Соответствие сечения провода силе тока
При прокладке электропроводки требуется знать, кабель с жилами какого сечения вам надо будет прокладывать. Выбор сечения кабеля можно делать либо по потребляемой мощности, либо по потребляемому току. Также учитывать надо длину кабеля и способ укладки.
Выбираем сечение кабеля по мощности
Подобрать сечение провода можно по мощности приборов, которые будут подключаться. Эти приборы называются нагрузкой и метод может еще называться «по нагрузке». Суть его от этого не меняется.
Выбор сечения кабеля зависит от мощности и силы тока
Собираем данные
Для начала находите в паспортных данных бытовой техники потребляемую мощность, выписываете ее на листочек. Если так проще, можно посмотреть на шильдиках — металлических пластинах или стикерах, закрепленных на корпусе техники и аппаратуры. Там есть основная информация и, чаще всего, присутствует мощность. Опознать ее проще всего по единицам измерения. Если изделие произведено в России, Белоруссии, Украине обычно стоит обозначение Вт или кВт, на оборудовании из Европы, Азии или Америки стоит обычно английское обозначение ваттов — W, а потребляемая мощность (нужна именно она) обозначается сокращением «TOT» или TOT MAX.
Пример шильдика с основной технической информацией. Нечто подобное есть на любой технике
Если и этот источник недоступен (информация затерлась, например, или вы только планируете приобрести технику, но еще не определились с моделью), можно взять среднестатистические данные. Для удобства они сведены в таблицу.
Таблица потребляемой мощности различных электроприборов
Находите ту технику, которую планируете ставить, выписываете мощность. Дана она порой с большим разбросом, так что иногда трудно понять, какую цифру брать. В данном случае, лучше брать по-максимуму. В результате при расчетах у вас будет несколько завышена мощность оборудования и потребуется кабель большего сечения. Но для вычисления сечения кабеля это хорошо. Горят только кабели с меньшим сечением, чем это необходимо. Трассы с большим сечением работают долго, так как греются меньше.
Суть метода
Чтобы подобрать сечение провода по нагрузке, складываете мощности приборов, которые будут подключаться к данному проводнику. При этом важно, чтобы все мощности были выражены в одинаковых единицах измерения — или в ваттах (Вт), или в киловаттах (кВт). Если есть разные значения, приводим их к единому результату. Для перевода киловатты умножают на 1000, и получают ватты. Например, переведем в ватты 1,5 кВт. Это будет 1,5 кВт * 1000 = 1500 Вт.
Если необходимо, можно провести обратное преобразование — ватты перевести в киловатты. Для это цифру в ваттах делим на 1000, получаем кВт. Например, 500 Вт / 1000 = 0,5 кВт.
Далее, собственно, начинается выбор сечения кабеля. Все очень просто — пользуемся таблицей.
Сечение кабеля, мм2 | Диаметр проводника, мм | Медный провод | Алюминиевый провод | ||||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | ||||
220 В | 380 В | 220 В | 380 В | ||||
0,5 мм2 | 0,80 мм | 6 А | 1,3 кВт | 2,3 кВт | |||
0,75 мм2 | 0,98 мм | 10 А | 2,2 кВт | 3,8 кВт | |||
1,0 мм2 | 1,13 мм | 14 А | 3,1 кВт | 5,3 кВт | |||
1,5 мм2 | 1,38 мм | 15 А | 3,3 кВт | 5,7 кВт | 10 А | 2,2 кВт | 3,8 кВт |
2,0 мм2 | 1,60 мм | 19 А | 4,2 кВт | 7,2 кВт | 14 А | 3,1 кВт | 5,3 кВт |
2,5 мм2 | 1,78 мм | 21 А | 4,6 кВт | 8,0 кВт | 16 А | 3,5 кВт | 6,1 кВт |
4,0 мм2 | 2,26 мм | 27 А | 5,9 кВт | 10,3 кВт | 21 А | 4,6 кВт | 8,0 кВт |
6,0 мм2 | 2,76 мм | 34 А | 7,5 кВт | 12,9 кВт | 26 А | 5,7 кВт | 9,9 кВт |
10,0 мм2 | 3,57 мм | 50 А | 11,0 кВт | 19,0 кВт | 38 А | 8,4 кВт | 14,4 кВт |
16,0 мм2 | 4,51 мм | 80 А | 17,6 кВт | 30,4 кВт | 55 А | 12,1 кВт | 20,9 кВт |
25,0 мм2 | 5,64 мм | 100 А | 22,0 кВт | 38,0 кВт | 65 А | 14,3 кВт | 24,7 кВт |
Чтобы найти нужное сечение кабеля в соответствующем столбике — 220 В или 380 В — находим цифру, которая равна или чуть больше посчитанной нами ранее мощности. Столбик выбираем исходя из того, сколько фаз в вашей сети. Однофазная — 220 В, трехфазная 380 В.
В найденной строчке смотрим значение в первом столбце. Это и будет требуемое сечение кабеля для данной нагрузки (потребляемой мощности приборов). Кабель с жилами такого сечения и надо будет искать.
Немного о том, медный провод использовать или алюминиевый. В большинстве случаев, при прокладке проводки в доме или квартире, используют кабели с медными жилами. Такие кабели дороже алюминиевых, но они более гибкие, имеют меньшее сечение, работать с ними проще. Но, медные кабели с большого сечения, ничуть не более гибкие чем алюминиевые. И при больших нагрузках — на вводе в дом, в квартиру при большой планируемой мощности (от 10 кВт и больше) целесообразнее использовать кабель с алюминиевыми проводниками — можно немного сэкономить.
Как рассчитать сечение кабеля по току
Можно подобрать сечение кабеля по току. В этом случае проводим ту же работу — собираем данные о подключаемой нагрузке, но ищем в характеристиках максимальный потребляемый ток. Собрав все значения, суммируем их. Затем пользуемся все той же таблицей. Только ищем ближайшее большее значение в столбике, подписанном «Ток». В той же строке смотрим сечение провода.
Например, надо подключить варочную панель с пиковым потреблением тока 16 А. Будем прокладывать медный кабель, потому смотрим в соответствующей колонке — третья слева. Так как нет значения ровно 16 А, смотрим в строчке 19 А — это ближайшее большее. Подходящее сечение 2,0 мм 2 . Это и будет минимальное значение сечения кабеля для данного случая.
При подключении мощных бытовых электроприборов от щитка тянут отдельную линию электропитания. В этом случае выбор сечения кабеля несколько проще — требуется только одно значение мощности или тока
Обращать внимание не строчку с чуть меньшим значением нельзя. В этом случае при максимальной нагрузке проводник будет сильно греться, что может привести к тому, что расплавится изоляция. Что может быть дальше? Может сработать автомат защиты, если он установлен. Это самый благоприятный вариант. Может выйти из строя бытовая техника или начаться пожар. Потому выбор сечения кабеля всегда делайте по большему значению. В этом случае можно будет позже установить оборудование даже немного больше по мощности или потребляемому току без переделки проводки.
Расчет кабеля по мощности и длине
Если линия электропередачи длинная — несколько десятков или даже сотен метров — кроме нагрузки или потребляемого тока необходимо учитывать потери в самом кабеле. Обычно большие расстояния линий электропередачи при вводе электричества от столба в дом. Хоть все данные должны быть указаны в проекте, можно перестраховаться и проверить. Для этого надо знать выделенную мощность на дом и расстояние от столба до дома. Далее по таблице можно подобрать сечение провода с учетом потерь на длине.
Таблица определения сечения кабеля по мощности и длине
Вообще, при прокладке электропроводки, лучше всегда брать некоторый запас по сечению проводов. Во-первых, при большем сечении меньше будет греться проводник, а значит и изоляция. Во-вторых, в нашей жизни появляется все больше устройств, работающих от электричества. И никто не может дать гарантии, что через несколько лет вам не понадобиться поставить еще пару новых устройств в дополнение к старым. Если запас существует, их можно будет просто включить. Если его нет, придется мудрить — или менять проводку (снова) или следить за тем, чтобы не включались одновременно мощные электроприборы.
Открытая и закрытая прокладка проводов
Как все мы знаем, при прохождении тока по проводнику он нагревается. Чем больше ток, тем больше тепла выделяется. Но, при прохождении одного и того же тока, по проводникам, с разным сечением, количество выделяемого тепла изменяется: чем меньше сечение, тем больше выделяется тепла.
В связи с этим, при открытой прокладке проводников его сечение может быть меньше — он быстрее остывает, так как тепло передается воздуху. При этом проводник быстрее остывает, изоляция не испортится. При закрытой прокладке ситуация хуже — медленнее отводится тепло. Потому для закрытой прокладке — в кабель каналах, трубах, в стене — рекомендуют брать кабель большего сечения.
Выбор сечения кабеля с учетом типа его прокладки также можно провести при помощи таблицы. Принцип описывали раньше, ничего не изменяется. Просто учитывается еще один фактор.
Выбор сечения кабеля в зависимости от мощности и типа прокладки
И напоследок несколько практических советов. Отправляясь на рынок за кабелем, возьмите с собой штангенциркуль . Слишком часто заявленное сечение не совпадает с реальностью. Разница может быть в 30-40%, а это очень много. Чем вам это грозит? Выгоранием проводки со всеми вытекающими последствиями. Потому лучше прямо на месте проверять действительно ли у данного кабеля требуемое сечение жилы (диаметры и соответствующие сечения кабеля есть в таблице выше). А подробнее про определение сечения кабеля по его диаметру можно прочесть тут.
Большое значение в электротехнике имеет такая величина, как поперечное сечение провода и нагрузка. Без этого параметра невозможно проведение каких-либо расчетов, особенно, связанных с прокладкой кабельных линий. Ускорить необходимые вычисления помогает таблица зависимости мощности от сечения провода, применяемая при проектировании электротехнического оборудования. Правильные расчеты обеспечивают нормальную работу приборов и установок, способствуют надежной и долговременной эксплуатации проводов и кабелей.
Правила расчетов площади сечения
На практике расчеты сечения любого провода не представляют какой-либо сложности. Достаточно всего лишь вычислить сечение кабеля по диаметру с помощью штангенциркуля, а затем полученное значение использовать в формуле: S = π (D/2)2, в которой S является площадью сечения, число π составляет 3,14, а D представляет собой измеренный диаметр жилы.
В настоящее время используются преимущественно медные провода. По сравнению с алюминиевыми, они более удобны в монтаже, долговечны, имеют значительно меньшую толщину, при одинаковой силе тока. Однако, при увеличении площади сечения стоимость медных проводов начинает возрастать, и все преимущества постепенно теряются. Поэтому при значении силы тока более 50-ти ампер практикуется применение кабелей с алюминиевыми жилами. Для измерения сечения проводов используются квадратные миллиметры. Наиболее распространенными показателями, применяемыми на практике, являются площади 0,75; 1,5; 2,5; 4,0 мм2.
Таблица сечения кабеля по диаметру жилы
Основным принципом расчетов служит достаточность площади сечения, для нормального протекания через него электрического тока. То есть, допустимый ток не должен нагревать проводник до температуры свыше 60 градусов. Падение напряжения не должно превышать допустимого значения. Этот принцип особенно актуален для ЛЭП большой протяженности и высокой силы тока. Обеспечение механической прочности и надежности провода осуществляется за счет оптимальной толщины провода и защитной изоляции.
Сечение провода по току и мощности
Прежде чем рассматривать соотношение сечения и мощности, следует остановиться на показателе, известном, как максимальная рабочая температура. Данный параметр обязательно учитывается при выборе толщины кабеля. Если этот показатель превышает свое допустимое значение, то из-за сильного нагрева металл жилы и изоляция расплавятся и разрушатся. Таким образом, происходит ограничение рабочего тока для конкретного провода его максимальной рабочей температурой. Важным фактором является время, в течение которого кабель сможет функционировать в подобных условиях.
Основное влияние на устойчивую и долговечную работу провода оказывает потребляемая мощность и сила тока. Для быстроты и удобства расчетов были разработаны специальные таблицы, позволяющие подобрать необходимое сечение в соответствии с предполагаемыми условиями эксплуатации. Например, при мощности 5 кВт и силе тока в 27,3 А, площадь сечения проводника составит 4.0 мм2. Точно так же подбирается сечение кабелей и проводов при наличии других показателей.
Необходимо учитывать и влияние окружающей среды. При температуре воздуха, на 20 градусов превышающей нормативную, рекомендуется выбор большего сечения, следующего по порядку. То же самое касается наличия нескольких кабелей, содержащихся в одном жгуте или значения рабочего тока, приближающегося к максимальному. В конечном итоге, таблица зависимости мощности от сечения провода позволит выбрать подходящие параметры на случай возможного увеличения нагрузки в перспективе, а также при наличии больших пусковых токов и существенных перепадов температур.
Формулы для расчета сечения кабеля
В теории и практике, выбору площади поперечного сечения провода по току (толщине) уделяется особое внимание. В данной статье, анализируя справочные данные, познакомимся с понятием «площадь сечения».
Расчет сечения проводов.
В науке не используется понятие «толщина» провода. В литературных источниках используется терминология – диаметр и площадь сечения. Применимо к практике, толщина провода характеризуется площадью сечения.
Довольно легко рассчитывается на практике сечение провода. Площадь сечения вычисляется с помощью формулы, предварительно измерив его диаметр (можно измерить с помощью штангенциркуля):
S = π (D/2)2 ,
- S – площадь сечения провода, мм
- D- диаметр токопроводящей жилы провода. Измерить его можно с помощью штангенциркуля.
Более удобный вид формулы площади сечения провода:
Небольшая поправка — является округленным коэффициентом. Точная расчетная формула:
В электропроводке и электромонтаже в 90 % случаях применяется медный провод. Медный провод по сравнению с алюминиевым проводом, имеет ряд преимуществ. Он более удобен в монтаже, при такой же силе токе имеет меньшую толщину, более долговечен. Но чем больше диаметр (площадь сечения), тем выше цена медного провода. Поэтому, несмотря на все преимущества, если сила тока превышает значение 50 Ампер, чаще всего используют алюминиевый провод. В конкретном случае используется провод, имеющий алюминиевую жилу 10 мм и более.
В квадратных миллиметрах измеряют площадь сечения проводов. Наиболее чаще всего на практике (в бытовой электрике), встречаются такие площади сечения: 0,75; 1,5; 2,5; 4 мм .
Существует иная система измерения площади сечения (толщины провода) — система AWG, которая используется, в основном в США. Ниже приведена таблица сечений проводов по системе AWG, а так же перевод из AWG в мм .
Рекомендовано прочитать статью про выбор сечения провода для постоянного тока. В статье приведены теоретические данные и рассуждения о падении напряжения, о сопротивлении проводов для разных сечений. Теоретические данные сориентируют, какое сечение провода по току наиболее оптимально, для разных допустимых падений напряжения. Также на реальном примере объекта, в статье о падении напряжения на трехфазных кабельных линиях большой длины, приведены формулы, а также рекомендации о том, как уменьшить потери. Потери на проводе прямо пропорциональны току и длине провода. И являются обратно пропорциональными сопротивлению.
