Калькулятор расчета сечения кабеля по нагрузке
При выборе кабеля для питания электрических устройств важно правильно рассчитать площадь поперечного сечения его
жилы. Если этого не сделать и проложить проводку «на глаз», результат может оказаться плачевным, вплоть до пожара.
Когда сечение кабеля не соответствует нагрузке на линию, владелец в любом случае оказывается в проигрыше.
- Слишком толстый провод – это большая переплата, если только не планируется существенно нагружать кабель
дополнительными приборами в дальнейшем. Некоторый запас сечения должен быть обязательно, но увеличивать его
значительно смысла нет. - Слишком тонкий провод – потенциальный источник пожара. Если длительный ток, проходящий по линии, превышает
допустимое значение для конкретного сечения, металлическая жила будет нагреваться. Повышение температуры кабеля
приведет к разрушению изоляционной оболочки и риску воспламенения расположенных рядом материалов.
Расчет сечения кабеля по нагрузке можно выполнить с помощью готовой таблицы, программы-калькулятора в режиме
онлайн или по формуле.
Калькулятор расчета сечения по нагрузке
С целью упростить задачу
проектировщиков электрических линий и электриков разработан онлайн-калькулятор. Сервис позволяет в автоматическом
режиме вычислять ток потребления электрических приборов. Для этого необходимо ввести в соответствующие поля значение
суммарной мощности всех устройств в ваттах и значение напряжения питания в вольтах.
Перевод Ватт в Ампер | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Расчет максимальной длины кабельной линии | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
добавить | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Примечания: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Данные о мощности обычно указываются в технической документации к прибору, а иногда и на бирке/пластине,
которая крепится на одной из его внутренних сторон. Информацию о напряжении питания можно отыскать там же, обычно
это значение составляет 12, 24, 220 или 380 В.
После того, как калькулятор расчета нагрузки кабеля по сечению
помог определить ток, можно перейти к расчету площади поперечного сечения жилы с помощью таблицы или формулы.
Выбор по таблице
Зная токовую нагрузку на линию, определить площадь поперечного сечения жилы провода можно
шаблонным способом. Для этого предусмотрена уже готовая таблица расчета сечения кабеля в зависимости от нагрузки на
предполагаемую проводку.
В воздухе (лотки, короба,пустоты,каналы) | Сечение,кв.мм | В земле | |||||||||
Медные жилы | Алюминиевые жилы | Медные жилы | Алюминиевые жилы | ||||||||
Ток. А | Мощность, кВт | Тон. А | Мощность, кВт | Ток, А | Мощность, кВт | Ток. А | Мощность,кВт | ||||
220 (В) | 380 (В) | 220(В) | 380 (В) | 220(В) | 380 (В) | 220(В) | |||||
19 | 4. 1 | 17.5 | 1,5 | 77 | 5.9 | 17.7 | |||||
35 | 5.5 | 16.4 | 19 | 4.1 | 17.5 | 7,5 | 38 | 8.3 | 75 | 79 | 6. 3 |
35 | 7.7 | 73 | 77 | 5.9 | 17.7 | 4 | 49 | 10.7 | 33.S | 38 | 8.4 |
*2 | 9.7 | 77.6 | 37 | 7 | 71 | 6 | 60 | 13. 3 | 39.5 | 46 | 10.1 |
55 | 17.1 | 36.7 | 47 | 9.7 | 77.6 | 10 | 90 | 19.8 | S9.7 | 70 | 15.4 |
75 | 16.5 | 49.3 | 60 | 13. 7 | 39.5 | 16 | 115 | 753 | 75.7 | 90 | 19,8 |
95 | 70,9 | 67.5 | 75 | 16.5 | 49.3 | 75 | 150 | 33 | 98.7 | 115 | 75.3 |
170 | 76. 4 | 78.9 | 90 | 19.8 | 59.7 | 35 | 180 | 39.6 | 118.5 | 140 | 30.8 |
145 | 31.9 | 95.4 | 110 | 74.7 | 77.4 | 50 | 775 | 493 | 148 | 175 | 38. 5 |
ISO | 39.6 | 118.4 | 140 | 30.8 | 97.1 | 70 | 775 | 60.5 | 181 | 710 | 46.7 |
770 | 48.4 | 144.8 | 170 | 37.4 | 111.9 | 95 | 310 | 77. 6 | 717.7 | 755 | 56.1 |
760 | 57,7 | 171.1 | 700 | 44 | 131,6 | 170 | 385 | 84.7 | 753.4 | 795 | 6S |
305 | 67.1 | 700.7 | 735 | 51. 7 | 154.6 | 150 | 435 | 95.7 | 786.3 | 335 | 73.7 |
350 | 77 | 730.3 | 770 | 59.4 | 177.7 | 185 | 500 | 110 | 379 | 385 | 84.7 |
По таблице можно узнать площадь поперечного сечения жилы по токовой нагрузке с учетом таких параметров:
- мощность электроприборов;
- напряжение в сети;
- металл, из которого изготовлен кабель;
- метод монтажа проводки.
Зная эти данные, можно быстро определить искомое сечение.
Формула расчета
Чтобы вычислить сечение
кабеля по нагрузке с помощью формул, необходимо правильно определить силу тока, который будет проходить по линии.
Как правило, питание прокладывается не для одного устройства, поэтому для начала нужно просуммировать мощности всех
приборов:
Формулы расчета токовой нагрузки
для однофазной (220 В) и трехфазной (380 В) сети отличаются.
Для однофазной линии:
Для трехфазной линии:
В этих
формулах:
Р – мощность всех электрических устройств;
КS – коэффициент одновременности;
U – напряжение в электрической сети;
cosφ = 1 для бытовых приборов.
