Теплопроводность пенопласта
Основной характеристикой, благодаря которой пенополистирол получил широкое признание в качестве материала для утепления №1, является сверхнизкая теплопроводность пенопласта. Относительно небольшая прочность материала с лихвой компенсируется такими преимуществами, как стойкость к воздействию большинства агрессивных соединений, небольшой вес, нетоксичность и безопасность при работе. Хорошие теплоизолирующие свойства пенопласта дают возможность обустроить утепление дома по относительно небольшой цене, при этом долговечность такого утепления рассчитана на срок не менее 25 лет службы.
Что нужно знать о теплопроводности пенопласта
Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙Со, то становится понятным, что это величина удельная, то есть определенная для следующих условий:
- Отсутствие влаги на поверхности плиты, то есть коэффициент теплопроводности пенопласта из справочника — это величина, определенная в идеально сухих условиях, которых в природе практически не существует, разве что в пустыне или в Антарктиде;
- Значение коэффициента теплопроводности приведено к толщине пенопласта в 1 метр, что очень удобно для теории, но как-то не впечатляет для практических расчетов;
- Результаты измерения теплопроводности и теплопередачи выполнены для нормальных условий при температуре 20оС.
Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции. Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.
Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.
На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.
Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя. В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.
Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.
От чего зависит теплопроводность пенопласта
Величина теплопроводности пенопласта, как и любого другого материала, зависит от трех основных составляющих:
- температуры воздуха;
- плотности пенопластовой плиты;
- уровня влажности среды, в которой используется утеплитель.
Как видно из схемы, при низких температурах воздуха градиент по толщине стенки линейно меняется от отрицательных значений на наружной поверхности облицовки до +20оС внутри помещения. Необходимо так подобрать теплопроводность и толщину материала, чтобы точка росы или, другими словами, температура, при которой начинают конденсироваться пары воды, находилась внутри массива пенопласта.
Влияние плотности и влажности окружающей среды
Несмотря на все заверения производителей, пенопласт способен поглощать и проводить водяные пары, для сравнения, величина паропроницаемости для пенопластового листа всего лишь на 20% ниже проницаемости древесины. Естественно, наличие водяных паров в толще пенопласта существенным образом влияет на его теплопроводность. Найти зависимость в справочниках практически невозможно, поэтому при расчетах делают эмпирическую поправку на теплопроводность, исходя из толщины теплоизоляции.
Пенопласт способен поглощать в поверхностных слоях до 3% воды. Глубина поглощения составляет 2 мм, поэтому при определении теплопроводности материала эти миллиметры выбрасывают из эффективной толщины теплоизоляции. Поэтому лист пенопласта толщиной в 10 мм будет в сравнении с листом в 50 мм иметь теплопроводность не в 5 раз больше, а в 7 крат. При значительной толщине пенопласта, более 80 мм, теплосопротивление увеличивается значительно быстрее, чем его толщина.
Вторым фактором, влияющим на теплопроводность, является плотность материала. При одинаковой толщине материал разных марок может иметь плотность в два раза больше. Принято считать, что 98% структуры утеплителя составляет высушенный воздух. С увеличением вдвое количества полистирола в плите, естественно, теплопроводность также увеличивается, примерно на 3%.
Но дело даже не в количестве полистирола, меняется размер шариков и ячеек, из которых состоит пенопласт, образуются локальные участки с очень высокой теплопроводностью, или мостики холода. Особенно это касается трещин и стыков, любых зон деформации и установки креплений. Поэтому при установке зонтичных дюбелей количество креплений рекомендуют ограничивать 3 точками.
Влияние химического состава на теплопроводность
Мало кто обращает внимание на особые свойства пенопласта. Сегодня наиболее серьезной проблемой пенопласта считается его способность к воспламенению и выделению токсичных продуктов сгорания. СНиП и ГОСТ требуют, чтобы пенопласт, используемый для утепления жилых зданий, имел время самозатухания не более 4 с. Для этого используются соли ряда цветных металлов, таких как хром, никель, железо, включение в состав веществ, выделяющих углекислый газ при нагревании.
В результате на практике пенопласт с индексом «С» — самозатухающий имеет теплопроводность значительно выше, чем обычные марки пенополистирола. Практика использования пенополистирола для утепления в Евросоюзе показала, что более выгодным и дешевым является нанесение на внешнюю поверхность немодифицированного пенопласта специального покрытия из газообразующих агентов. Такое решение позволяет сохранить теплосберегающие свойства и экологичность материала, одновременно значительно повысить пожаробезопасность.
