Подробная схема подключения люминесцентной лампы, устройство
Люминесцентные лампы обычно используют для освещения супермаркетов, учебных аудиторий, промышленных объектов, общественных закрытых помещений и прочего. С появлением более современных видов, которые выпускаются со стандартным цоколем E27, их начали использовать и в домашних условиях.
По истечении времени они набирают всё большей популярности. Но схема включения люминесцентных ламп достаточно сложная и требует особых познаний в этой области. Обычно подключают двумя схемами, о которых мы и поговорим дальше. Но сначала следует разобраться в принципе работы и строении такого светильника.
Принцип работы
Давайте разберём, что такое люминесцентная лампа, и как она работает. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки. На обоих концах установлен катод и анод, именно между ними и происходит разряд, который вызывает пусковое загорание.
Пары ртути, которые помещают в стеклянный футляр, при разряде начинаю излучать особый невидимый свет, который активизирует работу люминофора и других дополнительных элементов. Именно они и начинают излучать тот свет, который нам необходим.
Принцип работы лампы
Благодаря разным свойствам люминофора, такой светильник излучать большой спектр разнообразных цветов.
Подключаем, используя электромагнитный балласт
Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА. Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.
Схема с электромагнитным балластом
Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются. Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.
Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.
Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.
Такого показателя мало для создания повторного импульса, из-за чего лампа начинает стабильно работать.
Какими недостатками она обладает:
- Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
- В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
- Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
- В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
- Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.
Подключаем лампу, используя электронный балласт
Главным отличием такой системы от электромагнитной то, что напряжение, которое доходит до самой лампы имеет повышенную частоту начиная от 25 и доходит до 140 кГц. Благодаря повышению частоты тока, значительно уменьшается показатель мерцания, и он находит на таком уровне, который уже не является слишком вредным для человеческого глаза.
Подключение с ЭПРА
Система ЭПРА используется специальный автогенератор в своей схеме, такое дополнение включает трансформатор и выходной каскад на всех транзисторах. Зачастую производители указывают схему прямо на задней части блока светильника. Таким образом, у вас сразу есть наглядный пример, как правильно подключить и установить устройство для работы от сети.
Преимуществами стартерной схемы подключения
- Стартерная система продлевает период работы светильника.
- Особый принцип работы также продлевает период службы примерно на десять процентов.
- Благодаря принципу действия, устройство экономит около двадцати-тридцати процентов потребляемой электроэнергии.
- Облегчённая установка, так как производитель указывает схему, по которой должна происходить установка взятого вами светильника.
- Во время работы практически полностью отсутствует мерцание и шум от светильника. Такие явления присутствуют, но они незаметны для человека и никак не влияют на здоровье.
Существуют модели, которые поддерживают установку диммера в качестве регулятора. Установка таких приборов несколько отличается от стандартной установки.
Подведём итог
Мы постарались раскрыть вопрос как подключить люминесцентную лампу, показали схемы, с помощью которых происходит подключение люминесцентных ламп. Разобравшись со схемой электромагнитного и электронного балласта, вы можете решить какую лучше использовать именно в вашем случае. Но так как первая имеет ряд значительных недостатков, то скорей всего выбор ляжет именно на электронный балласт.
Причины неисправностей — решение проблем
Схема электронного дросселя была придумана позже, и разрабатывалась специально для того, чтобы убрать все недостатки электромагнитного аналога, с целью максимального повышения качества освещения с помощью люминесцентных ламп.
Установка таких устройств уже не составляет особого труда, как это было раньше. Производители начали указывать схему, по которой производится установка на тыльной стороне прибора что значительно облегчает работу монтажника.
Подключение люминесцентных ламп — схема и варианты монтажа
Отличительный принцип схемы подключения люминесцентных светильников заключается в необходимости включения в нее приборов пускового типа, от них зависит длительность эксплуатации.
Для того чтобы разбираться в схемах необходимо понимать принцип работы данных светильников.
Технические характеристики люминесцентных ламп
Устройство светильника люминесцентного типа – это герметичный сосуд, наполненный особой консистенцией из газа. Расчёт смеси производился с целью растрачивания меньшей энергии ионизации газов в сравнении с обычными лампами, за счет этого можно хорошо сэкономить на освещении дома или квартиры.
Для постоянного освещения необходимо удержание тлеющего разряда. Этот процесс обеспечивается с помощью подачи нужного напряжения. Проблема заключается лишь в следующей ситуации — такой разряд появляется от подающего напряжения, которое выше рабочего. Но и эта задача была решена производителями.
На двух сторонах лампы устанавливаются электроды, которые принимают напряжение, и поддерживают разряд. Каждый электрод имеет два контакта, с которыми происходит соединение источника тока. За счет этого происходит нагревание зоны, которая окружает электроды.
Светильник загорается впоследствии нагрева каждого электрода. Происходит это за счет воздействия на них высоковольтных импульсов и последующей работы напряжения.
При воздействии разряда газы находящиеся в емкости лампы активизируют излучение ультрафиолетового света, который не воспринимается глазом человека. Для того чтобы зрение человека различало это свечение колба внутри покрыта люминофорным веществом, которое смещает частотный интервал освещения в видимый интервал.
Изменяя структуру данного вещества происходит изменение гаммы цветовых температур.
Важно! Нельзя попросту включить светильник в сеть. Дуга появится после обеспечения прогревания электродов и импульсного напряжения.
Специальные балласты помогают обеспечить такие условия.
Подключение через электромагнитный балласт
Нюансы схемы подключения
Цепь данного вида должна включать в себя наличие дросселя и стартера.
Стартер выглядит как небольшой по мощности источник неонового освещения. Для его питания необходима электросеть с переменным значением тока, также он оснащен некоторым количеством биметаллических контактов.
Подключение дросселя, стартерных контактов и электродных нитей происходит последовательно.
Другой вариант возможен при замещении стартера на кнопку от входного звонка.
Напряжение будет осуществляться удержанием кнопки в состоянии нажатия. Когда светильник зажжётся ее необходимо отпустить.
1-й способ подключения люминесцентных ламп
- подключенный дроссель сохраняет электромагнитную энергию;
- с помощью стартерных контактов поступает электричество;
- перемещение тока осуществляется с помощью вольфрамовых нитей нагревания электродов;
- нагрев электродов и стартера;
- затем размыкаются контакты стартера;
- энергия, которая аккумулируется с помощью дросселя освобождается;
- светильник включается.
Для того чтобы увеличить показатель полезного действия, уменьшить помехи в модель схемы вводятся два конденсатора.
Плюсы данной схемы:
— простота;
— демократичная цена;
— она надежна;
Недостатки схемы:
— большая масса устройства;
— шумная работа;
— лампа мерцает, что не хорошо сказывается на зрении;
— потребляет большое количество электроэнергии;
— включается устройство около трех секунд;
— плохое функционировании при минусовых температурах.
Очередность подключения
Подключение с помощью вышеописанной схемы происходит со стартерами. Рассматриваемый ниже вариант имеет модель стартера S10 мощностью 4-65Вт. , лампу на 40Вт и такую же мощность у дросселя.
Этап 1. Подключение стартера к штыревым контактам лампы, которые имеют вид нитей накаливания.
Этап 2. Остальные контакты подключается к дросселю.
Этап 3. Конденсатор подключается к контактам питания параллельным образом. За счет конденсатора компенсируется уровень реактивной мощностью, и происходит уменьшение количества помех.
Подключение люминесцентных ламп через электронный балласт
Особенности схемы подключения
За счет электронного балласта лампе обеспечивается долгий период функционирования и экономия затрат электроэнергии. При работе с напряжением до 133 кГц свет распространяется без мерцания.
Микросхемами обеспечивается питание светильников, подогрев электродов, тем самым повышается их продуктивность и увеличиваются сроки эксплуатации. Имеется возможность совместно с лампами данной схемы подключения использовать диммеры – это устройства, которые плавно регулируют яркость свечения.
Электронный балласт преобразует напряжение. Действие постоянного тока трансформируется в ток высокочастотного и переменного вида, который переходит на нагреватели электродов.
Повышается частота за счет этого происходит уменьшение интенсивности нагревания электродов. Использование электронного балласта в схеме подключения позволяет подстроиться под свойства светильника.
Плюсы схемы данного вида:
- большая экономия;
- лампочка плавно включается;
- отсутствует мерцание;
- бережно прогреваются электроды лампы;
- допустимая эксплуатация при низких температурах;
- компактность и маленькая масса;
- долговременный срок действия.
Минусы схемы данного вида:
- усложненность схемы подключения;
- большая требовательность к установке.
Порядок подключения ламп
Светильник подключается в три этапа:
— происходит прогревание электродов, за счет чего аккуратно и размеренно запускается устройство;
— создается мощный импульс, который требуется для поджигания;
— рабочее напряжение балансируется и подается на лампу.
Подключение люминесцентных ламп последовательно
Очередность подключения
Этап 1. Параллельное подсоединение стартера к каждой лампе.
Этап 2. Последовательное подсоединение с помощью дросселя свободных контактов к сети.
Этап 3. Параллельное подсоединение конденсаторов к контактам лампы. За счет этого происходит снижение помех, а также компенсирование реактивной мощности.
Видео — Подключение люминесцентных ламп
Поделитесь если вам понравилось:
Похожие материалы
Простая Схема Подключения Люминесцентных Ламп
ЭкономияSavedRemoved 0
Обычные лампы накаливания малоэффективны – они выделяют больше тепла, чем света. Да и срок службы их невелик. Подключение люминесцентных ламп позволяет почти в 3 раза сэкономить на оплате электроэнергии. Плюс подобные источники освещения имеют больший диапазон цветов и менее вредны для глаз. Однако для их монтажа требуется приобретение специальных устройств: дросселей или электронных плат ЭПРА.
Читайте также: Интересные идеи для украшения любимой дачи своими руками | 150+ оригинальных фото подсказок для умельцев
Особенности люминесцентных светильников
Читайте также: Какая должна быть электропроводка в частном доме, укладка своими руками, инструкция для новичков
Устройство люминесцентной лампы
Чтобы понять, каким образом осуществляется подключение люминесцентных ламп, требуется понять принцип их работы. Внешне они выглядят как стеклянные цилиндры, воздух в которых полностью заменен инертным газом, находящимся под небольшим давлением. Здесь же находится небольшое количество паров ртути, способных ускорять ионизацию – движение электронов.
С двух сторон цилиндра расположены электроды. Между ними находится вольфрамовая спираль, покрытая оксидами веществ, способных при пропускании тока и нагреве легко перемещаться на довольно большие расстояния, создавая ультрафиолетовое излучение (УФ).
Читайте также: [Инструкция] Соединение проводов в распределительной коробке: типы соединений и их применение
Электромагнитный ПРА
Но, так как этот вид излучения невидим, его преобразуют с помощью люминофора (особого состава на основе галофосфата кальция, которым покрыты стенки цилиндра), способного поглощать УФ, взамен выделяя видимые лучи света. Именно от вида люминофора зависит цвет освещения.
После включения устройства и перехода в рабочее состояние сила тока в нем может возрастать за счет падения сопротивления газов. Если не ограничить этот процесс, оно может быстро сгореть.
Для снижения силы тока используют дроссели (ограничители) – винтоспиральные катушки индуктивности, дающие дополнительную нагрузку и способные сдвигать фазу переменного тока и поддерживать желаемую мощность на весь период включения. Ограничительные устройства имеют и иное название: балласты или ПРА (пускорегулирующие аппараты).
Читайте также: Двухтрубная система отопления частного дома: устройство, типы систем, схемы, компоновка, разводка, монтаж и запуск системы (Фото & Видео) +Отзывы
Электронный пускорегулирующий аппарат
Более совершенными видами балласта являются электронные механизмы (ЭПРА), принцип работы которых будет описан в следующей главе. Для запуска разряда используется пусковое устройство, называемоестартером.
Электромагнитный дроссель или ЭПРА следует подбирать в зависимости от количества ламп и их мощности. Подсоединять предназначенное для двух ламп устройство к одной запрещено. Во избежание выхода прибора из строя подключать ЭПРА без нагрузки, то есть лампы, также не следует.
Читайте также: Ландшафтный дизайн вашего участка своими руками – (130+ Фото идей & Видео) +Отзывы
Принцип действия
Читайте также: Установка газового котла в частном доме: все необходимые требования для быстрого и законного запуска системы отопления (Фото & Видео) +Отзывы
Принцип действия люминесцентных ламп
Опишем кратко схему взаимодействия стартера, балласта и светильника:
Читайте также: Многолетние цветы (ТОП-50 видов): садовый каталог для дачи с фото и названиями | Видео + Отзывы
Основные этапы подключения
Читайте также: Газовый баллон на даче: для плиты, обогревателя и других нужд: правила пользования (Фото & Видео) +Отзывы
Схема подключения одного источника освещения к одному дросселю
Схема подключения люминесцентной лампы с дросселем довольно проста:
К сожалению, стартер – не слишком надежное устройство. Плюс при работе лампа может мерцать, негативно влияя на зрение. В принципе, возможно и подключение без него. Заменить эту деталь можно подпружинной кнопкой-выключателем.
