из-за меньшей мощности. Однако, если вы уменьшите сопротивление, будет течь больше тока, и резистор станет теплее, потому что мы увеличили мощность.{2} R \]
Где I — электрический ток, измеренный в амперах или А.
Что такое мощность?
Мы определяем мощность как способность тела выполнять работу за единицу времени. Например, человек A выполняет 30 Дж работы за 2 часа, а другой человек B выполняет такой же объем работы за 3 часа, поэтому здесь, если мы воспользуемся следующей формулой:
Мощность = Работа / время
Случай 1: 30 / 2 = 15 Вт
Случай 2: 30/2 = 10 Вт
Мы видим, что мощность человека A больше, чем мощность человека B.Таким образом, мощность A больше, чем мощность B.
Однако с точки зрения электричества мощность определяется как произведение тока и напряжения.
P = VI
Где
В — разность потенциалов, измеряемая в вольтах.
I измеряется в амперах.
Что такое сопротивление?
При движении на высокой скорости мы должны замедлить нашу машину на некотором расстоянии до ограничителей скорости, иначе наша машина будет прыгать с большим рывком.Итак, здесь наш высокоскоростной автомобиль — это максимальный ток, протекающий по цепи (дороге), а выключатель скорости — это сопротивление, позволяющее избежать аварий или коротких замыканий в наших домах.
Итак, сопротивление — это препятствие, подключенное к цепи, чтобы избежать перелива заряда через цепь. Он измеряется в Ом, где мы обозначаем его омегой или Ом.
Формула мощности и сопротивления
Мы заметили, что приведенные выше формулы описывают соотношение между мощностью и сопротивлением.{2} R \]
Здесь мы видим, что электрическая мощность прямо пропорциональна сопротивлению при поддержании постоянного I. {2}} {R} \]
Отсюда мы видим, что мощность P обратно пропорциональна сопротивлению R .
Отсюда мы можем сделать следующие выводы:
Для любой постоянной разницы потенциалов
Когда мощность в цепи высокая, сопротивление будет меньше.
Однако, если мощность низкая, сопротивление будет высоким.
Формула сопротивления мощности
Получение формулы мощности и сопротивления поможет нам понять концепцию связи мощности и сопротивления.
В физике мощность и сопротивление можно связать с помощью двух формул, которые мы подробно обсудим в этой статье.
Мы знаем, что электрическая мощность или P является мерой электрического тока I с q кулонами заряда, проходящими через разность потенциалов V (в вольтах) за время t секунд. {2}} {R} \]
Из приведенных выше выводов мы получили следующий вывод:
Мощность и сопротивление в электронике
В электронике мы определяем мощность как скорость выполнения работы.Итак, какие работы ведутся в области электроники? Это обычная повседневная работа или что-то еще? Опишем это простым утверждением:
Мы определяем сопротивление как сопротивление потоку электронов в цепи. Это означает, что чем больше препятствие, тем больше работы выполняется в единицу времени, чтобы заставить их течь, то есть тем больше энергии требуется, чтобы сделать их легким течением.
Из приведенного выше утверждения мы не можем отрицать тот факт, что соотношение между мощностью и сопротивлением пропорционально.
Мощность и внутреннее сопротивление
Мощность и внутреннее сопротивление
Далее: Рабочие примеры
Up: Electric Current
Предыдущий: Энергия в цепях постоянного тока
Мощность и внутреннее сопротивление
Рассмотрим простую схему, в которой батарея ЭДС и внутренняя
сопротивление управляет током через внешний резистор сопротивления
(см. рис. 17). Внешний резистор обычно называют
к нагрузочному резистору .Он мог обозначать либо электрический свет, либо
электронагревательный элемент, а может и электродвигатель. В
основная цель
схема должна передавать энергию от батареи к нагрузке, где она фактически
делает что-то полезное для нас ( например, , освещение
лампочку или поднятие тяжести). Посмотрим, насколько внутреннее сопротивление
батареи мешает этому процессу.