Формула расчета сечения кабеля по
нагрузке позволяет вычислить искомое значение на основе полученных данных.
В этой формуле:
L – длина кабеля;
I – токовая нагрузка на линию;
Uнач –
напряжение питания;
Uкон – минимальное напряжение электроприборов;
ρ – удельное сопротивление
металлов: для меди – 0,0175 Ом×мм2/м, для алюминия – 0,028 Ом×мм2/м.
Обычно формулы
применяются в ситуациях, когда требуется повышенная точность вычислений.
Коэффициенты
При вычислении
токовой нагрузки на однофазную сеть (220 В) применяется коэффициент одновременности. Он введен в расчеты, поскольку
все подключенные к электрической сети устройства практически никогда не используются одновременно. Этот коэффициент
не имеет единственного значения и варьируется в зависимости от общего числа электроприборов.
Так, в жилых
зданиях при наличии 50 и более устройств применяется коэффициент, равный 0,4. Если же количество электрических
приборов лежит в пределах от 5 до 9 единиц, KS = 0,78.
Число нижележащих потребителей | Коэффициент одновременности(ks) |
2-4 | 1 |
5-9 | 0. 78 |
10 -14 | 0.63 |
15 -19 | 0.53 |
20-24 | 0.49 |
25-29 | 0.46 |
30 — 34 | 0.44 |
35-39 | 0.42 |
40-49 | 0.41 |
50 и более | 0.40 |
Примеры
Пример А. Произвести расчет площади поперечного сечения жилы медного кабеля
длиной 65 м для питания электроприборов от однофазной сети. Минимальное рабочее напряжение устройств – 207 В. К
линии будут подключены такие приборы: бойлер (2000 Вт), стиральная машина (2500 Вт), освещение (950 Вт), холодильник
(500 Вт), компьютер (400 Вт), телевизор (240 Вт), электрочайник (1500 Вт), утюг (1800 Вт), микроволновая печь (1100
Вт), пылесос (1600 Вт), фен (2000 Вт).
В первую очередь следует вычислить суммарную мощность всех
электроприборов:
Затем, зная суммарную мощность, необходимо
найти токовую нагрузку на однофазную сеть. Учитывая количество электроприборов (11 единиц), коэффициент
одновременности будет равен 0,63.
Все данные для расчета сечения кабеля по
токовой нагрузке известны:
Таким образом, площадь сечения медного провода для заданных условий должна быть не менее 7,3
мм2.
Пример Б. Вычислить минимальную площадь сечения алюминиевого провода для
монтажа однофазной электрической линии длиной 70 м в жилом доме. К сети будет подключено 8 приборов общей мощностью
8,3 кВт. Минимальное напряжение их работы – 207 В.
Поскольку суммарная мощность электроприборов и их
количество известны, можно сразу же рассчитать нагрузку по току. Коэффициент одновременности составит 0,78.
По формуле расчета площади сечения провода можно вычислить искомый
параметр:
Для прокладки электрической линии
с заданными условиями необходим кабель с площадью сечения жилы не менее 8,9 мм2.
Как рассчитать и выбрать сечения кабеля квартирной электросети?
Для долговечной и надежной работы электропроводки необходимо правильно выбрать сечение кабеля. Для этого нужно рассчитать нагрузку в электросети. При проведении расчетов нужно помнить, что расчет нагрузки одного электроприбора и группы электроприборов несколько разнятся.
Расчет токовой нагрузки для одиночного потребителя
Выбор автомата защиты и расчет нагрузки для одиночного потребителя в квартирной сети 220 В довольно прост. Для этого вспоминаем главный закон электротехники – закон Ома. После чего установив мощность электроприбора (указывается в паспорте на электроприбор) и задавшись напряжением (для бытовых однофазных сетей 220 В) рассчитываем ток, потребляемый электроприбором.
Например, бытовой электроприбор имеет напряжение питания 220 В и паспортную мощность 3 кВт. Применяем закон Ома и получаем Iном = Рном/Uном = 3000 Вт/220 В = 13,6 А. Соответственно для защиты данного потребителя электрической энергии необходимо установить автоматический выключатель с номинальным током в 14 А. Поскольку таких не существует, то выбирается ближайший больший, то есть с номинальным током в 16 А.
Расчет токовой нагрузки для групп потребителей
Так как питание потребителей электроэнергии может осуществляться не только индивидуально, но и по группам, становится актуальным вопрос расчета нагрузки группы потребителей, так как они будут подключатся к одному автоматическому выключателю.
Для расчета группы потребителей вводят коэффициент спроса Кс. Он определяет вероятность одновременного подключения всех потребителей группы в течении длительного времени.
Значение Кс = 1 соответствует одновременному подключению всех электроприборов группы. Естественно, что включение одновременно всех потребителей электроэнергии в квартире вещь крайне редкая, я бы сказал невероятная. Существуют целые методики расчета коэффициентов спроса для предприятий, домов, подъездов, цехов и так далее. Коэффициент спроса квартиры будет различаться для разных комнат, потребителей, а также во многом будет зависеть от стиля жизни жильцов.
Поэтому расчет для группы потребителей будет выглядеть несколько сложнее, так как необходимо учитывать этот коэффициент.
Ниже в таблице приведены коэффициенты спроса для электроприборов небольшой квартиры:
Коэффициент спроса будет равен отношению приведённой мощности к полной Кс квартиры = 2843/8770 = 0,32.
Рассчитываем ток нагрузки Iном = 2843 Вт/220 В = 12,92 А. Выбираем автомат на 16А.