Заключение
Теплопроводность пенопласта практически не меняется с течением времени, как, например, у минеральной ваты или газосиликатных блоков. Единственной проблемой является деградация пенополистирола под действием солнечных лучей и рассеянного ультрафиолета. При длительном облучении материал становится рыхлым, покрывается трещинами и легко наполняется конденсатом, поэтому для сохранения первоначального значения теплопроводности необходимо закрывать утеплитель облицовкой.
Таблица теплопроводности и других качеств материалов для утепления
Да, в нашей стране, в отличие от стран с жарким климатом, бывают лютые зимы. Именно поэтому нужно строиться из теплых материалов с использованием специальных утеплителей. В ином случае все дорогое тепло от котлов и печей будет уходить через стены и другие перекрытия.
Нам нужно точно знать, какие из современных популярных материалов для утепления наиболее эффективны.
Что такое теплопроводность?
Теплопроводность можно описать как процесс передачи тепловой энергии до наступления теплового равновесия. Температура, так или иначе, будет выровнена, вопрос только в скорости этого процесса. Если применить это понятие к дому, то ясно, что чем дольше температура внутри здания выравнивается с наружной, тем лучше. Проще говоря, насколько быстро дом остывает это вопрос того, какая теплопроводность его стен.
В числовой форме этот показатель характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.
Теплопроводность утеплителей — это наиболее информативный показатель, и чем он ниже, тем материал эффективнее он сохраняет тепло (или прохладу в жаркие дни). Но существуют и другие показатели, которые влияют на выбор утеплителя.
Таблица теплопроводности утеплителей
В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.
Таблица теплопроводности утеплителей
| Теплопроводность, Вт/(м*С) | Плотность, кг/м3 | Паропроницаемость, мг/ (м*ч*Па) | «+» | «-» | Горюч. |
Пенополиуретан | 0,023 | 32 | 0,0-0,05 | 2.Бесшовный монтаж пеной; 3.Долгосрочность; 4.Лучшая тепло-, гидроизоляция | 1.недешевый 2. Не устойчив к УФ-излучению | Самозатухающий |
0,029 | 40 | |||||
0,035 | 60 | |||||
0,041 | 80 | |||||
Пенополистирол (пенопласт) | 0,038 | 40 | 0,013-0,05 | 1.Отлично изолирует; 2. Дешевый; 3. Влагонепроницаем | 1. Хрупкий; 2. Не «дышит» и образует конденсат | Г3 и Г4. Сопротивление возгоранию и самозатухание |
0,041 | 100 | |||||
0,05 | 150 | |||||
Экструдированный пенополистирол | 0,031 | 33 | 0,013 | 1. Очень низкая теплопроводность; 3.Влагонепроницаем; 4.Прочен на сжатие; 5. Не гниет и не плесневеет; 6. Эксплуатация от -50 °С до +75°С; 7.Удобен в монтаже. | 1. На порядок дороже пенопласта; 2. Восприимчив к органическим растворителям; 3. Паропроницаемость низкая, образует конденсат. | Г1 у марок с антипеновыми добавками, другие Г3 и Г4. Сопротивление возгоранию и самозатухание |
Минеральная (базальтовая) вата | 0,048 | 50 | 0,49-0,6 | 1.Хорошая паропроницаемость –«дышит»; 2.Противостоит грибкам; 3.Звукоизоляция; 4.Высокая термоизоляция; 5.Механическая прочность; 6.Не сыпется | 1.Недешевый | Огнеупорный |
0,056 | 100 | |||||
0,07 | 200 | |||||
Стекловолокно (стекловата) | 0,041-0,044 | 155-200 | 0,5 | 1.Низкая теплопроводность; 2.При пожарах не выделяет токсичных веществ | 1.Со временем теплоизоляция снижается; 2. Может появляться плесень; 3.Проблемный монтаж: волокна осыпаются и наносят вред коже, глазам; 4.Паропроницаемость низкая, образует конденсат. | Не горит |
Пенопласт ПВХ | 0,052 | 125 | 0,023 | 1.Жесткий и удобный в монтаже | 1.Недолговечен; 2.Плохая паропроницаемость и образование конденсата | Г3 и Г4. Сопротивление возгоранию и самозатухание |
Древесные опилки | 0,07-0,18 | 230 | — | 1.Дешевизна; 2.Экологичность | 1.Портиться и гниет; 2.Теплоизоляционные свойства падают при высокой влажности | Пожароопасен |
Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.