Эквивалентное сопротивление цепи равно (поскольку сопротивление нагрузки равно
последовательно с внутренним сопротивлением), поэтому ток, протекающий в
схема задается
(145) |
Выходная мощность ЭДС просто
(146) |
Мощность, рассеиваемая в виде тепла внутренним сопротивлением батареи, равна
(147) |
Точно так же мощность, передаваемая нагрузке, равна
(148) |
Обратите внимание, что
(149) |
Таким образом, часть выходной мощности батареи немедленно теряется из-за рассеивания тепла
внутреннее сопротивление аккумулятора.Остаток передается в нагрузку.
Пусть
а также . Это следует из
Уравнение (148) что
(150) |
Функция монотонно возрастает от нуля при
увеличиваясь в диапазоне, достигает
максимальное значение at, а затем монотонно убывает с увеличением
В диапазоне . Другими словами, если сопротивление нагрузки изменяется на
постоянная, а затем передаваемая мощность достигает максимума
значение
(151) |
когда .Это очень важный результат в электротехнике.
Передача мощности между источником напряжения и внешней нагрузкой наиболее эффективна, когда
сопротивление нагрузки соответствует внутреннему сопротивлению источника напряжения.
Если сопротивление нагрузки слишком низкое, то большая часть выходной мощности напряжения
источник рассеивается в виде тепла внутри самого источника. Если сопротивление нагрузки
слишком велик, тогда ток, протекающий в цепи, слишком мал, чтобы
передавать энергию нагрузке с заметной скоростью.Отметим, что в оптимальном случае
, только половина выходной мощности источника напряжения
передается в нагрузку. Другая половина рассеивается внутри в виде тепла.
источник.
Между прочим, инженеры-электрики называют процесс, при котором сопротивление
нагрузка согласована с нагрузкой источника питания согласование импеданса
(импеданс — это просто причудливое название сопротивления).
Далее: Рабочие примеры
Up: Electric Current
Предыдущий: Энергия в цепях постоянного тока
2007-07-14
Электрическое сопротивление — Веб-формулы
По словам физика Джорджа Саймона Ома, напряжение, приложенное извне к двум концам проводника, является постоянным, когда электрический ток течет через него в фиксированных физических условиях.Это называется законом Ома.
Напряжение œ ток
V œ I
V = RI
Где у нас,
V = Напряжение (В)
I = ток (A)
R = Сопротивление (Ом)
Сопротивление — это не что иное, как препятствие для прохождения заряда. Здесь R называется сопротивлением проводника, единица измерения сопротивления — Ом, а его символ — Ом.
Значение, обратное ому, называется проводимостью материала, а единица измерения обратного сопротивления — mho Ω
-1
Закон Ома дает информацию о соотношении между разностью потенциалов между проводником и электрическим током, протекающим через него.
Рассмотрим проводник с площадью A и длиной l при заданной температуре, тогда
R œ l и R œ 1 / A
Итак,
R œ l / A
R = p l / A
Где p = удельное сопротивление материала
Единица измерения p = Ом м
Значение p зависит от типа, температуры и давления на проводе. Удельное сопротивление увеличивается с повышением температуры.
Электропроводность равна обратной величине удельного сопротивления, а ее символ — 6 , а единица измерения (Ом · м) -1
Ограничение по закону Ома:
- Значение V зависит от значения тока
- Значение V зависит от направления, в котором оно применяется
- Он нелинейный.
Сверхпроводимость:
Согласно Камерлинг-Оннесу, сопротивление определенного материала, такого как ртуть, становится почти нулевым, когда его температура опускается выше определенной фиксированной температуры. Материал называется сверхпроводником, а этот процесс — сверхпроводимостью.
Примеры сверхпроводников — Hg, Si, Se, Ge, Te
Примеры расчетов
Пример-1: Разность потенциалов между двумя электродами батареи составляет 10 В и имеет 0.Сопротивление 5 Ом. Рассчитать ток, протекающий между двумя электродами?
a) 20A b) 0,5A c) 0,05A d) 0,005A
Причина:
Здесь имеем:
R = 0,5 Ом
V = 10 В
Я =?
