Расчет сопротивления по напряжению и мощности: Закон ома | Онлайн калькулятор

Содержание

Какой формулой рассчитать мощность резисторов

Резисторы применяются практически во всех электросхемах. Это наиболее простой компонент, в основном, служащий для ограничения или регулирования тока, благодаря наличию сопротивления при его протекании.

Резисторы

Виды резисторов

Внутреннее устройство детали может быть различным, но преимущественно это изолятор цилиндрической формы, с нанесённым на его внешнюю поверхность слоем либо несколькими витками тонкой проволоки, проводящими ток и рассчитанными на заданное значение сопротивления, измеряемое в омах.

Существующие разновидности резисторов:

  1. Постоянные. Имеют неизменное сопротивление. Применяются, когда определенный участок электроцепи требует установки заданного уровня по току или напряжению. Такие компоненты необходимо рассчитывать и подбирать по параметрам;
  2. Переменные. Оснащены несколькими выводными контактами. Их сопротивление поддается регулировке, которая может быть плавной и ступенчатой. Пример использования – контроль громкости в аудиоаппаратуре;
  3. Подстроечные – представляют собой вариант переменных. Разница в том, что регулировка подстроечных резисторов производится очень редко;
  4. Есть еще резисторы с нелинейными характеристиками – варисторы, терморезисторы, фоторезисторы, сопротивление которых меняется под воздействием освещения, температурных колебаний, механического давления.

Важно! Материалом для изготовления практически всех нелинейных деталей, кроме угольных варисторов, применяемых в стабилизаторах напряжения, являются полупроводники.

Параметры резисторного элемента

  1. Для резисторов применяется понятие мощности. При прохождении через них электротока происходит выделение тепловой энергии, рассеиваемой в окружающее пространство. Мощность детали является параметром, который показывает, сколько энергии она может выделить в виде тепла, оставаясь работоспособной. Мощность зависит от габаритов детали, поэтому у маленьких зарубежных резисторов ее определяют на глаз, сравнивая с российскими, технические характеристики которых известны;

Важно! Импортные резисторные элементы идентичной мощности имеют несколько меньшие размеры, так как российские производятся с некоторым запасом по этому показателю.

На схеме мощность показана следующим образом.

Условное обозначение мощности

  1. Второй параметр – сопротивление элемента. На российских деталях типа МЛТ и крупных импортных образцах оба параметра указываются на корпусе (мощность – Вт, сопротивление – Ом, кОм, мОм). Для визуального определения сопротивления миниатюрных импортных элементов применяется система условных обозначений с помощью цветных полосок;

Цветовая маркировка резисторов

  1. Допуски. Невозможно изготовить деталь с номинальным сопротивлением, в точности соответствующим заявленному значению. Поэтому всегда указываются границы погрешности, называемые допуском. Его величина – 0,5-20%;
  2. ТКС – коэффициент температуры. Показывает, как варьируется сопротивление при изменении внешней температуры на 1°С. Желательно, но не обязательно подбирать элементы с близким или идентичным значением этого показателя для одной цепи.

Расчет резисторов

Для расчета сопротивления резистора формула применяемая в первую очередь – это закон Ома:

I = U/R.

Исходя из этой формулы, можно вывести выражение для сопротивления:

R = U/I,

где U – разность потенциалов на выводных контактах резистора.

Пример. Необходимо провести зарядку аккумулятора 2,4 В зарядным током 50 мА от автомобильной 12-вольтовой батареи. Прямое соединение сделать нельзя из-за слишком высоких показателей по току и напряжению. Но возможно поставить в схему сопротивление, которое обеспечит нужные параметры.

Предварительно нужно рассчитать резистор:

  • Расчет начинается с определения падения напряжения, которое должен обеспечить резисторный элемент:

U = 12-2,4 = 9,6 B

  • Протекающий по детали ток – 50 мА. Следовательно, R = 9,6/0,05 = 192 Ом

Теперь можно уже подобрать нужный резистор по одному показателю.

Если рассчитанной детали не нашлось, можно применить соединение из нескольких резисторных элементов, установив их последовательно или параллельно. Расчет сопротивлений при этом имеет свои особенности.

Последовательное соединение

Последовательно соединенные сопротивления складываются:

R = R1+ R2.

Если нужно получить общий результат 200 Ом, и имеется один резистор на 120 Ом, то расчет другого:

R2 = R-R1 = 200-120 = 80 Ом.

Последовательное соединение

Параллельное соединение

При параллельной схеме другая зависимость:

1/R = 1/R1 + 1/R2.

Или преобразованный вариант:

R = (R1 x R2)/ (R1 + R2).

Важно! Параллельное соединение можно использовать, когда в наличии детали с большим сопротивлением, чем требуется, последовательное наоборот.

Пример. Необходимо сопротивление 200 Ом. Имеется деталь R2 на 360 Ом. Какое сопротивление подобрать еще? R1 = R2/(R2/R-1) = 360/(360/200-1) = 450 Ом.

Параллельное соединение

Смешанное соединение

В смешанных схемах присутствуют последовательно-параллельные комбинации. Расчет таких схем сводится к их упрощению путем преобразований. На рисунке ниже представлено, как упростить схему, рассчитывая общий показатель для шести резисторов с учетом их соединения.

Расчет сопротивления в смешанной схеме

Мощность

Определив сопротивление, еще нельзя выбрать деталь. Чтобы обеспечить надежную работу схемы, необходимо найти и другой параметр – мощность. Для этого надо знать, как рассчитать мощность резисторного элемента.

Формулы, по которым можно рассчитать мощность резистора:

Пример. I = 50 мА; R = 200 Ом. Тогда P = I² x R = 0,05² x 200 = 0,5 Вт.

Если не учитывать значение тока, расчет мощности резистора ведется по другой формуле.

Пример. U = 9,6 В, R = 200 Ом. P = U²/R = 9,6²/200 = 0,46 Вт. Получился тот же результат.

Теперь, зная точные параметры рассчитываемого резисторного элемента, подберем радиодеталь.

Важно! При выборе деталей возможно их заменить на резисторы с мощностью, больше рассчитанной, но обратный вариант не подходит.

Это основные формулы для расчета резисторных деталей, на основании которых производится анализ узлов схемы, где главным является определение токов и напряжений, протекающих через конкретный элемент.