По приведенным выше формулам мы рассчитали рабочий ток сети. Теперь необходимо выбрать сечение кабеля для каждого потребителя или групп потребителей.
ПУЭ (правила устройств электроустановок) регламентирует сечение кабеля для различных токов, напряжений, мощностей. Ниже приведена таблица из которой по расчетной мощности сети и току выбирается сечение кабеля для электроустановок с напряжением 220 В и 380 В:
В таблице приведены только сечения медных проводов. Это связано с тем, что алюминиевые электропроводки в современных жилых домах не прокладываются.
Также ниже приведена таблица с номенклатурой мощностей бытовых электроприборов для расчета в сетях жилых помещений (из нормативов для определения расчетных нагрузок зданий, квартир, частных домов, микрорайонов).
Типичный вариант выбора сечения кабеля
В соответствии с сечением кабеля применяют автоматические выключатели. Чаще всего используют классический вариант сечения проводов:
- Для цепей освещения сечения 1,5 мм2;
- Для цепей розеток сечения 2,5 мм2;
- Для электроплит, кондиционеров, водонагревателей – 4 мм2;
Для ввода в квартиру питания используют 10 мм2 кабель, хотя в большинстве случаев хватает и 6 мм2. Но сечение 10 мм2 выбирается с запасом, так сказать с расчетом на большее количество электроприборов. Также на входе устанавливается общее УЗО с током отключения 300 мА – его назначение пожарное, так как ток отключения слишком великим для защиты человека или животного.
Для защиты людей и животных применяют УЗО с током отключения 10 мА или 30 мА непосредственно в потенциально небезопасных помещениях, таких как кухня, ванна, иногда комнатные группы розеток. Осветительная сеть, как правило, УЗО не снабжается.
Нагрузки на провода и тросы
Страница 3 из 37
Расчетные условия. Нагрузки на провода и тросы
Выбор расчетных климатических условий для воздушных линий, сооружаемых на территории России, производится с использованием карт районирования территории по гололеду и ветру [13].
Провода и тросы, подвешенные на опорах воздушных линий электропередачи, находятся под постоянным действием равномерно распределенной по длине статической нагрузки от собственного веса. Кроме того, на них могут действовать дополнительные нагрузки — вертикальная от гололеда и горизонтальная от ветра.
Вертикальная нагрузка от веса гололеда обычно вызывает наибольшие усилия в проводах, действует не постоянно, а при неблагоприятных атмосферных условиях. Она может существовать длительное время, поэтому ее считают основной при расчете проводов. Распределение гололеда по проводу не бывает строго равномерным. Учесть неравномерность не представляется возможным, поэтому такую нагрузку считают равномерно распределенной по длине провода.
Горизонтальная нагрузка от ветра, так же, как и нагрузка от гололеда, вызывает большие усилия в проводе, поэтому учитывается в расчетах. Неравномерность скоростного напора по длине пролёта учитывается коэффициентом неравномерности α.
Равномерно распределенная нагрузка в килограммах, отнесенная к 1 м длины провода, называется единичной нагрузкой и выражается в кг/м [3, 11, 13].
Единичная нагрузка от собственного веса провода р1.
Для вычисления нагрузки р1 пользуются данными о массе (весе) провода из действующих стандартов или технических условий, где обычно указывается вес провода в килограммах на один километр [6, стр. 53-57, табл. 1.47-1.52 и стр. 60-63, табл. 1.58-1.63]. Для получения единичной нагрузки от собственного веса провода в килограммах на один метр следует массу или вес, указанный в стандарте, умножить на 10 , тогда единичная нагрузка от собственного веса провода может быть вычислена по формуле:
Р1 = M п ·10-3, кг/м (даН/м), (21)
где M п — масса (вес) провода, кг.
Единичная нагрузка от гололеда р2
Рассмотрим рис. 2.9.
Рис. 2.9. Поперечное сечение расчетного приведенного гололеда
В соответствии с фигурой и обозначениями на рисунке, площадь сечения слоя приведенного гололеда F гол определиться по формуле:
(2.2)
а вес на всей длине провода L — по формуле:
‘ (2.3)
где d п — диаметр провода, мм;
с — толщина стенки гололеда, мм;
L — длина провода, м;
g 0 — объемный вес, который при принятых выше единицах измерения dп, с, и L, равен g0 = 0,9 · 10 , кг/м мм (даН/м мм ).
С учетом формул 2.2 и 2.3 единичная нагрузка от гололеда может быть определена как:
, кг/м (даН/м). (24)
Результирующая единичная весовая нагрузка при гололеде p3
Полная вертикальная нагрузка при гололеде определяется как арифметическая сумма единичных нагрузок от собственного веса провода и веса гололеда:
Р3 = P1 + Р 2, кг/м (даН/м). 20 мм — Cx = 1,1, а при dп < 20 мм — Cx = 1,2 . Для проводов любого диаметра, но покрытых гололедом, — Cx = 1,2 .
Учитывая, что при определении ветровых нагрузок на провода с гололедом, следует принимать значение скоростного напора 0,25Qн [13], получим
, кг/м (даН/м).
Результирующие единичные нагрузки на провод без гололеда и с гололедом p 6 и p7
Совместное действие вертикальных и горизонтальных нагрузок на провода определяется как результирующие единичные нагрузки (примечание 2.1) по формулам: (2.8) — без гололеда и (2.9) — с гололедом (рис. 2.10).
Рис. 2.10. Совместное действие вертикальных и горизонтальных нагрузок на провод
(2.8)
(2.9)
Пример 2.1
Трасса сооружаемой воздушной линии электропередачи 220 кВ проходит по местности, относящейся к особому гололедному и IV ветровому районам. На унифицированных свободностоящих стальных опорах будут смонтированы провода марки АС-240/32 нормальной конструкции. Рассчитать единичные и удельные механические нагрузки на провода от внешних воздействий.
