Время застывания бетона в опалубке после заливки
Сроки строительства любой конструкции, где предусмотрена технология бетонной заливки, заранее планируются. Обусловлено это тем, что для окончательного затвердения бетона требуется время, сооружение должно накопить достаточный запас прочности.
Несоблюдение технологических норм может стать причиной повторной заливки, что отразится на смете.
Монолитный фундамент, произведенный без соблюдения строительных правил станет опасным, он может лопнуть, потрескаться или разрушиться.
Процесс состоит из нескольких этапов, одним из важных из них является высыхание бетона в опалубке.
Сколько сохнет бетон
Бетонный раствор представляет собой густую жидкую смесь, в составе которой основные ингредиенты:
- Связующий минеральный порошок — цемент;
- Вода;
- Наполнители — щебень, гравий, песок.
При высыхании происходит сложный химический процесс, в результате которого получается камневидный материал. Первый этап затвердевания — схватывание — самый короткий и начинается после 1-2 часа после приготовления раствора. Цемент, вступая в реакцию с водой, превращается в твердые кристаллы — гидраты окиси кальция. Чем больше их образуется, тем прочнее будет фундамент.
Кристаллизация кальциевых соединений сопровождается интенсивным выделением влаги и тепла. Схватывание марок бетона разное. Бетонная смесь марки М200 схватывается за 3,5 часа с момента замеса. Далее, она продолжает сохнуть, набирая прочность в течение 7 дней, процесс затвердевания может продолжаться 28 суток и больше. На сроки готовности влияют несколько факторов.
Влияние на скорость высыхания
Превращения раствора в прочный монолит зависит от погодных условий, размеров конструкции, состава бетона.
Оптимальные параметры воздуха:
- Температура — 15-20 градусов;
- Влажность — 75%.
Подгадать день с такими характеристиками сложно, обычно лучшее время создания фундамента — конец лета и начало осени.
В сухую жаркую погоду процесс высыхания ускоряется, что плохо для бетона. Скоротечное испарение влаги не дает цементу полностью кристаллизироваться, фундамент становится хрупким, на поверхности образуются трещины. Схватывание происходит за 1 час.
Низкие температуры также неблагоприятно отражаются на качестве фундамента. Гидратация существенно замедляется, а при нуле и ниже влага остается в растворе, при замерзании расширяется и оказывает разрушительное действие на структуру. Критический порог твердения — 10 градусов тепла, схватывание длится 6-12 часов.
Еще один фактор, влияющий на скорость обезвоживания — формат основания здания. Углубленный высокий фундамент будет намного дольше высыхать, чем низкий с небольшой толщиной.
От состава бетона зависит продолжительность набора прочности. Бетон М200 застывает в течение 14-18 суток, М400 — за 7-14. Трамбовка, применяемая при заливке, продлевает сроки высыхания.
Слишком быстрое застывание можно замедлить с помощью воды и пленки. Для ускорения процесса применяется совсем другая технология.
Как ускорить твердение
Самый простой способ — заказать готовый раствор с добавлением модификаторов. Производители в собственных лабораториях разрабатывают смеси с заданными параметрами. Грузовой транспорт с бетономешалкой доставит бетон в оговоренное время. Работы по заливке придется делать быстро или с помощью бетононасоса. Подходит для объемных фундаментов.
Использование электрических термоматов. Маты крепятся к стенкам опалубки, и твердение в холодную погоду происходит быстрее. Энергосбережение достигается встроенным реле, которое доходя до заданной температуры выключается.
Прогревочный провод ПНСВ укладывается на арматуру, один открытый конец привязывается к металлической проволоке, во время заливки важно следить чтобы электропровод не прикасался к опалубке и полностью был погружен в раствор. Другой конец подсоединяется к источнику электричества. Такой метод хорошо применять на низких температурах.
Во время затворения бетона используют порошки и жидкости для схватывания или твердения. Созревание становится ускоренным, что сокращает время строительства и можно сэкономить на цементе. Добавки вводятся строго по рецептуре, предоставленной производителями.
Максимальная крепость бетона достигается в 2-3 раза быстрее благодаря суперпластификаторам. Также они придают замешанному раствору пластичность, равномерное распределение фракций, водонепроницаемость и морозоустойчивость. Выбирая ингибитор, надо учитывать антикоррозийные свойства вещества, так как от воздействия агрессивных химических соединений арматура может заржаветь и сгнить.
С каждым годом на рынке стройматериалов появляются пластификаторы, которые ускоряют твердение, повышают прочность цементобетона и морозостойкость. Важно соблюдать дозировку.
Как проверить высох ли бетон
Проверить прочность фундамента можно тремя способами.
Самый простой, не требующий лабораторного оборудования, подходит малоэтажным частным постройкам. Потребуется:
- Молоток весом не больше 500 г;
- Зубило.
Зубило ставится на бетон, сверху по нему с небольшим усилием наносится удар молотком так, чтобы он отскочил. Далее визуальный анализ покажет, насколько прочен фундамент. По оставшемуся следу от удара можно определить марку бетона. Чем больше диаметр выемки, тем слабее структура. Высшим классом считается, когда от ударной нагрузки поверхность остается неизменной.
Ниже приведены размеры образовавшейся лунки от удара и оценка:
- До 5 мм — удовлетворительно;
- До 1 см — плохо;
- Без следов — отлично.
Простой тест на скалывание также даст понять, насколько прочен монолит. Дрелью или перфоратором скалывают угол бетонного массива. Если прилагается максимум усилий, значит он хорошо просох..
Проверку основания громоздких зданий с несколькими этажами и тяжеловесной коробкой лучше доверить специалистам, которые проведут ультразвуковое исследование современными приборами.
Экспертиза покажет, равномерно ли засох бетон, нет ли внутри пустот и сырых участков.
Когда разбирать опалубку
В мире до сих пор сроки снятия опалубки разнятся. Одни считают, что распалубку можно производить через 2 дня, когда схватывание полностью завершился.
Другие опалубку снимают после недельной выдержки. Все зависит от того, в каких атмосферных условиях высыхал бетон, от марки цемента и наличия пластификаторов.
Посмотрите видео:
Съем каркасной конструкции не является поводом к продолжению строительства. Бетон должен дозреть, набрать прочность хотя бы до 90%. Обычно на это уходит 28 дней. Излишняя торопливость в дальнейшем отрицательно скажется на состоянии готового дома.
Сколько времени бетон застывает в опалубке?
От правильного соблюдения времени застывания бетона, залитого в опалубку, зависит прочность и долговечность возводимой конструкции. Твердение цементных смесей представляет собой сложный процесс, на который параллельно влияет множество факторов: от температурных условий до состава и структуры раствора. Минимальное время нахождения бетона в опалубочном каркасе — 1 день, верхний предел достигает 1 месяца. Считается, что для окончательного схватывания, после которого цементная структура перестанет отдавать влагу, требуется не менее 28 дней, но соблюдать такие сроки в строительных работах нецелесообразно. Поэтому лучше выяснить: через какое время снимают опалубку для конкретно выбранного объекта из бетона, с определенными (контролируемыми) параметрами и вносить коррективы с учетом внешних условий (погоды, технологии заливки и ухода).
Оглавление:
- Влияние марочной прочности
- Правила застывания
- Как ускорить процесс?
- Когда следует снимать опалубку?
Зависимость сроков твердения от марки раствора
Существуют строительные нормы, разрешающие провести снятие щитов после достижения определенного процента прочности. Они напрямую связаны с маркой бетона, чем ниже качество, тем выше показатель. Данная зависимость отражена в таблице:
Прочность на сжатие | Требуемый минимум в процентах от марочной крепости |
До М150 | 50 |
М200–300 | 40 |
М400–500 | 30 |
Для напряженных конструкций (горизонтальных перекрытий, длинных пролетов) | 70 |
На практике это означает, что снятие опалубки для бетона М500 разрешается при достижении 30 % прочности, то есть использование высококачественных марок ускоряет стройку, и наоборот. Конкретное время безопасного схватывания определяется с учетом других внешних факторов по специальному графику.
Условия твердения
Характеристики цементных смесей значительно улучшаются при организации правильного режима застывания. Поэтому качественное бетонирование подразумевает учет всех факторов, влияющих на время схватывания:
- среднесуточной температуры;
- влажности воздуха;
- типа конструкции.
Чем холоднее окружающая среда, тем больший промежуток следует выждать перед снятием опалубки. Для качественного твердения бетона важно обеспечить нормальную влажность воздуха: избыток или недостаток воды приводит к нарушению процесса гидратации цемента. То есть, в жару требуемая прочность достигается в максимально быстрые сроки, но нарушается внутренняя структура и возрастает хрупкость. Именно поэтому идеальным временем для бетонирования считается ранняя осень.
При определении нужного срока снятия щитов учитывается зависимость от среднесуточной температуры воздуха, связанная с марочной прочностью. Так, для востребованных сортов бетона М200–300, изготавливаемых на основе портландцемента М500, график имеет вид:
Среднесуточная температура, °C | Время, прошедшее с начала заливки: | ||||||
1 | 2 | 3 | 5 | 7 | 14 | 28 | |
Прочность бетона, в % от марочного норматива | |||||||
0 | 5 | 12 | 18 | 28 | 35 | 50 | 65 |
5 | 9 | 19 | 27 | 38 | 48 | 62 | 77 |
10 | 12 | 25 | 37 | 50 | 58 | 72 | 85 |
20 | 23 | 40 | 50 | 55 | 75 | 90 | 100 |
30 | 35 | 55 | 65 | 80 | 90 | 100 |
Важным фактором считается ожидаемая несущая нагрузка на бетонную конструкцию. Вертикальные опалубки снимаются раньше горизонтальных, их критическая прочность меньше на 20 %. Это же актуально для пористых бетонов, в сравнении с тяжелыми сортами.
Способы ускорения твердения
Есть два варианта влияния на сроки застывания бетонной смеси: автоклавная обработка и ввод специальных примесей. Первый труднореализуем в домашних условиях: плиту или заливку размещают в особой камере с влажной средой. После обработки горячим паром под высоким давлением прочностные характеристики бетона за время от 15 до 24 ч достигают аналогичных годовой выдержке.
В частном строительстве такое оборудование отсутствует, поэтому для скоростного схватывания раствора используется специализированная опалубка с электроподогревом и создаются условия минимального испарения или кристаллизации жидкости. В помещении это организовать проще: устанавливается термопушка и контролируется влажность, наружные поверхности закрываются пленкой и смачиваются.
Второй способ ускорения сроков твердения бетона доступен при любых условиях, вплоть до полевых. В раствор на последних минутах замеса вводятся модифицирующие добавки, влияющие на его физико-механические характеристики (время набора прочности значительно сокращается). Несмотря на явные преимущества, этот метод редко используется в индивидуальном строительстве из-за высокой стоимости добавок.
Требуется строгое соблюдение пропорций, в бетон вводится не более 4 % солей азотной кислоты, 3 — хлорида натрия, 2 — сульфатов натрия. При превышении рекомендуемого соотношения ухудшается пластичность раствора, что влияет на итоговое качество заливки, применение некоторых модификаторов ограничивают из-за сильных коррозийных свойств (они не подходят для железобетона). Ускорить застывание также можно путем добавления сухого или мокрого вибродомола в портландцемент значительной прочности (М400 или М500).
Сроки снятия щитов
С учетом вышеизложенного и типа строительной конструкции, минимальное время нахождения бетона в опалубке при среднесуточной температуре +10 °C составляет:
- Для монолитных фундаментов и вертикальных армированных изделий с пористым наполнителем — 5 дней.
- Для горизонтальных перекрытий и небольших проемов — 14.
- Для лестничных проемов длиной от 6 м — 28.
Данные сроки застывания актуальны для бетона, в состав которого входит портландцемент М500. При использовании менее качественного раствора будут действовать другие показатели марочной прочности. Если строительные работы проводятся в холодное время года, то сроки застывания увеличиваются на 2–3 дня. Это же актуально при наличии частых перепадов температуры или влажности в процессе заливки и схватывания.
Существует еще один нюанс: данные сроки определяют момент снятия опалубки, а не разрешение на следующий этап работ. В практике индивидуального строительства щиты и крепежи необходимы для заливки соседнего участка фундамента или перекрытия, но это не означает, что освобожденная поверхность пригодна к обработке.
Согласно нормам, бетон должен набрать еще как минимум 20 % прочности. При этом он продолжает выделять влагу, что также учитывается при выборе этапа работ. Разрешается осмотр поверхностей и устранение дефектов, но не гидроизоляция (исключение составляют особые водоэмульсионные мастики или специальные смеси для железнения) или нагрузка конструкции.
Время застывания бетона в опалубке
Если у вас есть сомнения в собственных навыках установки опалубки, можете вместе с основной заливкой отливать небольшой объем из такой же бетонной смеси. Это послужит вам своеобразным контрольным вариантом и даст возможность определить максимально точные сроки схватывания вашего бетона, а также возможности снятия опалубки. Не нужно торопиться. Спешка вероятнее всего приведет к необходимости проведения реконструкции вашего фундамента. Лучшим вариантом будет снять доски немного позже истечения необходимого срока.
Действительно, точно и правильно отлитый фундамент послужит основой всего будущего здания. От того, насколько продолжительно будет высыхать бетон в опалубке, напрямую может зависеть качество его застывания. В конце летнего сезона делать заливку фундамента лучше всего. При этом можно будет убедиться в его прочности или обнаружить недостатки с наступлением весны. Но опалубку с фундамента обязательно необходимо снимать на зиму. Выполнять демонтаж опалубки следует аккуратно, чтобы не наносить повреждений вашему бетонному фундаменту, начиная с элементов, расположенных по углам конструкции. Прежде всего убираются все сваи, которые служат опорами фундамента, а затем сами листы. Но для этого принципиально важно знать, как осуществляется заливка, и сколько высыхает бетон под опалубкой.
Как протекает процесс застывания бетона?
Для нормального застывания бетона огромное значение имеет влажность и температура окружающей среды. В том случае, если в регионе строительства объекта после заливки бетона будет засуха, то фундамент можно будет поливать для равномерной кристаллизации цементного соединения, и чтобы бетон не начал лопаться и трескаться. Именно правильная кристаллизация может указывать на возможность аккуратного демонтажа опалубки. А увлажнение поспособствует не только быстрому схватыванию, но и повышению качества заливки.