Выделяют, три основные принципа, при выборе сечения провода.
1. Для прохождения электрического тока, площадь сечения провода (толщина провода), должна быть достаточной. Понятие достаточно означает, что когда проходит максимально возможный, в данном случае, электрический ток, нагрев провода будет допустимый (не более 600С).
2. Достаточное сечение провода, что бы падение напряжения не превышало допустимого значения. В основном это относится к длинным кабельным линиям (десятки, сотни метров) и токам большой величины.
3. Поперечное сечение провода, а также его защитная изоляция, должна обеспечивать механическую прочность и надежность.
Для питания, например люстры, используют в основном лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А).
Выбирая толщину провода, необходимо ориентироваться на максимальную рабочую температуру. Если температура будет превышена, провод и изоляция на нем будут плавиться и соответственно это приведет к разрушению самого провода. Максимальный рабочий ток для провода с определенным сечением ограничивается только максимально его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.
Далее приведена таблица сечения проводов, при помощи которой в зависимости от силы тока, можно подобрать площадь сечения медных проводов. Исходные данные – площадь сечения проводника.
Максимальный ток для разной толщины медных проводов. Таблица 1.
Сечение токопроводящей жилы, мм 2
Ток, А, для проводов, проложенных
Сечение проводника по мощности и току для электропроводки в квартире
Электромонтажные работы – сложное и ответственное мероприятие. Если Вашей квалификации достаточно, чтобы сделать электропроводку в квартире своими руками, пригодятся полезные советы. Если — нет, то воспользуйтесь услугами специалистов по электромонтажным работам. Итак, поговорим о выборе сечения проводов по току и мощности в деталях.
Расчет длины и максимальной нагрузки электропроводки
Правильный расчет сечения проводов по мощности и току – важное условие бесперебойной и безаварийной работы электросистемы. Сначала рассчитывают общую длину электропроводки. Первый способ — измерить расстояния между щитками, выключателями и розетками на электромонтажной схеме, умножая число на масштаб. Второй способ – определить длину по месту, где запроектирована электропроводка. Она включает в себя все провода, установочные и монтажные кабели вместе с креплениями, поддерживающими и защитными конструкциями. Каждый отрезок необходимо удлинить минимум на 1 см, с учетом соединений проводов.
Дальше рассчитывается общая нагрузка потребляемой электроэнергии. Это сумма номинальных мощностей всех электроприборов, которые будут работать в доме (*см. таблицу в конце статьи). Например, если на кухне в одно время включены электрочайник, электроплита, микроволновка, светильники, посудомоечная машина, суммируем мощности всех приборов и умножаем на 0,75 (коээфициент одновременности). Расчет нагрузки должен всегда иметь запас надежности и прочности. Запоминаем эту цифру для определения сечения жил проводов.
Самостоятельно определить потребляемый ток любого электроприбора поможет простая формула. Разделите потребляемую мощность (см. инструкцию к прибору) на напряжение в сети (220 В). К примеру, по паспорту мощность стиральной машины 2000 Вт; 2000/220 = максимальный ток во время работы не превысит 9,1А.
Другой вариант – воспользоваться рекомендациями ПУЭ (Правила устройства электроустановок), по которым стандартная квартирная электропроводка при длительной нагрузке 25А рассчитывается на максимальный ток потребления, выполняется медным проводом сечением 5мм2. По ПУЭ сечение жилы должно быть не менее 2,5мм2, что соответствует диаметру проводника 1,8 мм.
На такой ток устанавливается и защитный автомат на вводе проводов в квартиру для предотвращения аварий. В жилых зданиях используется однофазный ток напряжением 220 В. Подсчитанную общую нагрузку делим на величину напряжения (220 В) и получаем ток, который будет проходить через вводный кабель и автомат. Покупать автомат нужно с точными или близкими параметрами, с запасом по нагрузке тока.
Выбор кабеля для электропроводки в квартире
Для монтажа домашней электропроводки выбирают трехжильный кабель, один проводник идет на заземление. Жила – это токоведущая часть провода, может быть одно- или многопроволочной. Жилы имеют стандартные сечения, покрыты изолирующей полимерной или резиновой оболочкой, иногда с защитной х/б оплеткой сверху. Делают жилы провода из меди, алюминия или стали.
Наилучший вариант для новой электропроводки в квартире — медный провод. Это надежнее, долговечнее, электрические показатели меди лучше, чем у алюминия.
Что касается марки кабеля, чаще всего используется кабель ВВГ и ВВГнг – медные провода плоской формы, в двойной ПВХ изоляции («нг» говорит о негорючей изоляции провода). Предназначен для выполнения проводки внутри зданий, на открытом воздухе в земле при прокладке в тубах, работает при температуре окружающей среды от -50 до +50°С. Срок службы до 30 лет. Выпускается кабель 2-, 3- и 4-жильный с сечением жил от 1,5 до 35,0 мм2. (Обратите внимание, что при обозначении АВВГ, жилы в проводе алюминиевые.)
Аналог российскому ВВГ — кабель NYM, круглой формы, с медными жилами и негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения практически те же. Выпускается кабель 2-, 3- и 4-жильный с сечением жил от 1,5 до 4,0 мм2.
Круглый кабель удобнее прокладывать сквозь стены — отверстия сверлятся немного больше диаметра кабеля. Для внутренней проводки более удобен плоский кабель ВВГ.
Легкие и дешевые алюминиевые провода незаменимы при прокладке воздушной электропроводки, при грамотном соединении имеют длительный срок службы, поскольку алюминий почти не окисляется. С алюминиевой электропроводкой можно столкнуться при ремонте в старых домах. Когда требуется подключить дополнительные энергоемкие приборы, определяют по сечению или диаметру жил проводов способность проводки из алюминия выдержать большую нагрузку (см. таблицу).
Длительно допустимые токовые нагрузки на алюминиевые провода в разы меньше, чем при использовании медных проводов и кабелей аналогичного сечения.
Диаметр провода, мм | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1,6
|
1,8
|
2,0
|
2,3
|
2,5
|
2,7
|
3,2
|
3,6
|
4,5
|
5,6
|
6,2
|
Сечение провода, мм2 | ||||||||||
2,0
|
2,5
|
3,0
|
4,0
|
5,0
|
6,0
|
8,0
|
10,0
|
16,0
|
25,0
|
30,0
|
Макс. ток при длит. нагрузке, А | ||||||||||
14
|
16
|
18
|
21
|
24
|
26
|
31
|
38
|
55
|
65
|
75
|
Макс. мощность нагрузки, ватт (BA) | ||||||||||
3000
|
3500
|
4000
|
4600
|
5300
|
5700
|
6800
|
8400
|
12000
|
14000
|
16000
|
Сечение проводов при закрытой и открытой электропроводке
Еще один момент — тип электромонтажа, который вы планируете использовать. Открытую электропроводку монтируют на поверхностях или в укрепленных поверху трубах. Скрытую электропроводку прокладывают в пустотах перекрытий, в каналах или бороздах, вырубленных в стенах, в изоляционных и стальных трубах внутри конструкционных элементов.
При закрытой электропроводке требования к сечению кабеля несколько выше, чем при открытой, поскольку без доступа воздуха кабель сильнее нагревается под нагрузкой.
Зная расчетный ток, тип кабеля и электропроводки, можно переходить к расчетам сечения проводов. Учитываются два параметра: допустимая длительная токовая нагрузка и потеря напряжения в проводах, соединяющих потребителя с источником тока. Чем больше длина провода, тем большие потери по пропускной способности он несет (тогда диаметр поперечного сечения токоведущей жилы увеличивают).
Для отдельных комнат или приборов, не требующих большой мощности, второй показатель можно не считать (потери напряжения будут слишком малы).
Расчет сечения кабеля по мощности
Основные показатели, определяющие сечение провода для электропроводки в квартире:
- Металл, из которого изготовлены токопроводящие жилы
- Потребляемая мощность (кВт), токовая нагрузка (А)
- Рабочее напряжение (В)
Прохождение тока по проводнику всегда сопровождается выделением тепла (нагревом), которое прямо пропорционально мощности, рассеиваемой на участке электропроводки. Неправильно подобранные провода по сечению и силе тока, без соответствия нагрузке, могут нагреваться, перегорать и приводить к коротким замыканиям, что напрямую ставит под угрозу пожаробезопасность помещений. Нельзя выбирать меньшее сечение, даже с целью экономии. А применение проводов большего сечения, чем это необходимо, приведет к дополнительным трудностям при монтаже и ненужным затратам на материалы.
В электропроводке квартиры оптимально использование: для розеточной разводки — силовых групп медного провода с сечением жил 2,5 мм2; для осветительных групп – 1,5 мм2; для электроприборов повышенной мощности (электроплиты, электродуховки, варочные панели) — 4-6 мм2.
Медные провода сечением 1,5 мм2 держат нагрузку 4,1 кВт (по току 19А), 2,5 мм2 – 5,9 кВт (27А), 4 и 6 мм2 – свыше 8 и 10 кВт. К тому же это обеспечивает некоторый резерв на случай увеличения мощности токовой нагрузки.
На расчет сечения жил проводов и кабелей влияет и рабочее напряжение. Так, при одинаковой мощности потребления, токовая нагрузка на жилы питающих кабелей или проводов электроприборов, рассчитанных на однофазное напряжение 220 В будет выше, чем для приборов, работающих от 380 В.
Для расчета сечения проводов по допустимой длительной токовой нагрузке необходимо знать номинальный ток, который должен проходить по проектируемой электрической проводке. Зная номинальный ток, сечение провода находят по таблице. К примеру: при номинальном токе 50 А, сечение медной жилы провода должно быть 6 мм2.
Принцип простой — чем больше потребляемая величина тока электроприборами, тем больше должно быть сечение жил проводов в кабеле (округляют значение при расчетах в большую сторону).
Площадь поперечного сечения (S) кабеля вычисляется по формуле S = (Pi * D2)/4, где Pi = 3,14, D – диаметр.
В многожильном проводе вместе свиты множество одножильных проволочек, и чтобы определить сечение, сначала определяют сечение одной проволочки и умножают на количество. Можно приблизительно определить сечение многожильного провода в кабеле измерением общего диаметра всех свитых проволочек, с учетом, что между круглыми проволочками есть воздушные зазоры. Для исключения площади зазоров, полученный результат умножают на коэффициент 0,7854.
Стандартный ряд сечений жил провода, мм2
|
0,35
|
0,5
|
0,75
|
1,0
|
1,2
|
1,5
|
2,0
|
2,5
|
3,0
|
4,0
|
5,0
|
6,0
|
8,0
|
10,0
|
16,0
|
25,0
|
30,0
|
Диаметр, соответствующий сечению жилы, мм
|
0,67
|
0,80
|
0,98
|
1,1
|
1,2
|
1,4
|
1,6
|
1,8
|
2,0
|
2,3
|
2,5
|
2,7
|
3,2
|
3,6
|
4,5
|
5,6
|
6,2
|
Если есть провод меньшего чем необходимо сечения, то проводку можно сделать из двух и более проводов, соединяя их параллельно. Сумма сечений каждого из них должна быть не меньше расчетной.
Выбор сечения кабеля по силе тока
Рассчитать сечение медного кабеля по силе тока поможет следующая таблица:
Например, при закрытой проводке для подключения приборов с суммарной силой тока 17,5 А потребуется провод сечением не менее 2 мм2.
При расчете сечения провода по силе тока не имеет значение, переменный это ток или постоянный, а также величина и частота изменения напряжения в электропроводке.
Для более скрупулезных расчетов сечений жил кабелей, проводов по мощности и силе тока учитывают каждый фактор — способ прокладки электропроводки, длину, вид изоляции и др. Все эти показатели регламентируются Правилами устройства электроустановок (ПЭУ).
В целом электропроводка в квартире обязательно должна отвечать требованиям безопасности, надежности и экономичности. Электричество – это очень серьезно. И если вы не уверены в своем опыте и знаниях, лучшим решением будет обратиться к услугам специалистов.
Звоните! +7 (343) 219-22-56
ООО «Энергомодуль»
г. Екатеринбург, ул. Походная, 76, офис 23
Эл. почта: [email protected]
Сайт: www.energomodulekb.ru
Бытовой электроприбор
|
Потребляемая мощность в зависимости от модели электроприбора, кВт (BA)
|
Потребляемый ток, А
|
Примечание
|
---|---|---|---|
Лампа накаливания
|
0,06 – 0,25
|
0,3 – 1,2
|
|
Электрочайник
|
1,0 – 2,0
|
5 – 9
|
Время непрерывной работы до 5 минут
|
Электроплита
|
1,0 – 6,0
|
5 – 60
|
При мощности более 2 КВ требуется отдельная проводка
|
Микроволновая печь
|
1,5 – 2,2
|
7 – 10
|
Во время работы максимальный ток потребляется периодически
|
Электромясорубка
|
1,5 – 2,2
|
7 – 10
|
Во время работы в зависимости от нагрузки потребляемый ток изменяется
|
Тостер
|
0,5 – 1,5
|
2 – 7
|
|
Кофемолка
|
0,5 – 1,5
|
2 – 8
|
Во время работы в зависимости от нагрузки потребляемый ток изменяется
|
Кофеварка
|
0,5 – 1,5
|
2 – 8
|
|
Электродуховка
|
1,0 – 2,0
|
5 – 9
|
Во время работы максимальный ток потребляется периодически
|
Посудомоечная машина
|
1,0 – 2,0
|
5 – 9
|
Максимальный ток потребляется с момента включения до нагрева воды
|
Стиральная машина
|
1,2 – 2,0
|
6 – 9
|
Максимальный ток потребляется с момента включения до нагрева воды
|
Утюг
|
1,2 – 2,0
|
6 – 9
|
Во время работы максимальный ток потребляется периодически
|
Пылесос
|
0,8 – 2,0
|
4 – 9
|
Во время работы в зависимости от нагрузки потребляемый ток изменяется
|
Стационарный компьютер
|
0,3 – 0,8
|
1 – 3
|
Во время работы максимальный ток потребляется периодически
|
Электроинструмент (дрель, лобзик и т.п.)
|
0,5 – 2,5
|
2 – 13
|
Во время работы в зависимости от нагрузки потребляемый ток изменяется
|
Таблица автоматов по мощности и току. Выбор автомата по сечению кабеля таблица
Друзья приветствую всех на сайте «Электрик в доме». Мне на почту часто приходят письма с просьбой разъяснить правильно ли выбран автомат. Я понял, что для вас этот вопрос актуален, поэтому в данной статье будет таблица автоматов по мощности и току, по которой Вы с легкостью сможете выбрать автоматический выключатель под свою нагрузку и сечение кабеля.
Главной функцией автомата является защита электропроводки от перегрузки, которая приводит к разрушению изоляции электрического кабеля, короткому замыканию и пожару. Для того чтобы избежать проблем с электропроводкой в обязательном порядке устанавливают автоматические выключатели.