В = R / I
10 = 0,5 / I
I = 0,5 / 10
I = 0,05 A
Пример 2: Для подключения используется медный провод двенадцатого калибра. Он имеет удельное сопротивление 1,77 × 10 -8 при 20 ° C. Рассчитайте сопротивление проводов длиной 20 м при той же температуре.(Размер 12 = 2,05 × 10 -3 диаметр м)
Причина:
Здесь мы имеем л = 20 м
p = 1,77 × 10 -8
d = размер 12 = 2,05 × 10 -3 м
A = 3,14r 2 = 3,14 × (d / 2) 2 = 3,14 × (2,05 × 10 -3 /2) 2
R = p l / A
R = (1,77 × 10 -8 × 20) / (3,14 × (2,05 × 10 -3 /2) 2 )
R = (1,77 × 10 -8 × 20 × 4) / (3.14 × (2,05 × 10 -3 ) 2 )
R = 10,89 × 10 -2 Ом
Пример-3: Взаимосвязь между разностью потенциалов между проводником и электрическим током, протекающим по нему. объясняется ……………. феноменом.
a) Удельное сопротивление b) сверхпроводимость c) Проводимость d) Закон Ома
Ответ: Связь между разностью потенциалов между проводником и протекающим по нему электрическим током объясняется законом Ома.
Electric Power — The Physics Hypertextbook
Обсуждение
Джеймс Джоуль (1818–1889) Англия проверил закон Ома и определил, что тепло, передаваемое проводником, прямо пропорционально его сопротивлению и квадрату тока, проходящего через него.
Таким образом, мы видим, что когда ток гальванического электричества распространяется по металлическому проводнику, выделяемое за заданное время тепло пропорционально сопротивлению проводника, умноженному на квадрат электрической напряженности.
Джеймс Прескотт Джоуль, 1841
Электроэнергия из определения мощности. Умножьте на единицу и замените переменные в знаменателе. Посмотрите, что это нам дает.
пол. = | Вт | = | Вт | q | = | Вт | q | = ВИ | ||
т | т | q | q | т |
Это первоначальное определение ватта как единицы мощности.
Другая единица, которую я бы предложил добавить в список, — это мощность. Мощность, передаваемая током ампера через разность потенциалов в вольте, является единицей, соответствующей практической системе. Его уместно назвать ваттом в честь великого ума механиков Джеймса Ватта. Он был первым, кто имел четкое физическое представление о силе и дал рациональный метод ее измерения. Таким образом, ватт выражает мощность усилителя, умноженную на вольт, в то время как мощность в лошадиных силах равна 746 ваттам, а мощность — 735.
Карл Вильгельм Сименс, 1882
Лошадиная сила — это единица измерения мощности, изобретенная Джеймсом Ваттом. cheval de vapeur (буквально «конь пара») — это французское название того, что на английском языке часто называют метрической мощностью. Интересно, что французы называют мощность Джеймса Ватта le cheval-vapeur britannique .
Мощность по току. Снимаем напряжение подстановкой из закона Ома.
P = VI = ( IR ) I = I 2 R
Мощность по напряжению.Убрать ток по закону Ома.
P = VI = V | В | = | В 2 |
R | R |
Вкратце…
Потребительские дела…
Часть счета за электроэнергию для бытовых потребителей. Коммунальные предприятия продают электроэнергию по киловатт-часам; блок, упрощающий расчет эксплуатационных расходов на электрические устройства.Энергия, потребляемая во время этого конкретного цикла выставления счетов, была довольно низкой (по сравнению с аналогичными потребителями), но тариф, взимаемый этим коммунальным предприятием, был примерно вдвое выше среднего по США в 2000 году.
Обычные (на основе меди) кабели могут передавать мощность (от 40 до 600 МВт) при высоком напряжении (от 40 до 345 кВ)
Аналогичный счет от 2015 года.
Потеря линии
P потеря = I 2 нагрузка R строка = | ⎛ ⎜ ⎝ | P нагрузка | ⎞ 2 ⎟ ⎠ | R линия |
V линия |
и доля потерь.
доля потерь = | P убыток | = | P нагрузка R строка |
P нагрузка | В 2 линия |
Что такое сопротивление? | Fluke
Сопротивление — это мера сопротивления току в электрической цепи.
Сопротивление измеряется в омах и обозначается греческой буквой омега (Ом). Ом назван в честь Георга Симона Ома (1784-1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением. Ему приписывают формулировку закона Ома.
Все материалы в некоторой степени сопротивляются току. Они делятся на две большие категории:
- Проводники: Материалы с очень низким сопротивлением, в которых электроны могут легко перемещаться. Примеры: серебро, медь, золото и алюминий.