Процесс застывания бетонной конструкции не заключается в испарении воды из него. Застывание бетона представляет собой усложненную химическую реакцию, во время которой протекает процесс химического преобразования вяжущих компонентов изначального состава в гидраты кальция. Процесс протекает под постоянным воздействием воды и соответственно называется гидратацией. Вещество связывающих компонентов минерализуется и в результате реакций связывает весь раствор в единый цельный монолит. Прочность вашей цементной конструкции будет зависеть прежде всего от качества и правильных пропорций компонентов, составляющих цементный раствор. В частности, от марки производителя цемента, а также доли, которую составляют дополнительные наполнители. В среднем на застывание оснований требуется месяц, если благоприятные внешние погодные факторы будут способствовать этому процессу.
Контрольный период отвердевания бетонной конструкции
Большинство строителей считают, что в нормальных условиях период твердения бетонных смесей после заливки должен составлять четыре недели. Это не совсем верно. Процесс схватывания цемента может быть затянут на месяцы, а время от времени даже на несколько лет. Только по истечении длительного периода бетонная конструкция может достигнуть пиковых значений своей прочности, а через один месяц вещество просто находится в таком состоянии, когда может выдержать минимальные расчетные нагрузки после заливки. Этот период схватывания цементных смесей называется контрольным.
В контрольном периоде высыхания бетонных конструкций заложены самые разные значения. В простом строительстве они могут варьироваться от четырех до пяти недель. Этого может быть вполне достаточно, чтобы раствор мог выдерживать минимальные расчетные нагрузки как в процессе возведения многоэтажных зданий, так и при строительстве малых загородных домов. Контрольный период продолжительностью в один месяц применяется для фундаментов, монолитных перекрытий и стен, а по сути таких конструкций, которые могут без проблем застывать в нормальных естественных условиях.
Монтаж опалубки
В подготовленную траншею необходимо укрепить доски на опалубке, при этом стараясь максимально сцеплять их друг с другом по углам и краям. Если не сделать этого, то в раствор в результате будет выливаться. После застывания конструкция будет смотреться очень не эстетично. К тому же качество заливки будет желать лучшего.
Всегда помните, что перед началом установки листов, перед заливкой бетонной смеси опалубку обязательно необходимо смазывать специальной жидкостью, каким-нибудь маслом или на самый крайний случай обернуть монолит полиэтиленом или бумагой. Так будет гораздо проще производить демонтаж опалубки. Подготовка материалов для опалубки осуществляется тогда, когда уже полностью определено, какой будет ее ширина и высота. Лучше всего конструировать деревянную опалубку из простых досок. Необходимо сразу же упомянуть, что строителям нет никакой необходимости оставлять на своем месте опалубку до завершения контрольного периода высыхания.
Демонтаж опалубки
Демонтаж опалубки можно будет осуществлять примерно через неделю после завершения этапа заливки бетонной смеси. За первую неделю затвердевания он схватится настолько, что уже не может быть разрушен при нормальном демонтаже формовочных изделий. Однако скорость, необходимая для затвердевания бетонной смеси замедляется в период сильных холодов, и убирать опалубку, застывшую при такой погоде, через неделю после заливочных работ допустимо исключительно в теплое время года.
Самым главным показателем для возможности проведения безопасного демонтажа опалубки является среднесуточная температура окружающего пространства. Чем выше она будет, тем быстрее бетон застынет, и можно будет намного быстрее убрать сформировавшуюся конструкцию. Как правило, в летний период опалубку разрешается демонтировать уже через два или три дня. Но важно всегда помнить то, что наиболее предпочтительным периодом в году для заливки является конец лета или начало осени. Время, когда можно убирать конструкцию в определенных случаях, можно обозначить более детально.
Влияние природных факторов
Если средний температурный показатель составляет приблизительно 1-2°С, то разрешается демонтировать все доски только спустя несколько недель. При приблизительной температуре 5°С демонтаж проводится примерно через 10 дней. В том случае, если на улице относительно теплая погода в районе 10°С, опалубка может быть снята по прошествии 5 дней.
Как правило, заливка способна набирать примерно 50% своей основной прочности по истечении указанного периода. Возможность демонтировать опалубку еще не означает готовность застывшей бетонной смеси производить какие-нибудь работы со свежим фундаментом. После демонтажа опалубки монолит лучше просто накрыть обыкновенной полиэтиленовой пленкой. Не следует буквально укутывать фундамент пленкой. Пусть полежит в таком виде до наступления морозов. После этого пленку необходимо убрать. Конструкции предстоит простоять целую зиму, чтобы пройти минимальное достаточное испытание на устойчивость и прочность под воздействием внешних природных факторов.
Застывание при пониженных температурах
При пониженной температуре нельзя производить демонтаж опалубки раньше, чем пройдет половина контрольного периода твердения. Составляющие элементы опалубки могут быть разобраны только через пару недель после заливки. Такое условие следует соблюдать, когда процесс застывания протекает при пониженных температурах. Когда бетонная конструкция расположена в теплом помещении или опалубка бетона предварительно была оснащена материалами, которые способствовали ее обогреву, допустимо проводить демонтаж немного раньше. Следует добавить, что опалубка с приспособлениями для подогрева конструкции устанавливается не для понижения периода, необходимого для качественного застывания, а только для поддержания приемлемой температуры. Если у вас вдруг появилась идея для ускорения застывания подобным образом в летний период, лучше откажитесь от нее потому, что бетон не сможет набрать прочность в ускоренном темпе. Качество конструкции понизится значительно потому, что повышение температуры будет способствовать ускоренному обезвоживанию раствора и в итоге лишит его одного из реагентов, без наличия которого гидратация в принципе невозможна.
Рассмотрим контрольный период застывания с другой стороны. Теперь можно определить, сколько времени он требует при монолитном возведении строительных объектов обычного назначения. Но для укрепленных конструкций специалисты сумели определить контрольный срок 90 дней. К подобным сооружениям могут относиться дамбы, плотины или мосты. Следует упомянуть, что за указанный период бетон не будет прочнее в три раза, в сравнении с раствором, который выдерживался на протяжении трех месяцев. Его показатели станут выше только на пятую часть, по сравнению с прежними.
Возможно ли повысить скорость застывания в бытовых условиях?
Определить степень прочности бетонной конструкции можно при помощи специального прибора. Рассмотрим основные принципы изменения скорости застывания цементных растворов. На предприятиях, специализирующихся на выпуске изделий из железобетона, для ускорения процесса применяется методика повышения температуры и давления. При возрастании температуры ускоряются химические реакции, но одновременно с этим испарение жидкости может быть гораздо более интенсивным. Чтобы приостановить этот процесс, бетонные изделия размещаются в автоклавах, которые поддерживают повышенное давление. Другой метод поддержки активности гидратации связующих компонентов называют подачей пара. Подобный процесс осуществляется в специализированных пропарочных камерах, где размещаются блоки из железобетона. Для пара свойственно создание повышенной температуры и одновременно препятствие обезвоживанию бетона. Подобные технологические новшества позволяют значительно ускорить застывание в несколько десятков раз. Меньше, чем спустя одни сутки ЖБИ может использоваться на стройке.
Существует ли возможность использования таких методов при заливке фундаментов в частных домах? Конечно же, нет! Выше был рассмотрен период высыхания цемента в нормальных условиях. Легко определяется то, что при повышении температуры застывание будет не таким качественным. Препятствовать данному процессу в жаркую погоду поможет обрызгивание конструкции водой и ее накрытие под пленку, которая не пропустит влагу. Подобные способы в некоторой степени смогут препятствовать обезвоживанию конструкции и активизируют реакцию, но обсуждать какое-то ускорение процесса пока не представляется возможным.
Бетон в опалубке-каково время застывания
При выполнении строительных работ с бетоном необходимо рассчитать время, за которое бетонный раствор полностью затвердеет. Снимать опалубку следует своевременно, так как от этого зависит насколько прочной будет конструкция. Пока бетонная смесь, находясь в опалубке, высыхает, она не только держит заданную конфигурацию, но еще набирает вместе с твердостью и прочность. Выстроенная конструкция меньше будет подвергаться деструкции, если она сооружалась правильно и успела стать достаточно прочной.
Описание строительства с применением бетонных растворов
Бетон в монолите, используемый в строительстве, это ничто иное, как искусственный камень. Его изготавливают определенной конфигурации с заданными проектировщиками габаритами из бетонной смеси конкретной модификации. Бетон может изготавливаться с армированием или без него. Указания по изготовлению бетонного сооружения (тип связующего компонента, характеристики арматуры для формирования остова, параметры конструкции, ее прочностные данные) прописываются в проектах. Накопление прочности строительного материала определяется временем окончательного застывания бетонного раствора и условиями, при которых происходит этот процесс. В свою очередь, он делится на два этапа: схватывание и полное затвердение.
Схватывание
На этой стадии бетонная жижа постепенно теряет свою мобильность и пластичность. Поэтому, операции по заливке раствора в опалубку следует производить быстро, что является очень важной частью мероприятий по созданию конструкции.
Для предотвращения преждевременного схватывания продукта транспортировку раствора осуществляют в специально оборудованных машинах, бетономешалках, где продолжается его перемешивание. Все действия по размещению бетонной смеси в опалубке (заливка, выравнивание, уплотнение) осуществляются оперативно и непрерывно. Любые задержки, медлительность, несоблюдение технологии бетонирования, каждая из них может проявить себя и вызвать серьезные неполадки в последующей эксплуатации выстроенных узлов. Например, если бетонная масса недостаточно хорошо вымешана, и, при этом, застывание прошло послойно, то между слоями могут образоваться мостки холода, и тогда прочность конструкции снизится. Важно сделать правильный расчет времени, которое потребуется на перевозку и заливку материала. При нормальных условиях окружающей среды схватывание длится на протяжении часа. В очень жаркой обстановке схватывание жидкой массы может составлять всего четверть часа. Если работы с бетонным составом происходят на открытом пространстве в холода, то процесс застывания сильно замедляется, а при температурах ниже нуля вообще прекращается. В зимнее время года бетон самостоятельно не сохнет. Чтобы при отрицательных температурах раствор начал застывать, для полноценного схватывания в него добавляют специальные составы, или строят утепленную опалубку.
Полное отвердение
На этом этапе строительный раствор полностью кристаллизуется, приобретая нужную конфигурацию, накапливая прочность и твердость. Время твердения зависит от некоторых факторов:
- состояние окружающей обстановки;
- температура атмосферы в день заливки;
- марка связующего компонента;
- процентное соотношение стройматериала к влаге.
Обычно, бетонная смесь в собранной конструкции, чтобы набрать необходимую прочность, отвердевает в течение 28-и суток при условии, если температура окружающей среды держится в пределах 20-22° С при влажности около 68%. Но и потом затвердевшая конструкция продолжает крепчать не один месяц. Сколько времени уйдет на это, точно не известно, все зависит от совокупности сложившихся условий.
Как вычислить время полного отвердения раствора в опалубке?
Самостоятельное осуществление работ с бетоном следует проводить строго по соответствующим строительным нормам и правилам. Только неукоснительное следование нормативным документам послужит гарантией надежности сделанных сооружений. Порядок организации работ не исключает и стадию высыхания залитого раствора в опалубке. Тогда дальнейшая ее эксплуатация будет безопасной. Так как застывшая смесь, преобразованная в монолит, продолжает прочнеть, очень важное значение имеет, чтобы ее переходный процесс из одной стадии в другую не нарушался.
Сколько нужно времени, чтобы застывшая масса набрала запроектированную прочность?
В нормативных документах по строительству бетонных сооружений имеется математическая формула, по которой можно рассчитать процент накопленной прочности за конкретное время:
Rn = R28 (lgn/lg28), где R28 – марка используемого при заливке бетона; n – сутки со дня размещения раствора в опалубке. В расчетный период прочности сооружения не входят первые два дня. Контрольными цифрами в этом процессе являются третий, седьмой и 28-ой дни. Практика показывает, что к концу первой половины месяца после заливки опалубки бетонная конструкция крепчает до 70% от запроектированной прочности. Сколько на самом деле будет набирать прочность сооружение в отдельно взятом конкретном варианте зависит опять же от совокупности факторов. Особо сложным конструкциям, выстроенным из бетона марки М400, для набора прочности времени требуется больше, чем сооружениям простой или средней сложности. Этот этап может продлиться до 1,5-2-х месяцев.
Высыхание бетонного раствора в опалубке
За какой срок материал высохнет, во многом зависит от того, в каком температурном режиме происходит данный процесс. Если бетонирование сооружения осуществляется летом, то здесь обязательно нужно будет ухаживать за залитой поверхностью, так как она в жаркую погоду неравномерно высыхает и потому склонна к растрескиванию.
В летний сезон поверхность строительного материала необходимо закрывать от солнца и постоянно-периодически производить увлажняющие мероприятия, так как прямые солнечные лучи благоприятствуют быстрому образованию корки на ней, под которой остается еще жидкий бетон, что и приводит к образованию трещин. В летний период смесь на разных участках опалубки сохнет неравномерно, и на затвердения материала до набора проектной прочности требуется не меньше 28-ми суток. Наилучшее время для заливки бетона в опалубку – осень. Строительная смесь высыхает постепенно и равномерно. Здесь не требуется такого тщательного присмотра за его плоскостью.
Как долго длится высыхание при разных состояниях атмосферы?
Опалубка снимается после высыхания бетона. Это происходит через разные временные промежутки после заливки, в зависимости от того, насколько сильно прогрета окружающая атмосфера.
При температуре воздуха 30 град. по Цельсию должно пройти 2-3 суток; при 25 град. – трое суток; при 20° С – четверо суток. Пять суток потребуется, если температура воздуха равна 15° С. Если воздух остыл до 5-10° С, должно пройти 7-10 суток, а при 1 град. по Цельсию раствор сохнет две недели и больше. В течение этих периодов времени демонтировать опалубку не разрешается. Работы с полученным материалом в любом случае можно продолжить только после набора проектной прочности.
Сколько времени сохнет бетон в опалубке
Заказать аренду
Точно просчитать, за какое время бетонная смесь достигнет необходимой прочности, довольно сложно. Это зависит и от марки бетона и параметров окружающей среды: это и температура и влажность. При средней температуре в 18 градусов и показателях влажности воздуха около 70 процентов, достижение проектных 90% прочности бетонного монолита достигается за 28 дней. Но это если говорить об условиях близких к лабораторным, чего, к сожалению, нет на стройплощадке. Поэтому в вопросе оценки сроков сушки бетона необходим опыт в различных природных условиях, что бы не затягивать вопрос с распалубкой и переходом к следующим текущим работам.