Полезные показатели утеплителей
На какие основные показатели нужно обратить внимание при выборе утеплителя:
- Теплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
- Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
- Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
- Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
- Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
- Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
- Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
- Долговечность определяет срок службы материала;
- Толщина материала определяет, сколько пространства будет занимать теплоизоляция. При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
- Экологичность материала особенно важна при выполнении внутреннего утепления. Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.
Кто на свете всех теплей?
Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.
Пенополиуретан или экструдированный пенополистирол
Нетрудно определить по таблице, что чемпион по теплоизоляции – это пенополиуретан. Но и цена его гораздо выше, нежели у полистирола или пенопласта. Все потому что он обладает двумя наиболее востребованными в строительстве качествами: негорючесть и водоотталкивающие свойства. Его трудно поджечь, поэтому пожарная безопасность такого утепления высока, к тому же он не боится намокнуть.
Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.
А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.
Минеральная вата или пенопласт
Если сравнивать минеральную вату и пенопласт, то их теплопроводность находится на одном уровне ≈ 0,5. Поэтому выбирая между этими материалами, неплохо было бы оценить и другие качества, такие как водопроницаемость. Так, монтаж ваты в местах с возможным намоканием нежелательна, поскольку она теряет свойства теплоизоляции на 50% при намокании на 20%. С другой стороны, вата «дышит» и пропускает пар, так что не будет образовываться конденсата. В доме, который утеплен ватой из базальтового волокна, не будут запотевать окна. И вата, в отличие от пенопласта, не горит.
Другие утеплители
Весьма популярны сейчас эко-материалы, такие как опилки, которые смешивают с глиной и используют для стен. Однако, такой приятный по цене материал как опилки, имеет много недостатков: горит, намокает и гниет. Не говоря уже о том, что набирая влагу, опилки теряют теплоизоляционные свойства.
Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.
Выбирая утеплитель
Цены на энергоносители растут, и вместе с тем растет популярность на утеплители. В нашей статье представлена таблица теплопроводности материалов для утепления и сравнительный анализ популярных видов утеплителей. Главное, что хотелось бы отметить — хорошие показатели вы получите, приобретая только качественный сертифицированный продукт. Выбор теплоизоляционных материалов на рынке весьма широк и один вид утеплителя предлагается более чем пятью производителями. Много из них могут вас огорчить своим качеством, поэтому ориентируйтесь на отзывы тех, кто испытал конкретные торговые марки на «своей шкуре».
Оцените статью: Поделитесь с друзьями!
Теплопроводность пенопласта от 50 мм до 150 мм
Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.
У каждой гранулы есть огромное количество тонкостенных микро ячеек, которые в свою очередь во много раз повышают площадь соприкосновения с воздухом. Можно с уверенность сказать, что пенопласт практически весь состоит из атмосферного воздуха, приблизительно на 98%, в свою очередь этот факт являет собой их предназначение – теплоизоляция зданий как снаружи, так и внутри.
Всем известно, еще из курсов физики, атмосферный воздух, является основным изолятором тепла во всех теплоизоляционных материалах, находится в обычном и разреженном состоянии, в толще материала. Тепло-сбережение, основное качество пенопласта.
Как было сказано раньше, пенопласт практически на 100% состоит из воздуха, а это в свою очередь определяет высокую способность пенопласта сохранять тепло. А связанно это с тем, что у воздуха самая низкая теплопроводность. Если посмотреть на цифры, то мы увидим, что теплопроводность пенопласта выражена в промежутке значений от 0,037Вт/мК до 0,043Вт/мК. Это можно сопоставить с теплопроводность воздуха — 0,027Вт/мК.
В то время как теплопроводность популярных материалов, таких как дерево (0,12Вт/мК), красный кирпич (0,7Вт/мК), керамзитная глина (0,12 Вт/мК) и других, используемых для строительства, намного выше.
Высокий уровень энергосбережения пенопласт обеспечивает за счет низкой теплопроводности. Например, если построить стену из кирпича толщиной 201 см или воспользоваться древесным материалом толщиной 45 см, то для пенопласта толщина составит всего на всего 12 см для определенной величины энергосбережения.