Видео

Оцените статью:

Расчет мощности электических ТЭНов

Оптимальным источником энергии, для нагрева испарительной емкости, является квартирная электрическая сеть, напряжением 220 В. Можно просто использовать для этих целей бытовую электроплиту. Но, при нагреве на электроплите, много энергии расходуется на бесполезный нагрев самой плиты, а также излучается во внешнюю среду, от нагревательного элемента, не совершая при этом, полезной работы. Эта, понапрасну затрачиваемая энергия, может достигать приличных значений — до 30-50 %, от общей затраченной мощности на нагрев куба. Поэтому использование обычных электроплит, является нерациональным с точки зрения экономии. Ведь за каждый лишний киловатт энергии, приходится платить. Наиболее эффективно использовать врезанные в испарительную емкость эл. ТЭНы. При таком исполнении, вся энергия расходуется только на нагрев куба + излучение от его стенок вовне. Стенки куба, для уменьшения тепловых потерь, необходимо теплоизолировать. Ведь затраты на излучение тепла, от стенок самого куба могут так же, составлять до 20 и более процентов, от всей затрачиваемой мощности, в зависимости от его размеров. Для использования в качестве нагревательных элементов врезанных в емкость, вполне подходят ТЭНы, от бытовых эл.чайников, или другие подходящие по размерам. Мощность таких ТЭНов, бывает разная. Наиболее часто применяются ТЭНы с выбитой на корпусе мощностью 1.0 кВт и 1.25 кВт. Но есть и другие.

Поэтому мощность 1-го ТЭНа, может не соответствовать по параметрам, для нагрева куба и быть больше или меньше. В таких случаях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, соединенных последовательно или последовательно-параллельно. Коммутируя различные комбинации соединения ТЭНов, переключателем от бытовой эл. плиты, можно получать различную мощность. Например имея восемь врезанных ТЭНов, по 1.25 кВт каждый, в зависимости от комбинации включения, можно получить следующую мощность.

  1. 625 Вт
  2. 933 Вт
  3. 1,25 кВт
  4. 1,6 кВт
  5. 1,8 кВт
  6. 2,5 кВт

Такого диапазона вполне хватит для регулировки и поддержания нужной температуры при перегонке и ректификации. Но можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

Рассчитать можно по следующей формуле.

Мы знаем напряжение, действующее в сети, это 220В. Далее мы так же знаем мощность ТЭН, выбитую на его поверхности допустим это 1,25 кВт, значит, нам нужно узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

Сила тока = мощность, деленная на напряжение в сети.

Записывается она так: I = P / U.

Где I — сила тока в амперах.

P — мощность в ваттах.

U — напряжение в вольтах.

При подсчете нужно мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.

1,25 кВт = 1250Вт. Подставляем известные значения в эту формулу и получаем силу тока.

I = 1250Вт / 220 = 5,681 А

Далее зная силу тока подсчитываем сопротивление ТЭНа, по следующей формуле.

R = U / I, где

R — сопротивление в Омах

U — напряжение в вольтах

I — сила тока в амперах

Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

R = 220 / 5.681 = 38,725 Ом.

Далее подсчитываем общее сопротивление всех последовательно соединенных ТЭНов. Общее сопротивление равно сумме всех сопротивлений, соединенных последовательно ТЭНов

Rобщ = R1+ R2 + R3 и т.д.

Таким образом, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Теперь нетрудно подсчитать мощность выделяемую этими двумя ТЭНами.

P = U2 / R где,

P — мощность в ваттах

U2— напряжение в квадрате, в вольтах

R — общее сопротивление всех посл. соед. ТЭНов

P = 624,919 Вт, округляем до значения 625 Вт.

Далее при необходимости можно подсчитать мощность любого количества последовательно соединенных ТЭНов, или ориентироваться на таблицу.

Таблица 1.1. Значения для последовательного соединения ТЭНов при напряжении 220В.

Кол-во ТЭНМощность (Вт)Сопротивление (Ом)Сила тока (А)
1125038,85,7
262577,52,8
3416116,21,9
4312154,91,4
5250193,61,1
6208232,40,9
71782710,8
8156309,80,7

Таблица 1.2. Значения для параллельного соединения ТЭНов при напряжении 220В.

Кол-во ТЭНМощность (Вт)Сопротивление (Ом)Сила тока (А)
2250019,411,4
3375012,917
450009,722,7
562507,728,4
675006,534
787505,539,8
8100004,845,5

Еще один немаловажный плюс, который дает последовательное соединение ТЭНов, это уменьшенный в несколько раз протекающий через них ток, и соответственно малый нагрев корпуса нагревательного элемента, тем самым не допускается пригорание браги во время перегонки и не привносит неприятного дополнительного вкуса и запаха в конечный продукт. Так же ресурс работы ТЭНов, при таком включении, будет практически вечным.

Расчеты выполнены для ТЭНов, мощностью 1.25 кВт. Для ТЭНов другой мощности, общую мощность нужно пересчитать согласно закона Ома, пользуясь выше приведенными формулами.

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Резистор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.

В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.

Характеристики резисторов

1. Основной параметр резистора – это номинальное сопротивление.

2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.

3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.

4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.

5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.

6. Шумовые характеристики.

7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.

8. Влаго- и термоустойчивость.

Есть еще две характеристики, о которых начинающие чаще всего не знают, это:

1. Паразитная индуктивность.

2. Паразитная ёмкость.

Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.

На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.

Мощность резистора

Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I

Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:

I=U/R

Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:

I=U/R

Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.

У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.

В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).

На картинке пример кристаллической решетки, для наглядности.

Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?

То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.

Но как это относится к резисторам?

Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам. Из формулы выше станет ясно, что ток снижается, за счет снижения напряжения. Лишнее напряжение можно сказать, что сгорает в виде тепла на резисторе, мощность при этом считается по той же формуле, что и общая мощность:

P=U*I

Здесь U – это количество вольт «сожженных» на резисторе, а I – это ток, который через него протекает.2/1=144/1=144 Вт.

Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.

Какие бывают резисторы и как они обозначаются на схеме

Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5

Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.

Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.

Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.

Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).

Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).

Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.

В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента. Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е. охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.

Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.

Что делать, если нет резистора нужной мощности?

Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.

На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.

1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3

2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.

На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.

Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I

Мощность, выделяемая на каждом из них, снизится соответствующим образом.

Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0.5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.

Я не просто так написал «ПОЧТИ ВСЕГДА». Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.

Заключение

Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.

При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.

Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.

Ранее ЭлектроВести писали, что JinkoSolar объявила, что она установила новый рекорд эффективности для монокристаллических PERC-панелей, который составил 24,38%. Компания также разработала модуль мощностью 469,3 Вт. Кроме того, китайский производитель фотоэлектрических элементов поравнялся с фирмой Trina Solar, которая на прошлой неделе заявила о рекордном 24,58% показателе КПД монокристаллических панелей n-типа.

По материалам: electrik.info.