Читайте также: Изготовление теплицы своими руками из профильной трубы и поликарбоната: полное описание процесса, чертежи с размерами, полив и обогрев (Фото & Видео)
Монтаж двух ламп
Читайте также: Секреты шумоизоляции стен в квартире: используем современные материалы и технологии (25+ Фото & Видео) +Отзывы
Варианты подключений
Какое бы количество источников света не требовалось включить в осветительную систему, все они подключаются последовательно. Для запуска двух ламп потребуется соответственно два стартера. Их подсоединяют параллельно.
Итак, опишем процесс подключения сразу 2 люминесцентных ламп:
Если вы поняли принцип этой схемы, то легко сможете этим же способом подключить 3 или 4 люминесцентных лампы.
Читайте также: 56 Самых лучших урожайных сортов огурцов для теплицы: описание и фото | +Отзывы
Пара ламп и один дроссель
Читайте также: Обогрев теплицы: виды отопления, пошаговые рекомендации обустройства своими руками (20 Фото & Видео) +Отзывы
Схема с одним дросселем
Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:
Читайте также: Баклажаны: описание и характеристика 53 популярных и необычных сортов для открытого грунта и теплицы (Фото & Видео) +Отзывы
Подключение без дросселя
Читайте также: Инфракрасный потолочный обогреватель с терморегулятором — современные технологии в вашем доме (Цены) +Отзывы
В данном подключении дроссель не используется
Этот способ используется в основном в старых лампах при выходе из строя балласта. Сделать это можно посредством использования постоянного тока, номинал которого выше обычного. То есть напряжение в момент пуска следует повысить. Сила этого напряжения подбирается исходя из характеристик как сети, так и самого источника света.
Для подключения люминесцентной лампы без дросселя требуется подсоединение диодного моста (или пары диодов). Контакты замыкаются с обеих сторон попарно. На одну сторону источника освещения должен приходиться плюс, на другую минус.
Подобную схему можно использовать даже при сгоревшей нити накаливания. Ведь цилиндр с газом при этом способе будет подпитываться за счет постоянного напряжения. Учтите лишь, что данный способ можно использовать на короткий период – со временем труба быстро потемнеет, а затем из-за выгорания люминофора вовсе перестанет излучать свет.
Читайте также: Горох: описание 43 самых популярных сортов, низкорослые, среднерослые и сорта зернофуражного назначения (Фото & Видео) +Отзывы
Подключение ЭПРА
Читайте также: Как сделать монтаж водяного теплого пола своими руками: пошагавшая инструкция монтажа на все виды покрытий (20+ Фото & Видео) +Отзывы
Подсоединение ЭПРА (электронного пускового механизма)
Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.
В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.
Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:
- источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
- с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня
Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:
Достоинства и недостатки люминесцентных источников света
Читайте также: Печь на отработке: виды, устройство, чертежи, инструкция по изготовлению своими руками (Фото & Видео) +Отзывы
Использование ламп для тепличного выращивания растений
ПЛЮСЫ:
- Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
- Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.
МИНУСЫ:
- Необходимость подключения дополнительных устройств (стартеров и дросселей)
- Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
- Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
- На силу света в таких источниках способна влиять температура окружающей среды
- Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
- значительная пульсация света, что может сказаться отрицательно на зрении
- Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных
Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.
Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.
Сравнение параметров разных источников освещения
Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.
Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.
Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:
5.5 Total Score
Для нас очень важна обратная связь с нашими читателями. Если Вы не согласны с данными оценками, оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Благодарим за ваше участие. Ваше мнение будет полезно другим пользователям.
БЕЗОПАСНОСТЬ
6
Оценки покупателей: 2 (1 голосов)
Схемы подключения люминесцентных ламп | ehto.ru
Вступление
Существует два способа подключения люминесцентных ламп: при помощи стартера и дросселя (ЭМПРА) и при помощи электронного пускового аппарата (ЭПРА). Нельзя сказать, что они отличаются принципиально, но в схемах подключения задействованы различные устройства.
Схемы подключения люминесцентных ламп при помощи ЭМПРА
ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель. В схеме подключения ЭМПРА обязательно задействуется стартер, который создает первый импульс для начала свечения люминесцентной лампы.
Читать, ЭПРА и ЭмПРА. В чем отличия пускорегулирующих аппаратов
Схема подключения люминесцентной лампы ЭМПРА
Данная схема подключения используется в большинстве стандартных одноламповых светильниках местного освещения эконом класса.
Схема индуктивная реализация
- Напряжение питания 220 Вольт;
- Дроссель (LL) подключается последовательно к проводу питания и выводу 1 лампы;
- Стартер подключается параллельно к выводам 2 и 3 лампы;
- Вывод 4 лампы подключается ко второму проводу питания;
- В схеме участвует конденсатор, который снижает импульс напряжения, увеличивает срок службы стартера и снижает радиопомехи при работе светильника.
Схема индуктивно-ёмкостная реализация
Вторая схема подключения называется индуктивно-ёмкостной. В ней дроссель и конденсатор (индуктивное и ёмкостное сопротивление схемы) включаются последовательно. Стартер по-прежнему подключен параллельно вывода 2-3 лампы.
Схема подключения 2-х люминесцентных ламп до 18 Вт (ЭМПРА)
Несколько меняются схемы подключений при двух лампах. Наиболее распространены две схемы для ламп до 18 Вт (последовательная) и ламп 36 Вт (параллельная).
В первой схеме, по-прежнему участвуют два стартера, один стартер для каждой лампы. Дроссель подключается, как в схеме с индуктивной реализацией. Мощность дросселя подбирается суммированием мощности ламп.
Важно! В данной (последовательной) схеме необходимо использовать стартеры на 127 (110-130) Вольт. Мощность ламп не может быть больше 22 Вт.
Во второй параллельной схеме, участвуют уже два дросселя (LL1 и LL2). Стартеров по-прежнему два, один стартер для каждой лампы.
Важно! В данной схеме используются стартеры на 220-240 Вольт. Мощность ламп до 80 Вт.
Важно замечание. Современные ЭмПРА выпускаются в едином корпусе. Для подключения на корпусе есть только выводы контактов. Схема подключения ламп указывается на корпусе.
Схемы подключения люминесцентных ламп при помощи ЭПРА
ЭПРА это электронное пускорегулирующие устройство. По сути это сложная электронная схема которая обеспечивает и запуск и стабильную работу люминесцентных ламп (светильников).
Отмечу, что каждый производитель ЭПРА по-своему выводит контакты для подключения к ним ламп. Схема подключения люминесцентных ламп указана на корпусе или в паспорте ЭПРА Пример на фото.
Для информации публикую подбор схем подключения различных ламп к ЭПРА различной маркировки.
Схемы подключения компактных люминесцентных ламп к нерегулируемым ЭПРА (OSRAM), марки QT-ECO
Схемы подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE, лампы 2х55, 1х10-13, 2х16-42.
Схемы подключения нерегулируемым ЭПРА QTP5 лампы 2х14-35Вт, 2х24-39Вт, 2х54Вт, 1х14-35Вт, 1х24-39Вт, 1х54Вт, 1х80.
Схемы подключения ЭПРА QT-FQ, QT-FC ламп Т5 (трубчатые)
©Ehto.ru
Еще статьи
Схема подключения люминесцентной лампы
Люминисце́нтный светильник был изобретен в 1930-е годы, как источник света, получил известность и распространение с конца 1950-х.
Его преимущества неоспоримы:
- Долговечность.
- Ремонтопригодност.
- Экономичность.
- Теплый, холодный и цветной оттенок свечения.
Длительный срок службы обеспечивает правильно спроектированное разработчиками устройство пуска и регулировки работы.
Люминисцентный светильник промышленного производства
ЛДС (ла́мпа дневного света) намного экономичнее, чем привычная лампочка накаливания, впрочем, аналогичное по мощности светодиодное устройство превосходит по этому показателю люминесцентное.
С течением времени светильник перестает запускаться, мигает, «гудит», одним словом, не выходит в нормальный режим. Нахождение и работа в помещении становятся опасными для зрения человека.
Для исправления ситуации пробуют включить заведомо исправную ЛДС.
Если простая замена не дала положительных результатов, человек, не знающий как устроен люминесце́нтный светильник, заходит в тупик: «Что делать дальше?» Какие запчасти покупать рассмотрим в статье.
Кратко об особенностях работы лампы
ЛДС относится к газоразрядным источникам света низкого внутреннего давления.
Принцип работы заключается в следующем: герметичный стеклянный корпус устройства заполнен инертным газом и парами ртути, давление которых невелико. Внутренние стенки колбы, покрыты люминофором. Под воздействием электрического разряда, возникающего между электродами, ртутный состав газа начинает светиться, генерируя невидимое глазу ультрафиолетовое излучение. Оно, оказывая действие на люминофор, вызывает свечение в видимом диапазоне. Меняя активный состав люминофора, получают холодный или теплый белый и цветной свет.
Принцип работы ЛДС
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос эксперту
Бактерицидные приборы устроены также как ЛДС, но внутренняя поверхность колбы, изготовленной из кварцевого песка, люминофором не покрыта. Ультрафиолет беспрепятственно излучается в окружающее пространство.
к содержанию ↑
Подключение с применением электромагнитного балласта или ЭПРА
Особенности строения не позволяют подключить ЛДС непосредственно в сеть 220 В – работа от такого уровня напряжения невозможна. Для запуска требуется напряжение не ниже 600В.
С помощью электронных схем необходимо последовательно друг за другом обеспечить нужные режимы работы, каждый из которых требует определенного уровня напряжений.
Режимы работы:
- розжиг;
- свечение.
Запуск заключается в подаче импульсов высокого напряжения (до 1 кВ) на электроды, в результате чего между ними возникает разряд.
Отдельные виды пускорегулирующей аппаратуры, перед тем как произвести пуск, нагревают спираль электродов. Накаливание помогает легче запустить разряд, нить при этом меньше перегревается и дольше служит.
После того как светильник загорелся, питание производится переменным напряжением, включается энергосберегающий режим.
Подключение с применением ЭПРАсхема подключения
В устройствах, выпускаемых промышленностью, используются два вида пускорегулирующей аппаратуры (ПРА):
- электромагнитный пускорегулирующий аппарат ЭмПРА;
- электронный пускорегулирующий аппарат – ЭПРА.
Схемы предусматривают различное подключение, оно представлено ниже.
Схема с ЭмПРА
Подключение с применением ЭмПРА
В состав электрической схемы светильника с электромагнитной пускорегулирующей аппаратурой (ЭмПРА) входят элементы:
- дроссель;
- стартер;
- компенсирующий конденсатор;
- люминесцентная лампа.
схема включения
В момент подачи питания через цепь: дроссель – электроды ЛДС, на контактах стартера появляется напряжения.
Биметаллические контакты стартера, находящиеся в газовой среде, нагреваясь, замыкаются. Из-за этого в цепи светильника создается замкнутый контур: контакт 220 В – дроссель – электроды стартера – электроды лампы – контакт 220 В.
Нити электродов, разогреваясь, испускают электроны, которые создают тлеющий разряд. Часть тока начинает течь по цепи: 220В – дроссель – 1-й электрод – 2-й электрод – 220 В. Ток в стартере падает, биметаллические контакты размыкаются. По законам физики в этот момент возникает ЭДС самоиндукции на контактах дросселя, что приводит к возникновению высоковольтного импульса на электродах. Происходит пробой газовой среды, возникает электрическая дуга между противоположными электродами. ЛДС начинает светиться ровным светом.
В дальнейшем подсоединенный в линию дроссель обеспечивает низкий уровень силы тока, протекающего через электроды.
Дроссель, подключенный в цепь переменного тока, работает как индуктивное сопротивление, снижая до 30 % коэффициент полезного действия светильника.
Внимание! С целью уменьшения потерь энергии в схему включают компенсирующий конденсатор, без него светильник будет работать, но электропотребление увеличится.
Схема с ЭПРА
Внимание! В рознице ЭПРА часто встречаются под наименованием электронный балласт. Название драйвер продавцы применяют для обозначения блоков питания для светодиодных лент.
Внешний вид и устройство ЭПРА
Внешний вид и устройство электронного балласта, предназначенного для включения двух ламп, мощностью 36 ватт каждая.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос эксперту
Важно! Запрещено включать ЭПРА без нагрузки в виде люминесцентных ламп. Если устройство предназначено для подключения двух ЛДС, нельзя использовать его в схеме с одной.
В схемах с ЭПРА физические процессы остаются прежними. В некоторых моделях предусмотрено предварительное нагревание электродов, что увеличивает срок службы лампы.
Вид ЭПРА
На рисунке показан внешний вид ЭПРА для различных по мощности устройств.
Размеры позволяют разместить ЭПРА даже в цоколе Е27.
ЭПРА в цоколе энергосберегающей лампы
Компактные ЭСЛ – один из видов люминесцентных могут иметь цоколь g23.
Настольная лампа с цоколем G23
Функциональная схема ЭПРА
На рисунке представлена упрощенная функциональная схема ЭПРА.
к содержанию ↑
Схема для последовательного подключения двух ламп
Существуют светильники, конструктивно предусматривающие подключение двух ламп.
В случае замены деталей сборка осуществляется по схемам, различным для ЭмПРА и ЭПРА.