Исходные данные и пояснения
В соответствии с [6, стр. 54, табл. 1.48] провод АС-240/32 нормальной конструкции состоит из стального сердечника, свитого из 7 стальных проволок диаметром 2,8 мм и проводниковой части в виде 28 алюминиевых проволок диаметром 3,29 мм. Технические данные провода АС-240/32 приведены в табл. 2.1.
Примечание 2.1: следует заметить, что при механическом расчете проводов удобнее пользоваться не единичными, а удельными (приведенными) нагрузками, которые равны единичным, отнесенным к 1 мм2 поперечного сечения провода. Удельные нагрузки обозначают буквой γ и измеряют в кг/м мм2.
Технические данные провода АС-240/32
Таблица 2.1
Параметры | Проводник | Сердечник | Провод |
Сечение, мм2 | 238 | 43,1 | 281,1 |
Диаметр, мм | 21,6 | 8,4 | 30 |
Масса, кг/км | — | — | 997 |
Согласно [13], интенсивность внешних воздействий на конструктивные элементы воздушных линий 220 кВ принимают, исходя из частоты повторяемости наибольших гололедной и ветровой нагрузок 1 раз в 10 лет. При этом максимальный нормативный скоростной напор ветра на высоте до 15 м над поверхностью земли принимают в IV ветровом районе 65 даН/м [13, стр. 312, табл. 2.5.1], а нормативная толщина стенки гололеда для высоты 10 м над поверхностью земли в особом гололедном районе может составлять более 22 мм (для решения примера примем 22 мм) [13, стр. 317, табл. 2.5.3].
Решение
- Постоянно действующая нагрузка от собственной массы провода
По формуле (2.1) с учетом табл. 2.1 и примечания 2.1:
- Временно действующая нагрузка от массы гололедных отложений
по формуле (2.4)
- Суммарная вертикальная нагрузка от собственной массы провода и массы гололеда
по формуле (2.5)
- Горизонтальная нагрузка от давления ветра на провод, свободный от гололеда по формуле (2.6)
5. Временно действующая горизонтальная нагрузка от давления ветра на провод, покрытый гололедом по формуле (2.7)
6. Результирующая нагрузка от собственной массы и давления ветра по формуле (2. 8)
7. Результирующая нагрузка от массы провода с гололедом и давления ветра
по формуле (2.9)
8. Вывод по примеру: сравнение нагрузок γ6 и γ7 показывает, что γ7> γ6, поэтому наибольшей нагрузкой является седьмая, то есть γ 7 = γ нб и в дальнейших расчетах следует ориентироваться на γ 7.
Примечание 2.2: примем направление ветра под углом 90°, тогда sin2ф<P = 1. Примечание 2.3: для данной нагрузки коэффициент неравномерности α определяется от значения 0,25Q н, например, для решаемой задачи
0,25<2н = 0,25 · 65 = 16,25 даН/м2, тогда α=1 [13, стр. 315, 316, пункт 2.5.30].
Кабельные нагрузки
Приведенные ниже уравнения также могут использоваться для кабелей, нагруженных только их собственным весом, если соотношение высоты провисания (h) к длине (L) меньше 0,1 .
Кабели с равномерной нагрузкой и горизонтальными нагрузками
Кабель повторяет форму притчи, а горизонтальные опорные силы можно рассчитать как
R 1x = R 2x
= q L 2 / (8 ч) (1)
где
R 1x = R 2x = горизонтальных опорных сил (фунт, Н) (равно натяжению в самой нижней точке середины пролета)
q = удельная нагрузка (вес) на кабель (фунт / фут, Н / м)
L = длина кабеля (фут, м)
h = прогиб кабеля (фут, м)
Вертикальные опорные силы на конце кабеля можно рассчитать как
R 1y = R 2y
= q L / 2 (1a)
где
R 1y = R 2y = вертикальных опорных сил (фунт, Н)
Результирующие силы, действующие в концевых опорах — и в направлении кабеля вблизи опор — могут быть рассчитаны как
R 1 = R 2
= (R 1x 2 + R 1 год 2 ) 0. 5
= (R 2x 2 + R 2y 2 ) 0,5 (1b)
где
R 1,2 = результирующая сила на опоре (фунт, Н)
Угол θ можно рассчитать как
θ = tan -1 (R 1y / R 1x )
= tan -1 (R 2y / R 2x ) (1c)
Длина провисшего кабеля может быть приблизительно равна
s = L + 8 h 2 / (3 L) (1d)
, где
s = длина кабеля (футы, м)
Обратите внимание, что уравнение недействительно, если h> L / 4.