Расчет сопротивлений автотрансформатора

Требуется рассчитать сопротивления обмоток трехобмоточного автотрансформатора типа АТДЦТН-125000/220/110 мощностью Sн = 125 МВА, напряжением 230/121±6х2%/11 кВ.

Схема замещения трехобмоточного автотрансформатора представлена на рис.1.

Решение

Расчет будет выполняться без учета крайних положений РПН, в связи с тем, что полученные значения сопротивлений автотрансформатора нужны для определения потери напряжения в автотрансформаторе и вторичного напряжения на шинах приемной подстанции.

Если же вам нужно выполнить расчет токов короткого замыкания, тогда вам обязательно нужно учитывать величину реактивного сопротивления автотрансформатора с учетом крайних положений РПН.

Так как схема замещения автотрансформатора такая же, как и в трехобмоточного трансформатора в виде трехлучевой звезды, то и методика расчета сопротивлений ничем не отличается.

См. статью: «Расчет сопротивлений трехобмоточного трансформатора с учетом РПН».

1. По ГОСТ 17544-85 таблица 9 определяем напряжение короткого замыкания для обмоток:

  • ВН-СН — Uк1-2 =11,0%;
  • ВН-НН – Uк1-3 =45,0%;
  • СН-НН – Uк2-3 =28,0%.

1. Определяем реактивные падения напряжения между каждой парой обмоток автотрансформатора в относительных единицах равными Uк по формулам 11-6 [Л1, с.242], в процентах:

  • Uк1 = 0,5*(Uк1-2 + Uк1-3 — Uк2-3) = 0,5*(11 + 45 — 28) = 14%
  • Uк2 = 0,5*(Uк2-3+Uк1-2-Uк1-3) = 0,5*(28 + 11 -45) = -3
  • Uк3 = 0,5*(Uк1-3+Uк2-3-Uк1-2) = 0,5*(45 + 28 — 11) = 31%

2. Определяем сопротивление ветвей, отнесенное к номинальному напряжению обмотки ВН автотрансформатора по формуле 11-5 [Л1, с.242]:

где:

  • Uк1, Uк3 – реактивные падения напряжения между каждой парой обмоток автотрансформатора, %;
  • Uн = 230 кВ – номинальное напряжение автотрансформатора;
  • Sн = 125 МВА – номинальная мощность автотрансформатора;

3. Отношение мощностей обмоток низшего напряжения НН и номинальной (проходной) мощности автотрансформатора [Л1, с.248]:

где:

  • Sнн = 63 МВА – номинальная мощность обмотки НН, согласно ГОСТ 17544-85 таблица 4;
  • Sн = 125 МВА – номинальная мощность автотрансформатора.

4. Определяем потери мощности короткого замыкания в обмотках ВН-НН и СН-НН, отнесенные к номинальной мощности автотрансформатора:

где: Uн = 230 кВ –номинальное напряжение обмотки ВН, согласно ГОСТ 17544-85 таблица 4.

5. Определяем активные сопротивления между выводами обмоток ВН-СН, ВН-НН и СН-НН, приведенные к номинальному напряжению обмотки ВН по формуле 11-3 [Л1, с.248]:

где: ΔРк = 315 кВт – потери активной мощности короткого замыкания для основной пары обмоток, определяется по ГОСТ 17544-85 таблица 9;

6. Определяем активные сопротивления ветвей схемы замещения автотрансформатора, определяемые по аналогии с формулами 11-6 [Л1, с.242], Ом:

  • R1 = 0,5*(R1-2 + R1-3 — R2-3) = 0,5*(1,07 + 3,1 – 3,1) = 0,535 Ом
  • R2 = 0,5*(R2-3+ R1-2 — R1-3) = 0,5*(3,1 + 1,07 – 3,1) = 0,535 Ом
  • R3 = 0,5*(R1-3 + R2-3 — R1-2) = 0,5*(3,1 + 3,1 – 1,07) = 2,565 Ом

Как видно из подсчета, активные сопротивления обмоток автотрансформатора незначительны по сравнению с реактивными. Из-за этого на практике активные сопротивления обмоток обычно не учитываются.

Литература:

1. Электрические сети энергетических систем. В.А. Боровиков. 1977 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

инструменты и методы технического волшебства

Самая главная формула для любого инженера-электрика — это закон Ома, который определяет соотношение между напряжением (измеряется в вольтах), током (измеряется в амперах) и сопротивлением (измеряется в Омах) в цепи. Схема представляет собой замкнутый контур с источником электрической энергии ( например, батареей 9 В) и нагрузкой (чем-то, что расходует энергию, как светодиод). Прежде всего, важно понять физический смысл каждого термина:

• напряжение представляет собой разность электрических потенциалов между двумя точками;

• ток течет от точки с более высокой потенциальной энергией, чтобы снизить потенциальную энергию. Пользуясь аналогией, электрический ток можно предста

— 46 —

вить как поток воды, а напряжение — как высоту перепада. Вода (или ток) всегда течет из точки с большей высотой (более высокое напряжение) к точке с меньшей высотой (или более низкому напряжению). Ток, как вода в реке, всегда будет идти по пути наименьшего сопротивления в цепи;

• по аналогии сопротивление является отверстием для протекания тока. Когда вода (ток) течет через узкую трубу, за одинаковое количество времени проходит меньшее количество, чем через широкую трубу. Узкая труба эквивалентна большему сопротивлению, потому что вода будет течь медленнее. Широкая труба эквивалентна малому сопротивлению, потому что вода (ток) может течь быстрее.



Закон Ома определяется следующим образом:

U = I·R, где U — напряжение в вольтах; I — ток в амперах; R — сопротивление в омах.

В электрической цепи каждый компонент обладает некоторым сопротивлением, что снижает напряжение. Закон Ома очень удобен для подбора значения резистора, подкточаемого последовательно со светодиодом. Светодиоды характеризуются определенной величиной падения напряжения и заданным значением рабочего тока. Чем больше ток через светодиод (не превышая максимально допустимого), тем ярче он светится. Для наиболее распространенных светодиодов максимальный ток равен 20 мА. Типовое значение падения напряжения для светодиода составляет около 2 в.

Рассмотрим схему, изображенную на рис. 2.3, и применим закон Ома для подбора резистора R1.

Рис. 2.3. Схема включения светодиода

Предположим, что LED 1 — стандартный светодиод с прямым током 20 мА и падением напряжения 2 В. Напряжение питания 5 В должно перераспределиться между светодиодом и резистором. Поскольку доля светодиода составляет 2 В, оставшиеся 3 В должны быть приложены к резистору. Зная максимальное значение прямого тока через светодиод (20 мА), можно найти номинал резистора:

R = U/I= 3/0,02 = 150 Ом.