Внимание! Принципиальные схемы ПРА рассчитаны на работу с определенной мощностью нагрузки. Этот показатель всегда имеется в паспортах изделий. Если подсоединить лампы большего номинала, дроссель или балласт могут перегореть.
Схема включения двух ламп с одним дросселем
Если на корпусе прибора есть надпись 2Х18 – балласт предназначен для подключения двух ламп мощностью по 18 ватт каждая. 1Х36 – такой дроссель или балласт способен включать одну ЛДС мощностью 36 Вт.
В случаях, когда используется дроссель, лампы должны подключаться последовательно.
Запускать их свечение будут два стартера. Подсоединение этих деталей осуществляется параллельно с ЛДС.
к содержанию ↑
Подключение без стартера
Схема ЭПРА в своем составе стартера не имеет изначально.
Кнопка вместо стартера
Однако и в схемах с дросселем можно обойтись без него. Собрать рабочую схему поможет включенный последовательно подпружиненный выключатель – проще говоря, кнопка. Кратковременное включение и отпускание кнопки обеспечит соединение похожее по действию на стартерный пуск.
Важно! Включаться такой безстартерный вариант будет, только при целых нитях накаливания.
Бездроссельный вариант, в котором также отсутствует стартер, может быть осуществлен разными способами. Один из них показан ниже.
Схема без стартера
На схеме представлен двухполупериодный диодный умножитель напряжения.
Электроды закорачиваются, к ним подключается однопроводная линия. Напряжение будет около 600 В, чего достаточно, чтобы между ними в газовой среде протекал постоянный ток.
Собранный по таким схемам бесстартерный блок питания способен заставлять светиться даже устройства с перегоревшими спиралями электродов.
к содержанию ↑
Видео – Схема подключения люминесцентных ламп
Предыдущая
ЛюминесцентныеЧто делать если разбилась люминесцентная лампа
Следующая
ЛюминесцентныеОсобенности и отличия люминесцентных ламп от светодиодных
Как подключить люминесцентную лампу с традиционным электромагнитным дросселем, с электронным дросселем, с перегоревшими нитями разогрева, а также полезные советы для увеличения срока эксплуатации ламп
Схема подключения люминесцентных ламп — это графическое изображение соединения различных деталей, совместная работа которых обеспечивает излучение света осветительным прибором.
Правильно выполненное подключение обеспечит максимально возможное время эксплуатации ламп, снизит создающее некомфортность гудение электромагнитного балласта, но и обеспечит существенную экономию электроэнергии по сравнению с лампами накаливания – более пятнадцати процентов. Люминесцентные лампы при работе излучают намного меньшее количество тепла, чем традиционные лампы накаливания. Это дает возможным применять для дизайнерского оформления светильников даже те материалы, которые представляют опасность с позиций легкой возгораемости.
Подключить люминесцентную лампу намного сложнее, чем обычную лампу накаливания. Это вызвано характером получения видимого света, используемого для освещения.
Как происходит процесс включения лампы дневного света
Люминесцентная лампа — это своеобразный трансформатор, преобразующий частоты света – недоступного зрению ультрафиолетового излучения в видимый свет, излучаемый атомами вещества, из которого изготавливается слой внутреннего покрытия лампы.
Как происходит включение люминесцентной лампы
Конструкционно люминесцентная лампа выполнена как герметичнаф стеклянная колба, внутрь которой закачена специальная смесь газов. Состав смеси подбирается так, чтобы потребность в электроэнергии для процесса ионизации атомов газовой смеси требовалось значительно меньше, чем для обеспечения работы лампы накаливания такой же мощности.
Для того, чтобы люминесцентная лампа служила постоянным источником света необходимо постоянная ионизация. Для этого в системе постоянно поддерживается тлеющий разряд с помощью непрерывной подачи необходимого напряжения на ламповые электроды.
Отличается от ламп накаливания и процесс, в результате которого начинают светиться люминесцентные лампы. Чтобы начался процесс ионизации требуется высоковольтный разряд, который происходит после прогрева смеси газов вокруг электродов. Чтобы обеспечить протекание этого процесса в лампе имеются две тонкие спирали подогрева. При подаче на спирали электрического тока они разогреваются и этот разогрев делает более легким выход анионов – отрицательно заряженных частиц. Напряжение в сети, то есть 220 вольт, поданное непосредственно на спирали, вызовет их перегорание, поэтому используют схемы запуска через индуктивный дроссель. В этом элементе при подаче переменного напряжения начинают возникать электромагнитные процессы, ограничивающие силу тока, который протекает по цепи, в результате чего достигается ограничение сетевого напряжения. Для протекания этого процесса на электроды подается высоковольтный импульс.
Индуктивный дроссель также служит генератором импульса высоковольтного напряжения благодаря которому осуществляется пробой газовой смеси в внутреннем пространстве люминесцентной лампы. Высокая электродвижущая сила возникает в результате внутренней самоиндукции дросселя. Для получения импульса требуется включение в схему элемента, который обеспечит в цепи кратковременное прерывание. Такую функцию выполняет электрический стартер.
Таким образом в целом схематически протекание электрического тока в включаемой люминесцентной лампе можно представить следующим образом:
- сетевое напряжение подается на индуктивный дроссель;
- пройдя через индуктивный дроссель ток подается на первую разогревающую спираль лампы;
- пройдя первую разогревающую спираль ток идет на стартер – его контакты разогреваясь замыкаются и ток разогревает спирали нагрева до 900˚С, a затем размыкаются вызывая высоковольтный импульс дросселя;
- импульс подается на ламповые электроды и вызывает пробой и инициирование работы лампы.
Чтобы обеспечить такое прохождения тока создаются различные схемы для подключения люминесцентных ламп.
Классическая схема c использованием электромагнитного балласта
Совокупность дросселя и стартера также называют электромагнитным балластом. Схематически такой вид подключения можно представить в виде нижерасположенного рисунка.
Неисправность дросселя легко можно проверить при помощи обычной лампы накаливания. Один провод подсоединяют непосредственно к патрону лампы, а второй провод – через проверяемый дроссель. Если дроссель исправен, то при включении цепи в сеть лампочка должна гореть.
Для увеличения коэффициента полезного действия,a также уменьшения реактивных нагрузок в схему вводятся два конденсатора – они обозначены С1 и С2.
- Обозначение LL1- дроссель, иногда его называют балластником.
- Обозначение Е1 – стартер, как правило он представляет собой небольшую лампочку тлеющего разряда c одним подвижным биметаллическим электродом.
Изначально, до подачи тока эти контакты разомкнуты, поэтому ток в схеме напрямую на лампочку не подается, а нагревает биметаллическую пластину, которая нагреваясь выгибается и замыкает контакт. В результате возрастает ток, нагревающий нити нагрева в люминесцентной лампе, а самом стартере ток уменьшается и электроды размыкаются. В балласте начинается процесс самоиндукции, приводящий к созданию высокого импульса напряжения, обеспечивающего образование заряженных частиц, которые взаимодействуя с люминофором покрытия, обеспечивают возникновение светового излучения.
Такие схемы с использованием балласта имеют ряд достоинств:
- небольшая стоимость требуемого оборудования;
- простота в использовании.
К недостаткам таких схем можно отнести:
- «мерцающий» характер светового излучения;
- значительный вес и крупные габариты дросселя;
- долгое зажигание люминесцентной лампы;
- гудение работающего дросселя;
- почти 15% потерь энергии.
- невозможно использовать совместно с устройствами, которые плавно регулируют яркость освещения;
- на холоде включение значительно замедляется.
Для того, чтобы снизить потери энергии, в цепь схемы можно включить конденсатор ёмкостью до 5 мкФ. Включение выполняют параллельно сети.
Дроссель выбирают строго в соответствии c инструкцией к конкретному виду люминесцентных ламп. Это обеспечит полноценное выполнение им своих функций:
- ограничивать в требуемых значениях величину тока при замыкании электродов;
- генерировать достаточное для пробоя газовой среды в колбе лампы напряжение;
- обеспечивать поддержку горения разряда на стабильном постоянном уровне.
Несоответствие выбора приведет к преждевременному износу ламп. Как правило, дроссели имеют ту же мощность, что и лампа.
Среди наиболее распространенных неисправностей светильников, в которых используют люминесцентные лампы, можно выделить такие:
- отказ дроселля, внешне это появляется в почернении обмотки, в оплавлении контактов: проверить его работоспособность можно самостоятельно, для этого понадобится омметр – сопротивление исправного балласта составляет порядка сорока Ом, если омметр показывает менее тридцати Ом – дроссель подлежит замене;
- отказ стартера – в этом случае лампа начинает светиться только по краям, начинается мигание, иногда лампочка стартера светится, нол сам светильник не зажигается, устранить неисправность можно только заменой стартера;
- иногда все детали схемы исправны, но светильник не включается, как правило, причиной является потеря контактов в ламподержателях: в некачественных светильниках они изготавливаются из некачественных материалов и поэтому плавятся – устранить такую неисправность можно только заменой гнезд ламподержателей;
- лампа мигает по типу стробоскопа, по краям колбы наблюдается почернение, свечение очень слабое – устранение неисправности замена лампы.
При использовании электромагнитного балласта вместо стартера можно применить обычную кнопку для входного звонка. Он включается в схему так, чтобы после его нажатия происходила подача электроэнергии, а после того как люминесцентная лампа засветится, можно прекратить удержание кнопки.
Схема для подключения нескольких ламп
Преимущественно во всех светильниках используют не одну люминесцентную лампу, а несколько, минимум две. B этом случае элементы соединяют в схеме последовательно: А между проводами фазы и ноля устанавливается конденсатор. Их включают в схемы для предотвращения помех в общей электросети, а также для компенсирования возникающей реактивной мощности.
Недостаток такой схемы – параллельность подключения. Если испортится один элемент схемы – все остальные также не будут работать.
Использование электронного балласта для подключении люминесцентных ламп
На сегодняшний день подобные схемы подключения светильников c лампами дневного света наиболее распространены. Они лишены тех недостатков, которые присущи работе светильников c применением электромагнитного балласта. Среди преимуществ – такие схемы не требует наличия стартера.
Выбирая светильник с люминесцентными лампами нужно уделять внимание качеству выключателей – повышенные стартовые токи могут стать причиной «залипания» контактов.
Современные электронные балласты дают возможность экономить электроэнергию, увеличить срок работы светильников. При этом свет при таких схемах подключения в отличие от схем с использованием дросселей, не мигающий эффект стробоскопа отсутствует. Это достигается благодаря тому, что рабочее напряжение для ламп имеет частоту, отличную от частоты в сетях – до 133 kGz.
Применение микросхем позволило значительно снизить вес пусковых устройств, уменьшить их габариты. Это дало возможность непосредственно встраивать балласт непосредственно в цоколь лампы, предложить потребителям люминесцентные лампы, которые можно прямо вкручивать в обычный патрон подобно лампочке накаливания.
Использование микросхем дало возможность обеспечить плавный нагрев электродов в лампах, а это не только повышает эффективность их работы, но и значительно удлиняет время эксплуатации.
Электронный балласт дает возможность применять люминесцентные лампы совместно c устройствами, которые предназначены для плавной регулировки освещенности – диммерам.
К достоинствам светильников, в которых применяется такая схема можно отнести нанесение изображения порядка подключения контактов на устройство, что делает такие приборы очень удобными для пользователей, которые не являются электриками-профессионалами.
Устройство электронного балласта
Как видно из принципиальной схемы, пускатель в виде электронного баласта является своеобразным преобразователем напряжения. Миниатюрный инвертор преобразует постоянный ток в переменный высокой частоты. Этот ток подается на электроды-нагреватели. Интенсивность нагревания этих электродов повышается. Включение преобразователя сделано так, что на первых этапах частота тока имеет высокую частоту. Сама люминесцентная лампа включена в контур, у которого резонансная частота меньше, чем начальная частота преобразователя. B дальнейшем частота уменьшается, a напряжение, a напряжение на колебательном контуре и на лампе растет, в результате чего контур начинает приближаться к резонированию. Одновременно увеличивается степень нагрева электродов. Это приводит к созданию условий возникновения разряда в газовой смеси и люминофорное покрытие колбы начинает светиться.
Электронный балласт составляется таким образом, чтобы регулирующее устройство могло подстраиваться под те характеристики, которые имеет люминесцентная лампа. Это дает возможность сохранять изначальные световые характеристики осветительного прибора в течение продолжительного времени. По мере износа люминесцентные лампы требуют все большего напряжения для достижения момента начального разряда. Электронный балласт самостоятельно подстраивается под произошедшие изменения и качество освещения остается прежним.
По сравнению с дроссельным, электронный балласт имет несколько достоинств:
- он обеспечивает большую экономичность при эксплуатации;
- дает возможность создать условия для бережного нагревания электродов;
- обеспечивает плавное включение лампы;
- использование электронного баланса дает возможность преодолеть такой недостаток люминесцентного освещения, как мерцание;
- дает возможность применять люминесцентные лампы в условиях холода;
- увеличивает временные эксплуатационные характеристики;
- имеет намного меньший вес и размеры.