Конструктивно такой аппарат состоит из теплового и электромагнитного механизмов отключения (расцепителей).
Главной задачей электромонтажника является грамотный расчет характеристик автомата для его долговечной, стабильной работы и выполнения тех функций, которые на него возложены.
Ремонтные работы вследствие выхода из строя электропроводки – сложное и очень дорогое дело. Более того, от правильного выбора защитных устройств зависит жизнь и здоровье человека, поэтому важно подойти к этому вопросу очень ответственно.
В этой статье будет представлен правильный алгоритм выбора автоматических выключателей в зависимости от номинала и других характеристик.
Шкала номинальных токов автоматических выключателей
На корпусе автоматических выключателей производителем всегда указываются главные характеристики устройства, его модель, серийный номер и бренд.
Главной и самой важной характеристикой автомата является значение номинального тока. Она показывает максимально допустимый ток, который может долго проходить через автоматический выключатель без его нагрева и отключения. Значение тока измеряется и указывается в Амперах (А). Если номинальный ток, протекающий через устройство, будет превышен, то защитный автомат отключится и разомкнет цепь.
Модели автоматов имеют стандарт значений номинального тока и бывают 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А. Бывают и более мощные приборы, но в быту они не используются и предназначены только для специальных задач в промышленности.
Согласно нормативно-технической документации номинальный ток для любого автоматического выключателя указывается для работы прибора при температуре окружающей среды +30 градусов Цельсия.
Устанавливают автоматы в электрощитах на дин-рейку по несколько штук в зависимости от количества защищаемых линий. При одновременном расположении нескольких устройств вплотную друг к другу они «подогревают» друг друга, это приводит к уменьшению значения тока, который они могут пропустить без отключения. В связи с этим в каталогах и инструкциях к приборам защиты производители часто указывают поправочные коэффициенты для размещения групп выключателей.
Важность время-токовой характеристики
Некоторые электрические приборы имеют высокий пусковой ток при включении. Его значение бывает выше номинального тока автомата, но действует он краткое время. Для электрического кабеля такой ток не представляет опасности (если его величина в разумных пределах соотносится с типом кабеля), но автомат может срабатывать при пусковом токе, воспринимая это как перегрузку.
Для того чтобы не происходило постоянных отключений из-за запуска устройств с высокими пусковыми токами, автоматы имеют разделение на типы по время-токовой характеристике.
Конструктивно автоматический выключатель состоит из двух расцепителей: электромагнитного и теплового.
Электромагнитный расцепитель предназначен для отключения устройства при коротком замыкании. Для работы такого механизма отключения в автомате используется электромагнитная катушка и соленоид. При многократном превышении значения электрического тока появляется магнитное поле в катушке, та задействует соленоид и он отключает автомат.
Автоматические выключатели имеют характеристику по току короткого замыкания (предельный ток отключения), которая по номиналу бывает в 3, 4,5, 6 и 10кА. Для бытовых целей при устройстве защиты в квартире или доме чаще всего применяют автоматы с номиналом тока КЗ 6кА.
Тепловой расцепитель – это пластина, состоящая из двух различных металлов. При длительной нагрузке, превышающей номинальный ток, эта пластина нагревается, выгибается, воздействует на рычаг расцепителя и устройство отключается. Главная задача такого механизма – защищать линию от долговременных перегрузок выше номинального тока автомата.
Чтобы не думать о том, какую нагрузку включить в розетку, не рассчитывать постоянно суммарную мощность приборов и не думать о пусковых токах была придумана характеристика по времени-току.
Данная характеристика показывает время и ток, которые влияют на отключение аппарата. На автоматах она указывается буквой В, С или D.
Автоматические выключатели с одинаковыми номиналами и различной время–токовой характеристикой будут отключаться в разное время и с разным током превышения.
Такое разделение автоматов является очень удобным и позволяет уменьшить количество ложных отключений.
В соответствии с ГОСТ Р 50345-2010 существует три стандарта время-токовых характеристик:
- B – превышение в 3 — 5 раз от номинального тока, самые чувствительные автоматы имеют такую характеристику и применяются в сетях с приборами не имеющими больших пусковых токов.
- C – превышение в 5 — 10 раз от номинального тока, самая популярные автоматы с такой характеристикой, они используются в квартирах и частных домах.
- D – превышение в 10 — 20 раз от номинального тока, используется для защиты сетей с оборудованием имеющим высокие пусковые токи и кратковременные перегрузки.
Почему автомат С16 не отключится при токе 16 Ампер?
Теперь давайте попробуем понять, почему при сечении электрического кабеля 2,5 кв.мм, который выдерживает ток 25А (ПУЭ таблица 1.3.6) должен защищать автоматический выключатель на 16А, а не на 25А.
Все дело в тепловом расцепителе, который нагревается со временем при воздействии нагрузки и защищает от длительного превышения тока. Длительность этого времени может занимать и 10 минут и 1 час.
Автоматические выключатели имеют такую характеристику, как «ток неотключения», он рассчитан и составляет 1,13 от номинального тока (смотри ГОСТ Р 50345-2010 п.8.6.2). Эта характеристика означает, что автомат не отключится при этом значении тока в течение часа.
Например, автомат на 16А не отключится, при протекании через него тока в 18,08 А в течение часа, это заложено в работу теплового расцепителя устройства.
Еще одной характеристикой автоматов является «условный ток отключения» и он тоже стандартен для всех защитных автоматов и равен 1,45 от номинального тока. При токе, например, 36,25А автомат на 25А обязательно отключится в течение часа. Это правило действует только при условии, что изначально автоматы были холодными.
Поэтому нужно иметь в виду, что автоматические выключатели не отключаются при достижении значения тока их номинала. Они могут работать и дольше, поэтому всегда выбирают защитное устройство с номиналом ниже, чем пропускающая способность кабеля.
Номиналы автоматов по току таблица
Для того, чтобы защитить линию от перегрузки и короткого замыкания нужно тщательно и правильно выбрать номинал автомат по току. Вот, например, если вы защищаете линию с кабелем 2,5 кв.мм. автоматом на 25А и одновременно включили несколько мощных бытовых приборов, то ток может превысить номинал автомата, но при значении меньше 1,45 автомат может работать около часа.
Если тока будет 28 А, то изоляция кабеля начнет плавиться (так как допустимый ток только 25А), это приведет к выходу из строя, пожару и другим печальным последствиям.
Поэтому таблица автоматов по мощности и току выглядит следующим образом:
Сечение медных жил кабеля, кв.мм | Допустимый длительный ток, А | Номинальный ток автомата, А | Максимальная мощность (220 В) | Применение |
1,5 | 19 | 10 | 4,1 | Освещение |
2,5 | 25 | 16 | 5,5 | Розетки |
4 | 35 | 25 | 7,7 | Водонагреватели, духовки |
6 | 42 | 32 | 9,24 | Электроплиты |
10 | 55 | 40 | 12,1 | Вводы в квартиру |
ВАЖНО! Обязательно следуйте значениям таблицы и указаниям нормативной электротехнической документации!
Какой автомат выбрать для кабеля 2.5 мм2?
Для потребителей, суммарная мощность которых не будет превышать 3,5 кВт рекомендуем использовать медный кабель сечением 2,5кв.мм и защищать эти линии автоматом на 16А.
Для медного кабеля сечением 2,5 кв.мм согласно таблице 1.3.6 ПУЭ длительный допустимый ток 27А. Исходя из этого, можно подумать, что к такому кабелю подойдет автомат на 25А. Но это не так. Кстати кто не знает где искать публикую данную таблицу:
Согласно ПУЭ, п. 1.3.10 значение тока 25А разогреет кабель 2,5 кв.мм до 65 градусов Цельсия. Это достаточно высокая температура для постоянных режимов работы.
Еще важно понимать, что не все производители изготавливают кабель согласно ГОСТ и его сечение может быть ниже заявленного. Так что сечение может быть 2,0 кв.мм вместо 2,5 кв.мм. Качество меди у разных заводов тоже отличается и вы не сможете гарантировано точно сказать о том, какое качество кабеля имеете.
Поэтому очень важен запас в защите кабеля для избегания проблем в процессе эксплуатации электропроводки. Выбор автомата по сечению кабеля осуществляют следующим образом:
- кабель 1,5 кв.мм применяю при монтаже сигнализации и освещения, ему соответствует автомат 10А;
- кабель 2,5 кв.мм часто используется для отдельных розеток и розеточных групп, где суммарная мощность потребителей не будет превышать 3,5 кВт. Ему соответствует номиналы автоматов по току 16А;
- кабель 4 кв.мм используют в быту для подключения духовых шкафов, стиральных и посудомоечных машин, обогревателей и водонагревателей, к нему покупают автомат номиналом 25А;
- кабель 6 кв.мм нужен для подключения серьезных мощных потребителей: электрических плит, электрических котлов отопления. Номинал автомата 32А;
- кабель 10 кв.мм обычно максимальное сечение используемое в быту, предназначено для ввода питания в квартиры и частные дома к электрощитам. Автомат на 40А.
Для расчета электрической сети у себя дома смело и строго руководствуйтесь предоставленной выше таблицей и руководством. При правильном расчете силовых линий и защитных устройств всё будет работать долговечно и не принесет вам неудобств и проблем.
Выбор автомата по сечению кабеля таблица для 220 В и 380 Вольт
Многие путают и думают, что автоматические выключатели защищают электрические приборы. Это ошибка.
Автоматический выключатель всегда защищает только силовую линию — кабель! Автомат защищает не нагрузку, не розетку, а питающий кабель и только его. Это нужно запомнить! |
Задача автомата – уберечь кабель от повреждения, перегрева и последствий. Поэтому выбирать автомат нужно руководствуясь следующими советами:
1. Сначала вычисляем максимальную нагрузку на каждую линию (суммируем максимальную мощность потребителей), по закону Ома I=P/U вычисляем максимальный ток.
Например, имея на кухне чайник 1кВт, холодильник 0,5 кВт, мультиварку 0,8 кВт и микроволновую печь 1,2 кВт суммируем их максимальные мощности:
1+0,5+1,2+0,8 = 3,5 кВт;
вычисляем силу тока:
I=3500/220=15,9А
2. Исходя из мощности и тока, рассчитываем сечение кабеля или выбираем его из таблицы. Для дома обычно выбирают 1,5 – 10 кв.мм. в зависимости от нагрузки.
Для нашего примера выбираем кабель с жилами 2,5кв.мм.
3. Далее выбираем номинал автоматического выключателя, опять же по таблице в соответствии с выбранным сечение кабеля. Автомат должен отключаться раньше, чем перегреется кабель. В нашем случае это автомат номиналом 16А.
4. Подключаем все в правильной последовательности и пользуемся.
Если электрическую проводку вы будете использовать старую, то учитывайте состояние кабеля и его сечение и подбирайте автомат под него, но номиналом не более 16А! Лучшим решением при ремонте является полная замена всей проводки и защитных устройств.
Автоматические выключатели лучше всего выбирать известных производителей, тогда вы будете уверены в надежности и долговечности их работы.
Самыми распространенными и качественными импортными устройствами на данный момент считают: ABB, Legrand, Shneider Electric, hager.
Единственный их минус – высокая цена, но, конечно, она соответствует качеству продукции. Отечественные приборы фирм IEK и КЭАЗ уступают по качеству, но имеют доступную цену. Желательно покупать автоматические выключатели в электрический щиток одного производителя, чтобы система работала однородно и не было несоответствий в характеристиках защитных устройств.
Важно! Выбирайте электрические компоненты и защитные устройства в специализированных магазинах и проверяйте сертификаты на продукцию!
Монтаж и разводка электропроводки в доме – это сложный и ответственный процесс, в котором важны все тонкости и нюансы, и которые требуют правильного расчета всех составляющих. Именно поэтому если вы не уверены в том, что вам такая работу будет по плечу, то лучше наймите профессионального электрика.
На этом все друзья, надеюсь данная статья помогла вам с решением такой проблемы как выбрать автомат по сечению кабеля, если остались вопросы задавайте в их в комментариях.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
формула расчета, таблица нагрузки на медный кабель и видео
Электропроводка в современных квартирах предусматривает максимальный рабочий ток в сети до 25 Ампер. Под такой параметр рассчитаны и защитные автоматы, установленные в распределительном щите квартиры. Сечение провода на входе в помещение должно составлять не менее 4 мм2. При устройстве внутренней разводки допустимо применять кабели с сечением 2,5 мм2, которые рассчитаны на ток 16 Ампер.
Содержание
Открытьполное содержание
[ Скрыть]
Измерение диаметра провода
По стандарту диаметр провода должен соответствовать заявленным параметрам, которые описываются в маркировке. Но фактический размер может отличаться от заявленного на 10-15 процентов. Особенно это касается кабелей, которые изготовлены мелкими фирмами, однако проблемы могут быть и у крупных производителей. Перед покупкой электрического провода для передачи токов большого значения, рекомендуется промерять диаметр проводника. Для этого могут применяться различные способы, отличающиеся погрешностью. Перед выполнением измерения требуется очистить жилы кабеля от изоляции.
Замеры можно производить непосредственно в магазине, если продавец разрешит снять изоляцию с небольшого участка провода. В противном случае придется приобрести небольшой отрезок кабеля и произвести измерение на нем.
Микрометром
Максимальную точность можно получить с помощью микрометров, которые имеют механическую и электронную схему. На стержне инструмента имеется шкала с ценой деления 0,5 мм, а на круге барабана есть 50 рисок с ценой деления 0,01 мм. Характеристики одинаковы у всех моделей микрометров.
При работе с механическим прибором следует соблюдать последовательность действий:
- Вращением барабана устанавливают зазор между винтом и пяткой близкий к измеряемому размеру.
- Подвести винт трещоткой плотнее к поверхности измеряемой детали. Подводку выполняют вращением рукой без усилий до момента срабатывания трещотки.
- Высчитать поперечный диаметр детали по показаниям на шкалах, размещенных на стебле и барабане. Диаметр изделия равен сумме значения на стержне и барабане.
Измерение механическим микрометром
Работа с электронным микрометром не требует вращения узлов, он выводит значение диаметра на жидкокристаллический экран. Перед использованием прибора рекомендуется проверить настройки, поскольку электронные устройства производят замер в миллиметрах и дюймах.
Штангенциркулем
Прибор имеет уменьшенную по сравнению с микрометром точность, которой вполне хватает для измерения проводника. Штангенциркули оснащаются плоской шкалой (нониусом), круговым циферблатом или цифровой индикацией на жидкокристаллическом дисплее.
Чтобы измерять поперечный диаметр, необходимо:
- Зажать измеряемый проводник между губками штангенциркуля.
- Высчитать значение по шкале или посмотреть его на дисплее.
Пример вычисления размера на нониусе
Линейкой
Измерение линейкой дает грубый результат. Для выполнения замера рекомендуется применение инструментальных линеек, которые имеют большую точность. Использование деревянных и пластиковых школьных изделий даст весьма приблизительное значение диаметра.
Для замера линейкой необходимо:
- Очистить от изоляции кусок провода с длиной до 100 мм.