Таким образом, при сопротивлении резистора 150 Ом через него и светодиод протекает ток 20 мА. По мере увеличения сопротивления ток будет уменьшаться.

Резистор 220 Ом обеспечивает достаточную яркость свечения светодиода, к тому же этот номинал очень распространен.

Еще одно важное соотношение — формула для расчета мощности, которая показывает, сколько ватт рассеивается на каждом компоненте. Увеличение мощности рас

— 47 —

сеивания связано с ростом тепловыделения прибора. Для каждого компонента, как правило, задается максимально допустимая мощность. Максимальная мощность резистора в нашем примере равна 0,125 Вт. Формула для расчета мощности выглядит следующим образом:

Р = U·I, где Р — мощность, Вт; U- напряжение, В; I — сила тока, А.

Для резистора из схемы на рис. 2.3 при падении напряжения 3 В и силе тока 20 мА мощность равна

Р = 3·0,02 = 0,06 Вт.

Поскольку 60 мВт< 0,125 Вт = 125 мВт, следовательно, данный резистор не перегреется.















Распространённые ошибки при термоэлектрических расчётах

При моделировании различных электротехнических приборов важную роль играет правильный расчёт электромагнитного нагрева материалов, электропроводность и теплопроводность которых нелинейно зависят от температуры. При моделировании таких нелинейностей даже у опытных инженеров могут возникать некоторые трудности и неожиданные результаты расчетов при комплексных сочетаниях нелинейных свойств материалов, граничных условий и геометрии. Давайте на простом примере разберём, почему это происходит.

Закон Ома и резистивный нагрев

Одним из первых физических законов, с которым сталкиваемся и который используем мы как инженеры, является закон Ома: Ток, протекающий через устройство равен приложенному напряжению (разности потенциалов), делённому на электрическое сопротивление или I = V/Re, где Re — электрическое сопротивление, которое является функцией от геометрии и электропроводности материала.

Далее мы узнаём о рассеиваемой мощности, которая равна произведению приложенного напряжения и тока, или Q = IV, что можно также записать, как Q = I2Re или Q = V2/Re.2 R_e R_t.

Температуру окружающей среды примем равной 300 K или 27°C, что является примерной комнатной температурой. Теперь давайте рассчитаем температуру нашего устройства, как функцию от напряжения (от 0 до 10 В) и тока (от 0 до 10 А), как показано на рисунке ниже. Неудивительно, что мы видим квадратичную зависимость.

Зависимость температуры устройства от приложенного напряжения (слева) и протекающего тока (справа) при постоянных свойствах материала.

Можно предположить, что возможно использовать кривую для расчёта более широкого диапазона рабочих параметров. Поставим задачу нагреть устройство до критической температуры, при которой материал начнёт плавиться и испаряться. Предположим, что он начнёт испаряться при температуре 700 K (427°C). Основываясь на графиках выше и проведя простые математические вычисления можно рассчитать, что максимальное напряжение будет равно 20 В, а ток — 20 А, однако это совершенно неправильно!

Учет нелинейных свойств материала для сосредоточенной модели

На данном этапе вы можете заметить, что допущена ошибка: Электрическое сопротивление непостоянно и зависит от температуры.e_0)) R_t

Эти уравнения уже немного сложнее (первое — квадратичное уравнение относительно T), но их ещё можно решить вручную. Графики зависимости температуры от приложенного напряжения и тока показаны ниже.

Зависимости температуры устройства от приложенного напряжения (слева) и протекающего тока (справа) для случая зависимости электрического сопротивления от температуры.

Для варианта с напряжением мы видим, что при увеличении температуры, сопротивление также возрастает. Так как в этом случае сопротивление в уравнении для температуры находится в знаменателе, с его увеличением прирост температуры будет уменьшаться: мы видим, что график температуры лежит ниже, чем для случая с постоянным удельным сопротивлением. Если рассматривать вариант с постоянным током, то зависящее от температуры сопротивление будет в числителе.

По мере увеличения тока резистивный нагрев будет, наоборот, больше, чем в первом случае. На данном этапе мы опять-таки можем вычислить максимальное рабочее напряжение и ток, однако, вы, вероятно, уже видите вторую ошибку, которую мы допустили: необходимо также учитывать температурную зависимость теплового сопротивления.t_0 = 300 K), можно построить зависимости температуры устройства, как показано ниже.

Зависимости температуры устройства от приложенного напряжения (слева) и протекающего тока (справа) для случая зависимости электрического и термического сопротивлений от температуры.

Заметим, что для варианта с током температура возрастает асимптотически. Поскольку электрическое и тепловое сопротивление увеличиваются с повышением температуры, температура устройства возрастает очень резко по мере увеличения тока. При повышении температуры до бесконечности, задача становится нерешаемой. На самом деле, это полностью ожидаемо. Так работает предохранитель в вашем автомобиле. Если решать данную задачу в COMSOL Multiphysics, то можно использовать исследование во временной области (введя термальную массу как функцию от от плотности материала и теплоемкости), с помощью которого можно рассчитать время, в течение которого произойдет отказ устройства.

Для варианта с напряжением всё намного проще. Здесь мы также видим вполне предсказуемое поведение системы. С увеличением сопротивления температура растёт быстрее, чем в предыдущем случае. Однако заметьте, что относительно самого первого случая с постоянным сопротивлением, температура всё же ниже. Иногда это может запутать, но просто отметьте для себя, что одна из нелинейностей приводит к уменьшению температуры, а другая — к увеличению. В целом, если составлять более комплексную модель (например, которую можно сделать и рассчитать в COMSOL Multiphysics), то сложно предугадать, какая из нелинейностей будет преобладать.

Какую ещё ошибку можно допустить на этом этапе? В данном случае мы использовали положительный температурный коэффициент теплового сопротивления. Это справедливо для большинства металлов, однако для изоляторов, к примеру для стекла, этот коэффициент будет противоположным. Обычно термическое сопротивление всего устройства в основном зависит как раз от изоляторов, а не от электропроводящих доменов. Кроме того, при расчёте термического сопротивления устройства необходимо учитывать естественное охлаждение. То есть термического сопротивление также будет зависеть от эффектов свободной конвекции (которая возрастает с разницей температур) и излучения (которое пропорционально четвёртой степени разницы температур). Теперь давайте закончим рассмотрение нашей относительно простой задачи и изменим знак температурного коэффициента, αt = 1/400 K, а затем также сравним два варианта — с питающим напряжением (от 0 до 100 В) и протекающим током (от 0 до 100 А).

Зависимости температуры устройства от приложенного напряжения (розовым) и протекающего тока (голубым) при отрицательном температурном коэффициенте термического сопротивления.