К недостаткам электронного балласта можно отнести высокие требования, предъявляемые к качеству комплектующих,a также точности выполнения монтажа, усложненность схемы подключения.
Как подключают люминесцентную лампу, у которой сгорели нити накала
Существуют схемы включения, которые позволяют пользоваться светильником даже в тех случаях, когда лампа не горит при использовании умножительного устройства.
Чтобы вернуть такую лампу к жизни достаточно включить в цепь перед стартером включают конденсатор мощностью в 4 Мкф.
Опытные электрики советуют раз в год переворачивать лампу дневного света, меняя местами контакты подключения – такая маленькая хитрость значительно увеличивает эксплуатационный срок люминесцентных ламп.
Такое изменение возобновит свечение, но устранить мерцание по краям оно не сможет.
Существуют схемы для включения люминесцентных ламп, у которых вышли из строя нити накала, которые не только восстанавливают осветительный прибор, но и устраняют такой недостаток, как гудение электромагнитного дросселя.
Как включают люминесцентные лампы без стартера и с перегоревшей нитью накала можно узнать из видеоролика
Схема подключения ламп дневного света
Лампы дневного света уже достаточно прочно и давно вошли в жизнь большинства людей. Сейчас они становятся все более популярными, ведь постоянно дорожает электроэнергия и пользованием обычными лампами накаливания слишком дорогое удовольствие. Также известно, что компактные энергосберегающие лампы могут приобрести далеко не все, кроме того, большинство современных люстр нуждаются в большом количестве подобных ламп, из-за чего возникают сомнения в их экономичности. Именно поэтому во многих современных квартирах устанавливают люминесцентные дневного света, в чем помогает схема лампы дневного света, на которой можно увидеть принципы ее работы.
Устройство люминесцентных ламп
Для понятия принципов работы лампы дневного света необходимо изучить ее устройство. Она состоит из тонкой цилиндрической колбы из стекла, которая имеет разные формы и диаметры. Люминесцентные лампы бывают нескольких видов:
- U-образные;
- прямые;
- кольцевые;
- компактные (со специальными цоколями Е14, а также Е27).
Все они имеют разный внешний вид, однако их объединяет наличие электродов, люминесцентного покрытия и закачанного инертного газа с парами ртути внутри. Электроды являются небольшими спиралями, раскаляющимися на небольшой временной промежуток, зажигая, таким образом, газ, благодаря которому тот люминофор, который нанесен на стенки лампы светиться. Известно, что спирали для розжига небольшого размера, поэтому стандартное напряжение, которое есть в домашней электросети, не подходит для них. Поэтому, в этих целях пользуются специализированными приборами под названием дроссели, с их помощью ограничивается сила тока до нужного значения, благодаря их индуктивному сопротивлению. Кроме того, чтобы спираль сумела быстро разогреться, однако не перегореть, схема лампы дневного света показывает еще и стартер, отключающий накал электродов после того, как газ в трубках лампы зажигается.
Принципы работы ламп дневного света
Во время работы на клеммы подается напряжение 220В, проходящее через дроссель прямо на первую спираль данной лампы. Потом она переходит на стартер, срабатывающий, а также пропускающий ток на спираль, которая подключена к сетевой клемме. Это демонстрирует схема подключения ламп дневного света.
Достаточно часто на входных клеммах может устанавливаться конденсатор, который играет роль специализированного сетевого фильтра. Именно благодаря его работе, частица реактивной мощности, вырабатываемой в процессе работы дросселем, гасится. В результате получается, что лампа потребляет меньшее количество электроэнергии.
Проверка ламп дневного света
Если ваша лампа перестала зажигаться, вероятная причина данной неисправности – обрыв вольфрамовой нити, разогревающей газ и заставляющей светиться люминофор. Во время работы вольфрам со временем испаряется, начиная оседать на стенках лампы. В процессе, стеклянная колба на краях имеет темный налет, который предупреждает о возможном выходе из строя данного устройства.
Проверить целостность вольфрамовой нити очень просто, нужно взять обычный тестер, измеряющий сопротивление проводника, после чего надо прикоснуться щупами к выводным концам данной лампы. Если прибор покажет, например, сопротивление, составляющее 9.9 Ом, тогда это будет значить, что нить цела. Если же во время проверки пары электродов тестер покажет полный ноль, данная сторона имеет обрыв, поэтому включение ламп дневного света не совершиться.
Спираль может оборваться из-за того, что на протяжении времени ее использования нить истончается, поэтому постепенно возрастает напряжение, которое сквозь нее проходит. Благодаря тому, что напряжение постоянно возрастает, стартер выходит из строя, что можно увидеть по характерному «морганию» данных ламп. После того, как будут заменены сгоревшие лампы и стартеры, схема будет работать без наладок.
Если же во время включения ламп слышны посторонние звуки либо же ощутим запах гари, тогда необходимо сразу же обесточить светильник, проверив работоспособность его элементов. Может быть, что на самих клеммных соединениях появилась слабина и подключение проводов прогревается. Кроме этого, в случае некачественного изготовления дросселя, может случиться витковое замыкание обмоток, что приведет к выходу ламп из строя.
Как подключить люминесцентную лампу?
Подключение лампы дневного света является очень простым процессом, схема его предназначается для розжига только одной лампы. Чтобы подключить пару ламп дневного света, нужно слегка изменить схему, действуя при этом по единому принципу последовательного соединения элементов.
В подобном случае необходимо пользоваться парой стартеров, по одному на лампу. Во время подключения пары ламп к единому дросселю, необходимо обязательно учитывать его номинальную мощность, указанную на корпусе. К примеру, если его мощность составляет 40 Вт, тогда есть возможность подключить к нему пару одинаковых ламп, максимальная нагрузка которых равна 20 Вт.
Кроме того, бывает подключение лампы дневного света, в котором не используются стартеры. Благодаря применению специализированных электронных балластных устройств, лампа разживается мгновенно, при этом не «моргая» стартерными схемами управления.
Подключение люминесцентной лампы к электронному балласту
Подключать лампу к электронным балластам очень просто, ведь на их корпусе есть детальная информация, а также схематически показано соединение контактов лампы с соответственными клеммами. Однако, чтобы было более понятно, как же подключить лампу дневного света к данному устройству, можно просто тщательно изучить схему.
Главное преимущество данного подключения – отсутствие дополнительных элементов, которые нужны для стартерных схем, управляющих лампами. Кроме того с упрощением схемы значительно увеличивается надежность работы всего светильника, ведь исключаются дополнительные соединения со стартерами, которые достаточно ненадежные устройства.
В основном, все провода, которые нужны для сборки схемы, идут в комплекте с самим электронным балластным устройством, поэтому отпадает необходимость изобретать велосипед, что-нибудь придумывать и нести при этом дополнительные расходы на приобретение недостающих элементов. В этом видео-ролике Вы сможете Более подробно ознакомиться с принципами работы и подключения люминесцентных ламп:
Как установить люминесцентный свет: советы и рекомендации
Вы можете подумать о замене некоторых из ваших старых ламп накаливания на люминесцентные лампы. Флуоресцентный свет обеспечивает равномерное освещение без теней, но, что лучше всего, люминесцентные лампы более эффективны, чем лампы накаливания. В лампе накаливания большая часть электроэнергии выделяется в виде тепла, а не света. Люминесцентная лампа, напротив, остается прохладной.
Как работает люминесцентная лампа? В флуоресцентной цепи, начиная с левого штыря вилки, ток проходит через балласт, через одну из нитей лампы, через замкнутый переключатель в стартере, через другую нить накала в лампе и выходит из правого. ручной зубец вилки.Ток нагревает два маленьких элемента на концах люминесцентной лампы; затем стартер открывается и через лампу течет ток.
Балласт представляет собой магнитную катушку, которая регулирует ток через трубку. Он вызывает выброс дуги через трубку при размыкании пускателя, а затем поддерживает ток, протекающий с правильной скоростью, когда лампа накаляется. В большинстве люминесцентных светильников стартер представляет собой автоматический выключатель. Как только он обнаруживает, что лампа горит, он остается открытым.Стартер закрывается всякий раз, когда вы обесточиваете прибор.
Многие люминесцентные светильники имеют более одной лампы для обеспечения большего количества света. Эти лампы должны иметь индивидуальные стартеры и балласты для каждой лампы. Может показаться, что приспособление имеет две трубки, работающие от одного балласта, но на самом деле в одном корпусе встроено два балласта. Светильники с четырьмя трубками также имеют четыре стартера и четыре балласта. В некоторых светильниках стартеры встроены и не могут быть заменены по отдельности.Поскольку в люминесцентной лампе всего три основные части, любой ремонт обычно можно выполнить самостоятельно. Все люминесцентные лампы с возрастом тускнеют и могут даже начать мерцать или мигать. Это предупреждающие сигналы, и вам следует произвести необходимый ремонт, как только вы заметите какие-либо изменения в нормальной работе лампы. Тусклая трубка обычно требует замены, и если ее не заменить, это может вызвать деформацию других частей светильника. Аналогичным образом, повторяющееся мигание или мигание приведет к износу стартера, что приведет к ухудшению изоляции на стартере.
Люминесцентные светильники достаточно просто обслужить методом замены. Если вы подозреваете, что какая-то деталь неисправна, замените ее на новую. Начните с люминесцентной лампы или лампы. Вы можете установить новую или, если вы не уверены, что лампа перегорела, проверить старую лампу в другом люминесцентном светильнике. Снимите старую трубку, вывернув ее из гнезд в приспособлении. Установите новую трубку таким же образом — вставьте выступы трубки в гнездо и поверните трубку, чтобы зафиксировать ее на месте.
Если проблема не в лампе, попробуйте поменять стартер. Пускатели люминесцентных ламп оцениваются по мощности, и важно, чтобы вы использовали правильный стартер для лампы в вашем светильнике. Снимите старый стартер так же, как вы снимали старую трубку, вывернув ее из гнезда в приспособлении. Установите новый, вставив его в гнездо и повернув, чтобы зафиксировать на месте.
Балласт также рассчитывается в соответствии с мощностью, и заменяемый балласт — как и запасной стартер — должен соответствовать мощности лампы и типу приспособления.Балласт — это наименее вероятная деталь, которая выйдет из строя, и ее сложнее всего заменить, поэтому оставьте балласт напоследок, когда начнете заменять детали. Если ни трубка, ни стартер неисправны, проблема должна быть в балласте. Чтобы заменить неисправный балласт, обесточьте цепь, разберите приспособление, перенесите провода от старого балласта к новому — по одному, чтобы избежать неправильного подключения — и, наконец, снова соберите приспособление
.
Если трубка, стартер и балласт исправны, но лампа по-прежнему не горит, проверьте выключатель на предмет неисправности.Если лампой управляет настенный выключатель, замените выключатель, как описано в следующем разделе. Если в лампе есть кнопочный выключатель, старый выключатель можно заменить новым такого же типа. Чтобы обесточить цепь перед работой с переключателем, удалите предохранитель цепи или отключите автоматический выключатель.
В большинстве случаев переключатель вкручивается в крепежную гайку с резьбой на внутренней стороне лампы. Два провода от переключателя соединяются, обычно с помощью гаек, с четырьмя проводами от люминесцентной лампы.Разберите приспособление настолько, насколько это необходимо, чтобы получить доступ к задней части переключателя, затем вкрутите новый переключатель и перенесите провода от старого переключателя к новому, по одному, чтобы избежать неправильного подключения. Соберите приспособление и снова включите цепь.
На следующей странице мы обсудим шаги, которые необходимо предпринять для установки нового люминесцентного светильника.
Как подключить подвесную люминесцентную лампу в гараже | Руководства по дому
После того, как вы повесили люминесцентную лампу в гараже, следующим шагом будет подключение проводки.Обычно вы вешаете лампу в том месте, где был установлен существующий свет, и используете существующую переключаемую цепь для питания осветительной арматуры. Как вариант, электрик устанавливает потолочную коробку и протягивает провода к выключателю. Независимо от того, подключаете ли вы люминесцентную лампу с одной лампой или люминесцентную лампу с несколькими лампами, определенные цветные провода в приборе подключаются к черному и белому проводам электрической цепи. Для подключения подвесного люминесцентного светильника требуется несколько источников электропитания, несколько ручных инструментов и возможность работать на лестнице.
Подключение электрического шкафа
Выключите прерыватель цепи освещения. Если прерыватель не маркирован или не может быть идентифицирован, попросите электрика идентифицировать и выключить прерыватель. Работайте с стремянки, чтобы получить доступ к электрической коробке. Проверьте между оголенными концами черного и белого проводов в коробке, чтобы убедиться, что цепь отключена, с помощью электрического тестера.
С помощью универсального ножа снимите 4 дюйма внешней изоляции с одного конца куска двухпроводного ромекса калибра 14.Для этого уложите провод ровно и сделайте 4-дюймовый надрез по средней линии детали на одном конце, а затем загните наружную изоляцию. Отрежьте лишнее, чтобы оголить черный и белый провода.
Зачистите 1 дюйм изоляции на концах черного и белого проводов с помощью приспособлений для зачистки проводов. Вставьте концы проводов в открытый порт на 1/2-дюймовом пластиковом разъеме romex. Вытягивайте их, пока внешняя изоляция не войдет в разъем надежно.