- Плотно намотать полученный отрезок на цилиндрический предмет. Витки должны быть полными, то есть начало и конец провода в намотке направлены в одну сторону.
- Измерить длину получившейся намотки и разделить на количество витков.
Измерение диаметра линейкой по числу витков
В приведенном выше примере имеется 11 витков провода, которые составляют в длину около 7,5 мм. Разделив длину на количество витков, можно определить приблизительное значение диаметра, которое в данном случае равно 0,68 мм.
На сайтах магазинов, продающих электрические провода, имеются онлайн-калькуляторы, которые позволяют выполнить расчет сечения по количеству витков и длине полученной спирали.
Определение сечения по диаметру
После определения диаметра провода можно приступить к вычислению площади сечения в квадратах (мм2). Для кабелей типа ВВГ, состоящих из трех одножильных проводников, применяются методы вычисления по формуле или по готовой таблице соответствия диаметров и площадей. Методики применимы и для продукции с другой маркировкой.
По формуле
Основным способом является вычисление по формуле вида — S=(п/4)*D2, где π=3,14, а D — измеренный диаметр. Например, чтобы рассчитать площадь при диаметре 1 мм, потребуется вычислить значение: S=(3.14/4)*1²=0,785 мм2.
В сети доступны онлайн-калькуляторы, которые позволяют производить расчет площадей окружности по диаметру. Перед покупкой кабеля рекомендуется заранее просчитать значения, свести в таблицу и пользоваться ей в магазине.
В видеоролике от пользователя Александр Кваша демонстрируется проверка сечения жил провода.
По таблице с часто встречаемыми диаметрами
Для упрощения расчета удобно воспользоваться готовой таблицей.
Порядок пользования числами из таблицы:
- Выбрать тип провода, который предполагается приобретать, например, ВВГ 3*4.
- Определить диаметр по таблице — сечению 4 мм2 соответствует диаметр 2,26 мм.
- Проверить реальное значение диаметра провода. В случае совпадения продукцию можно приобретать.
Ниже приведена таблица соотношения сечений основных типов медной проводки к диаметрам и току (при напряжении 220 В).
Диаметр жилы провода, мм | Сечение жилы, мм2 | Допустимый ток, А |
1,12 | 1 | 14 |
1,38 | 1,5 | 15 |
1,59 | 2,0 | 19 |
1,78 | 2,5 | 21 |
2,26 | 4,0 | 27 |
2,76 | 6,0 | 34 |
3,57 | 10,0 | 50 |
4,51 | 16,0 | 80 |
5,64 | 25,0 | 100 |
6,68 | 35,0 | 135 |
Дополнительным критерием соответствия сечения диаметру является вес провода. Способ определения диаметра по весу применяется при проверке тонкой проволоки для намотки трансформаторов. Толщина продукции начинается от 0,1 мм, и ее проблематично измерить при помощи микрометра.
Краткая таблица соответствия диаметров жилки по весу приведена ниже. Развернутые данные имеются в магазинах, специализирующихся на продаже электронных компонентов.
Диаметр, мм | Сечение, мм2 | Вес, гр/км |
0,1 | 0,0079 | 70 |
0,15 | 0,0177 | 158 |
0,2 | 0,0314 | 281 |
0,25 | 0,0491 | 438 |
0,3 | 0,0707 | 631 |
0,35 | 0,0962 | 859 |
0,4 | 0,1257 | 1,122 |
При расчете диаметра провода для предохранителей следует учитывать материал проводника. Краткая таблица соответствия диаметров кабеля из распространенных типов материала и силы тока приведена ниже.
Ток разрыва, А | Медь | Алюминий | Никелин | Железо | Олово | Свинец |
0,5 | 0,03 | 0,04 | 0,05 | 0,06 | 0,11 | 0,13 |
1 | 0,05 | 0,07 | 0,08 | 0,12 | 0,18 | 0,21 |
5 | 0,16 | 0,19 | 0,25 | 0,35 | 0,53 | 0,60 |
10 | 0,25 | 0,31 | 0,39 | 0,55 | 0,85 | 0,95 |
15 | 0,32 | 0,40 | 0,52 | 0,72 | 1,12 | 1,25 |
25 | 0,46 | 0,56 | 0,73 | 1,00 | 1,56 | 1,75 |
50 | 0,73 | 0,89 | 1,15 | 1,60 | 2,45 | 2,78 |
100 | 1,15 | 1,42 | 1,82 | 2,55 | 3,90 | 4,40 |
200 | 1,84 | 2,25 | 2,89 | 4,05 | 6,20 | 7,00 |
300 | 2,40 | 2,95 | 3,78 | 5,30 | 8,20 | 9,20 |
Для многожильного кабеля
Диаметр многожильного кабеля определяется размером сечения одного проводника, умноженным на их количество. Основной проблемой является измерение диаметра тонкого провода.
Примером является кабель, состоящий из 25 жил с диаметром 0,2 мм. По приведенной выше формуле сечение равно: S=(3.14/4)*0.2²=0,0314 мм2. При 25 жилах оно составит: S=0,0314*25=0.8 мм2. Затем по таблицам соответствия определяют — пригоден он для передачи тока требуемой силы или нет.
Еще одним способом приблизительного расчета силы тока является методика умножения диаметра многожильного кабеля на корректировочный показатель 0,91. Коэффициент предусматривает немонолитную структуру провода и воздушные зазоры между витками. Замер наружного диаметра ведется с небольшим усилием, поскольку поверхность легко деформируется и сечение становится овальным.
При расчете сегментной части кабеля применяются формулы или табличные значения. В таблице приведены стандартные величины ширины и высоты сегмента.
Площадь сечения, мм2 | 35 | 50 | 70 | 95 | 120 | 160 | 185 | 240 |
Высота/ширина для трехжильного монолитного кабеля, мм | 5,5/9,2 | 6,4/10,5 | 7,6/12,5 | 9/15 | 10,1/16,6 | 11,3/18,4 | 12,5/20,7 | 14,4/23,8 |
Высота/ширина для трехжильного кабеля из тонких жил, мм | 6/10 | 7/12 | 9/14 | 10/16 | 11/18 | 12/20 | 13,2/22 | 15,2/25 |
Высота/ширина для четырехжильного монолитного кабеля, мм | нет | 7/10 | 8,2/12 | 9,6/14,1 | 10,8/16 | 12/18 | 13,2/18 | нет |
Фотогалерея
- Сегментный кабель (крайний справа)
- Сегмент кабеля
Таблица потребляемой мощности электроприборов
Распространенным способом определения необходимого сечения провода является методика расчета по пиковой мощности. Для того чтобы узнать нагрузку, можно воспользоваться стандартной таблицей, в которой сведены параметры мощности и пикового значения потребляемого тока для бытовых приборов.
Тип устройства | Мощность, кВт | Пиковый ток, А | Режим потребления |
Стандартная лампа накаливания | 0,25 | 1,2 | Постоянный |
Чайник с электрическим нагревателем | 2,0 | 9,0 | Кратковременный до 5 минут |
Электрическая плита с 2-4 конфорками | 6,0 | 60,0 | Зависит от интенсивности эксплуатации |
СВЧ-печь | 2,2 | 10,0 | Периодический |
Мясорубка с электрическим приводом | Аналогично | Аналогично | Зависит от интенсивности эксплуатации |
Тостер | 1,5 | 7,0 | Постоянный |
Электрическая кофемолка | 1,5 | 8,0 | Зависит от интенсивности эксплуатации |
Гриль | 2,0 | 9,0 | Постоянный |
Кофеварка | 1,5 | 8,0 | Постоянный |
Отдельная электрическая духовка | 2,0 | 9,0 | Зависит от интенсивности эксплуатации |
Машина для мытья посуды | 2,0 | 9,0 | Периодический (на период работы нагревателя) |
Стиральная машина | 2,0 | 9,0 | Аналогично |
Сушильная машина | 3,0 | 13,0 | Постоянный |
Утюг | 2,0 | 9,0 | Периодический (на период работы спирали нагрева) |
Пылесос | Аналогично | Аналогично | Зависит от интенсивности эксплуатации |
Обогреватель масляный | 3,0 | 13,0 | Аналогично |
Фен | 1,5 | 8,0 | Аналогично |
Кондиционер воздуха | 3,0 | 13,0 | Аналогично |
Системный блок компьютера | 0,8 | 3,0 | Аналогично |
Инструменты с приводом от электрического двигателя | 2,5 | 13,0 | Аналогично |
Ток будут потреблять холодильник, электроприборы в дежурном состоянии (телевизоры, радиотелефоны), зарядные устройства. Суммарное значение потребления мощности устройствами считается в пределах 0,1 кВт.
При подключении всех имеющихся бытовых приборов ток может достигать 100-120 А. Такой вариант подсоединения маловероятен, поэтому при расчетах нагрузки учитывают распространенные комбинации подключения.
Например, в утреннее время могут использоваться:
- электрический чайник — 9,0 А;
- печь СВЧ — 10,0 А;
- тостер — 7 А;
- кофемолка или кофеварка — 8 А;
- прочая бытовая техника и освещение — 3 А.
Итоговое потребление приборов может достигать: 9+10+7+8+3=37 А. Также имеются калькуляторы, которые позволяют рассчитывать ток по потребляемой мощности и напряжению.
Выбор кабеля по таблицам максимального тока в сети
Для вычисления применяются два вида данных из приведенной выше таблицы:
- по суммарной мощности;
- по величине потребляемого приборами тока.
Существуют таблицы стандартных значений, позволяющие определить необходимый диаметр и сечение, которые затем проверяются на покупаемом проводе. Найденный показатель округляется в большую сторону до совпадения с реально существующим диаметром кабеля.
В жилых помещениях нельзя использовать провода с излишним сечением, поскольку они имеют большое сопротивление, которое приводит к падению напряжения.
Для медного кабеля
Для расчета медного проводника применяется таблица, составленная для напряжения 230 В.
Мощность, кВт | Ток, А | Площадь (при наружной проводке), мм2 | Диаметр (при наружной проводке), мм | Площадь (при скрытой проводке), мм2 | Диаметр (при скрытой проводке), мм |
0,1 | 0,43 | 0,09 | 0,33 | 0,11 | 0,37 |
0,5 | 2,17 | 0,43 | 0,74 | 0,54 | 0,83 |
1,0 | 4,35 | 0,87 | 1,05 | 1,09 | 1,18 |
2,0 | 8,70 | 1,74 | 1,49 | 2,17 | 1,66 |
3,0 | 13,04 | 2,61 | 1,82 | 3,26 | 2,04 |
4,0 | 17,39 | 3,48 | 2,10 | 4,35 | 2,35 |
5,0 | 21,74 | 4,35 | 2,35 | 5,43 | 2,63 |
8,0 | 34,78 | 6,96 | 3,16 | 9,78 | 3,53 |
10,0 | 43,48 | 8,7 | 3,33 | 10,87 | 3,72 |
Для алюминиевого кабеля
Для расчета провода из алюминия может использоваться приведенная ниже таблица (данные взяты для напряжения 230 В).
Мощность, кВт | Ток, А | Площадь (при наружной проводке), мм2 | Диаметр (при наружной проводке), мм | Площадь (при скрытой проводке), мм2 | Диаметр (при скрытой проводке), мм |
0,1 | 0,43 | 0,12 | 0,40 | 0,14 | 0,43 |
0,5 | 2,17 | 0,62 | 0,89 | 0,72 | 0,96 |
1,0 | 4,35 | 1,24 | 1,26 | 1,45 | 1,36 |
2,0 | 8,70 | 2,48 | 1,78 | 2,90 | 1,92 |
3,0 | 13,04 | 3,73 | 2,18 | 4,35 | 2,35 |
4,0 | 17,39 | 4,97 | 2,52 | 5,80 | 2,72 |
5,0 | 21,74 | 6,21 | 2,81 | 7,25 | 3,04 |
8,0 | 34,78 | 9,94 | 3,56 | 11,59 | 3,84 |
10,0 | 43,48 | 12,42 | 3,98 | 14,49 | 4,30 |
Выбор кабеля по таблицам ПУЭ и ГОСТ
При покупке провода рекомендуется посмотреть стандарт ГОСТ или условия ТУ, по которым изготовлено изделие. Требования ГОСТ выше аналогичных параметров технических условий, поэтому следует предпочитать продукцию, выполненную по стандарту.
Таблицы из правил устройства электроустановок (ПУЭ) представляют собой зависимость силы передаваемого по проводнику тока от сечения жилы и способа укладки в магистральной трубе. Допустимая сила тока уменьшается по мере увеличения отдельных жил или применения многожильного кабеля в изоляции. Явление связано с отдельным пунктом в ПУЭ, который оговаривает параметры максимально допустимого нагрева проводов. Под магистральной трубой понимается короб, в том числе пластиковый или при укладке проводки пучком на кабельном лотке.
Загрузка …
Параметры в таблицах указаны с учетом рабочей температуры жилы 65°С и только фазовых проводов (нулевые шины не учитываются). Если в трубе помещения уложен стандартный трехжильный кабель под подачу однофазного тока, то его параметры учитываются по столбцу данных для одного двухжильного провода. Ниже приведена информация для кабелей, изготовленных из разных материалов. Следует учитывать, что таблицы применяются для выбора проводов. В случае определения типа кабелей используются другие данные, которые также имеются в ПУЭ.
- Таблица из ПУЭ для подбора медной проводки
- Таблица из ПУЭ для подбора алюминиевой проводки
Вторым способом выбора кабеля являются таблицы стандарта ГОСТ 16442-80, которые существуют в двух вариантах — для медных и алюминиевых проводов. В данной информации выбор осуществляется в зависимости от типа прокладки и количества жил в кабелях.
- Таблица ГОСТ для медного провода
- Таблица ГОСТ для алюминиевого провода
Видео «Определение сечения провода»
Видеоролик, предоставленный каналом «Электричество, электротехника, энергетика», демонстрирует способы определения сечения провода.
Таблица сечений кабеля, предохранителей
Рекомендации по монтажу проводов питания (12В) изделий
1. Основные ограничения1.1. Максимально-допустимое падение напряжения на проводах на участке от блока питания до любого изделия — 1В.
1.2. Для подключения питания непосредственно к клеммам изделий рекомендуется использовать провод сечением не более 1,5 мм2.
2. Справочные данные
Сопротивление 100м медного провода (двойного):
а) для провода сечением 0,35мм2 — 10,3 Ом,
б) для провода сечением 9,0мм2 — 0,4 Ом.
В промежутке между этими значениями — обратно пропорционально сечению провода.
3. Минимально-допустимое сечение провода в зависимости от суммарного тока нагрузки и длины провода питания
Для случая монтажа линии питания проводом единого сечения последовательным обходом всех изделий существует следующее общее выражение:
Smin = 0,035 * (i1*L1+ i2*L2+… + ik*Lk), где
L1, L2, … Lk , — значения длины участка провода питания от блока питания до каждого из изделий, м;
i1, i2, ik -токи потребления изделий, включая токи нагрузок, которые питаются через клеммы изделия (замки, сирены, считыватели и т.д.), А;
Smin — минимально-допустимое сечение провода, мм2.