- тысяч фунтов = 1000 фунтов
- тысяч фунтов на погонный фут
Кабели с равномерной нагрузкой при горизонтальных нагрузках — калькулятор
q — равномерная нагрузка (Н / м, фунт / фут)
L — длина (м, фут)
h — провисание (м, фут)
R 12x (Н, фунт): 45
R 12y (Н, фунт): 60
R 12 (Н, фунт): 75
θ (градусы): 53,1
с (м, фут):
Пример — равномерная нагрузка на кабель, британские единицы
Кабель длиной 100 футов и провисанием 30 футов имеет равномерную нагрузку 850 фунтов / фут . Горизонтальные опоры и силы троса в середине могут быть рассчитаны как
R 1x = R 2x
= ( 850 фунтов / фут ) (100 футов) 2 / (8 (30 футов))
= 35417 фунтов
Вертикальные силы на опорах можно рассчитать как
R 1 год = R 2 года
= = = ( 850 фунтов / фут ) (100 футов) /2
= 42500 фунтов
Результирующие силы, действующие в опорах, можно рассчитать как
R 1,2 = (( 35417 фунтов ) 2 + ( 42500 фунтов) 2 ) 0.5
= 55323 фунтов
Угол θ можно рассчитать как
θ = тангенциальный угол -1 ((42500 фунтов) / (35417 фунтов))
= 50,2 o
Длина прогнутого кабеля может быть приблизительно равна
с = (100 футов) + 8 (30 футов) 2 / (3 (100 футов))
= 124 фута
Пример — равномерная нагрузка на кабель, единицы СИ
Кабель длиной 30 м и провисанием 10 м имеет равномерную нагрузку 4 кН / м . Горизонтальные опоры и силы среднего пролета можно рассчитать как
R 1x = R 2x
= (4000 Н / м) (30 м) 2 / (8 (10 м))
= 45000 Н
= 45 кН
Вертикальные опорные силы могут быть рассчитаны как
R 1y = R 2y
= ( 4000 Н / м ) (30 м) /2
= 60000 Н
= 60 кН
Угол может быть рассчитан θ как
θ = tan -1 ((60 кН) / (45 кН))
= 53.1 o
Результирующую силу, действующую в опорах, можно рассчитать как
R 1,2 = (( 45000 Н ) 2 + ( 60000 Н) 2 ) 0,5
= 75000 Н
= 75 кН
Длина провисшего кабеля может быть приблизительно равна
с = (30 м) + 8 (10 м) 2 / (3 (30 м))
= 38. 9 м
Пример — известное натяжение на опорах — расчет провисания и длины кабеля
Для кабеля длиной 30 м с равномерной нагрузкой 4 кН / м результирующее натяжение кабеля на концевых опорах составляет 100 кН .
Вертикальные силы в опорах можно рассчитать как
R 1 год = R 2 года
= ( 4 кН / м ) (30 м) / 2
= 60 кН
Горизонтальные силы в опорах можно рассчитать как
R 1x = R 2x
( ) 2 — (60 кН) 2 ) 0.5
= 80 кН
Угол θ можно рассчитать как
θ = tan -1 ((60 кН) / (80 кН))
= 36.9 o
Прогиб можно рассчитать, изменив уравнение 1 на
h = q L 2 / (8 R 1x )
= (4 кН / м) (30 м ) 2 / (8 (80 кН))
= 5. 6 м
Длину провисшего кабеля можно оценить как
с = (30 м) + 8 (5,6 м) 2 / (3 (30 м))
= 32,8 м
Кабели с равномерной нагрузкой и наклонными поясами
Калькулятор наклонного кабеля — с равномерными горизонтальными нагрузками
Калькулятор ниже можно использовать для кабелей с наклонными поясами и равномерными нагрузками. Калькулятор основан на итеративном алгоритме, в котором кабель в форме притчи адаптирован для протяженности L , высоты h 1 и h 2 согласно рисунку выше.Приведенное ниже уравнение притчи можно использовать для воспроизведения формы в электронных таблицах или системах САПР.
холст
входов
результатов
Горизонтальные опорные силы в направлении x можно рассчитать как
R 1x = R 2x
= qa 2 / (2 h 1 )
= qb 2 / (2 h 2 ) (2a)
Если b> a , можно рассчитать максимальные силы в тросе и на опоре 1 и 2 как
R 2 = (R 2x 2 + (qb) 2 ) 0. 5 (2c)
R 1 = (R 1x 2 + (qa) 2 ) 0,5 (2d)
— и вертикальные силы на опоре 1 и 2 можно рассчитать как
R 2y = ( 2 2 — R 2x 2 ) 0,5 (2e)
R 1y = ( 1 рэнд) 2 — R 1x 2 ) 0.5 (2f)
Углы между горизонтальными и результирующими силами могут быть рассчитаны как
θ 2 = cos -1 (R 2x / R 2 ) (2g)
θ 1 = cos -1 (R 1x / R 1 ) (2g)
Длину провисшего кабеля можно оценить как
с b = b (1 + 2/3 (h 2 / b) 2 ) (2h)
s a = a (1 + 2/3 (h 1 / a) 2 ) (2i)
s = s a + s b (2j)
Пример — наклонный кабель с равномерной нагрузкой, единицы СИ
Кабель с пролетом 30 м, длина а = 7. 2 м , длина b = 22,8 м, прогиб ч 1 = 1 м и прогиб ч 2 = 10 м имеет равномерную нагрузку 4 кН / м .
Горизонтальные опорные силы можно рассчитать как
R 1x = R 2x
= (4 кН / м) (30 м) 2 / (2 (((1 м)) 0,5 + ( (10 м) ) 0,5 ))
= 104 кН
Полученные опорные силы можно рассчитать как
R 2 = ((103.9 кН) 2 + ((4 кН / м) (22,8 м)) 2 ) 0,5
= 138 кН
R 1 = ( (103,9 кН) 2 + ((4 кН / м) (7,2 м)) 2 ) 0,5
= 108 кН
Вертикальные силы в опорах можно рассчитать как
R 2y = ((138,2 кН) 2 — (103.9 кН) 2 ) 0,5
= 91,2 кН
R 1y = ((107,8 кН) 2 — (103,9 кН) 2 ) 0,5
= 28,8 кН
Углы между результирующими и горизонтальными силами в опоре 1 и 2 можно рассчитать как
θ 2 = cos -1 (( 103. 9 кН ) / (138,2 кН) )
= 41,3 o
θ 1 = cos -1 ( ( 103,9 кН ) / (107,8 кН) ) )
= 15,5 o
Длину провисшего кабеля можно рассчитать как
с b = (22,8 м) (1 + 2/3 ((10 м) / (22.8 м)) 2 )
= 25,7 м
с a = (7,2 м) (1 + 2/3 ((1 м) / (7,2 м)) 2 )
= 7,3 м
с = ( 7,3 м ) + ( 25,7 м )
=
Добро пожаловать в Doncaster Cables — техническая помощь
Таблицы допустимой нагрузки по току
По ссылкам ниже приведены таблицы допустимой нагрузки по току и падения напряжения, относящиеся к продукции Doncaster Cables.