В случае частного загородного строительства – практически месяц, это очень большой срок. Особенно, если говорить о заливке ленточного фундамента или фундаментной плиты. Преждевременное снятие опалубки очень рискованно, но на этапе возведения фундамента, невозможно производить другие работы, экономя рабочее время. Так что лучше запастись терпением.
В любом случае, без отсутствия опыта и квалификации, попытки повлиять на температуру и влажность могут привести к плачевным результатам:
- При сильном и резком повышении внешней температуры, влажность резко падает. В результате, в бетонной массе появляются трещины и нужного уровня прочности не получается.
- Если уровень влажности будет слишком большим, водная составляющая бетонного раствора может закупориться в монолите, что тоже снижает его прочность.
Ускорение затвердевания бетона
Из допустимых способов повлиять на срок застывания бетона можно выделить нагрев его с помощью электричества. Как бы то ни было, прежде всего монолитный элемент следует изолировать от внешних условий. При этом используются как полиэтиленовые пленки, так и специальные строительные тенты, среди которых есть утепленные варианты. Для контроля за процессом застывания бетонных конструкций используются датчики влаги, устанавливаемые в процессе монтажа опалубки.
Обычно после заливки бетонного раствора показатели температуры и влажности могут сильно меняться на протяжении всех дней. Это затрудняет застывание раствора и расчет сроков его распалубки. Метод укрытия бетона решает эту проблему, но требует дополнительного увлажнения при существенном увеличении температуры воздуха.
К счастью, передержка бетона в опалубке больше необходимого срока не так критична для его прочности и может отразиться лишь на начале коррозии щитов опалубки, что тоже не желательно. Щитовая опалубка для стен начинает отслаиваться от пересохшего бетона и в образовавшееся пространство начинает вода и влага, что в соединении с щелочной средой бетона приводит к коррозии металлических поверхностей. Это в первую очередь касается металлической опалубки стен.
Сколько стоять бетону в опалубке
Технология монолитного строительства применяется в настоящее время повсеместно.
Бетон и опалубка применяются для изготовления стен, перекрытий, приусадебных бассейнов, полов и пр. Востребованность данной технологии объяснить крайне просто: конструкции изготавливаются быстро, требуют небольших вложений и отличаются долговечностью при условии соблюдения технологических норм. Наряду с такими аспектами строительства как выбор марки бетона или типа опалубки, важную роль играет выдержка достаточного количества времени, за которое бетон дойдет до готовности внутри опалубочной системы, став полноценной плитой.
Химия созревания бетона
Созревание бетона — это сложный многокомпонентный химический процесс, протекающий исключительно в одном направлении, то есть он необратим. Для того чтобы жидкая масса бетона сформировалась в твердую плиту с определенными эксплуатационными показателями, не достаточно лишь выпарить всю жидкость.
Созревание бетона — это сложный необратимый химический процесс
Вода в бетоне играет роль одного из реакционных компонентов, способствующих протеканию реакций кальция – главного минерала цемента. В основе процесса твердения бетона лежат реакции таких соединений как:
- силикат (трех- и двухкальциевый) – компонент, ответственный за постепенный набор прочности бетонной конструкции. Соединение, имеющее в составе молекулы три атома кальция, ответственно за оперативный набор прочности и формирование структуры плиты в течение первого месяца после заливки. Двухкальциевый силикат является реагентом пролонгированного действия и способствует длительному набору прочности бетона в течение многих лет;
- алюмоферрит – сложное соединение, имеющее в составе одной молекулы четыре атома кальция. Основной задачей этого компонента является снабжение реакций необходимыми компонентами как в первые дни после заливки, так и в последующий период созревания бетонной отливки;
- алюминат трехкальциевый – благодаря этому соединению происходит реакция схватывания бетона сразу после заливки.
Физика созревания бетона
Различают два этапа твердения бетона:
- схватывание – начинается сразу же после прекращения движения массы (тиксотропии). При оптимальной температуре (20-25 градусов) схватывание массы происходит уже через 5-10 минут. В этот период подвижность бетона сводится к минимуму, а его масса четко распределяется по форме опалубки. Но схватившийся бетон еще не является прочным, и его форма может быть изменена;
- набор прочности – процесс, отличающийся высокой продолжительностью. Бетонная отливка достигает стопроцентной марочной прочности примерно через месяц. Этот показатель равен 95% от максимальной прочности бетона, которая может достигаться в течение десятилетий.
- Процесс схватывания бетона
- Процесс набора прочности бетона
Процесс созревания бетона
После принятия бетонной отливкой необходимой формы внутри опалубки начинаются химические реакции с участием соединений кальция и воды. Проникая в молекулы силикатов, алюминатов и алюмоферритов, вода запускает процесс кристаллизации растворенного цемента, который в свою очередь начинает активно взаимодействовать с наполнителями: гравием, песком и т.д.
Для того чтобы бетон был крепче, требуется достаточное количество воды, так как её недостаток может привести к снижению интенсивности кристаллизации и стать причиной пористости, растрескивания и рыхлости бетона. Многое зависит от соблюдения температурного режима и процента влажности. Чем выше эти показатели, тем быстрее происходит процесс схватывания бетона и начинается набор прочности.
Многие предприятия производящие ж/б конструкции применяют для ускорения процесса твердения отливки парогенераторы. Применение специальных установок, генерирующих оптимальные условия для твердения бетона, позволяет вынимать готовые отливки из форм уже через 6-10 часов.
Скорость созревания бетона в условиях открытой местности
В процессе строительства объектов, как правило, нет возможности использования температурных установок, поэтому время схватывания и набора марочной прочности будет отличаться в большую сторону. В СНиП 3.03.01-87 четко написано, какой процент прочности позволяет приступить к распалубке в конкретном случае.
Согласно нормативным документам и лабораторным исследованиям параметры и скорость твердения бетона марки М300 приведены в таблице №1 (рис3). За 100% (за единицу) марочной прочности здесь взят показатель, достигаемый массой при температуре 20 градусов за срок в 28 дней.
Продолжительность выдержки бетона в днях
Среднесуточная температура, °C | Число дней с начала заливки | ||||||
1 | 2 | 3 | 5 | 7 | 14 | 28 | |
Процент набора прочности бетона от 28-суточной нормы, % | |||||||
-3 | 3 | 6 | 8 | 12 | 15 | 20 | 25 |
0 | 5 | 12 | 18 | 28 | 35 | 50 | 65 |
+5 | 9 | 19 | 27 | 38 | 48 | 62 | 77 |
+10 | 12 | 25 | 37 | 50 | 58 | 72 | 85 |
+20 | 23 | 40 | 50 | 55 | 75 | 90 | 100 |
+30 | 35 | 55 | 65 | 80 | 90 | 100 |
Увеличить эксплуатационные характеристики монолитной конструкции, а также скорость созревания отливки поможет ряд следующих рекомендаций:
- контролировать технологию сборки опалубки, не допуская «слабых мест», в которых протекают деформационные процессы. Использовать качественные и подходящие по параметрам подкосы для раскрепрепления опалубки;
- минимизировать среднесуточные колебания температуры окружающей среды и испарение.
Выбрать подходящее время года и использовать изоляционный материал;
- надежно защитить заливаемую конструкцию от механических повреждений.
Соблюдение всех технологических норм обеспечат быстрое созревание бетона в опалубке
Соблюдение всех технологических норм, выдержка временных и температурных значений, а также дополнительные меры обеспечат быстрое созревание бетона в опалубке и набор им марочной прочности. Сделать же готовую конструкцию максимально прочной способно только время.
20.05.2019
Время застывания бетона в опалубке. | Пенообразователь Rospena
Если у вас есть сомнения в собственных навыках установки опалубки, можете вместе с основной заливкой отливать небольшой объем из такой же бетонной смеси. Это послужит вам своеобразным контрольным вариантом и даст возможность определить максимально точные сроки схватывания вашего бетона, а также возможности снятия опалубки. Не нужно торопиться. Спешка вероятнее всего приведет к необходимости проведения реконструкции вашего фундамента. Лучшим вариантом будет снять доски немного позже истечения необходимого срока.
Действительно, точно и правильно отлитый фундамент послужит основой всего будущего здания. От того, насколько продолжительно будет высыхать бетон в опалубке, напрямую может зависеть качество его застывания. В конце летнего сезона делать заливку фундамента лучше всего. При этом можно будет убедиться в его прочности или обнаружить недостатки с наступлением весны. Но опалубку с фундамента обязательно необходимо снимать на зиму. Выполнять демонтаж опалубки следует аккуратно, чтобы не наносить повреждений вашему бетонному фундаменту, начиная с элементов, расположенных по углам конструкции. Прежде всего убираются все сваи, которые служат опорами фундамента, а затем сами листы. Но для этого принципиально важно знать, как осуществляется заливка, и сколько высыхает бетон под опалубкой.
Как протекает процесс застывания бетона?
Для нормального застывания бетона огромное значение имеет влажность и температура окружающей среды. В том случае, если в регионе строительства объекта после заливки бетона будет засуха, то фундамент можно будет поливать для равномерной кристаллизации цементного соединения, и чтобы бетон не начал лопаться и трескаться. Именно правильная кристаллизация может указывать на возможность аккуратного демонтажа опалубки. А увлажнение поспособствует не только быстрому схватыванию, но и повышению качества заливки.
Процесс застывания бетонной конструкции не заключается в испарении воды из него. Застывание бетона представляет собой усложненную химическую реакцию, во время которой протекает процесс химического преобразования вяжущих компонентов изначального состава в гидраты кальция. Процесс протекает под постоянным воздействием воды и соответственно называется гидратацией. Вещество связывающих компонентов минерализуется и в результате реакций связывает весь раствор в единый цельный монолит. Прочность вашей цементной конструкции будет зависеть прежде всего от качества и правильных пропорций компонентов, составляющих цементный раствор. В частности, от марки производителя цемента, а также доли, которую составляют дополнительные наполнители. В среднем на застывание оснований требуется месяц, если благоприятные внешние погодные факторы будут способствовать этому процессу.
Контрольный период отвердевания бетонной конструкции
Большинство строителей считают, что в нормальных условиях период твердения бетонных смесей после заливки должен составлять четыре недели. Это не совсем верно. Процесс схватывания цемента может быть затянут на месяцы, а время от времени даже на несколько лет. Только по истечении длительного периода бетонная конструкция может достигнуть пиковых значений своей прочности, а через один месяц вещество просто находится в таком состоянии, когда может выдержать минимальные расчетные нагрузки после заливки. Этот период схватывания цементных смесей называется контрольным.
В контрольном периоде высыхания бетонных конструкций заложены самые разные значения. В простом строительстве они могут варьироваться от четырех до пяти недель. Этого может быть вполне достаточно, чтобы раствор мог выдерживать минимальные расчетные нагрузки как в процессе возведения многоэтажных зданий, так и при строительстве малых загородных домов. Контрольный период продолжительностью в один месяц применяется для фундаментов, монолитных перекрытий и стен, а по сути таких конструкций, которые могут без проблем застывать в нормальных естественных условиях.
Монтаж опалубки
В подготовленную траншею необходимо укрепить доски на опалубке, при этом стараясь максимально сцеплять их друг с другом по углам и краям. Если не сделать этого, то в раствор в результате будет выливаться. После застывания конструкция будет смотреться очень не эстетично. К тому же качество заливки будет желать лучшего.
Всегда помните, что перед началом установки листов, перед заливкой бетонной смеси опалубку обязательно необходимо смазывать специальной жидкостью, каким-нибудь маслом или на самый крайний случай обернуть монолит полиэтиленом или бумагой. Так будет гораздо проще производить демонтаж опалубки. Подготовка материалов для опалубки осуществляется тогда, когда уже полностью определено, какой будет ее ширина и высота. Лучше всего конструировать деревянную опалубку из простых досок. Необходимо сразу же упомянуть, что строителям нет никакой необходимости оставлять на своем месте опалубку до завершения контрольного периода высыхания.
Демонтаж опалубки
Демонтаж опалубки можно будет осуществлять примерно через неделю после завершения этапа заливки бетонной смеси. За первую неделю затвердевания он схватится настолько, что уже не может быть разрушен при нормальном демонтаже формовочных изделий. Однако скорость, необходимая для затвердевания бетонной смеси замедляется в период сильных холодов, и убирать опалубку, застывшую при такой погоде, через неделю после заливочных работ допустимо исключительно в теплое время года.
Самым главным показателем для возможности проведения безопасного демонтажа опалубки является среднесуточная температура окружающего пространства. Чем выше она будет, тем быстрее бетон застынет, и можно будет намного быстрее убрать сформировавшуюся конструкцию. Как правило, в летний период опалубку разрешается демонтировать уже через два или три дня. Но важно всегда помнить то, что наиболее предпочтительным периодом в году для заливки является конец лета или начало осени. Время, когда можно убирать конструкцию в определенных случаях, можно обозначить более детально.
Влияние природных факторов
Если средний температурный показатель составляет приблизительно 1-2°С, то разрешается демонтировать все доски только спустя несколько недель. При приблизительной температуре 5°С демонтаж проводится примерно через 10 дней. В том случае, если на улице относительно теплая погода в районе 10°С, опалубка может быть снята по прошествии 5 дней.
Как правило, заливка способна набирать примерно 50% своей основной прочности по истечении указанного периода. Возможность демонтировать опалубку еще не означает готовность застывшей бетонной смеси производить какие-нибудь работы со свежим фундаментом. После демонтажа опалубки монолит лучше просто накрыть обыкновенной полиэтиленовой пленкой. Не следует буквально укутывать фундамент пленкой. Пусть полежит в таком виде до наступления морозов. После этого пленку необходимо убрать. Конструкции предстоит простоять целую зиму, чтобы пройти минимальное достаточное испытание на устойчивость и прочность под воздействием внешних природных факторов.
Застывание при пониженных температурах
При пониженной температуре нельзя производить демонтаж опалубки раньше, чем пройдет половина контрольного периода твердения. Составляющие элементы опалубки могут быть разобраны только через пару недель после заливки. Такое условие следует соблюдать, когда процесс застывания протекает при пониженных температурах. Когда бетонная конструкция расположена в теплом помещении или опалубка бетона предварительно была оснащена материалами, которые способствовали ее обогреву, допустимо проводить демонтаж немного раньше. Следует добавить, что опалубка с приспособлениями для подогрева конструкции устанавливается не для понижения периода, необходимого для качественного застывания, а только для поддержания приемлемой температуры. Если у вас вдруг появилась идея для ускорения застывания подобным образом в летний период, лучше откажитесь от нее потому, что бетон не сможет набрать прочность в ускоренном темпе. Качество конструкции понизится значительно потому, что повышение температуры будет способствовать ускоренному обезвоживанию раствора и в итоге лишит его одного из реагентов, без наличия которого гидратация в принципе невозможна.