Если токи потребления изделий равны и составляют iср , то выражение упрощается и принимает следующий вид
Smin=0,035 * iср * (L1+ L2+… +Lk).
Ниже приведена таблица значений сечения провода для случая, когда вся нагрузка сосредоточена на конце провода питания.
При равномерном распределении изделий по длине провода питания его сечение может быть уменьшено по отношению к приведенным в таблице в 2 раза.
При неравномерном распределении изделий или при неодинаковых токах потребления для расчета сечения провода следует пользоваться вышеприведенными формулами.
Если для монтажа цепей питания требуется провод сечением больше, чем 1,5 мм2, то рекомендуется разделить нагрузки на группы таким образом, чтобы к каждой группе можно было подвести питание отдельным лучом проводом сечением не более 1,5 мм2.
Если монтаж цепей питания проведен проводом сечением больше, чем 1,5 мм2, то для непосредственного подключения цепи к плате изделий необходимо применять отводы из провода 0,75-1,5 мм2 длиной не более 2м.
************************************************
Подбор сечения силового кабеля.
Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под
давлением. Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени
через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в роцессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.
1 Ом = 1 Вольт /1 Ампер
Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
что с увеличением длины проводника сопротивление растет.
Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета
сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
35 Вт х 4 = 140 Вт. (средняя мощность)
Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
140 Вт х 2 ~ 280 Вт. (максимальная мощность)
Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
Ампер = Ватт/Вольт.
Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
280 Вт /13 В = 21.53 A
Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов.
******************************************************
СОВЕТ
Memory 12V+
В современных авто магнитолах применяется несколько проводов питания: для питания усилителя мощности, для включения подсветки при включении габаритов автомобиля, для питания памяти и т.д. провод, питающий усилитель мощности, имеет обычно толстое сечение и на нем установлен мощный предохранитель — это основное питание авто магнитолы.(обычно красный) провод меньшего сечения, часто имеющий предохранитель с малым током сгорания , необходим для питания памяти автомагнитолы . Обычно это аппаратура среднего и высокого класса, имеющие цифровую шкалу настройки и память, куда заносится информация о настройке радиоприемника на станции, что позволяет вести бес поисковый прием станций набрав только номер станции (кнопка). Еще один вариант , где применяется дополнительный провод это приемники с возможностью кодирования и чтобы не вносить код доступа при каждом включении применяется микросхема памяти, питающаяся от аккумулятора отдельным проводом.(может быть желтого цвета или красный, но малого сечения). Из этого следует: чтобы авто магнитола работала правильно надо тонкий провод питания подключать напрямую (без каких-либо коммутаций) это и есть провод «Memory 12V+ » к аккумулятору, а толстый провод можно подключать через коммутирующие элементы как замок зажигания или дополнительный выключатель.
источник АвтоАудиоЦентр — ФОРУМ ПО АВТОЗВУКУ :: Просмотр темы — Питание аудио системы
Сечение провода (кабеля) по диаметру: формула, таблица
По идее, диаметр проводников должен соответствовать заявленным параметрам. Например, если указано на маркировке, что кабель 3 x 2,5, значит сечение проводников должно быть именно 2,5 мм2. На деле получается, что отличаться реальный размер может на 20-30%, а иногда и больше. Чем это грозит? Перегревом или оплавлением изоляции со всеми вытекающими последствиями. Потому, перед покупкой, желательно узнать размер провода, чтобы определить его поперечное сечение. Как именно считать сечение провода по диаметру и будем выяснять дальше.
Содержание статьи
Как и чем измерить диаметр провода (проволоки)
Для измерения диаметра провода подойдет штангенциркуль или микрометр любого типа (механический или электронный). С электронными работать проще, но они есть не у всех. Измерять надо саму жилу без изоляции, потому предварительно ее отодвиньте или снимите небольшой кусок. Это можно делать, если продавец разрешит. Если нет — купите небольшой кусок для тестирования и проводите измерения на нем. На очищенном от изоляции проводнике замеряете диаметр, после чего можно определить реальное сечение провода по найденным размерам.
Измерения диаметра провода микрометром более точные, чем механическим штангенциркулем
Какой измерительный прибор в данном случае лучше? Если говорить о механических моделях, то микрометр. У него точность измерений выше. Если говорить об электронных вариантов, то для наших целей они оба дают вполне достоверные результаты.
Если нет ни штангенциркуля, ни микрометра, захватите с собой отвертку и линейку. Придется зачищать довольно приличный кусок проводника, так что без покупки тестового образца на этот раз вряд ли обойдетесь. Итак, снимаете изоляцию с куска провода 5-10 см. Наматываете проволоку на цилиндрическую часть отвертки. Витки укладываете вплотную один к другому, без зазора. Все витки должны быть полными, то есть «хвосты» провода должны торчать в одном направлении — вверх или вниз, например.
Определение диаметра провода при помощи линейки
Количество витков не важно — около 10. Можно больше или меньше, просто на 10 делить проще. Витки считаете, затем прикладываете полученную намотку к линейке, совместив начало первого витка с нулевой отметкой (как на фото). Измеряете длину участка, занятого проводом, потом его делите на количество витков. Получаете диаметр провода. Вот так все просто.
Например, посчитаем каков размер проволоки, изображенной на фото выше. Количество витков в данном случае — 11, занимают они 7,5 мм. Делим 7,5 на 11, получаем 0,68 мм. Это и будет диаметр данного провода. Далее можно искать сечение этого проводника.
Ищем сечение провода по диаметру: формула
Провода в кабеле имеют в поперечном сечении форму круга. Потому при расчетах пользуемся формулой площади круга. Ее можно найти используя радиус (половину измеренного диаметра) или диаметр (смотрите формулу).
Определяем сечение провода по диаметру: формула
Например, посчитаем площадь поперечного сечения проводника (проволоки) по размеру, рассчитанному ранее: 0,68 мм. Давайте сначала используем формулу с радиусом. Сначала находим радиус: делим диаметр на два. 0,68 мм / 2 = 0,34 мм. Далее эту цифру подставляем в формулу
S = π * R2 = 3,14 * 0,342 = 0,36 мм2
Считать надо так: сначала возводим в квадрат 0,34, потом умножаем полученное значение на 3,14. Получили сечение данного провода 0,36 квадратных миллиметров. Это очень тонкий провод, который в силовых сетях не используется.
Давайте посчитаем сечение кабеля по диаметру, используя вторую часть формулы. Должно получиться точно такое же значение. Разница может быть в тысячные доли из-за разного округления.
S = π/4 * D2 = 3.14/4 * 0,682 = 0,785 * 0,4624 = 0,36 мм2
В данном случае делим число 3,14 на четыре, потом возводим диаметр в квадрат, две полученные цифры перемножаем. Получаем аналогичное значение, как и должно быть. Теперь вы знаете, как узнать сечение кабеля по диаметру. Какая из этих формул вам удобнее, ту и используйте. Разницы нет.
Таблица соответствия диаметров проводов и их площадь сечения
Проводить расчеты в магазине или на рынке не всегда хочется или есть возможность. Чтобы не тратить время на расчеты или не ошибиться, можно воспользоваться таблицей соответствия диаметров и сечений проводов, в которой есть наиболее распространенные (нормативные) размеры. Ее можно переписать, распечатать и захватить с собой.
Диаметр проводника | Сечение проводника |
---|---|
0,8 мм | 0,5 мм2 |
0,98 мм | 0,75 мм2 |
1,13 мм | 1 мм2 |
1,38 мм | 1,5 мм2 |
1,6 мм | 2,0 мм2 |
1,78 мм | 2,5 мм2 |
2,26 мм | 4,0 мм2 |
2,76 мм | 6,0 мм2 |
3,57 мм | 10,0 мм2 |
4,51 мм | 16,0 мм2 |
5,64 мм | 25,0 мм2 |
Как работать с этой таблицей? Как правило, на кабелях есть маркировка или бирка, на которой указаны его параметры. Там указывается маркировка кабеля, количество жил и их сечение. Например, ВВНГ 2х4. Нас интересуют параметры жилы а это цифры, которые стоят после знака «х». В данном случае заявлено, что есть два проводника, имеющих поперечное сечение 4 мм2. Вот и будем проверять, соответствует ли эта информация действительности.
Как работать с таблицей
Чтобы проверить, проводите измерение диаметра любым из описанных методов, после сверяетесь с таблицей. В ней указано, что при таком сечении в четыре квадратных миллиметра, размер провода должен быть 2,26 мм. Если измерения у вас такие же или очень близкие (погрешность измерений существует, так как приборы неидеальные), все нормально, можно данный кабель покупать.
Заявленные размеры далеко не всегда соответствуют реальным
Но намного чаще фактический диаметр проводников значительно меньше заявленного. Тогда у вас два пути: искать провод другого производителя или взять большего сечения. За него, конечно, придется переплатить, но первый вариант потребует достаточно большого промежутка времени, да и не факт, что вам удастся найти соответствующий ГОСТу кабель.
Второй вариант потребует больше денег, так как цена существенно зависит от заявленного сечения. Хотя, не факт — хороший кабель, сделанный по всем нормам, может стоит еще дороже. Это и понятно — расходы меди, а, часто, и на изоляцию, при соблюдении технологии и стандартов — значительно больше. Потому производители и хитрят, уменьшая диаметр проводов — чтобы снизить цену. Но такая экономия может обернуться бедой. Так что обязательно проводите измерения перед покупкой. Даже и проверенных поставщиков.
И еще: осмотрите и пощупайте изоляцию. Она должна быть толстой, сплошной, иметь одинаковую толщину. Если кроме изменения диаметра еще и с изоляцией проблемы — ищите кабель другого производителя. Вообще, желательно найти продукцию, отвечающую требованиям ГОСТа, а не сделанную по ТУ. В этом случае есть надежда на то, что кабель или провод буде служить долго и без проблем. Сегодня это сделать непросто, но если вы разводите проводку в доме или подключаете электричество от столба, качество очень важно. Потому, стоит, наверное, поискать.
Как определить сечение многожильного провода
Иногда проводники используются многожильные — состоящие из множества одинаковых тонких проволочек. Как посчитать сечение провода по диаметру в этом случае? Да точно также. Проводите измерения/вычисления для одной проволоки, считаете их количество в пучке, потом умножаете на это число. Вот вы и узнаете площадь поперечного сечения многожильного провода.
Сечение многожильного провода считается аналогично
Выбор сечения кабеля и провода по мощности
Автор Alexey На чтение 7 мин. Просмотров 643 Опубликовано
Обновлено
Понимание всех параметров и процессов происходящих с электричеством, является залогом правильного выбора кабеля . Данная статья поэтапно объясняет взаимосвязи физических величин, влияющих на надёжную работу энергосети, её безопасную эксплуатацию.
Известно, что все металлы имеют свободные электроны, которые двигаются при наличии приложенного электрического напряжения, создавая электрический ток. Ударяясь об атомы, они теряют энергию, которая переходит в тепловую. Чем больше ток, — тем гуще поток частиц, и чем меньше поперечный разрез проводника, через который они проходят, тем им «тесней», — столкновения чаще, теряется полезная энергия, увеличивается выделение бесполезного, а зачастую опасного тепла.
Лавина тепла
Важно! При росте температуры, растёт удельное сопротивление, увеличивается выделение тепла, что приводит к лавинообразному процессу быстрого разогрева с катастрофическими последствиями.
Существуют сложные формулы, рассчитывающие тепловой баланс, использующие коэффициент плавления и термический коэффициент сопротивления проводника, для определения площади сечения токопроводящей жилы .
Но, в быту применяются уже готовые таблицы, в которых учтена возможность перегрева кабеля в скрытой проводке — в этом случае для одинаковых значений по току и мощности, сечение предписывается большим для кабеля в плохо вентилируемых и термоизолированных местах, чтобы нагрев не был больше допустимого.
Решение на практике
Осуществляется использованием специальных таблиц, стандартов ПУЭ, по которым происходит выбор сечения кабеля. Значение поперечного сечения проводника выбирают несколькими способами:
- Расчет сечения провода по мощности;
- Выбор провода по току;
- Если провод уже есть, но неизвестного сечения.
Выбор по мощности
На каждом электроприборе указывается его номинальная мощность. Суммируя мощности электроприборов, которые планируется подключать к проектируемой электросети одновременно — получить некоторое число, и по таблице подобрать соответствующее сечение медного или алюминиевого кабеля, выбирая подходящее значение мощности.
Прежде всего необходимо учитывать какая предполагается нагрузка на электропроводку, которую мы собираемся прокладывать. В случае когда на одном участке электросети будет находиться несколько электроприборов, то для подсчета предполагаемой нагрузки мы складываем все их мощности. После подсчета этого показателя мы анализируем способ, каким будем прокладывать электросети (открытый или закрытый), а также воздействие какого температурного режима будет оказываться на провода.
Также рассчитать правильную величину сечения кабеля очень важно по той причине, что ошибки в подсчетах приведут к потерям мощности в проводах. Если для бытовых приборов это не столь существенно, то в промышленных масштабах это может привести к достаточно серьезным растратам.
Итак , берем листок и ручку выписываем все электроприборы находящиеся у Вас в квартире и складываем их мощности :
P=P1+P2+P3+…Pn (Вт),
где P1- это мощность, например, чайника в 1,5 кВт, P2-мощность пылесоса в 1,6 кВт и т.д.
После того как все мощности сложили необходимо суммарную мощность умножить на коэффициент одновременности K=0.8 . Этот коэффициент показывает что в определенный период времени все электроприборы в квартире будут работать , но не продолжительное время , а короткий промежуток времени , это нужно обязательно учитывать , т.к. если вы будете выбирать сечение провода только по мощности вы выберете сечение провода больше , а это может оказаться существенно дороже .
Итак , у нас получается :
Pобщ.=P*K (Вт)
После подсчета общей мощности выбираем сечение провода (медный или алюминиевый) в таблице 1 :
Таблица 1 — Выбор сечения провода по мощности
Важно ! Если в будущем вы собираетесь увеличивать нагрузку , то необходимо заранее увеличить сечение провода это замечание применяется для всех способов определения сечения провода.
Выбор по току
В таблице 2 можно найти соответствия сечений к номинальному току. Подбор по этому параметру считается более точным. Необходимо посмотреть в паспорта и на бирки электроприборов, обычно указывается номинальная мощность, и далее проделать те же процедуры что и в выше описанном способе.
Далее по формуле мы определяем ток , который максимально действует в линии и на основании этого выбираем сечение провода (формула применима для однофазной сети 220 В):
где Pобщ. — общая мощность электроприборов (Вт).
Есть возможность измерить амперметром ток для каждого потребителя в отдельности своими руками и далее просто просуммировать ток .
Для этого тестер подключают в разрыв цепи — на практике можно взять кусок сетевого провода с вилкой, подключить одну жилу к клемме розетки, другую подать на измерительный прибор. Другой щуп амперметра подсоединить к свободной клемме розетки, и в неё поочерёдно включать имеющуюся бытовую технику, в разных режимах работы, сверяясь с параметрами, заявленными производителями.