Поэтому самым эффективным материалом из немногих для теплоизоляции наружных и внутренних стен здания принято считать пенопласт. Затраты на отопление и охлаждение жилых помещений значительно сокращаются благодаря применению пенопласта в строительстве.
Превосходные качества пенополистирольных плит нашли свое применение и в других видах защиты, например: пенопласт, так же служит для защиты от промерзания подземных и наружных коммуникаций, за счет чего их эксплуатационный срок увеличивается в разы. Пенопласт применяют и в промышленном оборудовании (холодильные машины, холодильные камеры) и в складских помещениях.
Размеры листов
Изготовление пенополистирольных плит, осуществляется по нормам ГОСТ. При производстве пенопласта регулируется как состав, так и размеры листов. Стандартная длина листа колеблется от 100 см до 200 см. Ширина должна быть равна 100 см, а толщина от 2 см до 5 см. Теплопроводность пенопласта 50 мм – относительно высока, благодаря небольшой толщине и характеристикам материала, он является наиболее ходовым из всех.
А что же покупать?
На рынке строительных материалов представлен огромный выбор пенополистирольных плит. Высокая теплопроводность плит утеплителей зависит от их вида. Например: лист пенопласта ПСБ-С 15 обладает до 15 кг/м3 плотностью и 2 см толщиной. Для листа от 2-х до 50 см плотность составляет не более 35 кг/м3. При сравнении пенопласта с другими подобными материалами можно легко проследить зависимость теплопроводности пенополистирольных плит от его толщины.
Так, например: теплопроводность пенопласта 50 мм, больше в два раза, чем у минеральной ваты такого же объема, в таком случае теплопроводность пенопласта, толщина 150 мм, вообще в 6 раз превысит эти показатели. Базальтовая вата, тоже очень сильно проигрывает пенопласту.
Для того чтобы применить один из способов изоляции, необходимо верно выбрать габариты материала. По следующему алгоритму можно выполнить расчет:
- Необходимо уточнить общее тепло-сопротивление. Эта величина зависит от региона, в котором необходимо выполнить расчет, а именно от его климата.
- Для вычисления тепло-сопротивления стены можно воспользоваться формулой R=p/k, где ее толщина равна значению р, а k-коэффициент теплопроводности пенопласта.
- Из постоянных показателей можно сделать вывод, какое сопротивление должно быть у изоляции.
- Нужную величину можно вычислить по формуле р=R*k, найти значение R можно исходя из предыдущего шага и коэффициента теплопроводности.
Марки пенопласта
Если Вас заинтересовал вопрос, какой лучше всего марки приобрести пенопласт, и какая у него теплопроводность, то мы ответим вам на него. Ниже приведены самые популярные марки продукции, а также отображены величины плотности и коэффициент теплопроводности пенопласта.
- ПCБ-C15. С теплопроводностью 0,042 Вт/мK, а плотность равна 11-15 кг/м3
- ПCБ-C25. С теплопроводностью 0,039 Вт/мK, а плотность равна 15-25 кг/м3
- ПCБ-С35. С теплопроводностью 0,037 Вт/мK, а плотность равна 25-35кг/м3
Завершает наш список пенопласт ПCБ-C5, теплопроводность которого составляет 0,04 Вт/мК, а плотность равна 35-50 кг/м3. Проведя анализ плотности и теплопроводности можно с уверенностью сказать, что плотность существенно не влияет на основное качество пенопласта, тепло-сбережение.
Теплопроводность пенопласта, сравнение с Пеноплексом, цена листов разных марок
Эффективность – первое, что мы ищем, выбирая утеплитель. Разнообразные материалы изначально оцениваются именно по этому критерию, и только потом в дело вступают другие характеристики, особенность монтажа и стоимость. Сегодня мы рассмотрим теплопроводность пенопласта как самого доступного по цене и потому востребованного, а также сравним его с иными видами изоляции.
Оглавление:
- Что такое теплопроводность?
- Характеристики пенопласта разных марок
- Сравнение с другими материалами и расценки
Определение
Теплопроводность – величина, обозначающая количество тепла (энергии), проходящего за час сквозь 1 м любого тела при определенной разнице температур с одной и другой его стороны. Она измеряется и рассчитывается для нескольких исходных условий эксплуатации:
- При 25±5 °С – это стандартный показатель, закрепленный в ГОСТах и СНиП.