Мы видим, что результаты теперь совершенно другие. Обратите внимание, что в обоих случаях при низких значениях сопротивления кривые возрастают квадратично, а при увеличении сопротивления они уже имеют менее резкий характер, так как термическое сопротивление уменьшается. Тангенс угла наклона всегда положителен, но его величина постепенно уменьшается. В случае с током, кривая начинает асимптотически приближаться к значению T = 700 K, а в варианте с напряжением это значение меньше.

Это достаточно важный результат, и он позволяет обратить внимание на ещё одну распространённую ошибку. Нелинейные модели материалов, которые мы здесь используем для электрического и термического сопротивлений, являются приближёнными. Они становятся неэффективными при значениях температур около 700 К. Если мы знаем, что устройство будет работать как раз в этом режиме, то нужно найти более сложную материальную модель. Несмотря на то, что существующие модели позволяли получить какой-то результат, всегда стоит проверять адекватность расчёта на действующей рабочей температуре. Конечно, если наши условия эксплуатации далеки от таких температур, можно воспользоваться линеаризованной моделью резистивности (одной из встроенных материальных моделей в COMSOL Multiphysics). Тогда наша модель будет корректной.

Подводя некоторые итоги, мы видим, что температура имеет очень сложную зависимость от питающего напряжения и тока. При рассмотрении нелинейных материалов температура может быть выше или ниже, чем при постоянных свойствах, угол наклона температурной кривой может быть как довольно резким, так и плавным, в зависимости от условий работы.

Запутали ли вас результаты в последнем варианте ещё больше? Что, если мы вернёмся к выражению для сопротивления и изменим один из коэффициентов? У некоторых материалов отрицательный знак температурных коэффициентов для электрического и термического сопротивлений. Что, если бы мы использовали более комплексные нелинейности? Вы все также будете пытаться предсказать ожидаемую температуру на основании сосредоточенной модели, или вы бы скорее положились на полноценный детальный расчёт?

Выводы о распространённых ошибках при электротермических расчётах

Как насчёт случая реального устройства? В нём будет несколько материалов, различные зависимости электро- и теплопроводностей как функции температуры, а также и сложная геометрия. Какой решатель при моделировании вы бы выбрали: стационарный или временной, чтобы узнать, сколько времени потребуется для повышения температуры? Скорее всего, в модели также будут нелинейные граничные условия такие, как условие излучения и свободная конвекция, которые неправильно будет аппроксимировать только одним приближённым тепловым сопротивлением. Что же в таком случае можно ожидать? Да практически всё! И как же рассчитывать такие сложные задачи? Конечно же с помощью COMSOL Multiphysics!

Следующий шаг

Узнайте, как COMSOL Multiphysics может помочь вам в мультифизическом моделировании при решении поставленных задач. Не стесняйтесь написать нам и задать все интересующие вопросы!

Расчет мощности при последовательном соединении

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Параллельное соединение резисторов — расчет

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

Таким образом, протекающий общий ток в цепи можно определить как:

Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:

Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА

Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА

Таким образом, общий ток будет равен:

I = 0,545 мА + 0,255 мА = 0,8 мА

Это также можно проверить, используя закон Ома:

I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)

где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)

И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Вычисление сопротивления и мощности при параллельном и последовательном соединении резисторов. (10+)

Расчет параллельно / последовательно соединенных резисторов, конденсаторов и дросселей

Параллельное или последовательное соединение (включение) применяется обычно в нескольких случаях. Во-первых, если нет резистора номинала. Во-вторых, если есть потребность получить резистор большей мощности. В-третьих, Если необходимо точно подобрать номинал детали, а устанавливать подстроечник нецелесообразно из соображений надежности. Большинство радиодеталей имеют допуски. Чтобы их компенсировать, например для резистора, последовательно с большим резистором устанавливают меньший в разы. Подбор этого меньшего резистора позволяет получить точно нужное значение сопротивления.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. 2 / [Сопротивление первого резистора, кОм] / 1000

Получается, что из двух резисторов по 500 Ом на 2 Вт можно сделать один на 250 Ом, 4 Вт.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис.
Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис.

Биполярный транзистор. Принцип работы. Применение. Типы, виды, категор.
Все о биполярном транзисторе. Принцип работы. Применение в схемах. Свойства. Кла.

Плавная регулировка яркости свечения люминесцентных ламп дневного свет.
Схема драйвера для плавной регулировки яркости свечения ламп дневного света. Дра.

Проверка электронных элементов, радиодеталей. Проверить исправность, р.
Как проверить исправность детали. Методика испытаний. Какие детали можно использ.

RC – цепь. Резисторно – конденсаторная схема. Резистор, конденсатор. И.
Расчет RC – цепи, изменения напряжения на конденсаторе в зависимости от времени.

Силовой резонансный фильтр для получения синусоиды от инвертора.
Для получения синусоиды от инвертора нами был применен самодельный силовой резон.

Закон

Ома

Закон Ома гласит, что

«ток через проводник между двумя точками прямо пропорционален разности потенциалов или напряжению между двумя точками, и обратно пропорционален сопротивлению между ними».

Закон Ома может быть выражен как

I = U / R (1)

где

I = ток (ампер, А)

U = электрический потенциал (вольт, В)

R = сопротивление (Ом, Ом )

Пример — закон Ома

Батарея 12 вольт подает питание на сопротивление 18 Ом .Ток в электрической цепи можно рассчитать как

I = (12 вольт) / (18 Ом)

= 0,67 ампер

Эквивалентные выражения закона Ома

Закон Ома (1) также можно выразить как

U = RI (2)

или

R = U / I (3)

Загрузите и распечатайте диаграмму закона Ома!

Пример — сопротивление электрической цепи

Ток 1 ампер протекает через электрическую цепь 230 В, .На приведенной выше диаграмме это означает сопротивление

R ≈ 220 Ом

Его можно также рассчитать по закону Ома

R = (230 В) / (1 А)

= 230 Ом

Пример — Закон Ома и кратные и подмножители

Токи, напряжения и сопротивления в электрических цепях часто могут быть очень маленькими или очень большими, поэтому часто используются кратные и подмножители.

Требуемое напряжение, подаваемое на 3.Резистор 3 кОм для создания тока 20 мА можно рассчитать как

U = (3,3 кОм) (1000 Ом / кОм) (20 мА) (10 -3 А / мА)

= 66 В

Номограмма электрического сопротивления

Загрузите и распечатайте номограмму зависимости электрического сопротивления от вольт и ампер!

Значения по умолчанию на номограмме выше указывают 230 вольт , сопротивление 24 Ом и ток 10 ампер .