Если у Вас трехфазная сеть , необходимо ток найти по этой формуле :
После того как просуммировали токи электроприборов, выбираем по таблице сечение проводника:
Таблица 2 Соотношение силы тока и сечения проводника
Еще один момент , если в вашей трехфазной сети присутствуют электрические двигатели , то ток этого двигателя определяется по формуле:
где — P это мощность двигателя , n- КПД двигателя (есть на бирке двигателя), COS f- коэффициент мощности (также смотрим на бирку) .
И последнее , в трехфазной сети суммируем рассчитанные токи двигателей и рассчитанные токи электроприборов и выбираем из таблицы 2 сечение проводника.
Нужно учитывать еще один момент — это прокладка кабеля. Она может быть открытого типа или закрытого , соответственно и токовые нагрузки будут различаться, поэтому при выборе сечения провода обратите на это внимание. В таблице 2 вы можете проанализировать этот момент
Провод уже есть
В обратной ситуации, когда имеется кабель, но не видно маркировки, необходимо узнать его номинальный ток и мощность, для этого измеряем диаметр провода штангенциркулем, или микрометром. Можно обойтись линейкой, если жила достаточно гибкая, намотать её на тонкий прут, измерить длину получившейся спирали, разделить на количество витков — результат будет соответствовать диаметру.
По формуле вычисляем площадь поперечного сечения проводника:
S=πD²/4 (мм²) ,
где π- 3,14 , D — диаметр проводника, можно взять штангенциркуль и померить диаметр (мм)
Методом подбора по сечению из таблицы 1 , можно узнать, для какой мощности сгодится имеющийся кабель.
Важно:
Выбирать сечение кабеля лучше с запасом.
Запрещается эксплуатация кабеля, смотанного в бухту(катушку), ввиду её индуктивного сопротивления.
Монтаж алюминиевого кабеля проводить с особой осторожностью — частое сгибание и разгибание продуцирует невидимые трещины, которые уменьшают сечение, в этом месте растёт сопротивление и происходит точечный перегрев.
Проверка по длине
Фактор длины проводника l также увеличивает сопротивление в сети . Им можно пренебречь на небольшом расстоянии, но по мере его увеличения, падение напряжения на нагрузке будет всё ощутимым, и оно может стать ниже номинального значения — 5 %.
Разберем подробнее , во избежание этого, рассчитывают площадь поперечного сечения всего кабеля, допуская некоторое его значение и используя его в формуле определения сопротивления:
R= ϱ*l/S,
где l — длина провода (м), ϱ — удельное сопротивление проводника (Ом*мм²/м) (см. в таблице 2 ), S — площадь поперечного сечения проводника, определяется из вышеописанного способа (мм²)
Таблица 3- удельное сопротивления металлов:
Далее , по закону Ома находим падение напряжения:
U=I²*R (В),
где I — это суммарная сила тока в вашей сети (А), R — рассчитанное сопротивление (Ом).
И последнее , определяем потери в сети . Рассчитанное падение напряжения делим на напряжение в сети и умножаем на 100 %.
Если полученное значение превышает 5% от напряжения сети — сечение кабеля необходимо увеличить по в таблице 1.
Код 310, 312 Карточки | Quizlet
Более трех токоведущих проводников. Если количество токонесущих проводов в кабельной канавке или кабеле превышает три, или если одинарные или многожильные кабели устанавливаются без соблюдения зазора на непрерывную длину более 600 мм (24 дюйма) и не устанавливаются в кабельных каналах, допустимая допустимая допустимая токовая нагрузка составляет каждый проводник должен быть уменьшен, как показано в Таблице 310.15 (B) (3) (a). Каждый токопроводящий проводник из параллельного набора проводов должен считаться токонесущим проводником.
Если проводники разных систем, как предусмотрено в 300.3, установлены в общей кабельной канавке или кабеле, поправочные коэффициенты, указанные в таблице 310.15 (B) (3) (a), должны применяться только к количеству силовых и осветительных проводов (изделия 210, 215, 220 и 230).
(1) Если проводники установлены в кабельных лотках, положения 392.80 должны соответствовать
(2) Коэффициенты корректировки не применяются к проводникам в кабельных каналах, длина которых не превышает 600 мм (24 дюйма)
(3) Коэффициенты корректировки должны не применяется к подземным проводам, входящим в траншею или выходящим из нее, если эти проводники имеют физическую защиту в виде жесткого металлического канала, промежуточного металлического канала, жесткого канала из поливинилхлорида (ПВХ) или трубопровода из армированной термореактивной смолы (RTRC), длина которого не превышает 3.05 м (10 футов), и если количество проводов не превышает четырех.
(4) Коэффициенты корректировки не должны применяться к кабелю типа AC или к кабелю типа MC при следующих условиях:
a. Кабели не имеют общей внешней оболочки.
г. Каждый кабель имеет не более трех токоведущих жил.
г. Проводники выполнены из меди 12 AWG
d. Не более 20 токоведущих проводов устанавливают без выдержки, укладывают в стопку или кладут на «уздечные кольца».
Исключение к (4): Если кабели, соответствующие требованиям 310.15 (B) (3) (4) (от a до c с более чем 20 токоведущими контактами, укладываются на длину более 600 мм (24 дюйма) без соблюдения зазора, они укладываются друг на друга), или поддерживаются на стяжных кольцах, должен применяться 60-процентный поправочный коэффициент.
(b) расстояние между дорожками качения. Расстояние между дорожками качения должно быть сохранено.
(c) Дорожки качения и кабели, подверженные воздействию солнечного света на крышах. Под воздействием прямых солнечных лучей на крышах или над ними, кабельные каналы или кабели должны быть установлены на минимальном расстоянии от крыши до низа кабельного канала или кабельного канала 23 мм (7/8 дюйма).Если расстояние от крыши до низа кабельного канала составляет менее 23 мм (7/8 дюйма), к температуре наружного воздуха следует добавить температурный сумматор 33 ° C (60 ° F), чтобы определить применимую температуру окружающей среды для применения поправочных коэффициентов. в таблице 310.15 (B) (2) (a) или в таблице 310.15 (B) (2) (b)
Electric Current — The Physics Hypertextbook
Discussion
определений
текущий
Электрический ток определяется как скорость, с которой заряд проходит через поверхность (например, поперечное сечение провода).Несмотря на то, что оно относится ко многим различным вещам, слово ток часто используется само по себе вместо более длинного, более формального «электрического тока». Прилагательное «электрический» подразумевается контекстом описываемой ситуации. Фраза «ток через тостер», несомненно, относится к потоку электронов через нагревательный элемент, а не к потоку ломтиков хлеба через прорези.
Как и все величины, определяемые как скорость, есть два способа записать определение электрического тока — средний ток для тех, кто заявляет о незнании вычислений…
и мгновенный ток для тех, кто не боится вычислений…
Я = | ∆ q | = | ДК | |
∆ т | дт |
Единица измерения тока — ампер [А], названная в честь французского ученого Андре-Мари Ампера (1775–1836).В письменных языках без диакритических букв (а именно в английском) принято писать единицу измерения как ампер , а при неформальном общении сокращать это слово до amp . У меня нет проблем с любым из этих вариантов написания. Только не используйте заглавную букву «А» в начале. Ампер относится к физику, а ампер (или ампер, или ампер) относится к единице.
Поскольку заряд измеряется в кулонах, а время измеряется в секундах, ампер равняется кулону в секунду.
⎡ ⎢ ⎣ | А = | С | ⎤ ⎥ ⎦ |
с |
Элементарный заряд определен как ровно…
е = 1,602176634 × 10 −19 С
Число элементарных зарядов в кулонах будет обратной величине этого числа — повторяющейся десятичной дроби с периодом в 778 716 цифр. Я напишу первые 19 цифр, это максимум, что я могу написать (поскольку произвольных долей элементарного заряда не существует).
C ≈ 6,241,509,074,460,762,607 e
А потом напишу еще раз с более разумным количеством цифр, чтобы было легче читать.
C ≈ 6,2415 × 10 18 e
Ток в один ампер — это передача приблизительно 6,2415 × 10 18 элементарных зарядов в секунду. Для любителей случайностей это примерно десять микромолей.
плотность тока
Когда я визуализирую ток, я вижу, как все движется.Я вижу, как они движутся в каком-то направлении. Я вижу вектор. Я вижу не то. Ток не является векторной величиной, несмотря на мою хорошо развитую научную интуицию. Ток — это скаляр. И причина в том … потому что это так.
Но подождите, становится еще страннее. Отношение силы тока к площади для данной поверхности называется плотностью тока.
Единица измерения плотности тока — ампер на квадратный метр , не имеющая специального названия.
⎡ ⎢ ⎣ | А | = | А | ⎤ ⎥ ⎦ |
м 2 | м 2 |
Несмотря на отношение двух скалярных величин, плотность тока является вектором.И причина в том, что это так.
Ну… на самом деле, это потому, что плотность тока определяется как произведение плотности заряда и скорости для любого места в космосе…
Дж = ρ v
Два уравнения эквивалентны по величине, как показано ниже.
Дж = | ρ | в | ||||||||
Дж = | q | DS | = | с | ДК | = | 1 | Я | ||
В | дт | SA | дт | А | ||||||
Дж = | Я | |||||||||
А |
Есть еще кое-что, что нужно учесть.
I = JA = ρ v A
Читатели, знакомые с механикой жидкостей, могли бы узнать правую часть этого уравнения, если бы оно было написано немного иначе.
I = ρ Av
Это произведение является величиной, которая остается постоянной в уравнении неразрывности массы .
ρ 1 A 1 v 1 = ρ 2 A 2 v 2
Точно такое же выражение применяется к электрическому току с символом ρ, меняющим значение между контекстами.В механике жидкости ρ обозначает массовую плотность, а в электрическом токе — плотность заряда.
Описание микроскопа
Ток — это поток заряженных частиц. Это дискретные сущности, а значит, их можно сосчитать.
n = N / V
∆ q = нкВ
V = Ad = Av ∆ т
Я = | ∆ q | = | nqAv ∆ т |
∆ т | ∆ т |
I = nqAv
Аналогичное выражение можно записать для плотности тока.Вывод начинается в скалярной форме, но в окончательном выражении используются векторы.
Дж = нк v
твердых частиц
Сравнение проводимости и валентных электронов, проводников и изоляторов
Дрейфовое движение, наложенное на тепловое движение
Мостовой текст.
Тепловая скорость электронов в проводе довольно высока и случайным образом изменяется из-за столкновений атомов.Поскольку изменения хаотичны, средняя скорость равна нулю.
Когда провод помещается в электрическое поле, свободные электроны равномерно ускоряются в промежутках между столкновениями. Эти периоды ускорения поднимают среднюю скорость выше нуля. (Эффект на этой диаграмме сильно преувеличен.)
тепловая скорость электрона в меди при комнатной температуре (классическое приближение)…
| ||||
|
Ферми скорость электрона в меди (квантовая величина)…
| ||||
| ||||
|
Скорость дрейфа электрона на 10 м медного провода, подключенного к автомобильному аккумулятору 12 В при комнатной температуре (среднее время свободного пробега между столкновениями при комнатной температуре τ = 3 × 10 −14 с)…
| |||||||||||||||||||
| |||||||||||||||||||
|
Тепловая скорость на несколько порядков превышает скорость дрейфа в типичной проволоке. Время на прохождение круга — около часа.
жидкости
ионы, электролиты
газы
ионов, плазма
- 14:02 — Линии электропередачи разъединяются на юго-западе Огайо
4. Стюарт — Атланта 345 кВ
Эта линия является частью пути передачи из юго-западного Огайо в северный Огайо. Он отключился от системы из-за возгорания кисти под частью линии. Горячие газы от пожара могут ионизировать воздух над линией электропередачи, заставляя воздух проводить электричество и закорачивать проводники.
Источник
исторический
Символ I был выбран французским физиком и математиком Андре-Мари Ампером для обозначения силы силы тока.
Увеличить Pour exprimer en nombre l’intensité d’un courant quelconque, on Concevra qu’on ait choisi un autre courant арбитраж для сравнения терминов…. Désignant donc par i et i ‘ rapports destensités de deux courant donnés à l’intensité du courant pris pour unite… Чтобы выразить силу тока в виде числа, предположим, что для сравнения выбран другой произвольный ток…. Используем i и i ′ для отношения интенсивностей двух заданных токов к интенсивности опорного тока, взятого за единицу…. Андре-Мари Ампер, 1826 Андре-Мари Ампер, 1826 г. (платная ссылка)
Термин «интенсивность» теперь не имеет никакого отношения к физике. Ток — это скорость, с которой заряд протекает через поверхность любого размера — например, клеммы батареи или штыри электрической вилки. Интенсивность — это средняя мощность на единицу площади, передаваемая каким-либо явлением излучения — например, звуком оживленного шоссе, светом Солнца или частицами брызг, испускаемыми радиоактивным источником.Ток и интенсивность теперь — разные величины с разными единицами измерения и разным использованием, поэтому (конечно) они используют одинаковые символы.
текущий | интенсивность | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
Начало таблицы
- 12000 А ток через магниты LHC в CERN
Типы шнуров питания, номиналы, обозначения NEMA и IEC и многое другое
Этот месяц посвящен тонкостям питания / удлинителей.Этот
информация может быть немного технической, так что будьте терпеливы. Эта статья будет
состоит из краткого введения в концепции, за которым следует то, что
по сути быть глоссарием терминов.
Здесь мы обсудим 2 основные группы обозначений разъемов:
NEMA и IEC.
NEMA
Учреждена Национальной ассоциацией производителей электрооборудования (N.E.M.A.),
NEMA описывает различные разъемы, используемые на шнурах питания по всему Северу.
Америка и некоторые другие страны.Устройства NEMA имеют диапазон силы тока от 15 до 60,
и в напряжениях от 125-600. Разные, не взаимозаменяемые типы штекеров:
созданы на основе определенных значений силы тока / напряжения, и каждому из них присвоен сертификат NEMA.
обозначение. Таким образом, то, что требует 125 вольт, не может быть
по ошибке вставлен в розетку 220 В.
Существует две основных классификации устройств NEMA. Один называется
прямой клинок, другой — запорный. Прямые лезвия — наиболее распространенный тип
в обычной бытовой электронике, а запорные устройства предназначены для
больше промышленных применений, где вилка случайно выпадает из розетки.
большее беспокойство.У запорного типа будут изогнутые лезвия, которые позволяют заглушке
быть скрученным и заблокированным в гнезде. Буква «L» перед
Код NEMA указывает на фиксирующий разъем.