- «А» – так обозначается сухой и нормальный режим влажности в помещениях.
- «Б» – в эту категорию относят все прочие условия.
Собственно теплопроводность гранул пенопласта, спрессованных в легкую плиту, не так важна сама по себе, как в связке с толщиной утеплителя. Ведь основная цель – добиться оптимального уровня сопротивления всех слоев стены в соответствии с требованиями для конкретного региона. Для получения первоначальных цифр достаточно будет воспользоваться самой простой формулой: R = p÷k.
- Сопротивление теплопередаче R можно найти в специальных таблицах СНиП 23-02-2003, к примеру, для Москвы принимают 3,16 м·°С/Вт. И если основная стена по своим характеристикам недотягивает до этого значения, разницу должен перекрыть именно утеплитель (минвата или тот же пенопласт).
- Показатель р – обозначает искомую толщину изолирующего слоя, выраженную в метрах.
- Коэффициент k – как раз и дает представление о проводимости тел, на которую мы ориентируемся при выборе.
Теплопроводность самого материала проверяют с помощью нагрева одной стороны листа и измерения количества энергии, переданной методом кондукции на противоположную поверхность в единицу времени.
Показатели для разных марок пенополистирола
Из приведенной упрощенной формулы можно заключить, что чем тоньше лист утеплителя, тем меньшей эффективностью он обладает. Но кроме обычных геометрических параметров на конечный результат оказывает влияние и плотность пенопласта, хоть и незначительно – всего в пределах 1-5 тысячных долей. Для сравнения возьмем две близкие по марке плиты:
- ПСБ-С 25 проводит 0,039 Вт/м·°С.
- ПСБ-С 35 при большей плотности – 0,037 Вт/м·°С.
А вот с изменением толщины разница становится куда более заметной. К примеру, у самых тонких листов в 40 мм при плотности 25 кг/м3 показатель теплопроводности может составлять 0,136 Вт/м·°С, а 100 мм того же пенополистирола пропускают всего 0,035 Вт/м·°С.
Зависимость нелинейная, что связано с особенностью кондуктивной передачи. Но поскольку коэффициент высчитывается в единицу времени, а плотность материала остается неизменной, разница температур с внешней поверхностью при «продвижении» энергии сквозь плиту становится все меньше. И если толщина пенополистирола оказывается значительной, тепло просто не успевает передаться обратной стороне, что, в общем-то, и требуется от хорошей изоляции.
Сравнение с другими материалами
Средняя теплопроводность ПСБ лежит в пределах 0,037-0,043 Вт/м·°С, на него и будем ориентироваться. Здесь пенопласт в сравнении с минватой из базальтовых волокон, кажется, выигрывает незначительно – у нее примерно те же показатели. Правда, при вдвое большей толщине (95-100 мм против 50 мм у полистирола). Также принято сопоставлять проводимость утеплителей с различными стройматериалами, необходимыми для возведения стен. Хотя это и не слишком корректно, но весьма наглядно:
1. Красный керамический кирпич имеет коэффициент теплопередачи 0,7 Вт/м·°С (в 16-19 раз больше, чем у пенопласта). Проще говоря, чтобы заменить 50 мм утеплителя понадобится кладка толщиной около 80-85 см. Силикатного и вовсе нужно не меньше метра.
2. Массив дерева в сравнении с кирпичом в этом плане получше – здесь всего 0,12 Вт/м·°С, то есть втрое выше, чем у пенополистирола. В зависимости от качества леса и способа возведения стен, эквивалентом ПСБ толщиной 5 см может стать сруб шириной до 23 см.
Куда логичнее сравнивать стиролы не с минватой, кирпичом или деревом, а рассматривать более близкие материалы – пенопласт и Пеноплекс. Оба они относятся к вспененным полистиролам и даже изготавливаются из одних и тех же гранул. Вот только разница в технологии их «склеивания» дает неожиданные результаты. Причина в том, что шарики стирола для производства Пеноплекса с введением порообразователей одновременно обрабатываются давлением и высокой температурой. В итоге пластичная масса приобретает большую однородность и прочность, а пузырьки воздуха равномерно распределяются в теле плиты. Пенопласт же просто обдается паром в форме, как поп-корн, поэтому связи между вспученными гранулами оказываются слабее.