Рассмотрим контрольный период застывания с другой стороны. Теперь можно определить, сколько времени он требует при монолитном возведении строительных объектов обычного назначения. Но для укрепленных конструкций специалисты сумели определить контрольный срок 90 дней. К подобным сооружениям могут относиться дамбы, плотины или мосты. Следует упомянуть, что за указанный период бетон не будет прочнее в три раза, в сравнении с раствором, который выдерживался на протяжении трех месяцев. Его показатели станут выше только на пятую часть, по сравнению с прежними.
Возможно ли повысить скорость застывания в бытовых условиях?
Определить степень прочности бетонной конструкции можно при помощи специального прибора. Рассмотрим основные принципы изменения скорости застывания цементных растворов. На предприятиях, специализирующихся на выпуске изделий из железобетона, для ускорения процесса применяется методика повышения температуры и давления. При возрастании температуры ускоряются химические реакции, но одновременно с этим испарение жидкости может быть гораздо более интенсивным. Чтобы приостановить этот процесс, бетонные изделия размещаются в автоклавах, которые поддерживают повышенное давление. Другой метод поддержки активности гидратации связующих компонентов называют подачей пара. Подобный процесс осуществляется в специализированных пропарочных камерах, где размещаются блоки из железобетона. Для пара свойственно создание повышенной температуры и одновременно препятствие обезвоживанию бетона. Подобные технологические новшества позволяют значительно ускорить застывание в несколько десятков раз. Меньше, чем спустя одни сутки ЖБИ может использоваться на стройке.
Существует ли возможность использования таких методов при заливке фундаментов в частных домах? Конечно же, нет! Выше был рассмотрен период высыхания цемента в нормальных условиях. Легко определяется то, что при повышении температуры застывание будет не таким качественным. Препятствовать данному процессу в жаркую погоду поможет обрызгивание конструкции водой и ее накрытие под пленку, которая не пропустит влагу. Подобные способы в некоторой степени смогут препятствовать обезвоживанию конструкции и активизируют реакцию, но обсуждать какое-то ускорение процесса пока не представляется возможным.
Сколько времени бетон застывает в опалубке?
От правильного соблюдения времени застывания бетона, залитого в опалубку, зависит прочность и долговечность возводимой конструкции. Твердение цементных смесей представляет собой сложный процесс, на который параллельно влияет множество факторов: от температурных условий до состава и структуры раствора. Минимальное время нахождения бетона в опалубочном каркасе — 1 день, верхний предел достигает 1 месяца. Считается, что для окончательного схватывания, после которого цементная структура перестанет отдавать влагу, требуется не менее 28 дней, но соблюдать такие сроки в строительных работах нецелесообразно. Поэтому лучше выяснить: через какое время снимают опалубку для конкретно выбранного объекта из бетона, с определенными (контролируемыми) параметрами и вносить коррективы с учетом внешних условий (погоды, технологии заливки и ухода).
Оглавление:
- Влияние марочной прочности
- Правила застывания
- Как ускорить процесс?
- Когда следует снимать опалубку?
Зависимость сроков твердения от марки раствора
Существуют строительные нормы, разрешающие провести снятие щитов после достижения определенного процента прочности. Они напрямую связаны с маркой бетона, чем ниже качество, тем выше показатель. Данная зависимость отражена в таблице:
Прочность на сжатиеТребуемый минимум в процентах от марочной крепостиДо М15050М200–30040М400–50030Для напряженных конструкций (горизонтальных перекрытий, длинных пролетов)70
На практике это означает, что снятие опалубки для бетона М500 разрешается при достижении 30 % прочности, то есть использование высококачественных марок ускоряет стройку, и наоборот. Конкретное время безопасного схватывания определяется с учетом других внешних факторов по специальному графику.
Условия твердения
Характеристики цементных смесей значительно улучшаются при организации правильного режима застывания. Поэтому качественное бетонирование подразумевает учет всех факторов, влияющих на время схватывания:
- среднесуточной температуры;
- влажности воздуха;
- типа конструкции.
Чем холоднее окружающая среда, тем больший промежуток следует выждать перед снятием опалубки. Для качественного твердения бетона важно обеспечить нормальную влажность воздуха: избыток или недостаток воды приводит к нарушению процесса гидратации цемента. То есть, в жару требуемая прочность достигается в максимально быстрые сроки, но нарушается внутренняя структура и возрастает хрупкость. Именно поэтому идеальным временем для бетонирования считается ранняя осень.
При определении нужного срока снятия щитов учитывается зависимость от среднесуточной температуры воздуха, связанная с марочной прочностью. Так, для востребованных сортов бетона М200–300, изготавливаемых на основе портландцемента М500, график имеет вид:
Среднесуточная температура, °CВремя, прошедшее с начала заливки:123571428Прочность бетона, в % от марочного норматива0512182835506559192738486277101225375058728520234050557590100303555658090100
Важным фактором считается ожидаемая несущая нагрузка на бетонную конструкцию. Вертикальные опалубки снимаются раньше горизонтальных, их критическая прочность меньше на 20 %. Это же актуально для пористых бетонов, в сравнении с тяжелыми сортами.
Способы ускорения твердения
Есть два варианта влияния на сроки застывания бетонной смеси: автоклавная обработка и ввод специальных примесей. Первый труднореализуем в домашних условиях: плиту или заливку размещают в особой камере с влажной средой. После обработки горячим паром под высоким давлением прочностные характеристики бетона за время от 15 до 24 ч достигают аналогичных годовой выдержке.
В частном строительстве такое оборудование отсутствует, поэтому для скоростного схватывания раствора используется специализированная опалубка с электроподогревом и создаются условия минимального испарения или кристаллизации жидкости. В помещении это организовать проще: устанавливается термопушка и контролируется влажность, наружные поверхности закрываются пленкой и смачиваются.
Второй способ ускорения сроков твердения бетона доступен при любых условиях, вплоть до полевых. В раствор на последних минутах замеса вводятся модифицирующие добавки, влияющие на его физико-механические характеристики (время набора прочности значительно сокращается). Несмотря на явные преимущества, этот метод редко используется в индивидуальном строительстве из-за высокой стоимости добавок.
Требуется строгое соблюдение пропорций, в бетон вводится не более 4 % солей азотной кислоты, 3 — хлорида натрия, 2 — сульфатов натрия. При превышении рекомендуемого соотношения ухудшается пластичность раствора, что влияет на итоговое качество заливки, применение некоторых модификаторов ограничивают из-за сильных коррозийных свойств (они не подходят для железобетона). Ускорить застывание также можно путем добавления сухого или мокрого вибродомола в портландцемент значительной прочности (М400 или М500).
Сроки снятия щитов
С учетом вышеизложенного и типа строительной конструкции, минимальное время нахождения бетона в опалубке при среднесуточной температуре +10 °C составляет:
- Для монолитных фундаментов и вертикальных армированных изделий с пористым наполнителем — 5 дней.
- Для горизонтальных перекрытий и небольших проемов — 14.
- Для лестничных проемов длиной от 6 м — 28.
Данные сроки застывания актуальны для бетона, в состав которого входит портландцемент М500. При использовании менее качественного раствора будут действовать другие показатели марочной прочности. Если строительные работы проводятся в холодное время года, то сроки застывания увеличиваются на 2–3 дня. Это же актуально при наличии частых перепадов температуры или влажности в процессе заливки и схватывания.
Существует еще один нюанс: данные сроки определяют момент снятия опалубки, а не разрешение на следующий этап работ. В практике индивидуального строительства щиты и крепежи необходимы для заливки соседнего участка фундамента или перекрытия, но это не означает, что освобожденная поверхность пригодна к обработке.
Согласно нормам, бетон должен набрать еще как минимум 20 % прочности. При этом он продолжает выделять влагу, что также учитывается при выборе этапа работ. Разрешается осмотр поверхностей и устранение дефектов, но не гидроизоляция (исключение составляют особые водоэмульсионные мастики или специальные смеси для железнения) или нагрузка конструкции.
Сколько стоять бетону в опалубке
Технология монолитного строительства применяется в настоящее время повсеместно. Бетон и опалубка применяются для изготовления стен, перекрытий, приусадебных бассейнов, полов и пр. Востребованность данной технологии объяснить крайне просто: конструкции изготавливаются быстро, требуют небольших вложений и отличаются долговечностью при условии соблюдения технологических норм. Наряду с такими аспектами строительства как выбор марки бетона или типа опалубки, важную роль играет выдержка достаточного количества времени, за которое бетон дойдет до готовности внутри опалубочной системы, став полноценной плитой.
Химия созревания бетона
Созревание бетона — это сложный многокомпонентный химический процесс, протекающий исключительно в одном направлении, то есть он необратим. Для того чтобы жидкая масса бетона сформировалась в твердую плиту с определенными эксплуатационными показателями, не достаточно лишь выпарить всю жидкость.
Созревание бетона — это сложный необратимый химический процесс
Вода в бетоне играет роль одного из реакционных компонентов, способствующих протеканию реакций кальция – главного минерала цемента. В основе процесса твердения бетона лежат реакции таких соединений как:
- силикат (трех- и двухкальциевый) – компонент, ответственный за постепенный набор прочности бетонной конструкции. Соединение, имеющее в составе молекулы три атома кальция, ответственно за оперативный набор прочности и формирование структуры плиты в течение первого месяца после заливки. Двухкальциевый силикат является реагентом пролонгированного действия и способствует длительному набору прочности бетона в течение многих лет;
- алюмоферрит – сложное соединение, имеющее в составе одной молекулы четыре атома кальция. Основной задачей этого компонента является снабжение реакций необходимыми компонентами как в первые дни после заливки, так и в последующий период созревания бетонной отливки;
- алюминат трехкальциевый – благодаря этому соединению происходит реакция схватывания бетона сразу после заливки.
Физика созревания бетона
Различают два этапа твердения бетона:
- схватывание – начинается сразу же после прекращения движения массы (тиксотропии). При оптимальной температуре (20-25 градусов) схватывание массы происходит уже через 5-10 минут. В этот период подвижность бетона сводится к минимуму, а его масса четко распределяется по форме опалубки. Но схватившийся бетон еще не является прочным, и его форма может быть изменена;
- набор прочности – процесс, отличающийся высокой продолжительностью. Бетонная отливка достигает стопроцентной марочной прочности примерно через месяц. Этот показатель равен 95% от максимальной прочности бетона, которая может достигаться в течение десятилетий.
Процесс схватывания бетонаПроцесс набора прочности бетона
Процесс созревания бетона
После принятия бетонной отливкой необходимой формы внутри опалубки начинаются химические реакции с участием соединений кальция и воды. Проникая в молекулы силикатов, алюминатов и алюмоферритов, вода запускает процесс кристаллизации растворенного цемента, который в свою очередь начинает активно взаимодействовать с наполнителями: гравием, песком и т.д.
Для того чтобы бетон был крепче, требуется достаточное количество воды, так как её недостаток может привести к снижению интенсивности кристаллизации и стать причиной пористости, растрескивания и рыхлости бетона. Многое зависит от соблюдения температурного режима и процента влажности. Чем выше эти показатели, тем быстрее происходит процесс схватывания бетона и начинается набор прочности.
Многие предприятия производящие ж/б конструкции применяют для ускорения процесса твердения отливки парогенераторы. Применение специальных установок, генерирующих оптимальные условия для твердения бетона, позволяет вынимать готовые отливки из форм уже через 6-10 часов.
Скорость созревания бетона в условиях открытой местности
В процессе строительства объектов, как правило, нет возможности использования температурных установок, поэтому время схватывания и набора марочной прочности будет отличаться в большую сторону. В СНиП 3.03.01-87 четко написано, какой процент прочности позволяет приступить к распалубке в конкретном случае.
Согласно нормативным документам и лабораторным исследованиям параметры и скорость твердения бетона марки М300 приведены в таблице №1 (рис3). За 100% (за единицу) марочной прочности здесь взят показатель, достигаемый массой при температуре 20 градусов за срок в 28 дней.
Продолжительность выдержки бетона в днях
Среднесуточная температура, °CЧисло дней с начала заливки123571428Процент набора прочности бетона от 28-суточной нормы, %-33681215202505121828355065+59192738486277+1012253750587285+20234050557590100+303555658090100
Увеличить эксплуатационные характеристики монолитной конструкции, а также скорость созревания отливки поможет ряд следующих рекомендаций:
- контролировать технологию сборки опалубки, не допуская «слабых мест», в которых протекают деформационные процессы.
Использовать качественные и подходящие по параметрам подкосы для раскрепрепления опалубки;
- минимизировать среднесуточные колебания температуры окружающей среды и испарение. Выбрать подходящее время года и использовать изоляционный материал;
- надежно защитить заливаемую конструкцию от механических повреждений.
Соблюдение всех технологических норм обеспечат быстрое созревание бетона в опалубке
Соблюдение всех технологических норм, выдержка временных и температурных значений, а также дополнительные меры обеспечат быстрое созревание бетона в опалубке и набор им марочной прочности. Сделать же готовую конструкцию максимально прочной способно только время.
Сроки снятия бетонной опалубки, характеристики и расчеты
Удаление бетонной опалубки , также называемое зачисткой или снятие опалубки, должно выполняться только по истечении времени, когда бетон набирает достаточную прочность, по крайней мере, в два раза превышающую напряжение, которому может подвергаться бетон при работе опалубки. удаленный. Также необходимо обеспечить устойчивость оставшейся опалубки при снятии опалубки.
Время снятия бетонной опалубки
Скорость затвердевания бетона или его прочность зависит от температуры и влияет на время снятия опалубки.Например, время, необходимое для снятия бетона зимой, будет больше, чем время, необходимое летом.
Особое внимание требуется при снятии опалубки изгибающихся элементов, таких как балки и плиты. Поскольку эти элементы подвергаются самонагрузке, а также динамической нагрузке даже во время строительства, они могут прогибаться, если полученная прочность недостаточна для выдерживания нагрузок.
Для оценки прочности бетона перед снятием опалубки следует провести испытания бетонных кубов или цилиндров.Бетонные кубики или цилиндры должны быть приготовлены из той же смеси, что и конструкционные элементы, и отверждены при тех же условиях температуры и влажности, что и конструкционный элемент.