Итак, давайте обсудим эти коды NEMA. Наиболее распространенные разъемы NEMA:
обозначения 5-15 и 5-20. Первая цифра указывает на штекер
конфигурация. Сюда входит количество полюсов и проводов, а также напряжение. А
устройство заземляющего типа будет называться двухполюсным, трехпроводным или четырехполюсным,
пятипроводной и т. д.Незаземляющее устройство будет двухполюсным, двухпроводным или
трехполюсный, трехпроводной и т. д. Вторая цифра в коде указывает на усилитель
рейтинг устройства, за которым следует буква «R» для розетки, или
буква «P» для пробки.
Например: 5-15R — это розетка 125 В, 2-полюсная, 3-проводная, рассчитанная на 15 А и
это самая распространенная розетка в домах в США.
Обозначения NEMA
В NEMA есть несколько групп обозначений. Мы рассмотрим только самые
общий.
NEMA 1
Устройства NEMA 1 — это 2-проводные устройства без заземления, рассчитанные на 120 вольт. В
стандартная двухконтактная вилка, которую можно найти в базовой лампе или
незаземленный шнур питания ноутбука
оба NEMA 1-15P.
NEMA 1-15P
NEMA 5
Устройства NEMA 5 представляют собой 3-проводные заземляющие устройства, рассчитанные на 125 вольт. Иногда
вилка Эдисона, вилка 5-15P является наиболее распространенным типом вилки, используемой в
U.S. NEMA 5-15P — это заземленная версия 1-15P. Эти
стандартные вилки, которые есть в большинстве электронных устройств (компьютеры, сетевые фильтры,
приемники и т. д.), а также на
стандартные удлинители
.
NEMA 5-15P
NEMA 5-15R
NEMA 14
Устройства NEMA 14 представляют собой 4-проводные заземляющие устройства. 14-30 и 14-50 — общие
неблокирующие устройства, используемые в электрических сушилках для одежды или электрических плитах,
соответственно.Учитывая оба напряжения 120/240 вольт, самая большая разница
между 14-30 и 14-50 (помимо силы тока) — это то, что 14-30 имеет
Верхнее лезвие L-образной формы, а у 14-50 прямая середина.
лезвие. Это запрещает случайное использование 14-30 на розетке 14-50.
Устройства NEMA 14-50 часто можно найти в автостоянках для питания больших
прогулочные автомобили.
NEMA TT-30
Еще чаще в стоянках для автофургонов используется NEMA TT-30. Рассчитанные на 125 вольт, почти все дома на колесах используют это заземляющее устройство на 30 ампер для питания.
IEC
IEC — это обозначение разъемов, используемых в некоторых устройствах и компьютерах / ноутбуках. В этих обозначениях, учрежденных Международной электротехнической комиссией (МЭК), в кодах используется буква «С», за которой следует цифра. Опять же, мы не будем останавливаться на одном типе разъема.
Разъемы C13 и C14
Разъемы C14 используются в большинстве
шнуры питания настольного компьютера
.
Знакомая розетка на задней панели принтеров, компьютеров, ИБП
или компьютерные мониторы — это разъем C14.Конец, который вставляется в эти
розетки — разъем C13.
C13 Разъем
Разъем C14
Разъемы C15 и C16
Трехконтактные розетки C16 можно найти на некоторых горячих приборах, например, на электрических
чайники и соответствующая вилка для этих розеток — C15. Эти
аналогичны разъемам C13 / C14, но рассчитаны на более высокую температуру,
именно поэтому они используются на «горячих» приборах.
Разъемы C17 и C18
Эти разъемы похожи на C13 / C14, за исключением того, что у них нет
третий контакт используется для заземления. Xbox 360 использует этот тип разъема для
это силовой блок.
Разъемы C19 и C20
Они используются в некоторых серверных, где требуются более высокие токи. Эти
разъемы представляют собой квадратные версии разъемов C13 / C14.
Разъем C7
Это разъем в форме восьмерки на незаземленном источнике питания ноутбука.
расходные материалы, некоторые игровые приставки и т. д.
Разъем C7
Разъем C5
Это вилка, похожая на лист клевера, найденная на заземленном ноутбуке.
запасы. C6 — соответствующая розетка.
Разъем C5
Типы кожухов и калибры проводов
В силовых кабелях используется множество различных кожухов. Чтобы отличить
различных типов и характеристик куртки, для
опишите куртку.Каждая буква имеет особое значение, как определено в UL.
стандарт № 62 (UL62) и проштампован прямо на куртке. Буквы могут
опишите материал, используемый в куртке, номинальное напряжение,
устойчивость куртки к погодным условиям или другим факторам. Ниже краткое
глоссарий некоторых различных кодов, которые вы найдете:
- S — Уровень обслуживания. Это означает, что шнур рассчитан на 600 вольт.
- SJ — Младший сервис. Это означает номинальное напряжение 300 вольт.
- T — Термопласт. Проволока покрыта ПВХ.
- P — Параллельно. Это типы шнуров, в которых каждый проводник изолирован отдельно, как в обычном шнуре лампы.
- O — Маслостойкий. Одна буква «О» означает, что куртка маслостойкая. Две буквы «О» означают, что куртка и изоляция внутри шнура маслостойкие.
- W — атмосферостойкий. По сути, эти шнуры предназначены для использования вне помещений.Они включают устойчивость к влажным условиям, а также защиту от ультрафиолета.
- V — вакуумного типа. Изначально гибкая куртка использовалась для пылесосов, но теперь ее можно найти на самых разных товарах.
Оболочка | Разрешенный калибр проводов | Разрешенное количество проводников |
SPT-1 | 20-18 | 2 или 3 |
SPT-2 18 -14 | 2 или 3 | |
SPT-3 | 18-10 | 2 или 3 |
NISPT-1 | 18-16 | 2 или 3 |
NISPT-2 | 18-16 | 2 или 3 |
SVT | 18-16 | 2 или 3 |
SJT | 18-10 | 2-6 |
ST | 18-2 | 2 или более |
Например, на шнуре может быть SJTW на куртке.Это означало бы
Шнур для младших классов обслуживания, рассчитанный на 300 В, с оболочкой из ПВХ,
устойчив к атмосферным воздействиям. Значения -1, -2 и -3, указанные выше, указывают толщину.
куртки. -1 — тонкий, -2 — средний и -3 — толстый.
А и калибр проводов
Существует прямая зависимость между длиной кабеля, силой тока и калибром проводов.
Следующий список представляет собой базовую разбивку соотношения силы тока и силы тока.
калибр проволоки. Это только основные рекомендации, так как длина шнура
увеличится либо ток уменьшится, либо калибр провода должен быть
выросла.
Эти разные оболочки подходят для проводов разного калибра и количества
провода (жилы) внутри шнура питания. Ниже представлена диаграмма различных курток.
типы, какие калибры проводов разрешены для использования внутри, и сколько проводов
разрешается:
Сила тока | Рекомендуемый калибр проводов |
7a | 20 AWG |
10a | 18 AWG |
13 AWG | 16 AWG |
20a | 12 AWG |
Цветовое кодирование проводов
Из соображений безопасности и удобства стандарты цветовой кодировки проводов были
разработан для оболочек отдельных проводов внутри шнуров питания.Ниже приведен список стандартов цветовой кодировки США и Европы. Пожалуйста, обрати внимание
что они применимы к большинству шнуров питания в США и Европе.
Цветовая кодировка может отличаться в зависимости от приложения.
Провод | Цвет США | Цвет провода ЕС | |
Провод под напряжением | Черный | Коричневый | |
Отрицательный провод | Белый | Синий | |
зеленый | желтый / зеленый |
Страница лаборатории: Пропускная способность проводов по току, декабрь 1940 г. январь 1941 г. Новости национального радио
декабрь ’40 / январь ’41 Новости национального радио [Таблица |
Как упоминалось в более ранней статье, Национальный институт радио (NRI)
была одной из первых компаний, использовавших растущую область
электроника в начале прошлого века. Они вложили
много средств и ресурсов для производства учебных материалов
как для очных, так и для заочных курсов.До поры до времени
в начале 1990-х, когда одноразовая электроника и почти полная
оффшорное производство стало скорее правилом, чем исключением,
в журналах всегда были большие объявления, предлагающие
спасти запутавшихся соискателей карьеры обещаниями неисчислимых возможностей
и богатства от обслуживания радиоприемников, телевизоров, бытовой техники,
и больше. Нельзя сказать, что курсы не были ценными.
— они были. Регулярные информационные бюллетени и другие публикации рассылались по почте.
участникам, обычно содержащие полезные советы по устранению неполадок,
теория схем, выбор компонентов, как обращаться с клиентами, которые
постарайтесь не платить вам и т. д.Это конкретное издание National
Radio New обсуждает текущие возможности разного размера
провода — тема, которая никогда не выходит из моды.
Лабораторная страница: Токоведущая способность проводов
Джордж Дж. Рорич
Джордж Дж. Рорич, ответственный инженер Лаборатория Н. Р. И. |
Целью этого отдела является предоставление дополнительных экспериментов.
студентам, которые закончили курс домашней лаборатории, но
желающие получить дополнительный лабораторный опыт.Ты не обязателен
для проведения этих экспериментов, но вы получите больше знаний
поступая таким образом.
Большая часть необходимого материала будет получена как часть
лабораторный курс. Любой другой необходимый материал можно приобрести.
очень разумно и будет представлять собой вложение, а не
расходы, так как они будут служить заменой в сервисных работах или будут
пригодится в вашем магазине позже.
Токонесущая способность резисторов
Резистор может быть сконструирован с заданным значением сопротивления.
за счет использования проволоки разного диаметра.Например, мы можем построить
сопротивление 500 Ом очень тонкого провода, и это будет необходимо
использовать всего несколько футов такого провода, чтобы получить сопротивление 500 Ом.
Этот конкретный провод может пропускать только определенное количество тока.
без чрезмерного нагрева.
Если мы обнаружим, что резистор 500 Ом становится слишком горячим,
тогда необходимо будет получить другой резистор, который построен
проволоки большего размера.Чтобы поддерживать такое же значение сопротивления,
необходимо будет использовать большую длину большего размера
провод. Такое же количество тепла будет производиться в большей проволоке.
но его большая поверхность будет быстро излучать тепло, сохраняя его прохладным.
Если мы обнаружим, что резистор должен пропускать значительный ток,
тогда может понадобиться использовать очень большой провод.
Из приведенного выше объяснения мы видим, что резистор должен быть сконструирован.
чтобы нести заданное количество тока.Конечно. резистор
который способен переносить большой ток, также может безопасно переносить
меньший ток .. Обычная практика — построить резистор
который может безопасно обрабатывать максимальный ток, который будет течь
через него в любое время. Нет никакой экономии в строительстве большего
сопротивление, когда подойдет меньший, если не самый маленький допустимый
размер механически хрупок и сложен в обращении.
Вместо того, чтобы оценивать резистор по его допустимой токовой нагрузке,
резистор принято оценивать как «способный рассеивать
заданное количество тепла.»Этот рейтинг указывается в ваттах.
в ваттах получается путем умножения значения самого тока,
и, наконец, умножение этого результата на значение сопротивления.
Это выражается в формуле; Ватт = I 2 Р.
Например, предположим, что сопротивление 500 Ом несет
2 ампера. Умножая 2 ампера на себя, получаем 4. Умножая
4 на 500 Ом получаем 2000 Вт. Это рейтинг резистора
и мы говорим, что он способен выдерживать 2 ампера.
Рейтинг в ваттах можно получить вторым методом. Этот
требует умножить напряжение на резисторе на
Текущий. Это выражается формулой: Ватт = E x I.
Предусмотрено сопротивление 500 Ом с меньшим номиналом в ваттах.
чтобы нести меньший ток. Эта допустимая нагрузка по току может быть
полученное делением значения в ваттах на значение сопротивления,
а затем извлечение квадратного корня из результата.Таким образом, 1/2 Вт,
Резистор на 500 Ом предназначен для пропускания токов, не превышающих
чем 0,031 ампера или всего 31 миллиампер.
Ты
заметит, что соотношение между ваттами, напряжением и током
выражается уравнением, аналогичным уравнению
Закон Ома, который показывает связь между напряжением, током и
сопротивление. Запомните эти два уравнения:
Напряжение = ток x сопротивление.
Мощность = напряжение x ток.
Запомните эти четыре числа:
2, 3, 6 и 12 и свяжите 2 с током, 3 с сопротивлением,
6 с напряжением и 12 с мощностью.
Мы знаем, что 6 = 2 x 3.
Следовательно, напряжение = ток x сопротивление.
Мы также знаем, что 2 = 6 ÷ 3.
Следовательно, ток = напряжение ÷ сопротивление.
Мы знаем, что 3 = 6 ÷ 2.
Следовательно, сопротивление = напряжение ÷ ток.
Мы знаем, что 12 = 6 x 2.
Следовательно, мощность = напряжение x ток.
Мы знаем, что 12 = 2 x 2 x 3.
Следовательно, мощность = ток x ток x сопротивление. Это представляет
уравнение W = I 2 R.
Мы знаем, что 12 = (6 x 6) ÷ 3. Таким образом, мощность = напряжение x
напряжение, деленное на сопротивление.Это представляет собой уравнение
W = E 2 + R.
Мы знаем, что 3 = (6 x 6) ÷ 12. Таким образом, сопротивление = напряжение.
x напряжение, деленное на мощность. Это представляет собой уравнение R =
E 2 ÷ W.
Мы знаем, что 2 = √ (12 ÷ 3). Таким образом, ток =
квадратный корень из результата, полученного при делении мощности
сопротивлением. Это представлено уравнением: I = √
(W ÷ R).
Мы знаем, что 6 = √ (12 x 3).Следовательно, напряжение равно
квадратный корень из результата, который получается, когда мощность
умноженное на сопротивление. Это представляет собой уравнение E = √
(Ш x П).
Мы знаем, что 3 = 12 ÷ (2 x 2). Следовательно, сопротивление равно
мощность, деленная на квадрат тока. Это представлено
по уравнению: W ÷ I 2 .
Мы знаем, что 6 = 12 ÷ 2. Следовательно, напряжение = мощность ÷
Текущий. Уравнение символа представлено E = W ÷ I.
Мы знаем, что 2 = 12 ÷ 6. Следовательно, ток = мощность ÷
Напряжение. Уравнение символа: I = W ÷ E.
С помощью этих двенадцати уравнений вы можете найти ценность любого из
четыре величины, если вам известны значения двух других величин.
Вы видите, насколько легко вам будет отработать любой из
двенадцать, если вы только вспомните два уравнения, к которым я призвал
вашему вниманию выше.
Допустимая нагрузка по току провода, используемого в цепи или
Электроинструмент зависит от размера провода. это
принято допускать 1000 круговых мельниц с площадью поперечного сечения для
каждый ампер, в котором медный провод подвергается хорошей вентиляции. Где
провод используется так, чтобы воздух не мог беспрепятственно достигать его для переноски
вырабатываемого тепла обычно позволяют 1500 круговых мельниц
на каждый ампер.
Площадь поперечного сечения различных проводов указана в прилагаемой
Таблица.