Как следствие, теплопроводность Пеноплекса – экструдированного «родственника» ПСБ – тоже заметно улучшается. Она соответствует показателям 0,028-0,034 Вт/м·°С, то есть 30 мм хватит, чтобы заменить 40 мм пенопласта. Однако сложность производства увеличивает и стоимость ЭППС, так что на экономию рассчитывать не стоит. Кстати, здесь есть один любопытный нюанс: обычно экструдированный пенополистирол немного теряет в эффективности при увеличении плотности. Но при введении в состав Пеноплекса графита эта зависимость практически исчезает.
Впрочем, если вопрос высокой прочности на повестке дня не стоит, и вам нужен просто хороший утеплитель, проще и дешевле действительно купить пенопласт. В сравнении с такими материалами, как минвата, дерево и керамический кирпич, он безусловно хорош. Главное – не использовать его на пожароопасных объектах и всегда стараться выполнять теплоизоляцию снаружи зданий.
Цены на листы пенопласта 1000х1000 мм (рубли):
Толщина листа, мм | ПСБ-С 15 | ПСБ-С 25 | ПСБ-С 35 | ПСБ-С 50 |
20 | 37 | 61 | 82 | 124 |
30 | 55 | 95 | 123 | 185 |
40 | 73 | 122 | 164 | 247 |
50 | 91 | 152 | 205 | 308 |
70 | 127 | 213 | 264 | 431 |
80 | 145 | 243 | 328 | 493 |
100 | 181 | 304 | 409 | 616 |
Теплопроводность пенопласта: цифры, факты и схемы
Все о ней говорят, но никто не видел. Разумеют, что она нужна, а где взять, не знают. Понимают, что надо её понижать, но как, не ведают. Ведь разговор идет о способности утеплителя не допускать передачу тепловой энергии через занятую им площадь, а проще говоря, о его низкой теплопроводности. Теплопроводность пенопласта является основной характеристикой, определяющей порядок его использования в утеплении зданий и сооружений.
Основа низкой теплопроводности
Всем своим имеющимся положительным и отрицательным свойствам, пенопласт (вспененный пенополистирол) обязан стиролу и особой технологии производства.
Вначале стирол насыщают газом или воздухом, превращая в пустотелые гранулы. Затем под воздействием горячего пара происходит многократное увеличение объёма гранул с последующим спеканием их при наличии связующего состава. Таким образом, получаемый лист состоит из множества сфер правильной формы, наполненных газом.
Стирольные стенки тонкие, но очень прочные. Даже при приложении значительных усилий, разрушить оболочку не так уж и просто. Удерживаемый внутри газ остается неподвижным при любых условиях эксплуатации, обеспечивая высокую тепловую изоляцию защищаемого объёма.
Наполнение объёма утеплителя газами зависит от его плотности. Меняется от 93 до 98 %. Чем больше процент, тем меньше плотность, тем легче материал, тем выше теплопроводность, и обычно выше качество утепления и другие важные характеристики.
Вникаем в смысл понятия
Понять смысл «теплопроводность пенополистирола» можно через физическую размерность. Измеряется данная величина в Вт/м ч К. Расшифровать её можно следующим образом: сколько ватт тепловой энергии пройдёт через толщину утеплителя площадью 1 м2 в час при снижении температуры нагретой поверхности на 1 К (Кельвин). 1 К равен 1оС.
Схема утечки тепла через утеплитель
В технических характеристиках материала разной плотности указывается коэффициент теплопроводности пенопласта. Он колеблется в диапазоне от 0,032 до 0,04 единицы. При увеличении плотности плиты это значение уменьшается.
Теплопроводность простыми словами: сколько ватт тепловой энергии пройдёт через толщину утеплителя площадью 1 м2 в час при снижении температуры нагретой поверхности на 1 К (Кельвин). 1 К равен 1оС.
Но бесконечно повышая плотность материала, невозможно добиться нулевых теплопотерь. Перейдя некоторую границу и продолжая увеличивать плотность, получим скачкообразный рост потери тепла. Необходимо понимание того, что при увеличении плотности, объём и количество газа в материале сокращаются, и как следствие, термоизоляция ухудшается.
Опытным путём установлено, что максимальная способность изолятора удерживать тепло достигается при его плотности от 8 до 35 кг/м3. Это число, указанное на упаковке, показывает, сколько весит 1 м3 утеплителя при заявленной плотности. Малая плотность – малый вес. Малый вес – удобство монтажа и укладки.