- Изоляторы: Материалы, обладающие высоким сопротивлением и ограничивающие поток электронов. Примеры: резина, бумага, стекло, дерево и пластик.
Золотая проволока служит отличным проводником
Измерения сопротивления обычно проводятся для определения состояния компонента или цепи.
- Чем выше сопротивление, тем меньше ток. Если он слишком высокий, одной из возможных причин (среди многих) может быть повреждение проводов из-за горения или коррозии.Все проводники выделяют определенное количество тепла, поэтому перегрев часто связан с сопротивлением.
- Чем меньше сопротивление, тем больше ток. Возможные причины: повреждение изоляторов из-за влаги или перегрева.
Многие компоненты, такие как нагревательные элементы и резисторы, имеют фиксированное значение сопротивления. Эти значения часто печатаются на паспортных табличках компонентов или в руководствах для справки.
Когда указывается допуск, измеренное значение сопротивления должно находиться в пределах указанного диапазона сопротивления.Любое значительное изменение значения фиксированного сопротивления обычно указывает на проблему.
«Сопротивление» может звучать отрицательно, но в электричестве его можно использовать с пользой.
Примеры: Ток должен с трудом проходить через маленькие катушки тостера, достаточный для выработки тепла, которое подрумянивает хлеб. Лампы накаливания старого образца заставляют ток течь через такие тонкие нити, что возникает свет.
Невозможно измерить сопротивление в рабочей цепи. Соответственно, специалисты по поиску и устранению неисправностей часто определяют сопротивление, измеряя напряжение и ток и применяя закон Ома:
E = I x R
То есть, вольт = амперы x Ом.R в этой формуле означает сопротивление. Если сопротивление неизвестно, формулу можно преобразовать в R = E / I (Ом = вольт, деленный на амперы).
Примеры: В цепи электрического нагревателя, как показано на двух рисунках ниже, сопротивление определяется путем измерения напряжения и тока цепи с последующим применением закона Ома.
Пример нормального сопротивления цепи Пример повышенного сопротивления цепи
В первом примере полное нормальное сопротивление цепи, известное опорное значение, составляет 60 Ом (240 ÷ 4 = 60 Ом).Сопротивление 60 Ом может помочь определить состояние цепи.
Во втором примере, если ток в цепи составляет 3 А вместо 4, сопротивление цепи увеличилось с 60 Ом до 80 Ом (240 ÷ 3 = 80 Ом). Увеличение общего сопротивления на 20 Ом может быть вызвано неплотным или грязным соединением или обрывом катушки. Секции с разомкнутой катушкой увеличивают общее сопротивление цепи, что снижает ток.
Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.
Закон Ома … взаимосвязь между напряжением, током и сопротивлением
Время чтения: 5 минут
Теоретические термины и определения
Следующие определения относятся к основной теории электричества. Важно, чтобы установщики и инспекторы обладали практическими знаниями теории электричества. Такие знания часто имеют жизненно важное значение для определения правильного сечения проводов для цепей с различной нагрузкой.
Вольт — единица измерения электрического давления — это давление, необходимое для того, чтобы заставить один ампер пройти через сопротивление в один Ом; сокращенно «E», первая буква термина электродвижущая сила сила .
Ампер — единица измерения электрического тока, который протекает через один Ом под давлением в один вольт за одну секунду; сокращенно «I», первая буква термина сила тока .
Ом — единица электрического сопротивления — это сопротивление, через которое один вольт заставит один ампер; сокращенно «R», первая буква термина сопротивление .
Вт — это единица измерения энергии, протекающей в электрической цепи в любой данный момент.Это также объем работы, выполняемой в электрической цепи. Термины ватт, или киловатт, чаще использовались для обозначения количества работы, выполняемой в электрической цепи, а не для обозначения джоулей . Ватты — это произведение вольт и ампер, которое иногда называют вольт-ампер. Одна тысяча вольт-ампер упоминается как один киловольт-ампер или одна кВА.
Закон Ома
Джордж Саймон Ом обнаружил взаимосвязь между током, напряжением и сопротивлением в электрической цепи в 1826 году.Он обнаружил экспериментально, что давление равно произведению силы тока и сопротивления; это соотношение называется законом Ома. Этот закон является практической основой большинства электрических расчетов. Формула может быть выражена в различных формах и ее использовании, как в трех примерах, показанных на рисунке 1.