Только после того, как будет подтверждено, что бетон в элементах конструкции приобрел достаточную прочность, чтобы выдерживать расчетную нагрузку, следует снимать опалубку. Если возможно, опалубку следует оставить на более длительное время, так как это помогает в затвердевании.
Снятие опалубки с бетонного участка не должно приводить к превращению элемента конструкции в:
- Обрушение под действием собственной или расчетной нагрузки
- чрезмерно прогибает конструктивный элемент в краткосрочной или долгосрочной перспективе
- физически повредить элемент конструкции при снятии опалубки.
Во время снятия опалубки необходимо учитывать следующие моменты, независимо от того, будет ли конструкция подвержена воздействию:
- повреждения от замораживания и оттаивания
- Образование трещин из-за термического сжатия бетона после нанесения опалубки.
Если существует значительный риск любого из вышеперечисленных повреждений, лучше отложить время снятия опалубки. Если опалубку необходимо снять для оптимизации строительных работ по бетону, эти конструкции необходимо хорошо изолировать, чтобы предотвратить такие повреждения.
Расчет безопасного времени установки опалубки:
Элементы конструкции рассчитаны на расчетную нагрузку. Но до того, как конструкция будет завершена и подвергнется всем нагрузкам, принятым во время проектирования конструкции, элементы конструкции подвергаются собственному весу и нагрузкам конструкции в процессе строительства.
Итак, чтобы продолжить строительные работы более быстрыми темпами, необходимо рассчитать поведение конструкции при собственной и строительной нагрузке.Если это можно сделать и элемент конструкции окажется безопасным, опалубку можно будет снять.
Если эти расчеты невозможны, то для расчета безопасного времени забивания опалубки можно использовать следующую формулу:
Характеристическая прочность куба, равная зрелости конструкции, требуемой на момент снятия опалубки
Эта формула была дана Харрисоном (1995), в которой подробно описаны предпосылки для определения времени снятия опалубки.
Другой метод определения прочности бетонной конструкции — это проведение неразрушающих испытаний элемента конструкции.
Факторы, влияющие на сроки изготовления бетонной опалубки
Время схватывания бетонной опалубки зависит от прочности элемента конструкции. Развитие прочности бетонного элемента зависит от:
- Марка бетона — чем выше марка бетона, тем выше скорость набора прочности и, таким образом, бетон набирает прочность за более короткое время.
- Марка цемента — Чем выше марка цемента, тем выше прочность бетона за более короткое время.
- Тип цемента — Тип цемента влияет на рост прочности бетона. Например, быстротвердеющий цемент дает больший прирост прочности за более короткий период времени, чем обычный портландцемент. Низкотемпературному цементу требуется больше времени для достижения достаточной прочности, чем OPC.
- Температура — Более высокая температура бетона во время укладки позволяет достичь большей прочности в более короткие сроки.Зимой время набора прочности бетона увеличивается.
- Более высокая температура окружающей среды заставляет бетон быстрее набирать прочность.
- Опалубка помогает бетону изолировать его от окружающей среды, поэтому чем дольше опалубка остается в бетоне, тем меньше потери тепла при гидратации и тем выше скорость увеличения прочности.
- Размер бетонного элемента также влияет на прирост прочности бетона. Элементы бетонных секций большего размера набирают прочность за более короткое время, чем секции меньшего размера.
- Ускоренное отверждение также является методом увеличения скорости набора прочности с применением тепла.
Обычно следующие значения прочности бетона принимаются во внимание при снятии опалубки для различных типов бетонных конструктивных элементов.
Таблица — 1: Прочность бетона в зависимости от типа и размера элемента конструкции для снятия опалубки
Прочность бетона | Тип и пролет конструктивного элемента |
2.![]() | Боковые части опалубки для всех элементов конструкции снимаются |
70% от проектной прочности | Внутренние части опалубки перекрытий и балок пролетом до 6 м съемные |
85% расчетной прочности | Внутренние части опалубки перекрытий и балок пролетом более 6 м могут сниматься |
Таблица — 2: Время снятия опалубки (при использовании обычного портландцемента):
Тип опалубки | Время снятия опалубки |
Стороны стен, колонны и вертикальные грани балки | от 24 часов до 48 часов (по решению инженера) |
Плиты (стойки слева внизу) | 3 дня |
Балка перекрытия (стойки слева внизу) | 7 дней |
Удаление стоек перекрытий: | |
i) перекрытия перекрытия до 4.5м | 14 дней |
ii) Плиты перекрытия более 4,5 м | 14 дней |
Снятие стоек для балок и арок | |
i) Пролет до 6 м | 14 дней |
ii) Пролет более 6 м | 21 день |
Важное примечание:
Важно отметить, что время снятия опалубки, указанное выше в Таблице 2, наступает только при использовании обычного портландцемента.В обычном процессе строительства используется цемент Portland Pozzolana. Таким образом, время, указанное в Таблице 2, должно быть изменено.
Для цементов, отличных от обычного портландцемента, время, необходимое для снятия опалубки, должно быть следующим:
- Portland Pozzolana Cement — время зачистки будет 10/7 от времени, указанного выше (Таблица 2)
- Низкотемпературный цемент — время зачистки будет 10/7 от времени, указанного выше (Таблица-2)
- Быстротвердеющий цемент — время снятия 3/7 времени, указанного выше (Таблица 2), будет достаточным во всех случаях, за исключением вертикальных сторон плит, балок и колонн, которые следует выдерживать не менее 24 часов.
Технические условия на снятие бетонной опалубки
При снятии опалубки необходимо учитывать следующие моменты:
- Опалубку нельзя снимать до тех пор, пока бетон не наберет достаточной прочности, чтобы выдержать все возложенные на него нагрузки. Время, необходимое для снятия опалубки, зависит от конструктивной функции элемента и скорости набора прочности бетона. Марка бетона, тип цемента, водоцементное соотношение, температура во время выдержки и т. Д.влияют на скорость набора прочности бетона.
- Детали опалубки и соединения должны быть расположены таким образом, чтобы облегчить и упростить снятие опалубки, предотвратить повреждение бетона и панелей опалубки, чтобы их можно было повторно использовать без значительного ремонта.
- Инженер должен контролировать процедуру снятия опалубки, чтобы обеспечить качество затвердевшего бетона в элементе конструкции, то есть в нем не должно быть или иметь минимальные дефекты литья, такие как сотовые конструкции, дефекты размера и формы и т. Д.Эти дефекты в бетоне влияют на прочность и устойчивость конструкции. Таким образом, могут быть выполнены немедленные ремонтные работы или члены могут быть отклонены.
- Разделение форм не должно производиться прижиманием лома к бетону. Это может повредить затвердевший бетон. Добиться этого следует с помощью деревянных клиньев.
- Нижние части балок и балок должны оставаться на месте до окончательного снятия всех опор под ними.
- Балочные формы должны быть спроектированы и удалены так, чтобы берега можно было временно удалить, чтобы можно было удалить балочные формы, но их нужно было сразу заменить.Демонтаж берегов и балок начинается с середины пролета стержня, продолжая симметрично вверх по опорам.
- Необходимо получить разрешение инженера на последовательность и схему снятия опалубки.
Артикул:
- ACI (1995) Методы оценки прочности бетона на месте.
ACI 228.1R-95.
- ASTM (1987) Стандартная практика оценки прочности бетона по методу зрелости. ASTM C1074–87
- BS 8110 — Свод правил для конструкционного использования бетона
- IS-456 — Обычный и железобетонный — Свод практических правил
Часто задаваемые вопросы
Когда снимать опалубку?
Удаление бетонной опалубки , также называемое заделкой или снятием опалубки, должно выполняться только после того, как бетон наберет достаточную прочность, по крайней мере, в два раза превышающую напряжение, которому бетон может подвергаться при опалубке. удалены.Также необходимо обеспечить устойчивость оставшейся опалубки при снятии опалубки.
Какие факторы влияют на время схватывания бетона?
Срок изготовления бетонной опалубки зависит от прочности элементов конструкции. Развитие прочности бетонного элемента зависит от:
1. Марка бетона
2. Марка цемента
3. Типа цемента
3. Температура
4. Размер бетонного элемента
5. Ускоренное отверждение
Подробнее:
Виды опалубки (опалубки) для бетонных конструкций
Пластиковая опалубка для бетона — применение и преимущества в строительстве
Соображения при проектировании бетонной опалубки — основа для проектирования бетонной опалубки
Критерии проектирования деревянной бетонной опалубки с расчетными формулами
Расчет нагрузки и давления на бетонную опалубку
Срок снятия бетонной опалубки, характеристики и расчеты
Обмер опалубки
Опалубка (опалубка) для различных элементов конструкции — балок, перекрытий и т. Д.
Контрольный список безопасных методов опалубки
Страница не найдена для бетонного_формворка_ремовал_время
Имя пользователя*
Электронное письмо*
Пароль*
Подтвердить Пароль*
Имя*
Фамилия*
Страна
Выберите страну . .. Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве
Captcha *
Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности. *
Страница не найдена для factor_affecting_concrete_formwork_striking_times
Имя пользователя*
Электронное письмо*
Пароль*
Подтвердить Пароль*
Имя*
Фамилия*
Страна
Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве
Captcha *
Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности. *
Страница не найдена для table_1_strength_of_concrete_vs_structural_member_type_span_for_formwork_removal
Имя пользователя*
Электронное письмо*
Пароль*
Подтвердить Пароль*
Имя*
Фамилия*
Страна
Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве
Captcha *
Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности. *
Расширенная методология тестирования и проектирования
Растрескивание в раннем возрасте (EAC) — хорошо известная проблемная область, когда дело касается бетонных конструкций. Движущими силами EAC являются тепловое расширение и аутогенная деформация, но EAC также сильно зависит от материала и геометрических свойств, таких как выделение тепла при гидратации, предел прочности, модуль упругости, ползучесть, размеры поперечного сечения и степень ограничения. Текущий документ содержит описание методологии проектирования EAC, которая в настоящее время внедряется в Норвегии.В основе методологии лежит определение и описание свойств материала конкретного бетона посредством лабораторных испытаний и последующей подгонки модели. Полученные параметры материала затем оцениваются и калибруются путем сравнения (1) развития напряжения, измеренного на машине для испытания температуры и напряжения, с (2) развитием напряжения, рассчитанным с использованием полученных свойств материала и различных подходов к мультифизическому расчету EAC. Особое внимание уделяется влиянию реалистичных температурных режимов отверждения на различные свойства материала и, следовательно, на EAC.
1. Введение
Растрескивание в раннем возрасте (EAC) может оказаться проблемой, когда дело касается бетонных конструкций. Когда дело доходит до EAC, наибольшее беспокойство вызывает «сквозное растрескивание», которое может пройти через всю толщину бетонного элемента и в дальнейшем привести к функциональным, долговечным и эстетическим проблемам. EAC вызывается ограниченными изменениями объема, происходящими в фазе упрочнения, где движущими силами являются тепловое расширение (TD) и аутогенная деформация (AD). EAC также сильно зависит от материала и геометрических свойств, таких как выделение тепла при гидратации, коэффициент теплового расширения (CTE), предел прочности при растяжении, модуль упругости, ползучесть, размеры поперечного сечения и степень ограничения.Оценка трещин в раннем возрасте представляет собой сочетание структурного анализа и материаловедения; объемные изменения бетона и связанный с ними риск растрескивания могут быть спрогнозированы с помощью методов расчета для оценки структурного поведения бетона в раннем возрасте, когда вышеописанный материал и геометрические свойства являются важными входными параметрами. На основе таких расчетов EAC и в сочетании с хорошим знанием свойств материалов соответствующих бетонов, можно принять правильный выбор типа бетона, минеральных добавок и методов выполнения на месте, чтобы свести к минимуму или даже избежать растрескивания.
В литературе можно найти различные подходы к расчету EAC. Примерами руководящих принципов и действующих нормативов, касающихся растрескивания и проектирования в предельном состоянии эксплуатационной пригодности (SLS) в отношении изменений объема в раннем возрасте, являются Еврокод 2, CIRIA C766, Модельный код 2010, CEOS.fr, NS3473, Руководство JCI и Руководство BAW [1 –7]. В то время как некоторые подходы к проектированию EAC являются просто оценкой того, будет ли бетон трескаться или нет, другие подходы также предоставляют методы расчета, которые предсказывают размер последующих ширины возникающих трещин.Общим для всех методов расчета EAC является то, что точность результата очень зависит от качества и правильности параметров материала, используемых в качестве входных. Поэтому точная характеристика развития соответствующих свойств материала имеет большое значение, когда речь идет о конструкции EAC.
Свойства материала бетона можно определить с помощью лабораторных экспериментов или, чаще, с помощью моделей, найденных в руководствах и правилах. Последнее автоматически вызовет некоторую неопределенность результатов расчета EAC, поскольку некоторые из требуемых входных параметров материала являются сложными и зависят от конструкции смеси, соотношения в / ц, времени, степени гидратации, температуры отверждения и т. Д.Например, недостатком большинства карт свойств конкретных материалов является то, что они основаны на изотермических условиях 20 ° C и не учитывают реалистичный температурный режим отверждения [8]. Это противоречит тому факту, что в нескольких исследованиях утверждается, что реалистичный режим отверждения может влиять на свойства материала, такие как AD, CTE, прочность на растяжение, модуль упругости и прочность на сжатие бетона, что не может быть объяснено принципом зрелости [9– 16].
Хотя это не очень распространено, развитие стресса в раннем возрасте можно измерить с помощью специально разработанного экспериментального оборудования.В 1969 году в Мюнхене, Германия, была разработана Cracking Frame [17]. Cracking Frame измеряет реакцию бетона на напряжение в раннем возрасте на изменение температуры в бетонном образце с высокой, но неизвестной степенью сдерживания. В 1984 году Springenschmid et al. разработала усовершенствованную машину для испытания температуры и напряжения (TSTM), которая контролировала температуру и деформацию, обеспечивая 100% -ное ограничение. Сегодня во всем мире можно найти несколько различных вариантов TSTM и других подобных устройств, измеряющих развитие напряжений в твердеющем бетоне [12, 18–25].TSTM в NTNU был построен в 1995 году, а в 2012 году он был реконструирован с использованием новой измерительной установки и нового программного обеспечения, которое, среди прочего, предоставило уникальную возможность определять и моделировать заранее заданную степень ограничения во время тестирования [15, 26] . TSTM в NTNU контролируется температурой и сконструирован для измерения генерации одномерного напряжения в герметизированном бетонном образце на стадии затвердевания при выбранной степени ограничения. Применяя репрезентативную степень удержания и температурную историю, TSTM может напрямую моделировать развитие напряжения во времени для данного участка бетонной конструкции.Таким образом, в сочетании с мультифизическим анализом EAC и «обратными расчетами» TSTM предоставляет уникальную возможность преодолеть разрыв между лабораторными экспериментами и реальным поведением на строительной площадке.