Ниже этих ссылок вы найдете наш калькулятор кабеля. Инструкции ниже: —
1. Выберите тип источника питания (однофазный 230 В / трехфазный 400 В)
2. Выберите необходимое падение напряжения
3. Введите мощность в ваттах или ток в амперах, который требуется для передачи вашего кабеля
4 Введите длину кабельной трассы
5. Выберите метод прокладки кабеля
6. Нажмите «Рассчитать», и будут рассчитаны сечения ваших кабелей.
В нашем калькуляторе теперь перечислены различные типы кабелей, поэтому, прокручивая список вниз, вы можете увидеть, как разные типы кабелей могут иметь разные размеры для одного и того же набора параметров.
Выберите кабель, подходящий для вашей установки.
Калькулятор сечения кабеля
Калькулятор сечения кабеля Заявление об отказе от ответственности
Рекомендуемые сечения кабелей основаны на информации, предоставленной пользователем, и предназначены только для справки. Расчет основан на требованиях к электрическому монтажу BS7671, Правилах проводки IEE и основан на падении напряжения, выбранном при 230 и 400 вольт. Чтобы мы могли предоставить эту информацию в качестве ориентира, были сделаны определенные предположения.
Пользователь по-прежнему несет ответственность за обеспечение правильности всех данных и предположений, а также за то, что любой используемый кабель соответствует своему прямому назначению.
Таблицы допустимой нагрузки по току для гибких шнуров в BS7671 не включают варианты для различных методов установки, результаты были включены для гибких шнуров для всего диапазона методов установки. Ответственность за то, где подходят гибкие шнуры, остается за пользователем.
Мы объединили гибкие шнуры в один результат для использования нашего калькулятора (чтобы сделать его более удобным), пожалуйста, обратитесь к BS7671 для отдельных таблиц и любых соответствующих поправочных коэффициентов и т. Д.
Doncaster Cables не несет ответственности за любое использование кабеля предложенного размера
.
Калькулятор размеров кабеля и автоматического выключателя
Автоматический выключатель и размер кабеля
Несколько стандартов, таких как BS 7671 или Национальный электротехнический кодекс (NEC), определяют «допустимую нагрузку» для различных материалов.Очевидно, что Ampacity — это максимальный ток, который проводник определенного размера может выдерживать при определенных условиях без превышения определенной рабочей температуры — термопласт (70 ° C) или термореактивный (90 ° C). Пропускная способность также известна как пропускная способность по току.
При превышении допустимой нагрузки рабочая температура поднимается выше 70 ° C (максимальная температура, которую может выдержать термопластическая изоляция, например ПВХ) или 90 ° C (максимальная температура, которую может выдержать термореактивная изоляция, например, сшитый полиэтилен), в результате чего изоляция деформируется. .В этом случае автоматический выключатель должен выполнять свою роль для отключения цепи от тока до того, как какая-либо изоляция начнет деформироваться или плавиться. Следовательно, автоматический выключатель должен выбираться с номинальной отключающей способностью ниже «допустимой нагрузки» кабеля, который он защищает. Это называется тепловой защитой или защитой от перегрузки. При выборе автоматического выключателя необходимо также учитывать другие факторы, такие как время задержки отключения для защиты от пускового тока / перегрузки и защиты от короткого замыкания.
Если используется смесь термопластической и термореактивной изоляции, обычно слой изоляции ближе к проводнику может быть определяющей рабочей температурой для кабеля. Например, допустимая токовая нагрузка кабеля из сшитого полиэтилена / ПВХ должна эффективно относиться к рабочей температуре при 90 ° C (термоотверждающийся), поскольку внутренний слой, который плавится первым, представляет собой термореактивную изоляцию (сшитый полиэтилен). Однако фактическая максимальная рабочая температура кабелей варьируется в зависимости от модели и производителя и должна быть указана в технических характеристиках продукта.
В этом калькуляторе сделаны следующие допущения для отражения наиболее распространенных конфигураций, применяемых в отрасли. Для других конфигураций обратитесь к стандартам для использования другого номинала мощности.
Материал кабеля = медь
Метод установки = кабелепровод или кабельный канал
Термореактивная или термопластическая изоляция
Температура окружающей среды = 30 ° C
Основываясь на приведенных выше предположениях, набор обычно используемых размеров кабелей и соответствующих им размеров автоматических выключателей (номинальная отключающая способность) можно обобщить в таблице ниже:
Выбор автоматических выключателей (в амперах) зависит от выбора кабеля, который, в свою очередь, зависит от номинального тока полной нагрузки подключенной нагрузки.Чаще всего ток полной нагрузки определяется исходя из номинальной мощности оборудования, а общий ток в цепи должен быть суммой мощности всего оборудования, подключенного к цепи.
Это значение тока затем корректируется с учетом желаемого коэффициента безопасности, а затем сопоставляется с ближайшим большим значением автоматического выключателя и соответствующего сечения кабеля из приведенной выше таблицы.