Рис. 1. Основные примеры и применение закона Ома
Если известны любые два значения, третье можно найти с помощью формулы. Например, если известны сопротивление и напряжение, ток можно определить, разделив напряжение на сопротивление.Это может быть полезно при определении величины тока, который будет протекать в цепи, для правильного определения размеров проводников, а также устройств перегрузки по току.
л.с. Механическая мощность обычно выражается в лошадиных силах, а электрическая мощность — в ваттах. Термин лошадиные силы возник как объем работы, которую сильная лондонская тягловая лошадь могла выполнять за короткий промежуток времени. Он также использовался для измерения мощности паровых двигателей. Одна лошадиная сила, сокращенно «HP», равна работе, необходимой для подъема 33 000 фунтов на один фут (33 000 фут-фунтов) за одну минуту.Это то же самое, что поднимать один фут на 550 фунтов за секунду.
Часто бывает необходимо преобразовать мощность от одного устройства к другому, и уравнение на рисунке 2 используется для преобразования мощности в ватты или ваттов в лошадиные силы.
Рисунок 2. Базовая формула HP
Формула л.с. применима к лабораторным условиям, поскольку двигатели потребляют больше мощности, чем доставляют. Это связано с тем, что мощность, потребляемая двигателем в виде тепла, преодолевает трение в подшипниках, сопротивление ветру и другие факторы.Например, двигатель мощностью 1 л.с. (746 Вт) может потреблять почти 1000 Вт, причем разница расходуется на преодоление уже указанных факторов. Для определения истинной мощности однофазных двигателей необходимо учитывать коэффициент полезного действия двигателя (см. Рисунок 3).
Рисунок 3. Основные формулы коэффициента мощности
Колесо Ватт
Колесо Ватта было разработано и опубликовано во многих руководствах и в нескольких вариантах для иллюстрации ватт или мощности и их связи с элементами закона Ома.Как показано в этом тексте, это верно для цепей постоянного тока и для резистивных нагрузок цепей переменного тока, где коэффициент мощности близок к 100 процентам или единице (см. Рисунок 4). Не пытайтесь использовать его для нагрузок двигателя, поскольку в формуле необходимо учитывать как коэффициент мощности, так и КПД двигателя (см. Рисунок 3).
Рисунок 4. Колесо Ватта и закон Ома
В цепях переменного тока мы используем термин импеданс , а не Ом для обозначения сопротивления цепи. Импеданс — это полное сопротивление току в цепи переменного тока; он измеряется в омах.Импеданс включает сопротивление, емкостное реактивное сопротивление и индуктивное реактивное сопротивление. Последние два фактора уникальны для цепей переменного тока и обычно могут игнорироваться в цепях, таких как лампы накаливания и цепи нагревателя, состоящие из резистивных нагрузок. Подробное объяснение емкостного реактивного сопротивления и индуктивного реактивного сопротивления выходит за рамки этого текста, но его можно найти во многих прекрасных текстах по теории электричества.
Закон Ома и основная электрическая теория
Электрический ток, протекающий через любую электрическую цепь, можно сравнить с водой под давлением, протекающей через пожарный шланг.Вода, протекающая через пожарный шланг, измеряется в галлонах в минуту (GPM), а электричество, протекающее через контур, измеряется в амперах (A).
Вода течет по шлангу, когда на него оказывается давление и открывается клапан. Давление воды измеряется в фунтах на квадратный дюйм (psi). Электрический ток течет по электрическому проводнику, когда к нему прикладывается электрическое давление, и создается путь для прохождения тока. Подобно тому, как «фунты на квадратный дюйм» (давление) вызывают поток галлонов в минуту, так «вольт» (давление) заставляет течь «амперы» (ток).
Чтобы пропустить такое же количество воды через маленький шланг, требуется большее давление, чем через шланг большего размера. Маленький шланг, к которому приложено такое же давление по сравнению с большим шлангом, будет пропускать гораздо меньше воды за определенный период. Отсюда следует, что маленький шланг оказывает большее сопротивление потоку воды.