Мощность

Электрическая мощность может быть выражена как

P = UI

= RI 2

= U 2 / R (4)

где

P = электрическая мощность (Вт, Вт)

Пример — потребляемая мощность

Мощность, потребляемая в указанной выше электрической цепи 12 В , может быть рассчитана как

P = (12 вольт) 2 / ( 18 Ом)

= 8 Вт

Пример — мощность и электрическое сопротивление

Электрическая лампочка 100 Вт подключена к источнику питания 230 В и .Текущий ток можно рассчитать путем преобразования (4) в

I = P / U

= (100 Вт) / (230 В)

= 0,43 ампера

Сопротивление может быть вычислено путем реорганизации (4) в

R = U 2 / P

= (230 В) 2 / (100 Вт)

= 529 Ом

Номограмма электрической мощности

Эта номограмма может использоваться для оценки зависимости мощности отнапряжение и ампер.

Скачайте и распечатайте номограмму зависимости электрической мощности от вольт и ампер!

Значения по умолчанию на номограмме выше: 240 В, , сопротивление 10 ампер и мощность 2,4 кВт, для постоянного или однофазного переменного тока и 4 кВт, для трехфазного переменного тока.

Калькулятор Вт, В, А, Ом | Расчет мощности, тока, напряжения и сопротивления

Калькулятор ватт, вольт, ампер и омов:

Ватт — единица измерения мощности, ампер — единица тока, вольт — единица измерения напряжения, а ом — единица сопротивления, здесь просто введите любые два значения четырехэлементного элемента, а затем нажмите вычислить, вы получите немедленный результат. из оставшихся двух элементов.

Кроме того, вы можете легко изменить множитель значения, такой как кило, мега или микро, милли и т. Д. Эта опция доступна для всех параметров.

Напряжение, ток и сопротивление — три основных элемента, которые отвечают за передачу энергии в любую электрическую цепь.

В этой статье мы собираемся изучить взаимосвязь между током, напряжением, сопротивлением и мощностью.

Рассмотрим,

R = сопротивление в Ом

I = ток в амперах

В = напряжение в вольтах

P = мощность в ваттах.

Посмотрите на нижеупомянутый

Расчет сопротивления питания, тока, напряжения:

Расчет сопротивления по напряжению и току:

Сопротивление (R) в омах равно напряжению (В) в вольтах, деленному на ток (I) в амперах, поэтому формула будет иметь вид

.

Сопротивление = Напряжение / Ток

R = V / I

Ом = Вольт / Ампер

Расчет сопротивления по напряжению и мощности:

Сопротивление (R) в омах равно квадрату напряжения (В) в вольтах, деленного на мощность (P) в ваттах, поэтому формула будет иметь вид

.

Сопротивление = Напряжение 2 / Мощность

R = V 2 / P

Сопротивление = Вольт² / Вт

Расчет сопротивления по току и мощности:

Сопротивление (R) в омах равно мощности (P) в ваттах, деленной на квадрат силы тока (I) в амперах.следовательно, формула будет

R = P / I 2

Сопротивление = мощность / ток 2

Ом = Вт / А²

Расчет тока по напряжению и сопротивлению:

Ток (I) в амперах равен напряжению (В) в вольтах, деленному на сопротивление (R) в омах. Следовательно, формула будет:

Ток = напряжение / сопротивление

I = V / R

Ампер = Вольт / Ом

Расчет тока по напряжению и мощности:

Ток (I) в амперах равен мощности (P) в ваттах, деленной на напряжение (В) в вольтах.Следовательно, формула будет:

Ток = Мощность / Напряжение

I = P / V

Ампер = Ватт / Вольт

Текущий расчет по сопротивлению и мощности:

Ток (I) в амперах равен квадратному корню из мощности (P) в ваттах, деленному на сопротивление (R) в омах. Следовательно, формула будет:

Ток = √ (мощность / сопротивление)

I = √ (P / R)

А = √ (Вт / Ом)

Расчет напряжения по амперам и сопротивлению:

Напряжение (В) в вольтах равно произведению силы тока (I) в амперах и сопротивления (R) в омах.Следовательно, формула будет:

Напряжение = ток * сопротивление

В = I * R

Вольт = Ампер * Ом

Расчет напряжения от Ампер и мощности:

Напряжение (В) в вольтах равно мощности (P) в ваттах, деленной на ток (I) в амперах, поэтому формула будет иметь вид

Напряжение = мощность / ток

В = P / I

Вольт = Ватт / Ампер

Расчет напряжения по сопротивлению и мощности:

Напряжение (В) в вольтах равно квадратному корню из мощности (P) в ваттах, умноженной на сопротивление (R) в омах.Следовательно, формула будет:

Напряжение = √ (Мощность * сопротивление)

В = √ (P * R)

Вольт = √ (Вт * Ом)

Расчет мощности по напряжению и току:

Мощность (P) в ваттах — это ток I в амперах, умноженный на напряжение в вольтах, поэтому формула будет иметь вид

.

Мощность = Ток * Напряжение

P = V * I

Ватт = Вольт * Ампер

Расчет мощности по сопротивлению и току:

Мощность (P) в ваттах — это сопротивление в омах, умноженное на квадрат тока.Формула

Мощность = Ток 2 * сопротивление

P = I 2 * R

Ватт = Ампер 2 * Ом

Расчет мощности по сопротивлению и напряжению:

Мощность (P) в ваттах равна квадрату напряжения, деленному на сопротивление. Формула

Мощность = Напряжение 2 / сопротивление

P = V 2 / R

Ватт = Вольт 2 / Ом

ресурсов

Последовательная цепь

Глобусы, соединенные последовательно

В последовательной цепи одна за другой подключены две или более нагрузки.

У тока есть только один путь, по которому оно может течь.

Примером последовательной схемы является набор огней на елку. Все шары ставятся один за другим.

Путь только один, поэтому ток будет одинаковым в любой точке цепи.

Принципиальная схема, показывающая три последовательно включенных резистора

Общее сопротивление в последовательной цепи будет равно сумме каждого отдельного сопротивления в цепи.

Чем больше нагрузок помещено в цепь, тем больше сопротивление.

Общее сопротивление для последовательной цепи рассчитывается по следующей формуле:

R T = R 1 + R 2 + R 3

Закон напряжения Кирхгофа

Вольтметр на каждом резисторе в последовательной цепи t

Закон Кирхгофа расширяет закон Ома в отношении напряжений на сопротивлениях в последовательной цепи.Общее напряжение питания будет равно сумме падений напряжения на каждом резисторе.

Общее падение напряжения (В T ) рассчитывается по формуле:

V T = V 1 + V 2 + V 3

Если известны как ток, так и каждое значение сопротивления, то можно использовать закон Ома для расчета падения напряжения на каждом резисторе.