Пример
Дано:
Мощность = 20 кВт
Напряжение = 400 В
Фаза = 3 фазы
Коэффициент мощности = 0.85
Решение:
Ток = 20 кВт / 1,732 / 400 / 0,85 = 33,96 А
Мин. Размер выключателя = 33,96 x 1,2 (коэффициент безопасности) = 41 A
Тип изоляции (рабочая температура проводника) = ПВХ (70 ° C)
Выбранный размер выключателя = 60 А (наиболее близкое соответствие)
Выбранный размер кабеля = 4 x 1C 25 мм2 ПВХ + 16 мм2 CPC
Кабель 4 x 1C (4 числа по 1 жиле) указан для трехфазной + нейтрали (TPN), а 2 x 1C — для однофазных цепей.Защитные проводники цепи (CPC) обычно могут быть половиной от диаметра проводника более 25 мм2 и иметь длину 120 мм2 на проводник. Полное обозначение кабеля может быть, например,
.
4 x 1 жила 25 мм2 PVC / PVC КАБЕЛЬ + 16 мм2 CPC IN G.I. МАГАЗИН
Следует отметить, что другие факторы, такие как емкость и индуктивности, скин-эффект, падение напряжения и импедансы, должны приниматься во внимание, особенно при выборе размеров кабелей с более высокой допустимой нагрузкой по току или на большие расстояния.
Чтобы оценить падение напряжения, перейдите в Калькулятор падения напряжения.
Загружаемая версия этого калькулятора размеров кабелей и автоматических выключателей в формате Excel доступна ниже. Напоминаем еще раз, что этот калькулятор основан на четырех вышеупомянутых предположениях / условиях.
Калькулятор кабеля и автоматического выключателя (Excel)
Рабочий пример расчета кабеля
Рабочий пример расчета кабеля
(см. рис. G69)
Питание установки осуществляется через трансформатор 630 кВА. Этот процесс требует высокой степени бесперебойности электроснабжения, и часть установки может питаться от резервного генератора мощностью 250 кВА. Глобальная система заземления — TN-S, за исключением наиболее критических нагрузок, питаемых разделительным трансформатором с конфигурацией IT ниже по потоку.
Однолинейная схема показана на Рисунок G69 ниже. Результаты компьютерного исследования цепи от трансформатора T1 до кабеля C7 воспроизведены на рис. G70.Это исследование было выполнено с помощью Ecodial (программное обеспечение Schneider Electric).
Далее следуют те же расчеты, которые выполняются упрощенным методом, описанным в этом руководстве.
Рис. G69 — Пример однолинейной схемы
Расчет с помощью программы Ecodial
Рис. G70 — Частичные результаты расчетов, выполненных с помощью программного обеспечения Ecodial (Schneider Electric). Расчет выполняется в соответствии с Cenelec TR50480 и IEC 60909
.
Общие характеристики сети | Кабель C3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Система заземления | TN-S | Длина | 20 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Нейтрально распределено | Нет | Максимальный ток нагрузки (А) | 518 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Напряжение (В) | 400 | Тип изоляции | ПВХ | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Частота (Гц) | 50 | Температура окружающей среды (° C) | 30 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Уровень неисправности восходящего потока (MVA) | 500 | Материал проводника | Медь | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Сопротивление сети СН (мОм) | 0.035 | Одножильный или многожильный кабель | Одноместный | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Реактивное сопротивление сети среднего напряжения (мОм) | 0,351 | Способ установки | F31 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Трансформатор Т1 | Выбранный фазный провод csa (мм2) | 2 х 120 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Номинальная мощность (кВА) | 630 | Выбран нейтральный провод csa (мм2) | 2 х 120 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Напряжение полного сопротивления короткого замыкания (%) | 4 | PE-провод выбран csa (мм2) | 1 х 120 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Потери нагрузки (PkrT) (Вт) | 7100 | Падение напряжения на кабеле ΔU (%) | 0.459 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Напряжение холостого хода (В) | 420 | Общее падение напряжения ΔU (%) | 0,583 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Номинальное напряжение (В) | 400 | Трехфазный ток короткого замыкания Ik3 (кА) | 21,5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Кабель C1 | Ток однофазного замыкания на землю Ief (кА) | 18 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Длина (м) | 5 | Распределительный щит B6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальный ток нагрузки (А) | 909 | ссылку | Prisma Plus G | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Тип изоляции | ПВХ | Номинальный ток (A) | 630 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Температура окружающей среды (° C) | 30 | Автоматический выключатель Q7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Материал проводника | Медь | Ток нагрузки (А) | 238 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Одножильный или многожильный кабель | Одноместный | Тип | Компактный | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Метод установки | 31F | ссылку | NSX250B | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Количество слоев | 1 | Номинальный ток (A) | 250 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Выбранный фазный провод csa (мм²) | 2 х 240 | Количество полюсов и защищенных полюсов | 3П3д | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Выбран нейтральный провод csa (мм²) | 2 х 240 | Расцепитель | Micrologic 5.2 E | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Выбранный заземляющий провод csa (мм²) | 1 х 240 | Отключение по перегрузке Ir (A) | 238 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Падение напряжения ΔU (%) | 0,124 | Отключение с короткой задержкой Im / Isd (A) | 2380 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Трехфазный ток короткого замыкания Ik3 (кА) | 21,5 | Кабель C7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Ток замыкания на землю Ief (кА) | 18 | Длина | 5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Автоматический выключатель Q1 | Максимальный ток нагрузки (А) | 238 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Ток нагрузки (А) | 909 | Тип изоляции | ПВХ | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Тип | Masterpact | Температура окружающей среды (° C) | 30 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