Сожмите рукой внутренний конец разъема.Вставьте концы проводов и внутренний конец разъема в порт 1/2 дюйма на пластиковой электрической пластине. Защелкните соединитель на пластине.
Подключите оголенные концы белого и черного проводов romex к соответствующим белым и черным проводам в электрической дуге с помощью проволочных гаек. Для этого держите оголенные концы проводов одного цвета рядом друг с другом. Убедитесь, что концы ровные, а затем накрутите гайку вручную. Закрепите каждое соединение несколькими обмотками изоленты там, где провода входят в гайки, и вокруг основания гаек.
Приложите электрическую пластину к лицевой стороне электрической коробки и совместите отверстия для винтов с резьбовыми отверстиями на внешних краях коробки. Прикрепите пластину к коробке, заворачивая один из прилагаемых винтов на каждом креплении с помощью отвертки.
Подключение осветительной арматуры
Снимите люминесцентные лампы с осветительной арматуры. В зависимости от приспособления поверните лампу так, чтобы контактные выступы на каждом конце выскользнули из пазов в основании держателей на каждом конце.Как вариант, прижмите лампу к внутренней пружине и опустите ее из держателей.
Поверните и снимите барашковые гайки, которыми крышка крепится к тросам и балласту в приспособлении. Опустите пластину вручную, чтобы снять ее. Отложите крышку в сторону.
С помощью отвертки и плоскогубцев удалите одну из электрических заглушек на верхней стороне приспособления. Для этого прижмите кончик отвертки к внешнему краю пули и постучите по рукоятке одной рукой, чтобы освободить край пули.Захватите свободный край плоскогубцами. Поверните, чтобы удалить слизь.
Удерживайте установленную часть romex, подключенную к электрической коробке, вертикально рядом с осветительной арматурой. Отрежьте все лишнее, что ниже нижнего края приспособления, кусачками. Положите конец romex на верхнюю часть приспособления и снимите 4 дюйма внешней изоляции с конца, как и раньше. Снимите 1 дюйм черно-белой изоляции с этих проводов, как и раньше.
Установите 1/2-дюймовый разъем romex на конец провода источника, как и раньше.Сожмите внутренний конец разъема и пропустите провода через порт на приспособлении, где была удалена заглушка. Защелкните разъем на приспособлении.
Снимите прилагаемые гайки с черного и белого проводов на осветительной арматуре. Соедините оголенные концы черного и белого проводов romex с соответствующими черными и белыми проводами крепления, используя проволочные гайки. Оберните каждое соединение изолентой, как и раньше.
Прижмите оба соединения проводов к верхней внутренней стороне светильника.Установите крышку на приспособление и поверните барашковые гайки, чтобы удерживать ее на месте. Переустановите сохраненные люминесцентные лампы в светильник.
Ссылки
Наконечники
- Подключение проводов может отличаться в зависимости от производителя люминесцентного светильника. См. Инструкции по установке или схему подключения на внутренней стороне крышки для приспособления.
Предупреждения
- Никогда не пытайтесь выполнить какие-либо электрические работы, если вы не уверены, что цепь отключена или неактивна.
Writer Bio
Уильям Мачин начал работать в строительстве в возрасте 15 лет, еще учась в средней школе. За 35 лет он приобрел опыт на всех этапах жилищного строительства, модернизации и реконструкции. Его хобби — лошади, мотоциклы, шоссейные гонки и спортивная рыбалка. Он изучал архитектуру в колледже Тафта.
Как установить люминесцентные лампы
Установка люминесцентных ламп — это простая процедура, дающая впечатляющие результаты.
Чтобы установить типичный люминесцентный потолочный светильник, сначала воспользуйтесь прибором для поиска балок потолка. Если их нет в том месте, где вы хотите повесить приспособление, вы можете использовать болты, чтобы закрепить его в гипсокартоне. В любом случае убедитесь, что ваша дрель и оборудование доступны. Перед выполнением любых работ с прибором отключите питание цепи.
1 Сначала снимите крышку и выполните любые соединения внутри приспособления, как указано производителем.Для стыков используйте проволочные гайки. Вам также может потребоваться добавить косички и заземляющую перемычку, чтобы перекрыть зазоры между внутренними проводами приспособления и точкой, где кабель входит в приспособление.
2 Откройте заглушку в кожухе приспособления, , а затем пропустите входящие провода через отверстие. Этот светильник монтируется непосредственно под потолочной коробкой; если вашего приспособления нет, запланируйте прикрепить кабель к меньшему отверстию с помощью металлического зажима для кабеля.
3 Если возможно, ввинтите винты через навес светильника в балки потолка.Если балки не совпадают с приспособлением, прикрепите приспособление к потолочному материалу с помощью болтов.
4 Соедините черный провод прибора с черным проводом под напряжением цепи, а белый вывод прибора — с входящим белым нейтральным проводом. Если есть зеленый провод заземления цепи, оберните его вокруг винта заземления прибора. Зафиксируйте его, затянув винт.
5 Наконец, вставьте концы люминесцентных трубок в держатели для трубок, а затем установите рассеивающую панель поверх трубок.Как и эта, большинство рассеивающих панелей просто встают на место. Восстановите питание и проверьте свой новый свет.
Получите предварительно экранированную установку местного освещения Pro
О Доне Вандерворте
Дон Вандерворт накопил опыт более 30 лет, работая редактором по строительству Sunset Books, старшим редактором журнала Home Magazine, автором более 30 книг по обустройству дома , и автор бесчисленных журнальных статей. Он появлялся в течение 3 сезонов на телеканале HGTV «Исправление» и несколько лет был домашним экспертом MSN.Дон основал HomeTips в 1996 году. Подробнее о Доне Вандерворте
Империя Фаталии — Как создать индивидуальную систему люминесцентных ламп (T5)
Создание индивидуальной системы люминесцентных ламп (T5)
При выращивании рассады и растений на стадии вегетации использование флуоресцентных ламп — отличный способ обеспечить любимые растения ярким и сбалансированным светом. В этом руководстве показано, как построить систему, которая подойдет практически для любых растущих потребностей в помещении.
Введение
Системы люминесцентных ламп используются в садоводстве, где очень важно, чтобы лампа не излучала чрезмерное тепло.Например, в закрытых камерах для выращивания или там, где температура уже высока и не может быть понижена. Кроме того, из-за относительно низкого тепловыделения люминесцентных ламп лампы можно крепить довольно близко к верхушкам растений, не сжигая нежные кончики.
Люминесцентные лампы в основном используют электричество и преобразуют их в свет. Хотя световой поток флуоресцентных ламп действительно хорошо сбалансирован между стоимостью и удобством использования, установка системы, которую можно использовать в течение всего сезона перца чили, на мой взгляд, не стоит того.Если планируется полностью закрытое помещение в течение всего сезона, тогда для фазы плодоношения потребуется лампа высокого давления на основе паров металла, такая как Son-T, поскольку флуоресцентный свет не будет в достаточной степени проникать в верхние слои листвы и, как правило, его будет недостаточно для правильный процесс созревания. Но одним из лучших вариантов для стадии рассады и вегетативного роста в первые три-четыре месяца по-прежнему является флуоресцентная установка.
T5 — Новый царь горы
Практически во всех используемых сегодня флуоресцентных системах используются стандартные флуоресцентные лампы T8.Контрольный знак для Т8 — диаметр 26 мм. Хотя T8 по-прежнему имеет очень хорошую светоотдачу для потраченной электроэнергии, они
действительно страдают от нескольких недостатков, таких как мерцание при обычных настройках («холодные» балласты со стартерами) или самозатенение из-за относительно толстой лампы накаливания. Удобные настройки — это те, которые можно найти в недорогих универсальных дешевых решениях, которые можно найти в магазинах бытовой техники. Их приспособление содержит рядом с гнездами для крепления лампочек также стартер и балласт.
Нормальная работа этих систем — мерцание при включении, а также характерное гудение балласта во время работы.Особенно жужжание может сильно раздражать при выращивании растений в квартирах.
Кроме того, мерцание влияет на долговечность ламп — это не фактор затрат при использовании дешевых ламп, но почти наверняка проблема при использовании более дорогих ламп, которые излучают прекрасный спектр, необходимый для здоровых растений. Подробнее о световом спектре и типах ламп позже.
Устранение недостатков указанных установок заключается в использовании «новых» люминесцентных систем Т5. T5 работает по тому же принципу, что и T8 — пропускает ток по трубке, заполненной газом, вызывая разряды, излучающие свет.Но T5 имеют более новый дизайн и тонкие по сравнению с T8 — их диаметр составляет 16 мм. Они излучают больше света по сравнению с T8 для использованного электричества из-за меньшего самозатенения, а также меньших потерь затраченной энергии из-за чрезмерного тепла. Ситуация для существующих систем заключается в том, что T5 несовместим с T8 и требует исключительно относительно дорогих электрических балластов. Но с другой стороны, им больше не нужны стартеры, и они сразу включаются без раздражающего мерцания. Это также относится к концу их срока службы — они просто отключаются, в отличие от обычных установок T8, которые сильно мерцают и могут этим наверняка беспокоить растения.Даже если в системах T8 можно заменить обычный пускатель и обычные балластные устройства на электронный балласт, почему бы не воспользоваться этой возможностью и не переключиться также на лучшую тонкую лампу T5?
В целом T5 излучает больше света, чем T8 при той же мощности, одновременно потребляет меньше энергии и не мерцает, что может вызвать стресс для глаз и вызвать головные боли. Те из вас, кто долгое время работал с дешевыми флуоресцентными лампами, знают об этом — головные боли и усталость в конце дня.Ссылаясь на более длительный срок службы ламп, экономия энергии в целом также компенсирует в долгосрочной перспективе высокую цену на электрические балласты — особенно с учетом роста счетов за электроэнергию в последние пару лет.
Типы лампочек
Как и T8, лампы T5 бывают разных вариантов — нормальная, высокая эффективность (HE), высокая мощность (HO) и очень высокая мощность (VHO), а также различные мощности. Для старых систем T8 мощность также означала длину трубок.
Теперь это также изменилось с момента введения различных типов, упомянутых ранее.Конечно, HE, VHO и HO, будучи «особенными», стоят немного дороже, но, на мой взгляд, они того стоят.
Для выращивания я выбрал HO, поскольку эксплуатационные расходы на VHO легко утроятся при инвестициях в энергию — на мой взгляд, лучше добавить больше HO. Тем не менее, сравнение между T5 и T8 все еще сохраняется при наблюдении за преобразованием энергии в световой поток. При использовании трубки одного типа соотношение между длиной и мощностью снова становится верным. Но, конечно, сложное никогда не бывает достаточно сложным — поэтому теперь мы вводим «светлый цвет».В то время как интенсивность света измеряется в «люменах», цвет света измеряется в Кельвинах, обычно используемых для измерения тепла. Обычные типы люминесцентных источников света, используемых для выращивания растений, находятся в диапазоне 6000K. Наилучший спектр — около 6500K с естественным балансом красного и синего. Это отражено на типах люминесцентных ламп с трехзначным кодом (трехполосные люминесцентные лампы). Наилучший спектр с наиболее пригодным для использования растениями светом излучается из лампы типа 865 — излучающей свет 6500K, упомянутой ранее (тип 865 будет действителен для производителей Philips, Osram, Sylvania и GE).
Здесь мы имеем чрезвычайно хороший баланс света в спектре красного и синего — единственные цвета, которые действительно необходимы для здоровых растений.
Для сравнения световых температур
- Обычный офисный люминесцентный 4000K
- Раннее утро / вечернее солнце 5000K
- Облачное небо 6000K
- Ярко-синее летнее небо 12000K-15000K
Зеленый свет полностью отражается растениями, и именно поэтому растения кажутся нам в основном зелеными.
И в качестве примечания ко всем «специальным» пробиркам, рекламируемым для отличных условий выращивания, например, GRO-Lux — они слишком дороги, и даже несмотря на то, что они излучают «хороший» полезный свет, они излучают меньше, чем стандартные, с точки зрения просвета и имеют более короткая продолжительность жизни.
Проданные лампы типа 865 отличаются превосходным освещением и непревзойденными по преобразованию энергии в свет при соответствующем балласте, например, с большим световым потоком при той же мощности.
Балласт
Как уже упоминалось, система T5 требует исключительно электронных балластов.Однако им больше не нужны дополнительные стартеры. Если вы читаете это, если планируете создать свою собственную систему, подобную моей, тогда возникает вопрос, какой балласт нужен для выбора количества ламп и их мощности.
Обычные электронные балласты (ЭПРА) поставляются с поддержкой одной или двух ламп. Чтобы снизить затраты на еще более дорогой EB, я предлагаю установку с четным количеством трубок и половину этого количества с EB, которые поддерживают две лампы.Двухтрубная версия EB не стоит значительно дороже, чем однотрубная версия.
Кроме того, некоторые EB поставляются с переменным диапазоном мощности, поэтому вы не настроены на ту трубку, для которой вы изначально купили EB. В моем случае у меня есть Philips H-Performer II, который поддерживает две лампы в диапазоне от 14 Вт до 39 Вт, что означает, что если я решу накапливать ватты позже, я смогу поддерживать длинные лампы T5 только с небольшой модификацией моей настраивать.