Например:

В 1 = IR 1

Рассеиваемая мощность

Мощность, рассеиваемая в последовательной цепи, зависит от напряжения питания, приложенного к цепи, и тока, протекающего в цепи.Ток зависит от общего сопротивления цепи.

Из раздела о мощности вы знаете формулу рассеиваемой мощности:

P = VI

Мощность, рассеиваемая в каждом отдельном компоненте, зависит от сопротивления компонента. Общая рассеиваемая мощность будет равна сумме мощности, рассеиваемой каждым отдельным сопротивлением. В зависимости от известных значений комбинации формулы мощности, а также закона Ома могут использоваться для расчета рассеиваемой мощности (или любого другого неизвестного значения).

Пример

На приведенной выше принципиальной схеме, если значения:

В Т = 20 В

R 1 = 50 Ом

R 2 = 20 Ом

R 3 = 100 Ом

Общее сопротивление можно рассчитать следующим образом:

R T = R 1 + R 2 + R 3

R T = 50 + 20 + 100

R T = 170 Ом

Какая общая рассеиваемая мощность?

Вы можете рассчитать текущий расход, а затем рассчитать мощность.Вместо этого вы можете использовать подстановку, чтобы получить формулу.

В формуле P = VI замените I на V T / R T , чтобы получить формулу

P T = V T x V T / R T , что совпадает с

P T = V T 2 / R T

P T = 20 2 /170

P T = 0,235 Вт или 235 мВт

Изучение закона Ома | BCHydro Power Smart для школ

Вы построите схему и проведете демонстрацию, чтобы ваши ученики могли наблюдать взаимосвязь между напряжением, током и сопротивлением.

Инструкции

Представьте тему

Настройте схему, как показано здесь:

Просмотрите рабочий лист «Изучение закона Ома» со студентами.

Проведите демонстрацию

  • Используя амперметр и вольтметр, покажите учащимся, как считывать значения тока и напряжения в цепи. Пока вы проводите измерения, запишите данные на доске и попросите учащихся записать данные на своих листах.Напомните им преобразовать мА в А; 1 ампер = 1000 миллиампер.
  • Последовательно добавьте сухую ячейку и повторите измерения.
  • Если у вас больше сухих ячеек, добавляйте их последовательно по одной и повторяйте измерения каждый раз.

Постройте график сопротивления

Используя данные из таблицы, попросите учащихся построить график зависимости напряжения от тока (V от I). Убедитесь, что они помечают все части своего графика. Объясните, какая линия лучше всего подходит, и попросите учащихся нарисовать ее на своем графике.

Попросите учащихся вычислить наклон линии по наиболее подходящей линии:

  • Выберите две точки на прямой (точка A и точка B).
  • Рассчитайте разницу между напряжениями в двух точках (НАРАЩИВАНИЕ наклона).
  • Вычислите разницу между током в двух точках (RUN на склоне).
  • Разделите ПОДЪЕМ на БЕГ. Это наклон линии.

Сопротивление цепи математически отображается в виде алгебраического уравнения:

  • Сопротивление = напряжение / ток.

Интерпретация данных

Сравните наклон графиков, созданных вашими учениками, с заявленным сопротивлением резистора, который вы использовали. Цифры должны быть похожими (разные числа являются результатом индивидуальных различий в выборе наиболее подходящей линии).

Связь между напряжением и током — это закон Ома, а наклон линии на графике этих двух величин является значением сопротивления в цепи. Уравнение закона Ома можно представить тремя способами:

  • R = V / I (сопротивление = напряжение, деленное на ток)
  • V = I x R (напряжение = ток x сопротивление)
  • I = V / R (ток = напряжение, деленное на сопротивление)

Параллельные цепи

Ваш браузер не поддерживает Java-апплеты

Схема с более чем одним
Путь прохождения тока представляет собой параллельную цепь.


НАПРЯЖЕНИЕ В ПАРАЛЛЕЛЬНЫХ ЦЕПЯХ

Общее напряжение равно
напряжение любого параллельного сопротивления.


ТОК В ПАРАЛЛЕЛЬНЫХ ЦЕПЯХ

Полный ток равен
сумма тока каждого параллельного компонента.


ПАРАЛЛЕЛЬНОЕ СОПРОТИВЛЕНИЕ
ЦЕПИ

Общее сопротивление может быть
рассчитывается по закону Ома, если известны напряжение и полный ток.

Общее сопротивление всегда
меньше наименьшего значения сопротивления.


Метод равных значений

Для параллельных сопротивлений в
какие все резисторы имеют одинаковое значение, сопротивление можно рассчитать по формуле
разделив номинал одного из резисторов на количество резисторов.


Взаимный метод

Для параллельных сопротивлений в
какие все резисторы имеют одинаковое значение, сопротивление можно рассчитать по формуле
разделив номинал одного из резисторов на количество резисторов.

1 / R T = 1 / R 1 + 1 / R 2 + 1 / R N

R EQ = 1 / (1 / R 1 + 1 / R 2 +
… + 1 / R N
)


Метод произведения на сумму

Для расчета сопротивления
двух параллельных резисторов можно использовать эту формулу:

R EQ = (R 1 * R 2 ) / (R 1 + R 2 )


Правило приближения 10 к 1

Если подключены два резистора
параллельно, и один резистор в 10 или более раз больше по стоимости, чем другой
резистор, резистор большего номинала можно не учитывать.


ПРОВОДИМОСТЬ

Общая проводимость равна
сумме проводимости каждого компонента.


ПИТАНИЕ В ПАРАЛЛЕЛЬНЫХ ЦЕПЯХ

Суммарная мощность равна
сумма мощности каждого компонента. (Это то же самое, что и с серией
схемы).

Правила для параллельных цепей постоянного тока

  1. Такое же напряжение существует
    через каждую ветвь параллельной цепи и равно напряжению источника.
  2. Ток через
    параллельная ветвь обратно пропорциональна величине сопротивления
    ветка.
  3. Полный ток
    параллельная цепь равна сумме отдельных токов ответвления
    цепь
  4. Эквивалентное сопротивление
    параллельная цепь находится по общему уравнению Req = 1 / (1 / R1 + 1 / R2 +
    1 / Rn)
  5. Общая мощность, потребляемая в
    параллельная цепь равна сумме мощности, потребляемой индивидуумом
    резисторы.


ПАРАЛЛЕЛЬНЫЙ АНАЛИЗ ЦЕПЕЙ

  1. Соблюдайте принципиальную схему
    внимательно или при необходимости нарисуйте.
  2. Обратите внимание на указанные значения и
    значения, которые необходимо найти.
  3. Выберите подходящий
    уравнения, которые будут использоваться при решении для неизвестных величин на основе известных
    количества.
  4. Подставьте известные значения
    в выбранном вами уравнении и найдите неизвестное значение.