Например, провод № 30 имеет площадь поперечного сечения приблизительно
100 круговых фрез. Этот провод используется для передачи 0,1 ампер, где
провод открыт, и он используется для переноса максимум 0,066 ампер
где проволока приурочена к закрытым местам. Провод № 30 будет гореть
гаснет, когда по проводу течет ток 10 ампер.
Проволока № 38 имеет площадь поперечного сечения 15,72 круговых фрез.
и он рассчитан на ток 16 миллиампер и 10 ма.под двумя
условия. Этот провод перегорит на 2,5 ампера.
Миллиамперметр, поставляемый с экспериментальными частями, использует No.
38 провод.
Для обычных целей следует помнить, что провод не
выгорать до 50-кратного до 150-кратного допустимого тока
допустимая нагрузка на провод протекает через провод.
Опубликовано: 28 мая, 2014
FAQ | Соединители LEMO | Двухтактные, круглые соединители
Сплав: Комбинация двух или более металлических элементов.
Переменный ток (A-C): Ток, при котором поток заряда периодически и регулярно меняет направление циклическим образом.
Американское общество по испытанию материалов (ASTM): Организация, которая тестирует материалы и пытается установить стандарты для различных материалов для промышленности.
Ампер (А): Единица измерения скорости протекания электрического тока. Один ампер — это ток, протекающий через сопротивление в один ом при потенциале в один вольт.
Отжиг: Процесс нагрева и выдержки при подходящей температуре с последующим охлаждением с подходящей скоростью для таких целей, как снижение твердости, улучшение обрабатываемости, облегчение холодной обработки, получение желаемой микроструктуры или получение желаемого физического состояния, механические или другие свойства.
Анодирование: Электролитический процесс получения защитной или декоративной пленки на некоторых металлах, в основном на алюминии и магнии.
ARIB: Аббревиатура от Association of Radio Industry Broadcasters, организации по стандартизации в Японии.
AWG: Аббревиатура от American Wire Gauge, мера размера или диаметра провода или проводника.
Обратное отражение (оптоволокно): Измерение процента мощности, отраженной обратно неоднородностью в оптоволоконной линии. Выражается в дБ.
Полоса пропускания: Диапазон частот, в котором разъем или устройство могут работать без снижения производительности.Также информационная емкость цифровых систем.
Основной металл: Металл, из которого изготовлен разъем, контакт или другой металлический аксессуар и на который могут быть нанесены один или несколько металлов или покрытий.
Радиус изгиба: Максимальное количество волокна или кабеля, которое можно согнуть без повреждений. Также называется минимальным безопасным радиусом изгиба.
Тесьма: Покрытие из текстильной пряжи.Плетеные оплетки обеспечивают механическую и тепловую защиту пластиковой изоляции, разделяют сегменты кабеля в многожильных кабелях и действуют как компоненты в огнестойких кабелях. См. Также Щит.
Напряжение пробоя: Напряжение, при котором нарушается изоляция между двумя проводниками.
Bundle (Fiber Optic) : Ряд волокон, сгруппированных вместе (жестких или гибких), обычно несущих общий сигнал (или изображение, или канал для передачи световой энергии).
Кабель: Изолированный провод или группа отдельно изолированных проводов в скрученной или параллельной конфигурации.
Кабельная сборка: Готовый кабель и связанное с ним оборудование.
Центральный проводник: Внутренний проводящий элемент в коаксиальной структуре, например центральные контакты.
Оболочка (оптоволокно): Слой стекла (или другого материала), окружающий сердцевину волокна, образующий канал, по которому свет проходит через волокно.Его показатель преломления немного ниже, чем у сердечника.
Коаксиальная линия: Линия передачи, состоящая из центрального проводника, подвешенного в полой цилиндрической трубке с диэлектрической опорой или без нее. Полая цилиндрическая трубка называется наружным проводником.
Концентрический: Центральное ядро, окруженное одним или несколькими слоями материалов, имеющих общую центральную ось.
Проводник : Провод или комбинация проводов, не изолированных друг от друга, пригодных для передачи электрического тока.
Разъем: Обычно используется для описания всех устройств, используемых для быстрого подключения / отключения проводов, кабелей и волокон.
Сила зацепления и разъединения контактов : Сила, необходимая для зацепления или разъединения штифтовых и гнездовых контактов, когда они входят и выходят из вставок разъема.
Отверстие для проверки контакта: Отверстие в цилиндрической задней части контакта, используемое для проверки глубины, на которую был вставлен провод.
Контактное покрытие: Металлическое покрытие, нанесенное на основной контактный металл для обеспечения требуемого контактного сопротивления и / или износостойкости.
Сопротивление контактов : Максимально допустимое электрическое сопротивление штыревых и гнездовых контактов при сборке в разъем при типичном сервисном использовании.
Удержание контакта: Определяет минимальную осевую нагрузку в любом направлении, которую невыпадающий контакт должен выдерживать, оставаясь при этом прочно зафиксированным в своем нормальном положении внутри вставки.
Проверка целостности: Тест, выполняемый на отрезке готового провода или кабеля, чтобы определить, течет ли электрический ток непрерывно по всей длине. Проводники также можно проверить относительно друг друга, чтобы убедиться в отсутствии коротких замыканий между соседними элементами.
Контакты: Токопроводящие элементы соединительного устройства, которые предназначены для обеспечения сквозного разъединяемого соединения по типу кабель-кабель, кабель-коробка или коробка-коробка.
Ядро: (1) В кабелях термин, используемый для обозначения компонента или сборки компонентов, на которые нанесены другие материалы, например дополнительные компоненты, экран, оболочка или броня; (2) В волоконной оптике — секция из прозрачного стекла или пластика с высоким показателем преломления, через которую проходит свет за счет внутренних отражений.
Коррозия: Коррозия — это медленное разрушение материалов химическими агентами и электрохимическими реакциями.Самый распространенный вид коррозии — ржавчина.
Муфта: Промежуточное устройство для крепления специальных принадлежностей или специальных средств крепления. способ соединения двух соединителей, которые не могут соединяться друг с другом.
Путь утечки: Электрический путь должен проходить по поверхности диэлектрика между двумя проводниками. Удлинение пути утечки снижает вероятность повреждения дуги или слежения за ней.
Обжимной конец: Соединение, в котором металлическая гильза прикрепляется к проводнику путем механического обжима гильзы с помощью плоскогубцев, прессов или автоматических обжимных машин. Соединения, клеммы и многоконтактные соединители являются типичными оконечными устройствами, присоединяемыми обжимом. Подходит для всех типов проводов.
Ток (I): Скорость передачи электричества, обычно выражаемая в амперах.
Номинальный ток: Максимальный продолжительный электрический ток, рекомендуемый для данного провода в данной ситуации.Выражается в амперах (AMPS).
Цикл: Полная последовательность, включая реверсирование потока переменного электрического тока.
дБ: (1) Аббревиатура децибела; (2) потеря сигнала в проводнике, выраженная в децибелах, обозначающая отношение входной мощности к выходной; (3) Одна десятая часть бел.
Линия задержки: Кабель, обеспечивающий очень низкую скорость распространения с большой электрической задержкой для передаваемых сигналов.
Коэффициент снижения номинальных характеристик: Коэффициент, используемый для уменьшения допустимой токовой нагрузки провода при использовании в среде, отличной от той, для которой это значение было установлено.
Диэлектрик: (1) Любая изолирующая среда, которая находится между двумя проводниками и позволяет электростатическому притяжению и отталкиванию проходить через него; (2) Непроводящий изолятор. Материал «вставки».
Диэлектрическая постоянная (K): Это свойство диэлектрика, которое определяет накопленную в единице объема электростатическую энергию для единичного градиента потенциала.Также называется диэлектрической проницаемостью и удельной индуктивной емкостью.
Диэлектрическая прочность : Напряжение, которое изоляционный материал может выдержать до пробоя, обычно выражается как градиент напряжения (например, вольт на мил).
Постоянный ток (D-C): Электрический ток, который течет только в одном направлении, практически постоянного значения.
Дюрометр: Измерение твердости вещества, обычно эластомера.
Эксцентриситет: Мера центра расположения проводника по отношению к круглому поперечному сечению окружающей его изоляции, выраженная в процентах от смещения центра одного круга внутри другого.
Эластомер: Материал, который при комнатной температуре растягивается при низком напряжении как минимум в два раза больше своей длины и восстанавливается до исходной длины при снятии напряжения.Пример: резина.
Гальваника: Положение электрода прилипшего металлического покрытия на проводящем объекте для защиты, украшения или других целей.
Сила зацепления и разъединения: Величина силы, необходимая для зацепления и / или разъединения контактных элементов в ответных соединителях. См. «Контактное давление».
Экологически закрытый: Разъем, снабженный прокладками, уплотнениями, заливкой или другими устройствами для защиты от влаги, грязи, воздуха или пыли, которые могут снизить его производительность.
Эпоксидная смола: Пластиковые материалы, которые становятся твердыми, неплавкими твердыми частицами при добавлении отвердителя. Эпоксидные смолы обладают отличным адгезионным действием, высокой химической стойкостью, стойкостью к растворителям и термостойкостью, а также низкой усадкой при отверждении.
Инструмент для извлечения: Маленький ручной инструмент, используемый для извлечения контактов из разъема.
Американский калибр проводов (AWG) Размеры кабеля / проводника
Американский калибр проводов Таблица размеров проводников
Американский калибр проволоки (AWG) — это стандартизированная система калибра проводов для диаметров круглых, сплошных, цветных и электропроводящих проводов.Чем больше номер AWG или калибр провода, тем меньше физический размер провода. Наименьший размер AWG — 40, а самый большой — 0000 (4/0). Общие практические правила AWG — при уменьшении на 6 размеров диаметр проволоки удваивается, а на каждые 3 калибра площадь поперечного сечения удваивается. Примечание. W&M Wire Gauge, US Steel Wire Gauge и Music Wire Gauge — это разные системы.
Таблица размеров и свойств американского калибра проводов (AWG) / таблица
В таблице 1 перечислены размеры AWG для электрических кабелей / проводов.Помимо размера провода, в таблице приведены значения допустимой нагрузки (тока), сопротивления и скин-эффекта. Указанные значения сопротивления и глубины скин-слоя относятся к медным проводникам. Подробное описание каждого свойства проводника приведено ниже в таблице 1.
AWG Примечания: Американский калибр проводов (AWG) — это стандартизированная система калибра проводов, используемая преимущественно в США для измерения диаметра электропроводящего провода. Общее практическое правило заключается в том, что при уменьшении на каждые 6 калибра диаметр проволоки удваивается, а при каждом уменьшении на 3 калибра площадь поперечного сечения удваивается.
Диаметр Примечания: Мил — это единица измерения длины, равная 0,001 дюйма («миллидюйм» или «тысячная часть дюйма»), т.е. 1 мил = 0,001 дюйма.
Примечания к сопротивлению: Сопротивление, указанное в таблице выше, относится к медному проводнику. Для заданного тока вы можете использовать указанное сопротивление и применить закон Ома для расчета падения напряжения на проводнике.
Ток (допустимая нагрузка) Примечания: Номинальные значения тока, указанные в таблице, относятся к передаче мощности и были определены с использованием правила 1 ампер на 700 круговых милов, что является очень консервативным показателем.Для справки, Национальный электрический кодекс (NEC) отмечает следующую допустимую нагрузку для медного провода при 30 Цельсия:
14 AWG — максимум 20 А на открытом воздухе, максимум 15 А в составе трехжильного кабеля;
12 AWG — максимум 25 ампер на открытом воздухе, максимум 20 ампер в составе трехжильного кабеля;
10 AWG — максимум 40 А на открытом воздухе, максимум 30 А в составе трехжильного кабеля.
Проверьте правильность допустимой токовой нагрузки (допустимой токовой нагрузки) в сети и в настенной проводке в местных электротехнических правилах.
Примечания по скин-эффекту и глубине скин-эффекта. Скин-эффект — это тенденция переменного электрического тока (AC) распределяться внутри проводника, так что плотность тока у поверхности проводника больше, чем у его сердцевины. То есть электрический ток имеет тенденцию течь по «коже» проводника. Скин-эффект приводит к увеличению эффективного сопротивления проводника с увеличением частоты тока. Максимальная частота показа — для 100% глубины кожи (то есть без эффектов кожи)
Выбор ширины кабельного лотка для установки с одножильными кабелями на 600 В
Раздел 318-11 (b) (4) гласит, что если одиночные проводники устанавливаются в треугольной или квадратной конфигурации в открытых кабельных лотках, с поддерживаемым пространством не менее 2.В 15 раз больше диаметра кабеля между группами кабелей, значения силы тока для кабелей № 1/0 и более не должны превышать допустимые значения силы тока, указанные в Таблице B-310-2 в Приложении B NEC.
Раздел 318-11 (b) (4) определяет расположение кабелей в кабельном лотке для получения условий, позволяющих кабелям выдерживать более высокие токи. Таким образом, Раздел 318-11 (b) (4) содержит информацию о допустимой допустимой нагрузке, а также информацию, которая влияет на выбор ширины кабельного лотка.
Если ширина лестницы или вентилируемого желоба для кабельного лотка выбрана на основе требований Раздела 318-10 для установки, выполняемой в соответствии с Разделом 318-11 (b) (4), кабельный лоток будет недостаточной ширины для предполагаемая установка. Определить необходимую ширину лестничного лотка или лотка с вентилируемым желобом в соответствии с Разделом 318-11 (b) (4).
Общая ширина кабелей — 8 x 1,07 дюйма = 8,56 дюйма
Расстояние между кабелями должно быть в 2,15 раза больше диаметра одного кабеля — 3 x 2.15 x 1,07 дюйма = 6,90 дюйма. Общая необходимая ширина кабельного лотка составляет 8,56 дюйма + 6,90 дюйма = 15,46 дюйма.
Необходимо использовать кабельный лоток шириной 18 дюймов.
Для установок, показанных на Рисунке 3, допустимая максимальная рабочая сила тока (Таблица B-310-2) для проводов 500кмил составляет 496 ампер на провод (без использования поправочного коэффициента максимальной рабочей температуры окружающей среды).
Установка кабелей в кабельный лоток, как показано на рисунке 3, очень желательна по причинам, указанным на рисунке 1A.
Этот тип установки может быть выполнен только там, где кабели могут быть заделаны без захода в кабельные каналы. Если кабели входят в кабелепровод, необходимо использовать значения силы тока, указанные в Таблице 310-16.
Лучше использовать значения допустимой нагрузки 75 градусов Цельсия, даже если установлен кабель с изоляцией 90 градусов Цельсия, если только не известно, что оборудование может выдерживать заделку проводов с более высокой температурой. Для установки, показанной на Рисунке 3, изолированный проводник на 90 ° C, работающий при максимальной допустимой нагрузке, будет производить на 37% больше тепла, чем изолированный провод на 75 ° C.См. Раздел 110-14 (c) NEC. Ограничение температуры.
При использовании кабельного лотка для поддержки кабелей разработчик предлагает варианты компоновки кабелей, которые позволяют кабелям одного и того же размера работать с разной силой тока, если выбрана соответствующая ширина кабельного лотка.