Другой производитель EB в Европе — Osram.Поскольку все становится более современным, вы также можете встретить некоторые типы EB, которые поддерживают затемнение. Если вы НЕ специалист по освещению или электричеству, я рекомендую держаться от них подальше, поскольку их установка быстро усложняется — особенно те, которые предназначены для интеграции в системы DALI (цифровая шина для управления всей окружающей средой), не предназначены для садоводов-любителей; ).
По крайней мере, некоторые знания электрической схемы и мер предосторожности необходимы для следующего. Цепь между EB и лампами почти всегда печатается рядом с разъемами, соединяющими лампы.
Если вы никогда раньше не создавали подобную систему, я настоятельно рекомендую потратить время на создание небольшой тестовой установки, прежде чем вы фактически попытаетесь установить всю систему на место. Также очень важно отметить понятие «горячих» проводов.
В данном случае это провода, предназначенные для подключения к разъемам 1, 2, 6 и 7. Соответствующий им номер разъема вашей марки EB должен быть напечатан где-нибудь на EB. Скорее всего, где-то напечатано «Держите провода x, y короткими» — так что x и y — это горячие провода.
Горячие провода — это те провода, через которые проходит большая часть энергетической нагрузки. Я выбрал в своей настройке, чтобы отслеживать тех, кто решил использовать для них исключительно красные провода, а также разместить EB таким образом, чтобы красные провода могли быть как можно более короткими.
Отражатели
Трубки круглые, поэтому они излучают свет на 360 ° и тратят много энергии, вложенной в световой поток, если свет не достигает растений. Теперь есть несколько решений этой проблемы — одни лучше, другие хуже.Конечно, вы можете попытаться снизить затраты и просто закрасить область над трубками белой краской. Это обязательно будет отражать часть света, но не в оптимальном процентном соотношении. На мой взгляд, единственный жизнеспособный ответ — использовать отражатели, подобные тем, которые используются в лампах с парами металлов. Рефлекторы нельзя превзойти по отражаемому свету — разве что полированные зеркала. Некоторые даже говорят, что отражатели могут удвоить просвет, достигающий растений. Сейчас существуют довольно дешевые отражатели для ламп T5 — я купил свой на удивление дешево в аквариумистике всего за 8 евро за штуку.Те более дешевые поставляются с двумя зажимами, с помощью которых они прикрепляются непосредственно к самой трубке и могут быть повернуты, чтобы отражать свет в нужном направлении.
Отражатель и зажим T5
После сборки рефлектора нужно позаботиться о том, чтобы стереть лишние жирные пятна на поверхности рефлектора, оставшиеся от пальцев — воткните, они есть, даже если вы не ели шашлык, работая с лампами.
Конечно, все еще есть возможность просто построить свои собственные отражатели.Я слышал, что это довольно простой процесс, если у вас есть доступ к листам отражающего металла и некоторым инструментам — ножницам для резки металлических листов, полировальным станкам и так далее. Я оставляю это на ваше усмотрение.
Также ящик должен быть заключен в светоотражающий материал, чтобы отражать световые лучи, которые пытаются проникнуть в вашу квартиру. Есть также несколько хороших и несколько плохих вариантов. Хуже всего, очевидно, алюминиевая фольга, которая не только мнется и, следовательно, больше рассеивает свет, чем отражает, но и легко рвется.
На мой взгляд, лучший вариант — это светонепроницаемая белая полиэтиленовая пленка. Эта фольга имеет хороший коэффициент отражения, не рвется и легко стирается. Если вам попалась только очень тонкая белая пластиковая пленка, возможно, вам придется укладывать ее в два слоя.
Электропроводка
Для EB требуется два типа проводов. Один предназначен для подключения ЭБ к общей цепи 220 В (в некоторых странах может отличаться), другой — для подключения ламп к ЭБ. Во-первых, можно использовать стандартный электрический провод, если он имеет три вывода для подключения заземляющих штырей, что является обязательным условием для таких конструкций влажных помещений, как установка для выращивания растений.
Я также настоятельно рекомендую соединитель, подходящий для конструкций влажных помещений. Но будьте осторожны, чтобы не использовать слишком прочный кабель — разъемы EB, которые я видел, поддерживают только одиночные выводы до 1 мм! Для цепей между EB и трубками я выбрал провод звонка диаметром 0,6 мм, который поставляется в рулоне длиной около 10 м с одним выводом. Я получил это в двух цветах, чтобы различать горячие и длинные провода — см. Раздел «Балласт» для объяснения этого.
Убедитесь, что вы не выбрали более тонкую проволоку, так как это будет означать большее сопротивление в проводе, большие потери тепла и меньше света.Внимательно прочтите информацию на своем EB о том, какой тип провода они предлагают использовать. Хорошей отправной точкой может стать сайт производителя.
Самодельная система освещения — План
Итак, вы определили место где-нибудь, чтобы начать выращивание перца чили в наступающем сезоне. Теперь, прежде чем бежать в хозяйственный магазин, нужно немного спланировать, как максимально использовать компоненты освещения и в то же время сохранить минимальные затраты.
Он начнется с измерения доступной площади и проверки того, что можно установить.
Как вы уже узнали, люминесцентные лампы имеют фиксированную мощность, указывающую на их размер — или размер указывает на мощность? ,) Просматривая несколько веб-сайтов производителя, вы заметите, что существует только четыре размера для T5 HO — 24 Вт с 549 мм, 39 Вт с 849 мм, 54 Вт с 1149 мм и 80 Вт с 1449 мм. Вам нужно будет добавить примерно 10-15 мм с каждой стороны трубки для розеток.
Вам следует максимально увеличить доступное пространство и выбрать длину, которая соответствует вашему пространству с самой длинной стороны.У меня есть гроубокс размером 70 см x 70 см, поэтому я вынужден использовать 24 Вт. Но, как вы убедитесь, при использовании Т5 и отражателей этого более чем достаточно для выращивания перца чили.
Теперь о расстоянии между трубками. Размещение трубок слишком близко друг к другу — потеря большого потенциала. Почему? Сначала их излучение перекрывается и дает участки с недостаточным освещением и участки с избытком. Во-вторых, это затрудняет или даже делает невозможным установку отражателей, которые должны устанавливаться отдельно для каждой трубки.Трубки не отражают свет, поэтому свет от двух слишком близких трубок будет теряться в пространстве между трубками.
Обратите внимание на равномерное расстояние между трубками. Я выбрал расстояние между лампами около 12 см, оставив 6 ламп по 24 Вт.
Каждая трубка излучает около 1900 лм, что на 100% может быть использовано для растений благодаря отражателям. Это дает мне 11,400 лм для съемки на площади 0,49 м². Он преобразован в Lux 23265Lx. Конечно, это совсем немного под трубками — интенсивность света быстро уменьшается по мере удаления от трубок.Но опять же, Т5 не нагревается, и трубки можно повесить всего на несколько сантиметров над самыми высокими побегами. Я рекомендую вам, если вы нашли установку фитинга, тогда нарисуйте план, чтобы у вас была надежная ссылка на будущее … это сэкономит вам много дополнительных поездок в хозяйственный магазин. Примерный план может выглядеть следующим образом:
Самодельная осветительная система — Компоненты
На следующем рисунке я разместил вместе компоненты, необходимые для создания системы освещения из шести трубок с каждой трубкой типа 24W HO. Единственное, чего не хватает, — это плата, на которую можно установить все, и два рулона сигнальной проволоки.
Компоненты 6-трубной системы HO 24 Вт
Полный список включает:
- 3x EB для 24 Вт T5
- 12 розеток T5 (G5)
- Крючки для подвешивания установки к потолку
- Кабельные зажимы для толстых проводов
- Провод звонка, по 10 м, желтый и красный
- Разъемы для установки в влажных помещениях
- Тяжелый кабель, 3-жильный
- Деревянная доска для крепления всего на
- Отражатели (не показаны)
- и винты, достаточно маленькие, чтобы пробить отверстия 1 и 2, а также достаточно длинные, чтобы поддерживать на плате
Инструменты, необходимые для сборки всего:
- Отвертки
- Сверло — сверло должно быть достаточно маленьким, чтобы шурупы не потеряли опоры в древесине
- Молоток
- Термоклей и «пистолет»
- Складная или выдвижная линейка
- Маркер
- Тестер валюты (в виде отвертки с лампочкой в ручке, светящейся при касании при наличии электричества)
Для деревянной доски настоятельно рекомендуется, чтобы доска не была слишком тонкой и качественной.В частности, отслаивающиеся доски, подобные тем, что можно найти в товарах из IKEA, совершенно непригодны, так как они больше одного раза не поддерживают винты. Например, однажды просверленное отверстие нехорошо вытаскивать его снова для внесения изменений, так как отверстие будет быстро расширяться. 1,5 — 2 см идеально, а
доска будет не слишком тяжелой, даже если она хорошего качества.
Не забывайте брать не слишком длинные винты, иначе вы, возможно, закрутите тот «последний» винт с одной стороны, который затем, по невезению, проткнет трубку или, что еще хуже, ЭБ.
Так что рядом с этим также важно спланировать, где разместить компоненты перед этим.
В целом я вложил от 160 до 180 евро во всю установку, но когда я проверяю цены на простые установки с двумя лампами в некоторых магазинах, я понимаю, что это все равно непобедимо, если основная проблема не в внешности. Если посмотреть в аквариумных магазинах, то комплекты только для двухтрубных систем, включая балласт и розетки, обычно начинаются где-то около 80 евро, в полностью собранном виде легко вложить вдвое больше.Также я знаю, что при некоторой осторожности система будет держать меня счастливым, по крайней мере, в следующие два сезона, без дополнительных покупок. Наконец, я ожидаю, что система окупит часть первоначальных затрат за счет экономии энергии, если я буду использовать обычный T8 или, что еще хуже, по энергии лампу на парах металла.
Самодельная система освещения — Genesis
Я начал с размышлений о периоде выращивания и меняющихся потребностях в освещении.
Я полагал, что на стадии прорастания не потребуется много света, и поэтому включения одного ЭБ с двумя трубками будет достаточно в течение первых нескольких недель, чтобы растения оставались густыми и короткими.Я хочу, чтобы растения на этом этапе находились прямо в центре моего гроубокса, так далеко от черных фольгированных стен того, что в конечном итоге станет моей зоной затопления. Так что сначала это должны были быть две самые внутренние лампы.
Затем план состоит в том, чтобы начать прореживание и разместить выживших по отдельным кубикам, заполняющим территорию. Поэтому, чтобы выровнять свет в коробке, я бы включил дополнительно внешние огни и так далее. Все это означало, что мне придется соединять каждую пару трубок через проводку для двух других пар.Это должно быть сделано под углом 90 °, согласно различной информации, которую я смог собрать на веб-сайте OSRAM. Пока без проблем. Я собрал трубку с двумя гнездами, чтобы получить их общую длину на будущее, и измерил плату, чтобы трубки располагались равномерно. Я отметил все точки, в которые мне позже пришлось прикручивать гнезда. Это важно для последующего измерения длины кабеля между трубками и ЭП.
Затем я подумал, что мне нужно работать с обеими сторонами платы, и обе стороны, безусловно, были довольно чувствительны к давлению, так как я решил разместить EB на верхней стороне платы, а гнезда с трубками на другой стороне, чтобы вода никогда не могла попасть. к драгоценному EB.
Я решил эту проблему, прикрутив крючки, на которые я собирался повесить все позже, и позволил им еще достаточно торчать, чтобы они были выше EB, и я мог безопасно поворачивать доски, не повредив EB, так как доска будет полностью опираться на четыре. кончики крючков.
Прикрутил ЭБ к плате и влез проводку к основному току. В моем EB есть два способа соединения проводов: один — протолкнуть провода в отверстие, которое плотно прилегает к проводу, если он достаточно толстый, и второй — протолкнуть провод через зазор в структуре, похожей на ножницы, которая прорежет немного проволоки.Оба требуют, чтобы изоляция от провода была зачищена примерно на 8 мм. Затем я закрепил провода кусачками для кабеля и подключил его, чтобы проверить, есть ли у ЭБ сок в цепях трубок. Все было хорошо, поэтому я отключил вилку от сети и приступил к выполнению более сложной проводки между ЭБ и лампами.
Проверьте схему, напечатанную на ЭБ, лучше трижды и запишите рядом с разъемами, куда в конечном итоге будет идти каждый кабель. Также пометьте все, чтобы вы всегда точно знали, где находится каждый кабель.Например, пронумеруйте трубки и EB — разъемы на EB уже пронумерованы. Итак, когда у вас есть кабель с именем «1,1,3», вы будете знать, что этот кабель принадлежит EB1 и tube1 и идет к разъему 3 на EB1. Конечно, не стесняйтесь изобретать свою собственную систему, используя то, что вам удобнее.
Обозначьте провода соответствующим образом, чтобы при повороте платы вы все еще знали, что это за кабель. И составьте план на бумаге с расположением EB и соответствующих трубок в соответствии с печатной схемой EB — лучше записать такого рода информацию один раз, чем потом ломать голову, пытаясь выяснить, почему эти проклятые трубки остаются. мертвых.