Исследования в области EAC значительно расширились на международном уровне с начала 90-х годов с конференции RILEM в Мюнхене в качестве отправной точки [27]. В результате было проведено несколько крупных конференций, посвященных непосредственно этой теме или специальных сессий на более крупных собраниях [28–34]. Кроме того, большое количество статей было опубликовано в обычных журналах. После конференции RILEM в Мюнхене в 1994 году конкретная группа в NTNU активно участвовала в области EAC как по материалам, так и по экспериментальным и вычислительным аспектам. Работа велась как в рамках ЕС, так и в рамках национальных проектов с участием промышленных, институциональных и университетских участников. Результатом стали многочисленные публикации, участие в международных конференциях и семинарах, а также несколько докторских диссертаций. диссертации [12, 15, 35–38].
Несмотря на описанные выше исследования в данной области, специальные расчеты EAC традиционно не включались в структурное проектирование в Норвегии.Вместо этого решающими были требования относительно максимального повышения температуры и температурных градиентов по поперечному сечению бетона [39]. Однако за последнее десятилетие внимание к конструкции EAC усилилось из-за растущей осведомленности в отрасли, а также из-за более часто встречающегося варианта избежания требований к температуре путем выполнения специальных расчетов EAC. В связи с этим в последние годы в рамках исследовательских проектов COIN [40] и DACS [41] были разработаны и разработаны представленные в настоящее время характеристики свойств материалов и подход к проектированию EAC.Методология направлена на то, чтобы быть прагматичной, поскольку она предполагает высокую активность в лаборатории, и основана на тесном сотрудничестве между исследователями и промышленностью Норвегии. Общая цель заключалась в том, чтобы сделать метод точным и современным, но при этом практичным и простым для применения подрядчиками и проектировщиками конструкций. В основе методологии лежит определение и описание свойств материала конкретного бетона посредством обширных лабораторных испытаний и последующей подгонки модели. Полученные параметры материала дополнительно оцениваются и калибруются путем сравнения (1) развития напряжения, измеренного в TSTM, с (2) развитием напряжения, рассчитанного с помощью подходов к мультифизическому расчету EAC с использованием полученных свойств материала. В текущем исследовании особое внимание было уделено влиянию реалистичного температурного режима отверждения на различные свойства материала и, следовательно, на риск EAC.
Основные цели текущей работы заключаются в разработке и улучшении описанной выше методологии проектирования EAC и соответствующих характеристик конкретных свойств, включая методы лабораторных испытаний. Лабораторная работа включает определение решающих параметров для оценки трещин в раннем возрасте, исследование параметров содержания летучей золы, чтобы показать актуальность метода, а также несколько тестов в TSTM, которые составляют основу работы.Общая цель заключалась в том, чтобы сделать методологию проектирования EAC и полученные данные доступными для норвежской бетонной промышленности. Потребность в надежных и эффективных характеристиках свойств бетона и методологии проектирования EAC также коренится в экологическом аспекте. В ближайшие годы бетон изменится из-за его текущего вклада в выбросы CO 2 и использования природных ресурсов. Промышленность должна быть подготовлена к определению характеристик и проектированию EAC следующего поколения бетонов с низким содержанием CO 2 цемента и переработанного заполнителя [42].
2. Экспериментальное оборудование
Экспериментальное оборудование, используемое в данном исследовании, описывается следующим образом.
Тепловыделение бетона при гидратации измеряли с помощью полуадиабатических калориметрических испытаний. 15-литровые образцы бетона были залиты в фанерные ящики, изолированные со всех сторон 100-миллиметровым пенополистиролом. Во время испытаний ящик хранился на воздухе при 38 ° C, в то время как температура воздуха и бетона измерялась непрерывно в течение 5 дней. Измеренное развитие температуры было преобразовано в изотермическое выделение тепла в зависимости от зрелости.Потери тепла в окружающую среду рассчитывались исходя из предположения, что тепловой поток из коробки пропорционален разнице температур между бетоном и окружающей средой. Этот метод широко используется в Норвегии и описан в NS 3657: 1993 [43].
Прочность на сжатие исследуемых бетонов определялась на кубах диаметром 100 мм, которые являются стандартным образцом для испытаний прочности на сжатие в Норвегии. Испытания проводились в соответствии с NS-EN 12390-3: 2009.
Прочность на растяжение и модуль упругости при растяжении были определены с помощью испытаний на одноосную прочность в электромеханической испытательной системе INSTRON 5985 [44], которая в течение нескольких лет являлась стандартным методом определения прочности на одноосное растяжение в SINTEF / NTNU в Норвегии [45 ].К каждому концу вертикально ориентированного образца размером 100 × 100 × 600 мм прикладывалась растягивающая нагрузка с помощью специально разработанных захватов, предназначенных для обеспечения равномерного распределения напряжений. Развитие растягивающего напряжения измерялось непосредственно от центра оси нагружения с помощью системы тензодатчиков до тех пор, пока в образце не развилось разрушение при растяжении. Во время испытания два датчика смещения, установленные на противоположных сторонах образца, измеряют деформацию в среднем сечении 100 мм. Скорость деформации во время испытаний составляла приблизительно 100 × 10 -6 в минуту.Кривая нагрузка-деформация, полученная во время испытания на разрыв, также использовалась для расчета модуля упругости при растяжении. Модуль упругости при растяжении был определен как отношение напряжение / деформация между 10% и 40% разрушающей нагрузки.
Развитие напряжений в фазе упрочнения было измерено на машине для испытания температурных напряжений (TSTM) в NTNU. Система TSTM состоит из установки для расширения и TSTM, подключенных к системе контроля температуры (Julabo FP45), которая обеспечивает точный контроль температуры бетона во время испытаний.
Установка расширения — это «фиктивная» установка, следующая за TSTM (рис. 1). Он измеряет свободную деформацию, т.е. TD и AD, горизонтально ориентированного образца бетона размером 100 × 100 × 500 мм. Опалубка станка расширения изготовлена из медных пластин толщиной 5 мм, окруженных медными трубами диаметром 5 мм с циркуляционной водой, подключенной к термостату. Опалубка и медные трубы покрыты изоляцией. Подвижные концевые пластины, изготовленные из полистирола и стали, соответственно, размещаются на каждом коротком конце опалубки, что позволяет концевым пластинам и, следовательно, бетонному образцу свободно перемещаться во время эксперимента.Измерительные болты из инварной стали заливают непосредственно в каждый короткий конец бетонного образца. После литья на каждом коротком конце устанавливается индуктивный датчик смещения (LVDT), обеспечивающий свободное соединение между измерительными болтами и LVDT. Изменение длины измерительных болтов, вызванное температурой, рассчитывается и компенсируется в каждом эксперименте. Измерения температуры начинаются сразу после заливки, а измерения изменения длины — примерно через 2 часа, в зависимости от бетона и его характеристик раннего застывания.Во время испытаний образец бетона тщательно герметизируется пластиком и алюминиевой фольгой.
TSTM измеряет развитие напряжения на этапе упрочнения при заданной степени ограничения, R . TSTM состоит из внешней стальной рамы, которая почти без трения поддерживает две подвижные траверсы и подвижную среднюю часть (рисунки 1 и 2). Вместе две траверсы и средняя часть образуют опалубку, в которую заливается горизонтально ориентированный образец бетона.Опалубка TSTM состоит так же, как и опалубка буровой установки, с медными пластинами 5 мм, окруженными 5-миллиметровыми медными трубками (с циркулирующей водой с регулируемой температурой), покрытыми изоляцией. Крейцкопфы и верхние крышки также контролируются по температуре, что обеспечивает равномерную температурную предысторию всего бетонного образца во время испытаний. Образец бетона TSTM имеет форму «собачьей кости». Центральные 700 мм миделя, измеряемая длина, имеют прямоугольное поперечное сечение с размерами 88 мм (ширина) × 100 мм (высота). За пределами измерительной длины ширина бетонного поперечного сечения линейно увеличивается с обеих сторон, пока не достигнет 100 мм на траверсах. Ширина поперечного сечения продолжает постепенно увеличиваться до 225 мм внутри крейцкопфа, обеспечивая сдерживание бетонного образца. Перед заливкой два измерительных болта устанавливаются в средней части TSTM на расстоянии 700 мм, определяя длину измерения. Измерительные болты проходят через форму с регулируемой температурой и закладываются в бетон во время заливки.Деформация образца бетона измеряется как изменение длины между двумя измерительными болтами двумя индуктивными датчиками смещения (LVDT), по одному на каждой стороне образца бетона (см. Рисунок 1). Датчик нагрузки установлен на правой траверсе, рис. 2, и измеряет удерживающую силу, передаваемую через поперечное сечение бетона во время испытания. Во время испытаний образец бетона тщательно герметизируется пластиком и алюминиевой фольгой.
Программное обеспечение подключается к LVDT и датчику веса, а также к высокоточному винту, перемещающему левую траверсу (рис. 2).Величина перемещения траверсы, вызванного программным обеспечением, определяется (1) изменением длины бетона, измеренным LVDT, (2) нагрузкой, измеренной датчиком нагрузки, и (3) параметрами, определяемыми пользователем в программном обеспечении. Таким образом, TSTM контролируется как деформацией, так и нагрузкой. Кроме того, новое программное обеспечение позволяет пользователю выбирать желаемую степень ограничения в диапазоне от 0 до 100%, где степень ограничения определяется как отношение между ограниченной и полной деформацией в тестах TSTM, умноженное на 100%.Для испытаний TSTM с реалистичным температурным режимом отверждения R обычно устанавливается на 50%, что соответствует типичным условиям удержания для стены на плите [47]. Степень ограничения 50% обеспечивает более длительный период измерения до того, как в образце разовьется разрушение при растяжении, и, таким образом, дает больше данных, чем если бы образец был полностью закреплен.
Система TSTM имеет несколько областей применения. После испытания на ограниченную нагрузку коэффициент теплового расширения (CTE) можно определить, применив серию температурных шагов в ± 3 ° C вокруг начальной температуры 20 ° C к системе TSTM.Кроме того, результаты испытаний на ограниченную нагрузку в TSTM можно использовать для определения возрастающего изменения модуля упругости с течением времени, а также времени начала развития напряжения t 0 [46]. TSTM также может использоваться для других экспериментальных целей, кроме ранее описанных измерений ограниченного напряжения. Испытания на ползучесть и релаксацию, а также определение удерживающих напряжений из-за усадки при высыхании могут быть выполнены в TSTM [38, 46, 48]. Подробное описание системы TSTM и ее возможностей дано в [15].
Следует отметить, что в данном исследовании образцы бетона были тщательно запечатаны, поэтому усадкой при высыхании было решено пренебречь. Для массивных бетонных конструкций в краткосрочной перспективе усадка при высыхании будет небольшой, и ее, как правило, можно не учитывать.
3. Программа проектирования и испытаний бетонной смеси
Настоящее исследование включает четыре бетона: один эталонный бетон без летучей золы (ссылка ANL) и три бетона с различным количеством летучей золы (ANL FA17, ANL FA33 и ANL FA45 ).Состав бетона, а также общее содержание золы-уноса приведены в Таблице 1. Эталонный бетон, ссылка на ANL, не содержит золы-уноса и изготовлен из портландцемента CEM I «Norcem Anlegg» [49]. Бетоны из летучей золы, с другой стороны, изготавливаются из портландцемента с зольной пылью CEM II / A-V «Norcem Anlegg FA», где 17% летучей золы перемалывается с клинкером. Все бетоны были изготовлены с соотношением воды и вяжущего 0,4 и объемом цементного теста 292 л / м 3 . Содержание летучей золы было увеличено за счет замены цемента летучей золой 1: 1 по весу, при сохранении постоянного отношения воды к вяжущему и объема цементной пасты. Содержание летучей золы указано в процентах от общего количества цемента + летучей золы. Подробный состав цемента можно найти в [15].
|
900 02 Описанная в настоящее время методология разработки EAC является результатом тесного сотрудничества между исследователями и промышленностью Норвегии.Следовательно, исследуемый бетон и содержание летучей золы были выбраны на основе общепринятой практики в норвежской бетонной промышленности. Исключение составило 45% летучей золы, которая была включена, чтобы «оспорить» национальные правила. Норвежский стандарт допускает до 35% летучей золы, в то время как NPRA (Норвежская администрация дорог общего пользования) допускает до 40% летучей золы. К смеси был добавлен микрокремнезем, поскольку он является абсолютным требованием для всего бетона, используемого для инфраструктурных объектов в Норвегии [39].
В таблице 2 представлена экспериментальная программа, выполненная в данном исследовании. Программа включает выделение тепла при гидратации, развитие прочности на сжатие, прочности на прямое одноосное растяжение и модуля упругости при растяжении, а также испытания на свободную деформацию и ограниченное напряжение в TSTM.
|
Настоящее исследование фокусируется на растрескивание в раннем возрасте, когда модуль упругости при растяжении является основным свойством материала. Кроме того, сравнимое постепенное увеличение модуля упругости в TSTM в основном основано на приложении растягивающей нагрузки. По этой причине в данной статье описывается только модуль упругости при растяжении. Соответствующие E-модули сжатия для исследованных бетонов сообщаются и сравниваются с представленными в настоящее время E-модулями при растяжении в [15].
Испытания TSTM проводились в полуадиабатических условиях, то есть каждый бетон подвергался своей собственной полуадиабатической температурной истории, представляющей собой участок стены толщиной 800 мм, подвергнутый норвежским летним или зимним условиям. ANL FA17 и ANL FA45 также были протестированы с температурными режимами, соответствующими норвежским зимним условиям. Летние условия в Норвегии подразумевают температуру свежего бетона 20 ° C и температуру окружающей среды 20 ° C, в то время как зимние условия в Норвегии представлены температурой свежего бетона 10 ° C и температурой окружающей среды 5 ° C.Температурные истории были определены с помощью программы CrackTeSt COIN с использованием полученного тепловыделения гидратации для каждого бетона и геометрии стены в качестве входных данных.