ПАРАЛЛЕЛЬНОЕ УСТРАНЕНИЕ НЕПОЛАДОК
ЦЕПИ

Когда в
ветви параллельной сети сопротивление ветви увеличивается и
общее сопротивление цепи увеличивается. Это вызывает уменьшение общего
Текущий.

Короткое замыкание всегда приводит
в отсутствие тока, протекающего через другие ветви цепи.

Как рассчитать напряжение, мощность и сопротивление

каратеки
| Электроника |

Большинство людей вне инженерной области не понимают разницы между напряжением, ваттами, омами и амперами.Хотя они встречаются со всеми этими терминами в своей повседневной жизни, они не понимают, как они влияют на работу электронного и электрического оборудования. Однако, если вы поймете, что это за концепции и как они связаны друг с другом, вы сможете лучше понять свое электрическое оборудование и электронику. Вот краткое объяснение этих концепций.

Какие они?

Чтобы понять , как рассчитать напряжение, мощность и сопротивление , вам необходимо понять, что это такое.

Напряжение

Напряжение известно как электродвижущая сила. Он определяет разность потенциалов в заряде между двумя участками электрического поля. Вы можете считать это напором воды. Чем выше напряжение, тем сильнее протекает электрический ток.

Ватт

Ватт — это единица СИ, отображающая меру мощности. Он измеряет скорость, с которой энергия рассеивается, излучается или поглощается. Это одна из причин, почему лампы накаливания и другие подобные электрические приборы.

Электрическое сопротивление

По мере движения электричества его мощность уменьшается и немного затухает. Электрическое сопротивление аналогично этой концепции. Когда мощность проходит через электрическое устройство, ток замедляется. Таким образом, сопротивление — это единица измерения, которая измеряет, насколько ток может фактически замедляться. Обычно измеряется в омах. Вы можете сравнить это с потоком воды по трубам. Чем тоньше труба, тем выше сопротивление.

Текущий

Скорость протекания электрического тока измеряется в амперах.Ток напрямую связан с напряжением. Таким образом, если напряжение высокое, ток также будет большим. Обычно это указывается в ваших счетах за электроэнергию, поскольку демонстрирует, сколько энергии вы потребляете от основной линии.

Как их вычислить

Если вы хотите вычислить эти единицы, вам потребуются значения других единиц. Существует множество различных формул, которые помогут вам измерить каждую единицу. Здесь мы обсудим самые простые.

Ватт = Ампер x Вольт

Один ватт — это один ампер тока, протекающего со скоростью один вольт.Вы также можете выразить эту формулу как P = VI, мощность = напряжение, умноженное на ток. Таким образом, мощность лампочек 5 А и 2 В будет 5 × 2 = 10. Эта конкретная лампочка будет излучать 10 Вт света.

Напряжение = Ватт / Ампер

Если вы хоть немного знакомы с математикой, вы, должно быть, нашли способ рассчитать как напряжение, так и токи на основе первой формулы. Вам просто нужно поменять позиции. Первая формула была W = AxV, вторая — V = A / W. Учитывая приведенный выше пример, мы можем вычислить V = 10/5.Результат — 2В.

Амперы = Ватты / Вольт

К настоящему времени вы, возможно, уже догадались. Формула для расчета ампер: A = W / V. Если W равно 10, а V равно 2, то A равно 10/2, что равно 5A.

Ом = Вольт / Ампер

Как мы упоминали ранее, сопротивление является мерой сопротивления. Согласно закону Ома R (сопротивление) = Вольт / Ампер. Итак, если напряжение равно 2, а A равно 5, то сопротивление равно 5/2, что равно 2,5 Ом.

Существуют разные способы расчета напряжения, мощности и сопротивления.Если вы хотите выполнить более сложные вычисления с большим количеством значений, вы можете изучить эти формулы.

Если вы хотите узнать больше о напряжении, мощности и сопротивлении, а также о наших специальных продуктах и ​​услугах по питанию, не стесняйтесь обращаться к нам по телефону KaRaTec Power Supply Pty . Вы можете позвонить нам по телефону 612 9808 1127 . Вы также можете заполнить эту форму связи, и мы ответим в ближайшее время.

Спасибо за внимание,
Karatec Power Supply Pty
612 9808 1127

Закон Ома

Закон Ома

Главная |
Карта |
Проекты |
Строительство |
Пайка |
Исследование |
Компоненты |
555 |
Символы |
FAQ |
Ссылки


Следующая страница: Мощность и энергия

См. Также: Напряжение и ток | Сопротивление |
Резисторы

Чтобы ток протекал через сопротивление, на этом сопротивлении должно быть напряжение.Закон Ома показывает взаимосвязь между напряжением (V), током (I) и сопротивлением (R).
Это можно записать тремя способами:

где: V = напряжение в вольтах (В)
I = ток в амперах (A)

R = сопротивление в Ом ()
или: V = напряжение в вольтах (В)
I = ток в миллиамперах (мА)

R = сопротивление в килом (к)

Для большинства электронных схем усилитель слишком велик, а сопротивление слишком мало,
поэтому мы часто измеряем ток в миллиамперах (мА), а сопротивление в килом.
(k).1 мА = 0,001 А и 1 кОм
= 1000.

Уравнения закона Ома работают, если вы используете V, A и
,
или если вы используете В, мА и
k.
Вы не должны смешивать эти наборы единиц в уравнениях, поэтому вам может потребоваться преобразование между
mA и A или k и
.

Треугольник ВИР
V

I R

Закон Ома
треугольник

Вы можете использовать треугольник ВИР, чтобы запомнить три версии закона Ома.
Запишите V, I и R в треугольнике, как в желтом поле справа.

  • Чтобы рассчитать напряжение , В : поместите палец на V,

    это оставляет вас с I R, поэтому уравнение V = I × R
  • Чтобы рассчитать ток , I : положите палец на I,

    это оставляет вас с V над R, поэтому уравнение I = V / R
  • Чтобы вычислить сопротивление , R : поместите палец на R,

    это оставляет вас с V над I, поэтому уравнение R = V / I

Расчет по закону Ома

Используйте этот метод для проведения расчетов:

  1. Запишите значения , при необходимости конвертируя единицы.
  2. Выберите необходимое Equation (используйте треугольник VIR).
  3. Подставьте чисел в уравнение и вычислите ответ.

Это должно быть V ery E asy N ow!


Следующая страница: Power and Energy
| Изучение электроники




© Джон Хьюс 2007, Клуб электроники,
www.