В электрической цепи большее электрическое давление (вольт) заставит определенное количество тока (в амперах) проходить через небольшой проводник (сопротивление), чем то, которое требуется для протекания того же количества тока (в амперах) через проводник большего размера (сопротивление). .Проводник меньшего размера позволит проходить меньшему току (в амперах), чем проводник большего размера, если одинаковое электрическое давление (вольт) будет приложено к каждому проводнику в течение того же периода времени. Можно предположить, что меньший проводник имеет большее сопротивление (Ом), чем провод большего размера. Таким образом, мы можем определить сопротивление как «свойство тела, которое сопротивляется или ограничивает поток электричества через него». Сопротивление измеряется в Ом — термин, аналогичный трению в шланге или трубе.
Выдержка из Электрические системы для одно- и двухквартирных домов , 8 -е издание . Эта книга доступна по адресу www.iaei.org/web/shop или Amazon.com .
Что такое сопротивление? Последовательная и параллельная цепь сопротивления
Сопротивление — это свойство материала, благодаря которому он противодействует потоку электронов через материал. Он ограничивает поток электронов через материал.Обозначается буквой (R) и измеряется в омах (Ом).
Когда на резистор подается напряжение, свободные электроны начинают ускоряться. Эти движущиеся электроны сталкиваются друг с другом и, следовательно, противостоят потоку электронов. Противостояние электронов известно как сопротивление. Тепло выделяется, когда атом или молекулы сталкиваются друг с другом.
Состав:
Пояснение:
Прочность любого материала зависит от двух факторов
- Форма материала
- Тип материала (из какого материала)
Количественно это получается по закону Ома, как сопротивление, обеспечиваемое материалом, когда через него протекает ток силой 1 ампер с разностью потенциалов (В) вольт через материал.Он задается уравнением, показанным ниже
Где R — сопротивление, V — напряжение, а I — ток в цепи.
Из приведенного выше уравнения (1) ясно, что сопротивление прямо пропорционально напряжению и обратно пропорционально току цепи. Он также обозначается как
.
Где,
- R — сопротивление любого проводника или материала, измеренное в омах
- ρ — удельное сопротивление материала, измеряется в омметре
- l — длина материала или проводника в метрах
- А — площадь поперечного сечения жилы, квадратный метр
Сопротивление любого проводящего материала прямо пропорционально длине проводника и обратно пропорционально площади поперечного сечения проводника.
Удельное сопротивление ( ρ ) определяется как способность проводника или материала противодействовать электрическому току. Сопротивление любого проводника измеряется омметром.
Столкновение атомов со свободными электронами вызывает выделение тепла, когда электрический ток течет через любой проводник или материал. Если по проводнику проходит ток в 1 ампер, а разность потенциалов составляет V вольт по проводнику, то мощность, потребляемая резистором, определяется уравнением (3), показанным ниже
.
Как известно V = IR
Энергия, теряемая в сопротивлении в виде тепла, вычисляется как
.
Подставив значение P из уравнения (3) в уравнение (4), мы получим
Как мы знаем, I = V / R, следовательно, подставив значение I в уравнение (5), мы получим
Приведенное выше уравнение (6) показывает уравнение потерь энергии в виде тепла.
Типы сопротивления
Существует два основных типа сопротивления
Это аналогично нормальному сопротивлению цепи, заданному как R = V / I. Он определяет рассеиваемую мощность в электрической цепи. Он также определяется как наклон линии от начала координат до различных точек на кривой.
Это также известно как инкрементное или динамическое сопротивление цепи. Это производная отношения напряжения к току. Дифференциальное сопротивление рассчитывается по формуле, показанной ниже
Последовательное и параллельное сопротивление в цепи
Последовательная цепь сопротивления
Если различные сопротивления предполагают, что R 1 , R 2 , R 3 , соединенные вместе последовательно, как показано на рисунке ниже, называется последовательной цепью сопротивления
Эквивалентное или полное сопротивление определяется уравнением
Параллельная цепь сопротивления
Различные сопротивления предполагают, что R 1 , R 2 , R 3 подключены параллельно друг другу, как показано в схеме ниже, известной как параллельная цепь сопротивления.
Эквивалентное или полное сопротивление определяется уравнением
Все дело в сопротивлении.