4. Методология проектирования EAC
Текущая методология проектирования EAC прагматична в том смысле, что предполагает высокую активность в лаборатории. Основное внимание было уделено тому, чтобы сделать метод точным и современным, но при этом практичным и простым в применении для подрядчиков и проектировщиков конструкций. В основе методологии лежит определение и описание конкретного бетона посредством лабораторных испытаний и последующей подгонки модели.Полученные параметры материала затем оцениваются и калибруются путем сравнения (1) развития напряжения, измеренного на машине для испытания температуры и напряжения, с (2) развитием напряжения, рассчитанным с помощью различных подходов к расчету EAC с использованием полученных свойств материала. Основные этапы методологии проектирования EAC показаны на рисунке 3 и описаны следующим образом: (a) Свойства материала, такие как тепло, прочность и изменение модуля упругости с течением времени, определяются с помощью специальных лабораторных испытаний исследуемого бетона (b ) Отобранные модели материалов подгоняются к результатам испытаний для обеспечения числовых описаний различных свойств (c) Создана база данных материалов, включающая свойства материалов и соответствующие параметры модели для данного бетона (d) Испытание на ограниченное напряжение выполняется в TSTM. , где образцы подвергаются температурному режиму отверждения, представляющему выбранный участок конструкции стенки толщиной 800 мм. (e) Развитие напряжений TSTM рассчитывается «задним числом» с помощью различных подходов расчета EAC на основе установленной базы данных материалов (f) База данных материалов оценивается и калибруется путем сравнения рассчитанного развития напряжения с развитием напряжения, измеренным в TSTM
Результатом описанных выше шагов является база данных материалов, которую можно использовать для оценки трещин в раннем возрасте и проектирования конструкций для данного бетона.Испытания в TSTM представляют собой ценную калибровку и проверку установленной базы данных материалов. Кроме того, тесты TSTM включают влияние реалистичного температурного режима отверждения на EAC и соответствующие параметры материала.
5. Модели материалов и расчеты напряжения в раннем возрасте
В данном исследовании применяется принцип зрелости, а прочность на сжатие, предел прочности на растяжение и модуль упругости моделировались уравнением (1), которое является модифицированной версией CEB- Модель FIP MC 1990 [50] (см. [51–53]): где — свойство как функция зрелости, — это свойство на 28 дней, с и n — параметры аппроксимации кривой, а t 0 — время начала развития стресса (время зрелости).
Следовательно, уравнения, описывающие прочность на сжатие, прочность на разрыв и модуль упругости, представлены в уравнениях (2) — (4) соответственно. Параметр s одинаков для всех свойств, в то время как параметр n меняется [51, 52]:
В описанных выше уравнениях время начала развития напряжения t 0 было найдено из испытания TSTM как время созревания, когда измеренное удерживаемое напряжение достигает 0,1 МПа для испытаний, проводимых при реалистичной (летней) температуре.Остальные параметры модели были найдены путем подгонки описанных выше моделей к соответствующим результатам испытаний с использованием метода наименьших квадратов.
Развитие одноосного напряжения в TSTM рассчитывалось на основе обратных расчетов, т. Е. Моделировалось с помощью трех различных расчетных подходов: TSTM-sim, CrackTeSt COIN и DIANA. TSTM-sim служит специально разработанным методом с низким порогом для обратного расчета развития напряжения, измеренного в TSTM, с целью калибровки и / или проверки используемых параметров материала и моделей.Альтернативные методы расчета CrackTeSt COIN и DIANA были включены для оценки и проверки подхода TSTM-sim. Одновременно TSTM-sim в сочетании с ограниченными стресс-тестами в TSTM представляет собой оценку DIANA и CrackTeSt COIN для практических целей.
TSTM-sim — это специально разработанная процедура одномерного расчета, запрограммированная в Excel и Visual Basic. Программа моделирует развитие напряжения в TSTM, используя следующие входные параметры: (1) параметры материала, описывающие данный бетон, (2) температура, измеренная в TSTM, (3) свободная деформация и температура, измеренная на установке параллельного расширения, и ( 4) степень ограничения, применяемая в тесте TSTM. TSTM-sim применяет принцип зрелости и рассчитывает изменение модуля упругости и прочности на разрыв с течением времени. Затем вычисляются динамическая ползучесть и развитие напряжений. Зависящая от времени реакция бетона на напряжение описывается на основе линейной вязкоупругости для стареющих материалов, что означает, что деформации ползучести при постоянном напряжении линейно связаны с уровнем напряжения. Эта линейность была смоделирована функцией податливости в сочетании с законом двойной степени [54]: где t (дни) — конкретный возраст, — это конкретный возраст, при котором было приложено фактическое напряжение, — это модуль упругости при, эквивалентный возраст (зрелость) при и φ 0 , d и p являются параметрами модели ползучести.
Принцип суперпозиционного старения бетона можно интерпретировать как «… деформации, возникающие в любой момент времени t приращением напряжения, приложенным в возрасте < t, не зависят от эффектов любого напряжения, приложенного ранее или позже »[9]. Комбинируя теорию линейной вязкоупругости с принципом суперпозиции, общая деформация для истории переменного напряжения может быть выражена в дискретной форме уравнением (6), которое является основой для обратных расчетов TSTM в TSTM-sim [15] : где общее приращение деформации, генерируемое за интервал времени, определяется фактической степенью сдерживания в TSTM, является функцией податливости, является приращением напряжения, вызванным во времени, и является свободной деформацией, измеренной в установке для растяжения.
Модель ползучести, используемая в TSTM-sim, не уникальна, и в литературе можно найти несколько альтернативных подходов (например, [55–57]). Используемая в настоящее время модель представляет собой упрощение реальных характеристик материала, и она была выбрана на основе предыдущего опыта в NTNU, где она была признана подходящей и достаточно точной при оценке результатов испытаний на ползучесть и выполнении расчетов EAC.
Специальная программа 2D CrackTeSt COIN [58] также использовалась для моделирования развития напряжения в TSTM во время тестирования.CrackTeSt COIN рассчитывает температуру, прочность, напряжение и риск растрескивания с течением времени в твердеющих бетонных конструкциях. Расчет напряжения в раннем возрасте в CrackTeSt COIN состоит из анализа теплового потока, за которым следует структурный анализ. Зависящая от времени реакция на напряжение описывается цепной моделью Максвелла, т. Е. Расчеты основаны на кривых релаксации. Поэтому параметры ползучести были преобразованы в данные релаксации программой RELAX [59] до моделирования TSTM в CrackTeSt COIN.В обратных расчетах TSTM развитие температуры бетона моделировалось как изменение внешней температуры во времени. К свободному расширению, измеренному в установке расширения, применялась модель TSTM следующим образом: (1) тепловое расширение, вызванное усиленным развитием температуры, и (2) автогенная деформация, применяемая как усадка бетона.
DIANA [60], хорошо известная многоцелевая программа 3D FEM, была третьим подходом, используемым для моделирования развития напряжения в TSTM. В DIANA моделирование TSTM выполнялось как анализ ступенчатого течения и напряжения.Это включает в себя анализ переходного теплового потока с последующим структурным анализом. Также для анализа DIANA изменение температуры в смоделированном образце бетона использовалось в качестве истории внешней температуры с течением времени. Измеренное свободное расширение в установке для расширения применялось к модели TSTM как заданное смещение, зависящее от времени; следовательно, тепловое расширение и деформации усадки в модели материала были установлены равными нулю, поскольку они уже были учтены при измерениях на установке расширения.В DIANA для описания ползучести / релаксации бетона доступны как закон двойной степени, так и цепи Максвелла. В отличие от ранее описанных расчетов в Excel, коэффициент ползучести в DIANA не зависит от срока погашения. Для расчетов на основе релаксационных и максвелловских цепочек данные параметры ползучести были преобразованы в релаксационные данные с помощью программы RELAX [59].
Используемые в настоящее время подходы для расчета стресса в раннем возрасте более подробно описаны в [15].
6. Результаты и обсуждение
Результаты испытаний и расчетные параметры модели для исследуемых бетонов представлены в Таблице 3 и на Рисунке 4. Параметры энергии активации A и B в Таблице 3 были определены на основании испытаний прочности на сжатие на образцы отверждались при температуре ниже 5 ° C, 20 ° C и 35 ° C соответственно. Эти тесты и последующие выводы подробно описаны и представлены в [15].
|
Известный факт полуадиабатического разложения калориметра системы калориметрического разложения хорошо подтвердил факт с увеличением количества летучей золы (рис. 4 (а)). Однако следует отметить, что используемый в настоящее время цемент ANL FA имел довольно агрессивное выделение тепла при гидратации по сравнению с ранее использовавшимися партиями цемента ANL FA.Фактически, выделение теплоты гидратации у используемой в настоящее время ANL FA (16,6% летучей золы) было почти таким же высоким, как у ANL ref. (без летучей золы). Это нерегулярное выделение тепла с высоким уровнем гидратации может быть вызвано неблагоприятным сочетанием довольно высокой дисперсности (Blaine: 389 м 2 / кг) и немного более низкого содержания летучей золы (16,6%) по сравнению с предыдущей испытанной партией, которая имела крупность и зольность 370 м 2 / кг и 17,8% соответственно. На выделение теплоты гидратации для данной партии цемента также влияют другие параметры, такие как состав цемента и партия летучей золы.Эти результаты показывают, что выделение тепла на этапе затвердевания может значительно различаться между разными партиями цемента, и подчеркивает важность регулярных испытаний тепловыделения в период строительства.
28-дневная прочность на сжатие, которая является наиболее часто используемым параметром класса качества, систематически снижалась с увеличением содержания летучей золы. Однако из-за значительного улучшения свойств бетонов из летучей золы по истечении 28 дней разница в прочности на сжатие между исследованными бетонами со временем уменьшалась.Через 91 день прочность на сжатие ANL исх. и ANL FA были в том же диапазоне (рис. 4 (c)). Выведенные параметры s , которые описывают развитие прочности бетона на сжатие, приведены в таблице 3. Значения s были в том же порядке величины, что и в других исследованиях (например, [51, 61]).
28-дневная прочность на разрыв также снижалась с увеличением количества летучей золы (рис. 4 (d)). Однако разница в прочности на разрыв между бетоном со временем уменьшалась из-за значительного запоздалого развития свойств, наблюдаемых у бетонов из летучей золы.Модели фактически показывают, что прочность на разрыв ANL FA45 превосходит ANL FA33 примерно через 28 дней. Параметры модели были найдены в результате механических испытаний до 28 дней в соответствии с общепринятой практикой. Следовательно, модель и ее параметры не точно описывают значительное изменение свойств бетона из летучей золы после 28 дней. В то время как модель предсказывает предел прочности на разрыв 3,3 МПа и 3,4 МПа через 91 день для ANL FA33 и ANLFA45, соответственно, фактическая измеренная прочность на разрыв была намного выше: 4.1 и 4,0 МПа соответственно. Это следует принимать во внимание при оценке прочности на разрыв и риска растрескивания после 28 дней, но для большинства конструкций основной риск EAC будет возникать до 28 дней. Дальнейшие исследования и дополнительные данные необходимы для создания надежных моделей, учитывающих позднее проявление свойств бетона из летучей золы.
Было обнаружено, что модуль упругости при растяжении уменьшается с увеличением содержания летучей золы для всех возрастов испытаний (рис. 4 (е)). В ходе текущего исследования было замечено неудовлетворительное согласие между E-модулем, найденным в программе испытаний, E 28 , и E-модулем, вычисленным из приращений напряжения-деформации в TSTM, E TSTM .Предполагалось, что реалистичные температурные условия отверждения могут повлиять на механические свойства. Поэтому была проведена серия механических испытаний с целью изучения влияния температуры отверждения на прочность на сжатие, предел прочности при растяжении и модуль упругости [16]. Программа испытаний показала, что реалистичный температурный режим отверждения привел к увеличению начального изменения модуля упругости для бетонов из летучей золы, что не могло быть объяснено принципом зрелости. Поэтому было решено увеличить 28-дневный модуль упругости в соответствии с тестами TSTM в существующей в настоящее время базе данных материалов (см. Таблицу 3).
Коэффициент теплового расширения (КТР) — это комплексный параметр, который изменяется как в зависимости от состава бетонной смеси, так и в зависимости от времени (степени самовысыхания) [62]. В данной работе применялось обычно используемое упрощение постоянного КТР, которое определялось как среднее значение, полученное из температурных контуров в конце испытаний на ограниченную нагрузку в TSTM.Тенденция небольшого увеличения CTE с увеличением количества летучей золы была замечена в таблице 3.
Для каждого теста TSTM развитие AD определялось путем удаления TD из общей деформации, измеренной в установке расширения с использованием CTE. Развитие AD для исследуемых бетонов представлено на Рисунке 4 (f), где графики обнулены в начальный момент развития напряжения, t 0 . Следует отметить, что кривые AD представлены как функция времени, а не срока погашения, т.е.е., они отражают развитие AD с течением времени в стене толщиной 800 мм, определенной в настоящее время для данного бетона, подверженного его собственной индивидуальной истории температур отверждения. Значительное изменение было замечено в выведенной AD, которая, как было обнаружено, сильно зависит от повышения температуры во время отверждения (см. [15, 63]). Примененное упрощение постоянного CTE внесет неточность в выведенный AD; однако текущие расчеты напряжения основаны на общей измеренной деформации и, следовательно, не зависят от выбора КТР.Если использовать вычисленную AD в сочетании с другой температурной историей, упрощение постоянного CTE будет иметь только ограниченное влияние на развитие напряжения, так как небольшая возможная погрешность AD возникает в фазе, где E-модуль все еще довольно низок. [15, 63].
Параметры ползучести, первоначально использовавшиеся в расчетах, были приняты на основе предыдущего опыта с аналогичными бетонами. Однако обратные расчеты TSTM выявили отклонение между расчетным и измеренным развитием напряжения, которое систематически увеличивалось с увеличением содержания летучей золы.Предполагалось, что это отклонение вызвано предполагаемыми параметрами ползучести, и поэтому было решено провести специальные испытания на ползучесть для ANL FA и ANL FA33 в TSTM. Эти испытания на ползучесть и соответствующие результаты описаны и представлены Klausen et al. [46]. Новые параметры модели обеспечили гораздо лучшее согласие между измеренным и рассчитанным на основе исторических данных развитием напряжения (Таблица 3 и Рисунок 5 (а)). Это упражнение иллюстрирует основную концепцию текущей методологии TSTM, используя TSTM в качестве «решения» для оценки и калибровки определенных параметров модели исследуемого бетона.