ссылку | МТЗ2 10Н1 | Материал проводника | Медь | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Номинальный ток (A) | 1000 | Одножильный или многожильный кабель | Одноместный | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Количество полюсов и защищенных полюсов | 4П4д | Способ установки | F31 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Расцепитель | Micrologic 5.0X | Выбранный фазный провод csa (мм²) | 1 х 95 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Отключение по перегрузке Ir (A) | 920 | Выбран нейтральный провод csa (мм²) | 1 х 95 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Кратковременное отключение Im / Isd (A) | 9200 | PE-провод выбран csa (мм²) | 1 х 95 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Время отключения tm (мс) | 50 | Падение напряжения на кабеле ΔU (%) | 0,131 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Коммутатор B1 | Общее падение напряжения ΔU (%) | 0.714 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
ссылку | Prisma Plus P | Трехфазный ток короткого замыкания Ik3 (кА) | 18,0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Номинальный ток (A) | 1000 | Ток однофазного замыкания на землю Ief (кА) | 14,2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Автоматический выключатель Q3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ток нагрузки (А) | 518 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Тип | Компактный | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
ссылку | NSX630F | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Номинальный ток (A) | 630 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Количество полюсов и защищенных полюсов | 4П4д | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Расцепитель | Micrologic 5.{3}} {{\ sqrt {3}} \ times 400}} = 909 \, A} на фазу Два одножильных медных кабеля с ПВХ-изоляцией, включенных параллельно, будут использоваться для каждой фазы. Эти кабели будут проложены на кабельных лотках в соответствии с методом 31F. Таким образом, каждый проводник будет выдерживать 455 А. На рисунке G21 показано, что для 3 нагруженных проводов с изоляцией из ПВХ требуется с.с. составляет 240 мм². Сопротивление и индуктивное реактивное сопротивление для двух параллельно соединенных проводов на длине 5 метров составляют: R = 18.51 × 5240 × 2 = 0,19 мОм {\ displaystyle R = {\ frac {18,51 \ times 5} {240 \ times 2}} = 0,19 \, м \ Omega} (сопротивление кабеля: 18,51 мОм.мм 2 / м при 20 ° C) X = 0,08 / 2 × 5 = 0,2 мОм {\ displaystyle X = 0,08 / 2 \ times 5 = 0,2 \, m \ Omega} (реактивное сопротивление кабеля: 0,08 мОм / м, 2 кабеля параллельно) Расчетная схема C3Контур C3 питает две нагрузки, всего 310 кВт с cos φ = 0,85, поэтому общий ток нагрузки равен: Ib = 310 × 1033 × 400 × 0,85 = 526A {\ displaystyle I_ {b} = {\ frac {310 \ times 10 ^ {3}} {{\ sqrt {3}} \ times 400 \ times 0.85}} = 526 \, A} Два одножильных медных кабеля с ПВХ-изоляцией, включенных параллельно, будут использоваться для каждой фазы. Эти кабели будут проложены по кабельным лоткам в соответствии с методом F. Таким образом, каждый проводник будет выдерживать ток 263 A. Рисунок G21 показывает, что для 3 нагруженных проводов с изоляцией из ПВХ требуется с.с. составляет 120 мм². Сопротивление и индуктивное реактивное сопротивление для двух параллельно соединенных проводов на длине 20 метров составляют: R = 18,51 × 20120 × 2 = 1.{3}} {{\ sqrt {3}} \ times 400 \ times 0.85}} = 238 \, A} Для каждой фазы будет использоваться один одножильный медный кабель с ПВХ изоляцией. Кабели будут проложены по кабельным лоткам в соответствии с методом F. Таким образом, каждый проводник будет выдерживать 238 А. На рисунке G21 показано, что для 3 нагруженных проводов с изоляцией из ПВХ требуется требуемая с.з. составляет 95 мм². Сопротивление и индуктивное сопротивление для длины 5 метров составляют: R = 18,51 × 595 = 0,97 мОм {\ displaystyle R = {\ frac {18.51 \ times 5} {95}} = 0,97 \, м \ Омега} (сопротивление кабеля: 18,51 мОм.мм 2 / м) X = 0,08 × 5 = 0,4 мОм {\ displaystyle X = 0,08 \ times 5 = 0,4 \, м \ Omega} (реактивное сопротивление кабеля: 0,08 мОм / м) Расчет токов короткого замыкания для выбора автоматических выключателей Q1, Q3, Q7(см. , рис. G71) Рис. G71 — Пример оценки тока короткого замыкания
Защитный проводОбычно для цепей с фазным проводом c.{2}} Таким образом, достаточно одного провода сечением 120 мм², при условии, что он также удовлетворяет требованиям защиты от короткого замыкания (косвенный контакт), то есть его полное сопротивление достаточно низкое. Защита от неисправностей (защита от косвенного прикосновения)Для системы заземления TN минимальное значение Lmax определяется по фазе замыкания на землю (наивысший импеданс). Традиционный метод детализирует расчет типичного замыкания фазы на землю и расчет максимальной длины цепи.{-3} \ times \ left (1 + 2 \ right) \ times 630 \ times 11}} = 90 \, m} (значение в знаменателе 630 x 11 — это максимальный уровень тока, при котором срабатывает мгновенное магнитное расцепление короткого замыкания выключателя на 630 А). Таким образом, длина 20 метров полностью защищена устройствами «мгновенного» перегрузки по току. Падение напряженияПадение напряжения рассчитывается с использованием данных, приведенных в Рисунок G30, для симметричных трехфазных цепей, мощность двигателя в нормальном режиме (cos φ = 0.8). Результаты обобщены на Рис. G72: Полное падение напряжения на конце кабеля C7 составляет: 0,73% . Рис. G72 — Падение напряжения, вызванное различными кабелями
|