На картинке выше вы можете увидеть мой способ маркировки проводов. Вы также можете стать свидетелем того, что происходит, если вы недооцениваете мощь винта — если бы я ударил по чему-то важному, когда винт торчал из дерева спереди … мог бы стать фатальным, если бы остался незамеченным.
Так как я не переношу хаоса с проводами и рисков, которые возникают, если за ними не ухаживать, я решил сложить их заказанным способом. Для этого я обычно использую термоклей, который расплавляется как пистолет.Также называется горячим клеем. Я помещаю небольшую каплю везде, где хочу, чтобы кабель оставался плотным.
Окончательная разводка кабелей может выглядеть следующим образом:
По общему признанию, он не выглядит так аккуратно, как схема на материнской плате, но система загорелась почти сразу после установки потерянного провода и сейчас проверена как стабильная в течение двух недель по пару часов каждый день.
Всегда всегда проверяйте, что провода имеют достаточную длину, чтобы при повороте на другую сторону они были достаточно длинными, чтобы добраться до мест розеток, которые вы отметили ранее.Лучше оставить их немного подольше, чем пытаться сделать их правильными, потому что, как и в случае с парикмахером — короче всегда можно, а наоборот — нет. В любом случае, теперь осталось перевернуть плату и, наконец, установить розетки.
Из предыдущих шагов вы уже должны были разметить окончательную компоновку ваших трубок, а провода, идущие от EB, должны иметь достаточную длину. Поместите розетки на свои места и несколько раз проверьте, чтобы длина провода была достаточно длинной, чтобы сделать изгиб на основании розетки и подняться примерно на 1.5 см, затем перережьте проволоку.
Лучше проверить это дважды, а если вы не уверены, оставьте проволоку немного длиннее — опять же, вы не сможете заставить проволоку снова расти. Оторвите изоляцию с провода примерно на 5 мм и аккуратно вставьте их в отверстия в розетке. Обратитесь к своему плану, какой провод войдет в верхнюю часть розетки, а какой — в нижнюю. Вдавите провод в выходные отверстия на задней панели
.
гнездо и аккуратно закрутите гнездо.
После того, как все розетки установлены на свои места, наступил волшебный момент … окончательное просветление. Если вы все сделали правильно, пойдите и возьмите солнцезащитные очки — но не падайте, потому что, возможно, вы уже ослепли. Если некоторые лампы или все не включаются, не отчаивайтесь — просто перейдите к следующему разделу — Устранение неполадок.
Самодельная система освещения — Устранение неисправностей
Блин, после всей работы система не загорается? Пару раз подышите медленно, а затем приступайте к методической отладке.Для этого вам понадобится измеритель тока — устройство, похожее на отвертку с лампочкой в ручке, которая светится, когда кончик касается электропроводящего материала, когда кончик ручки также слегка касается.
Не бойтесь, при правильном обращении вы можете даже прикоснуться к розеткам в стене кончиком тестера без вреда для здоровья. Но будьте осторожны — если вы в чем-то не уверены и / или не знаете, что делаете, попросите кого-нибудь подписаться на список, который знает это — электричество может и убьет вас, если представится такая возможность.
В противном случае выполните следующие шаги:
- Подключите систему. Проверьте с помощью тестера на разъемах главной цепи, есть ли ток — Нет, отключите и проверьте розетки в стене, а также, возможно, главный кабель поврежден или неправильно подключен. Повторите с 1. Да, перейдите к 2.
- Проверить разъемы цепи трубки на наличие тока. Лампа в тестере не будет гореть так ярко, как в основной цепи, поскольку ток, исходящий из ЭП, слабее, но она все равно должна гореть, когда все в порядке.Проверьте, не ослаблены ли кабели в EB.
- Нет, если 2. прошел, то придется откусить кислое яблоко и вернуть ЭБ для другого. Да, перейдите к 4.
- Убедитесь, что все системы отключены, и ослабьте винты из гнезд. Снова подключите систему и проверьте, идет ли питание по проводу, воткнув тестер в свободное место кабельного соединителя в основании розетки, одновременно работая только с одной розеткой. Убедитесь, что к розетке подключено достаточно неизолированного провода.В случае обрыва провода ничего не остается, как полностью заменить провод.
Проверка основных кабелей
Проверка контуров трубок
Конечно, если у вас есть комплект для электрических испытаний, вы можете использовать его для проверки проводимости проводов.
Заявление об ограничении ответственности
Это руководство составлено на основе моих знаний. Я сделал все, что описано здесь, также самостоятельно, но, поскольку я не являюсь официальным инженером-электриком, я отказываюсь от любой ответственности в случае, если кто-то беззаботно возится с электричеством.В любом случае, если нет базового понимания электричества и возможных опасностей, я настоятельно рекомендую проконсультироваться с кем-нибудь, кто знает.
Фото и текст: Серж Адамовски
Управление небольшой люминесцентной лампой с постоянным током
Управление небольшой люминесцентной лампой с постоянным током
Я представляю здесь необычную схему для управления небольшой люминесцентной лампой с постоянным током.
Его использование очень ограничено и определенно не так хорошо, как у традиционного переменного тока.
схемы «стартера и балласта», но в дидактических целях я все еще
нахожу это интересным альтернативным и необычным способом соединения этих
лампы.
Люминесцентные лампы состоят из двух электродов в атмосфере низкого давления.
состоит из смеси газов; обычно пары аргона и ртути.
Когда трубка выключена, она ведет себя как изолятор, пока напряжение между
его электроды поднимаются выше порогового значения, называемого напряжением удара (или
пусковое напряжение или ионизирующее напряжение ).
Фактическое значение зависит от многих факторов, таких как состав газа, давление газа,
материал электрода, температура электрода и т. д.Без предварительного нагрева электродов оно может составлять всего несколько сотен вольт.
для небольших трубок и до нескольких десятков киловольт для длинных трубок.
Обычно электроды предварительно нагревают, чтобы снизить пусковое напряжение на
примерно в десять раз, но здесь это не то, что делается.
При достижении пускового напряжения газ ионизируется, запускается ток.
течет и создается свет.
Напряжение между электродами падает до низкого значения, где-то между 30
и 100 В, в зависимости от длины трубки и состава
газ внутри.Ток должен быть ограничен цепью балласта, чтобы лампа оставалась в рабочем состоянии.
номинальная мощность и предотвратить его перегрузку.
Принципиальная схема драйвера лампы.
Люминесцентные лампы почти всегда питаются от сети переменного тока, но в этой схеме используются
ОКРУГ КОЛУМБИЯ.
По сути, эта схема представляет собой удвоитель напряжения, состоящий из двух диодов 1N4007.
и два высоковольтных электролитических конденсатора по 10 мкФ 350 В.Такие конденсаторы легко утилизировать из компактных люминесцентных ламп.
Когда лампа выключена, диоды выпрямляются и удваивают
230 В AC сеть, вырабатывающая около 650 В DC на
электроды лампы.
Это напряжение достаточно высокое, чтобы напрямую запустить люминесцентную лампу малой мощности.
без предварительного нагрева электродов.
Он отлично работает и с лампами на 4 Вт, и со многими лампами на 8 Вт, но с 12 Вт.
лампы сложны и не всегда запускаются надежно.Я пытался соединить оба вывода каждого электрода вместе или только по одному на каждый
электрод без заметной разницы.
Даже если бы я не пробовал, сомневаюсь, что эта схема будет работать с
120 В AC сеть, так как простого удвоителя, вероятно, недостаточно для
генерировать высокое напряжение, чтобы ударить по трубке.
Как только лампа загорится и ток начнет течь, два 470 нФ
конденсаторы действуют как балласт: они ограничивают ток и понижают напряжение, поэтому
что трубка может работать безопасно.Когда он включен, напряжение между электродами трубки 4 Вт составляет около
30 В.
Почему два конденсатора по 470 нФ параллельно?
Просто потому, что у меня под рукой не было 1 мкФ.
Резистор 1 МОм и два резистора 470 кОм действуют как
стравливающие резисторы для разряда конденсаторов при переключении цепи
выключенный.
Имейте в виду, что энергия, запасенная в этих конденсаторах, может быть
смертельный; , даже с установленными дренажными отверстиями, будьте предельно осторожны с этим
цепь, так как резистор может быть сломан.Поскольку лампа напрямую подключена к электросети, прикасаться к любой части необходимо.
избегать, и нужно быть очень осторожным.
Как обычно, попробуйте эту схему, только если вы знаете, что делаете, и по адресу ваш
на свой страх и риск .
Не забудьте прочитать мой отказ от ответственности.
Резистор 82 Ом используется для уменьшения скачка пускового тока при
цепь сначала включается, и все конденсаторы все еще разряжены.
Поскольку эта схема не нагревает электроды, запуск трубки может быть
трудно, если лампа старая или слишком длинная.Удивительно, но прикосновение к трубке одной рукой может помочь, и я могу начать
Трубка 22 Вт, коснувшись стекла одним концом и потянув за руку
трубка.
Но будьте особенно осторожны и просто дотроньтесь до стеклянной части трубки: все части
находятся под высоким напряжением и напрямую подключены к электросети: делайте это самостоятельно
риск.
Заметив, что прикосновение к трубке рукой помогло начать долгую работу.
трубки, я играл с металлической пластиной вдоль трубки, которую я подключил к земле.Это немного помогает (не знаю почему), но чудес не творит.
Фотографии лампы. (нажмите, чтобы увеличить).
Когда лампа горит, можно заметить, что отрицательный электрод (в
рисунок слева) темнее положительного: это связано с
Темная зона Фарадея , типичная для газовых разрядов низкого давления, то есть
Виден только при питании трубки постоянным током.
Как я уже сказал, это красивая, необычная, забавная и опасная трасса.
Определенно поучительно, чтобы узнать, как работают люминесцентные лампы, но недостаточно, чтобы
заменить обычную цепь балласта переменного тока.
Все, что вам нужно знать о светодиодных лампах
Замена люминесцентных ламп на светодиодные может быть запутанным и пугающим процессом. Мы составили это руководство, чтобы прояснить все тонкости замены люминесцентных ламп на светодиодные ламповые.
1) Преимущества светодиодных трубок перед люминесцентными
Многие преимущества светодиодных трубок по сравнению с люминесцентными лампами описаны достаточно подробно, поэтому мы не будем углубляться в подробности, но три основных преимущества:
- Более высокая эффективность , экономия энергии (до 30-50%)
- Более длительный срок службы (обычно 50 тыс. часов)
- Без ртути
2) Размеры люминесцентных ламп и модернизация светодиодных ламп
Поскольку люминесцентные светильники устанавливаются часто в потолки и подключены непосредственно к электросети, они относительно дороги и их трудно заменить полностью.
В результате часто бывает наиболее экономичным просто использовать тот же люминесцентный светильник, но заменить люминесцентную лампу на светодиодную лампу.
Таким образом, важно понимать, какие типы люминесцентных ламп были разработаны, чтобы правильно установить светодиодную лампу на место.
За прошедшие годы производители люминесцентных ламп разработали множество различных размеров и типов.
- T8 4 фута: 4-футовые люминесцентные лампы T8 сегодня являются наиболее часто используемым типом.Их длина составляет 48 дюймов, а диаметр лампы — 1 дюйм.
- T12 4 фута: 4-футовые люминесцентные лампы T12 менее эффективны по сравнению с лампами T8. Они такой же длины, как лампы T8, но имеют больший диаметр лампы на 1,5 дюйма.
- T5 4 фута: Четырехфутовые люминесцентные лампы T5 обычно являются наиболее эффективными, а также одними из новейших типов ламп, представленных в 2000-х годах в США. Обычно они обозначаются T5HO (высокая мощность) и обеспечивают большую яркость, чем их аналоги T8.Они немного короче четырех футов (45,8 дюйма). Лампы T5 бывают различной длины, например, 1 фут, 2 фута и 3 фута, и обычно используются в непотолочных светильниках, таких как настольные лампы.
Трубки T8 и T12 также доступны с другой длиной, например, 8-футовые трубы, но 4-футовые трубы остаются наиболее распространенными типами. Светодиодные ламповые лампы
повторяют механические размеры, чтобы гарантировать, что они могут быть настоящей заменой при модернизации, и имеют те же названия форм-факторов (например,грамм. 4-футовый светодиодный трубчатый светильник T8).
Крепления T8 и T12 обычно имеют одинаковую длину и используют одни и те же штыри, поэтому механически они обычно перекрестно совместимы.
Светильники T5 НЕ совместимы с лампами T8 и T12 из-за их различных размеров штырей и фактической длины.
3) Люминесцентные балласты и модернизация светодиодных ламп
Во всех люминесцентных лампах используется устройство, называемое балластом, для регулирования яркости лампы по мере ее нагрева. Эти устройства необходимы для люминесцентных ламп и отличаются от ламп накаливания, которые можно подключать непосредственно к электросети.
В светильниках люминесцентных ламп обычно балласт находится внутри светильника, и доступ к нему без снятия светильника с потолка невозможен. Переделки балласта люминесцентных ламп должны выполняться только лицами, которые хорошо разбираются в электромонтажных работах.