На рис. 5 (b) показаны измеренные и рассчитанные изменения напряжения для ANL ref. подвергнуты реалистичному температурному режиму отверждения, соответствующему норвежским летним условиям. Развитие напряжений было рассчитано с помощью TSTM-sim, CrackTeSt COIN и DIANA с использованием закона двойной степени (DIANA DPL), и все подходы были основаны на одних и тех же параметрах материала. Расчетные кривые напряжения показали очень хорошее согласие как друг с другом, так и с соответствующим измеренным напряжением. Все подходы к расчету обеспечивали точное описание фазы сжатия, в то время как расчет DIANA дал немного меньшее развитие растягивающего напряжения с течением времени, чем другие подходы.Причина этого заключается в расчетах ползучести, поскольку коэффициент ползучести в DIANA не зависит от зрелости. В целом, следует сказать, что подходы к расчету в сочетании с ранее определенными параметрами материала обеспечивают очень точное моделирование развития напряжений в TSTM. Соответствующее согласие между различными подходами к расчету было также замечено для других исследованных бетонов, и, следовательно, специально разработанная программа моделирования TSTM-sim в Excel была оценена и проверена CrackTeSt COIN и DIANA. В дальнейшем TSTM-sim использовалась для обратного расчета измеренного развития напряжений, чтобы оценить и проверить свойства материала для остальных бетонов.
Измеренные и расчетные изменения напряжений для исследованных бетонов, подвергнутых реалистичным температурным режимам отверждения, представляющие норвежские летние условия, представлены на Рисунке 6. Следует отметить, что каждый бетон подвергался собственной полуадиабатической температурной истории, представляющей сечение 800 мм толстая стенка (рис. 5 (б)).Чтобы различать бетоны и их индивидуальные температурные характеристики, использовались следующие обозначения: « Имя бетона ( T ini / T max )», где T ini — начальная температура. свежего бетона и T max — максимальная температура бетона во время испытания. Все реалистичные температурные испытания в TSTM применялись со степенью сдерживания R = 50%.
На рис. 6 (а) показано измеренное и рассчитанное развитие напряжения для трех номинальных идентичных испытаний TSTM, выполненных с помощью ANL ref.Измеренное развитие напряжения показало очень хорошую воспроизводимость между испытаниями со стандартным отклонением через 48 и 96 часов всего 0,03 и 0,06 МПа соответственно. Кроме того, было также очень хорошее соответствие между измеренным развитием напряжения и соответствующим обратным расчетом. Для ANL FA были выполнены два номинальных идентичных теста TSTM (рисунок 6 (b)). Испытания показали очень похожие изменения измеренного напряжения, а также хорошее соответствие между измеренным и рассчитанным напряжением.На рисунках 6 (c) и 6 (d) показаны измеренные и рассчитанные изменения напряжения для ANL FA33 и ANL FA45, соответственно. Оба теста показали довольно хорошее соответствие измеренного и рассчитанного напряжения; однако для ANL FA33 наблюдалась небольшая недооценка развития растягивающего напряжения с течением времени. Это небольшое отклонение может быть вызвано первоначальным увеличением модуля упругости под действием температуры. Хотя влияние температуры на 28-дневное значение модуля упругости было скорректировано путем замены E 28 на E TSTM , соответствующее повышение скорости развития модуля упругости под действием температуры по сравнению с первым несколько дней не учтено (см. [15, 16]).Таким образом, TSTM обеспечивает очень хорошую воспроизводимость номинальных идентичных тестов. Кроме того, испытания TSTM и соответствующие обратные расчеты подтвердили подходы к расчету и созданную базу данных материалов для всех исследованных бетонов.
Норвежский климат с его холодными зимами может быть сложным, когда дело касается бетонного строительства. Было замечено, что предел прочности на разрыв для бетонов с большим объемом золы-уноса может быть очень низким при низких / умеренных температурах, и предполагалось, что этот эффект может перекрыть положительный эффект снижения тепловыделения.Поэтому было решено провести испытания в TSTM, где бетон подвергался норвежским зимним условиям, которые в текущем исследовании были определены как температура свежего бетона 10 ° C и температура окружающей среды 5 ° C. На рисунке 7 показано измеренное и рассчитанное развитие напряжения для ANL FA17 и ANL FA45 в зимних условиях. Измеренные и рассчитанные назад изменения напряжений также дали хорошее согласие для этих температурных условий отверждения. Следовательно, текущая методология EAC доказывает свою надежность, поскольку установленная база данных материалов оказалась действительной также для температурных условий отверждения, представляющих другие климатические условия.
На рисунке 8 (а) показан скомпилированный набор кривых развития напряжений, измеренных в TSTM. При рассмотрении только бетона из летучей золы (все они основаны на одном и том же цементе Anlegg FA) как сжимающие, так и растягивающие напряжения уменьшались с увеличением содержания летучей золы для данного примера стены и температурных условий (стена толщиной 800 мм, летние и зимние условия). Как видно на Рисунке 4 (а), максимальная температура во время отверждения, T max , снижается с увеличением содержания летучей золы.Следовательно, уменьшение T max снижает как расширение бетона, то есть развитие начального напряжения сжатия, так и тепловое сжатие во время фазы охлаждения. Однако это вызванное летучей золой снижение развития растягивающего напряжения необходимо рассматривать в сочетании с соответствующим пониженным пределом прочности на растяжение. Таким образом, склонность бетона к растрескиванию оценивалась на основе индекса трещины, то есть возникающего растягивающего напряжения, деленного на соответствующую прочность на растяжение (см. Рисунок 8 (b)).Было обнаружено, что для исследуемых бетонов и структурного случая возрастающая замена цемента летучей золой снижает тенденцию к растрескиванию. Было установлено, что бетон с самым высоким содержанием золы, ANL FA45, обеспечивает самый низкий индекс трещин как в летних, так и в зимних условиях для данной стены толщиной 800 мм.
Ссылка ANL. тесты внесли значительный вклад в документацию воспроизводимости TSTM; однако их нельзя было напрямую сравнивать с бетоном из летучей золы, поскольку они были изготовлены из другого цемента.Первоначально ANL исх. Ожидалось, что бетон без летучей золы будет давать самую высокую тенденцию к образованию трещин. Однако из-за сочетания нескольких неблагоприятных обстоятельств риск взлома как ANL FA17, так и ANL FA33 фактически превзошел ANL ref. с течением времени (рис. 8 (б)). Причинами этого были (1) нерегулярное выделение тепла с высоким уровнем гидратации у используемой в настоящее время партии цемента ANL FA, (2) высокая AD, наблюдаемая для бетонов из летучей золы, подвергшихся воздействию высоких температур отверждения, (3) вызванное температурой увеличение E -модуль упругости в раннем возрасте, наблюдаемый для бетонов из летучей золы, и (4) низкая скорость развития прочности на разрыв в раннем возрасте для бетонов из летучей золы.
В данной статье показано, что замена цемента летучей золой может снизить склонность бетона к растрескиванию; тем не менее, на риск EAC также влияют несколько других параметров, таких как, например, партия цемента, тип заполнителя, соотношение массы и материала и добавка добавок, уменьшающих усадку (SRA) [64]. Таким образом, при проектировании бетонных конструкций следует включать точную характеристику свойств бетона и соответствующие методики проектирования EAC.
7.Резюме и заключение
В ходе текущей работы была разработана и разработана методология проектирования по растрескиванию в раннем возрасте (EAC) и соответствующий метод определения свойств бетона, основанный на лабораторных испытаниях и установке для испытания температурных напряжений (TSTM): (i) TSTM обеспечил очень хорошую воспроизводимость и надежные результаты во время исследования. Например, параметры ползучести, полученные непосредственно из испытаний на ограниченную нагрузку в TSTM, дали очень хорошее согласие с соответствующими специализированными испытаниями на ползучесть.Благодаря своей надежности испытания в TSTM представляют собой ценную калибровку и проверку параметров материала и модели, установленных для данного бетона. Кроме того, тесты TSTM включают влияние реалистичного температурного режима отверждения на EAC и соответствующие параметры материала. (Ii) Было обнаружено хорошее согласие между развитием напряжения в раннем возрасте, рассчитанным с помощью TSTM-sim (Excel), CrackTeSt COIN и DIANA, соответственно. При корректировке влияния температуры на 28-дневное значение модуля упругости, расчеты также показали очень хорошее согласие с соответствующим развитием напряжения, измеренным в TSTM, как для летних, так и для зимних температурных условий отверждения.Это общее соглашение подтверждает достоверность и надежность подходов к расчету, а также параметров применяемой модели. (Iii) На основе текущего картирования свойств и калибровки в специальной программе CrackTeSt COIN была создана база данных материалов для исследуемых бетонов. CrackTeSt COIN и соответствующая база данных материалов теперь представляют собой средство, с помощью которого подрядчики и проектировщики конструкций могут оценить правильный выбор типа бетона, минеральных добавок и методов выполнения на месте, чтобы минимизировать или даже избежать растрескивания.(iv) Некоторые параметры материала, которые влияют на EAC, зависят от температуры отверждения бетона таким образом, что только до определенной степени можно описать принципом зрелости, например, предел прочности при растяжении, модуль упругости и автогенная деформация (AD). Следовательно, текущие результаты убедительно свидетельствуют о том, что такие параметры следует измерять при соответствующих реалистичных температурных условиях отверждения. (V) Для исследуемых бетонов и структурного случая было обнаружено, что возрастающая замена цемента летучей золой снижает тенденцию к растрескиванию.
Ожидается, что в ближайшие годы бетон изменится из-за его текущего вклада в выбросы CO 2 и использования природных ресурсов. Промышленность должна быть подготовлена к определению свойств и проектированию EAC следующего поколения бетонов с низким содержанием CO 2 цемента и переработанного заполнителя.
Доступность данных
Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.
Раскрытие информации
Текущая публикация основана на Ph.Докторская диссертация Клаузена «Ранняя оценка трещин в бетонных конструкциях, экспериментальное определение решающих параметров» [15].
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Выражение признательности
Работа была выполнена в рамках исследовательского инновационного проекта DaCS (Durable advanced Concrete Solutions, 2015–2019) в COIN (Concrete Innovation Center, 2007–2014 гг. (Https: //www.sintef. no / en / projects / coin / coinp), Центр инноваций на основе исследований, созданный Исследовательским советом Норвегии).
Рекомендации по проектированию бетонной опалубки
Эффективное проектирование и строительство опалубки требует базового понимания того, как бетон ведет себя, оказывая давление на опалубку. Бетон оказывает боковое давление на опалубку. Опалубка рассчитана на эти поперечные силы.
Боковое давление бетона на опалубку зависит от:
1) Высота заливки бетона
2) Скорость заливки бетона
3) Вес бетона
4) Температура
5) Тип цемента
6) Вибрация
7) Осадка бетона ( водоцементное соотношение)
8) Химические добавки
1) Высота заливки бетона: Прежде чем бетон затвердеет, он действует как жидкость и отталкивает формы так, как вода давит на стенки резервуара для хранения.Величина давления в любой точке формы напрямую определяется высотой и весом бетона над ней. На давление не влияет толщина стены.
Боковое давление бетона на опалубку
2) Скорость заливки бетона: Давление бетона в любой точке формы прямо пропорционально высоте жидкого бетона над ней. Если бетон начнет затвердевать до завершения заливки, полный напор жидкости не будет развиваться, и давление на формы будет меньше, чем если бы заливка была завершена до того, как какой-либо из бетонов затвердел.
Когда бетон затвердевает, он не может оказывать большее давление на формы, даже если жидкий бетон продолжает укладывать поверх него. На следующих диаграммах показано, как изменяется давление формы при увеличении скорости заливки с одного уровня на другой. Для простоты объяснения предполагается, что бетон затвердевает в течение одного часа (обычно) при 21 ° C.
Давление бетона на опалубку при затвердевании
При увеличении скорости заливки давление также увеличивается, как показано ниже: Давление бетона на опалубку из-за более высокой скорости заливки
3) Вес бетона: Давление, оказываемое на формы, прямо пропорционально удельному весу бетона.Легкий бетон будет оказывать меньшее давление, чем бетон нормального веса, как показано ниже:
Давление на опалубку из-за обычного и легкого бетона
4) Температура: Время, необходимое бетону для затвердевания, в значительной степени зависит от его температуры. Чем выше температура бетона, тем быстрее он затвердеет. Большинство конструкций опалубки основаны на предполагаемой средней температуре воздуха и бетона 21 ° C. При низких температурах воздуха затвердевание бетона замедляется, и вам нужно уменьшить скорость заливки или нагреть бетон, чтобы давление на опалубку не увеличивалось.В идеале бетон следует заливать при температуре от 16 ° C до 38 ° C. За пределами этого температурного диапазона часто бывает недостаточно влаги для отверждения. Если воды для отверждения нет или она замерзнет, прочность бетона пострадает.
5) Тип цемента: Тип цемента влияет на скорость затвердевания бетона. Бетон с высокой начальной прочностью затвердевает быстрее, чем обычный бетон, и обеспечивает более высокую скорость заливки. При использовании цемента, который изменяет нормальное время схватывания и затвердевания, обязательно соответствующим образом отрегулируйте скорость заливки.
6) Вибрация: Внутренняя вибрация уплотняет бетон и заставляет его вести себя как чистая жидкость. Если бетон не подвергается вибрации, он будет оказывать меньшее давление на формы. Формулы, рекомендованные ACI для расчета давления в опалубке, могут быть уменьшены на 10%, если бетон имеет лопатки, а не внутреннюю вибрацию. Повторная вибрация и внешняя вибрация приводят к более высоким нагрузкам формы, чем внутренняя вибрация. Эти типы вибрации требуют специально разработанных форм.
7) Просадка бетона: Когда бетон имеет очень низкую осадку, он действует меньше как жидкость и будет передавать меньшее давление.При использовании бетона с осадкой более 100 мм опалубка должна быть спроектирована таким образом, чтобы выдерживать полный напор жидкости.
8) Химические добавки: При использовании химических добавок — например, замедлителей схватывания, пластификаторов и т. Д. — обязательно обращайтесь к данным поставщика по применению.
Время снятия бетонной опалубки и технические характеристики
На время снятия опалубки влияют различные факторы, такие как
- Тип используемого бетона : Существует много типов бетона, в зависимости от материалов (например,
- ).
- ).