Source
Люминесцентные лампы T5, T8 и T12 работают немного по-разному и, следовательно, имеют разные типы люминесцентных балластов.
Светодиодные лампы, с другой стороны, работают иначе, чем люминесцентные лампы, и не используют балласт (но используют электронные компоненты, составляющие драйвер светодиода).
Ранние светодиодные ламповые лампы требовали удаления или обхода люминесцентного балласта. Теперь многие светодиодные ламповые лампы совместимы с люминесцентными балластами, что позволяет легко заменить люминесцентную лампу без повторного подключения проводки. Ниже мы обсудим общие термины, используемые для каждой из этих конфигураций.
3A) Светодиодный трубчатый светильник UL типа A — Совместимость с балластом
Обычно конструкция «UL Type A» — эти светодиодные трубчатые лампы совместимы с люминесцентными балластами.Они наиболее просты в использовании, поскольку не требуют переналадки люминесцентного светильника.
Светодиодная трубка UL типа A по существу ведет себя так же, как люминесцентная лампа, и ее легко заменить.
Идеально подходит для: Потребители, которые не чувствуют себя комфортно или предпочитают избегать электромонтажных работ, осветительных установок, где затраты на оплату труда электриков высоки.
Недостатки : люминесцентные балласты могут выйти из строя, требуя постоянного обслуживания и возможной замены или обхода балласта; потенциальные проблемы с совместимостью люминесцентных балластов; более низкий общий электрический КПД из-за балласта.
3B) Светодиодные трубчатые лампы UL типа B — байпас балласта
Светодиодные трубчатые лампы со спецификацией «UL типа B» несовместимы с люминесцентными балластами. Они не могут использоваться с люминесцентным балластом и должны быть подключены непосредственно к электросети. Однако светодиодный драйвер встроен в саму светодиодную трубку.
Светодиодные лампы UL типа B можно разделить на одно- и двухсторонние.
В односторонней конфигурации используются только два контакта на одном конце трубки (один контакт = ток, один контакт = нейтраль), а два контакта на другом конце электрически не работают и используются только для удерживая лампу на месте.
Для несимметричных конфигураций важно направление установки лампы — неправильная конфигурация может привести к тому, что лампа не загорится, или к потенциально опасному возгоранию. В односторонних конфигурациях на одном конце трубки обычно имеется наклейка с надписью «AC INPUT» или аналогичной. Некоторые несимметричные конфигурации могут принимать питание с любого конца.
В двусторонней конфигурации два контакта на каждой стороне трубки имеют одинаковую полярность.Следовательно, патроны на одном конце трубки должны быть подключены к [нейтрали], а другой — к [плюсу].
Идеально подходит для: инсталляций, в которых возможно изменение электропроводки; более высокая эффективность и более низкие затраты на обслуживание.
Недостатки : требуется комфорт и знания в области электропроводки и электробезопасности.
3C) Светодиодная трубка UL типа C — дистанционный драйвер
Светодиодные трубки UL типа C относительно редки, но обеспечивают наибольшую гибкость и эффективность для системы освещения.В отличие от светодиодных трубок UL типа B, в них отсутствует светодиодный драйвер, встроенный в светодиодную трубку, и поэтому требуется отдельное устройство светодиодного драйвера, которое должно быть подключено между светодиодной трубкой и электросетью.
Идеально для: минимальных затрат на обслуживание, поскольку драйверы светодиодов можно заменить без замены всей светодиодной трубки; дополнительные параметры драйвера светодиодов, такие как регулировка яркости 0-10 В и другие возможности подключения к Интернету вещей.
Недостатки : Требуется больше всего электромонтажных работ, так как люминесцентный балласт необходимо удалить, а затем заменить драйвером светодиода.
3D) Шунтированные и нешунтированные надгробия
Надгробия — это «розетки» или патроны, в которые будут устанавливаться светодиодные ламповые лампы, обеспечивающие как механическую поддержку, так и электрический ток.
Надгробные плиты имеют два электрических контакта, соответствующих двум контактам люминесцентной / светодиодной лампы. Два электрических контакта могут быть:
i) не подключены к какому-либо источнику электроэнергии
ii) один подключен к току, другой подключен к нейтрали
iii) оба подключены к фазе или нейтрали
Сценарий ii) называется без -shunted, в то время как сценарий iii) называется shunted.«Шунтирование» относится к объединению двух отдельных цепей в одну. В результате шунтирования оба контакта надгробного камня имеют одинаковую электрическую полярность.
В общем, люминесцентные светильники, которые никогда не заменялись светодиодами или балластами с мгновенным запуском , имеют нешунтированные надгробные плиты , в то время как те, которые были заменены на светодиоды или балласты с мгновенным запуском , могли иметь шунтированные надгробные плиты .
Иногда надгробные плиты шунтируются снаружи, как показано на фотографии выше, где вводы проводов открыты только с одной стороны.Однако в некоторых случаях надгробные плиты можно шунтировать изнутри, когда вводы проводов с обеих сторон открыты, но соединены внутри надгробия.
Поскольку некоторые надгробные плиты внутренне шунтируются, визуальная проверка надгробий не дает окончательного результата. Мы настоятельно рекомендуем проверить два контакта надгробия с помощью вольтметра, чтобы определить, существует ли замкнутая или разомкнутая цепь. Замкнутая цепь укажет на шунтированные надгробия.
3E) Определите, совместим ли ваш светодиодный трубчатый светильник с шунтированной или нешунтированной конфигурацией надгробных плит.
Если ваш светодиодный трубчатый светильник является односторонним, он НЕ совместим с шунтированными надгробиями.Это связано с тем, что каждый из двух контактов в надгробной плите должен иметь противоположную полярность, чтобы однотактный светодиодный ламповый светильник работал. Однако в случае шунтированного надгробия это невозможно из-за внутреннего короткого замыкания.
Если у вас шунтированные надгробия, вам нужно будет перемонтировать или заменить их и соединить в соответствии со схемой проводки производителей однотактных светодиодных трубок.
Если ваша светодиодная трубка является двусторонней, она, вероятно, совместима как с шунтированными, так и с шунтированными надгробиями.Причина в том, что два контакта на каждом конце светодиодной трубки имеют одинаковую полярность, поэтому, шунтируются они или нет, не должно влиять на окончательную результирующую схему.
Имейте в виду, что в этом разделе обсуждается, является ли само надгробие шунтированным или не шунтируемым — обязательно правильно подключите провода к надгробной плите, чтобы они соответствовали электрической схеме производителя, чтобы обеспечить безопасную установку.
3F) Что делать, если вы не хотите обо всем этом беспокоиться?
Установка светодиодной трубки неправильного типа может привести к преждевременным отказам и потенциально опасным коротким замыканиям и пожару.
Мы рекомендуем искать светодиодные лампы, которые совместимы с любой из потенциальных электрических конфигураций люминесцентного светильника, например, светодиодные лампы 3-в-1 Waveform Lighting T8.
Обычно называемые совместимыми 3-в-1, эти светодиодные трубки совместимы с любой из следующих конфигураций:
i) Без удаления люминесцентного балласта (UL типа A / совместимость с балластом)
ii) С удалением или обходом люминесцентного балласт (UL тип B / байпас балласта) и шунтированные или нешунтированные надгробные плиты (двусторонние)
iii) с удалением или обходом флуоресцентного балласта (UL тип B / байпас балласта) и нешунтированные надгробные плиты (односторонние)
4) Фотометрические характеристики светодиодных трубчатых ламп — цветовая температура (CCT), люмены и индекс цветопередачи (CRI)
Обычно называемые основными фотоэлектрическими характеристиками, также важно, чтобы качество излучаемого света было таким же или превышало качество вашего текущего освещения люминесцентными лампами.
Коррелированная цветовая температура (CCT)
Большинство люминесцентных ламповых ламп имеют коррелированную цветовую температуру (CCT) 4000K или 5000K, поскольку они считаются наиболее подходящими для розничной торговли и офисных помещений соответственно. Однако за последние годы многие разработки люминесцентных ламп позволили использовать широкий диапазон цветовых температур.
Точно так же доступны светодиодные трубчатые лампы с широким диапазоном цветовых температур. Как правило, внешний вид светодиодной трубки и люминесцентной лампы с одинаковым рейтингом цветовой температуры будет одинаковым.
Световой поток
Световой поток, измеряемый в люменах, измеряет общее количество света, излучаемого лампой, и является наилучшей мерой для определения яркости лампы.
Лучший способ сравнить яблоки с яблоками — это сравнить значение светового потока люминесцентной лампы со светодиодной трубкой. Обычно люминесцентная лампа T8 мощностью 35 Вт излучает около 2500 люмен.
Одна вещь, которую следует отметить в светодиодных ламповых лампах, заключается в том, что они имеют тенденцию направлять свет вниз, а не на полные 360 градусов в люминесцентных лампах.Следовательно, при установке в потолочный светильник светодиодный трубчатый светильник может обеспечить более полезный световой поток, поскольку свет направлен вниз, а не обратно в светильник, как в люминесцентной лампе.
Индекс цветопередачи (CRI)
Индекс цветопередачи (CRI) измеряет степень, в которой цвета объектов выглядят точными и точными под источником света. Большинство люминесцентных ламп имеют индекс цветопередачи около 80, и большинство светодиодных ламп также имеют индекс цветопередачи около 80. 80 CRI приемлем для большинства приложений, но для улучшенного качества цвета и сред, где цветовое восприятие важно, ищите более высокий рейтинг CRI в светодиодной трубке.
5) Стоимость и финансирование светодиодных трубок
Наконец, мы немного поговорим о расходах, которые необходимо учитывать при покупке светодиодных трубок. В последние годы цена на светодиодные трубчатые лампы снизилась до уровня, позволяющего конкурировать с люминесцентными лампами, поэтому закупочная цена ламп делает светодиодные ламповые лампы очень привлекательным вариантом.
Если, однако, выбранная вами светодиодная трубка не является лампой UL типа A, вы понесете затраты на ремонт электрической проводки. Для крупной или коммерческой установки эти затраты могут быть значительными в зависимости от сложности изменения проводки, необходимой для люминесцентного светильника.Как правило, на каждый 4-ламповый люминесцентный прибор у квалифицированного электрика может уйти 15-25 минут.
Если предположить, что электрику, заряжающему 100 долларов в час, требуется час, чтобы выполнить перемонтаж трех люминесцентных светильников с 4 лампами, мы можем рассчитать затраты на рабочую силу более 8 долларов на лампу. Вы можете увидеть, как затраты на рабочую силу быстро увеличивают первоначальную стоимость проекта, добавляя привлекательности светодиодных ламповых светильников, совместимых с UL типа A.
Подсчитайте, сколько затрат на электроэнергию и техническое обслуживание сэкономят светодиодные ламповые лампы, и определите период окупаемости.Как правило, чем короче, тем лучше!
Также следует учитывать гарантийные условия производителя. В идеале период окупаемости короче гарантии, так как таким образом вы застрахованы от любых преждевременных отказов продукта, которые ставят под угрозу экономию затрат при использовании светодиодных ламп.
Следует ли выключать люминесцентные лампы, выходя из комнаты?
Должен ли я выключать флуоресцентный свет при выходе из комнаты?
Краткий ответ: Выключите их, если вы отсутствуете более 15 минут.Но …
Существует несколько неправильных представлений о флуоресцентном освещении, из-за которых слишком многие люди не могут выключать свет для экономии энергии. Первое заблуждение состоит в том, что для включения люминесцентной лампы требуется больше энергии, чем для ее запуска. Второе заблуждение заключается в том, что включение и выключение люминесцентного света сразу же его изнашивает. Как и во многих наших мифах об энергии, в этой вере есть доля правды. (Особая благодарность Стиву Селковичу из Национальной лаборатории Лоуренса Беркли за исследование, на котором была основана эта статья.)
Заблуждение № 1
Для запуска люминесцентного светильника требуется больше энергии, чем для его работы, поэтому оставляйте свет постоянно включенным, чтобы сэкономить деньги на счетах за электроэнергию.
Реальность
Когда вы включаете люминесцентную лампу (правильно называемую «лампой»), происходит очень короткий скачок тока, когда балласт заряжает катоды и вызывает запуск лампы. Этот бросок тока может во много раз превышать нормальный рабочий ток лампы.Однако всплеск потребления тока обычно длится не более 1/10 секунды и потребляет примерно 5 секунд нормальной работы. Таким образом, если вы выключаете и включаете люминесцентную лампу чаще, чем каждые 5 секунд, вы будете использовать больше энергии, чем обычно. Итак, нормальное переключение люминесцентных ламп очень, очень , очень мало влияет на счет за электроэнергию.
Заблуждение № 2
Выключение и включение люминесцентных ламп сразу же изнашивает их.
Реальность
Электрические фонари имеют опубликованный рейтинг ожидаемого срока службы. Этот рейтинг исчисляется сотнями часов для многих ламп накаливания и тысячами часов для большинства люминесцентных ламп. Срок службы люминесцентных ламп зависит от того, сколько часов они остаются включенными при каждом включении. Это обычно называется «временем горения», а для люминесцентных ламп время горения составляет три часа.
Каждый раз, когда включается люминесцентный свет, небольшое количество покрытия на электродах выгорает.