Всё тоньше, всё теплее
Для того чтобы представить эту физическую величину наглядно, проведём сравнение теплопроводности пенопласта с другими строительными материалами. Представьте, что вы стоите и смотрите с торца на разрезы стен из разных материалов. Сначала перед глазами проплывает бетонная стена толщиной 3,2 м, затем кирпичная кладка в 5 кирпичей (1,25 м), потом относительно тоненькая деревянная перегородка шириной с предплечье взрослого человека (0,40 м). И уже где-то в самом конце, незаметный лист пенопласта толщиной 0,1 м. Что же объединяет все эти материалы необъятной толщины? Только одно.
У них одинаковый коэффициент удельной теплопроводности.
Используя его низкую теплопроводимость, можно в значительной степени сократить расход достаточно дорогих в приобретении и укладке стройматериалов. Дом, построенный в 2,5 кирпича так же надёжен, как и дом с толщиной стен в 5 кирпичей. Только в первом случае расходы на отопление больше. Хотите дом теплее? Не надо возводить ещё такую же стену. Достаточно утеплить стену 50 мм плитой. Почувствуйте разницу. 2,5 кирпича по периметру дома и лист пенопласта толщиной в 50 мм. Экономим время, деньги, силы.
Трудность выбора
Кто-то может возразить, что это некорректное сравнение. Нельзя сравнивать материалы, настолько разные по своему происхождения и внутреннему составу. Хорошо. Тогда сравним современные утеплители: минеральные (базальтовые), вспененный и экструдированный пенополистиролы, пенополиуретан.
Проводимое сравнение явно не в пользу плит и матов из волокнистых материалов. Их теплоёмкость почти в 1,5 раза больше, чем у пенопласта. Это сразу понижает их потребительскую ценность и ставит на нижнюю степень по этому показателю.
Сравнить теплопроводность экструдированного пенополистирола и пенопласта достаточно затруднительно. Физически и математически показатели очень близки. Признавая лидерство, имеющего более низкий коэффициент теплопроводности экструдированного пенополистирола, вспененный полистирол отвечает ему своим преимуществом – ценой. Разницу в 4 сотых единицы указанного коэффициента, вспененный полистирол перекрывает ценой, которая в 4 раза ниже, чем у именитых конкурентов.
Даже при сравнении теплопроводности пенополиуретана и пенопласта можно сказать о том, что вспененный пенополистирол «хорошо держит удар». Коэффициент теплопроводности пенополиуретана только на 30% меньше, чем у вспененного полистирола. А цена… Не стоит забывать о том, что его монтаж требует определённой квалификации, оборудования. Что потребует дополнительных затрат. Утепление дома пенопластом можно провести своими руками.
Так что есть над чем поразмышлять, прежде чем сделать выбор утеплителя.
Применяем, ориентируясь на числа
Именно коэффициент теплопроводности пенополистирола определяет порядок и место его применения.
Материал с невысокой плотностью и высокой теплопроводностью применяется для утепления вертикальных конструкций внутри помещений. Это пенополистиролы с числом «15» в маркировке. Они имеют небольшую толщину и не сильно поглощают внутренние объёмы.
Утеплитель, обозначенный числом «25», имеет возможность использования при наружном утеплении стен, межэтажных (чердачных, подвальных) перекрытий, скатных и плоских кровель, как частных домовладений, так и многоэтажных строений.
Самую высокую плотность и самое низкое значение удельной теплопроводности имеют пенопласты с числом «35» в наименовании. Они достойно утепляют заглубленные фундаменты, автомобильные дороги, взлётно-посадочные полосы.
Наверное, нет такого строительного материала, который не мог бы утеплить пенопласт. Если невозможно увидеть его высокую термоизоляции, это не значит, что её нет. В этом можно убедиться после утепления дома, получив счёт за потреблённые энергоресурсы.
Сравнительная таблица утеплителей по теплопроводности, толщине и плотности
Автор Марсель Сагитов На чтение 6 мин. Просмотров 246
В привычной для населения страны холодной зиме, востребованность теплоизоляционных материалов всегда на высоком уровне. Необходимо учитывать все особенности каждого из утеплителей, чтобы сделать выбор в пользу качественного и целесообразного материала.
Зачем нужна теплоизоляция?
Актуальность теплоизоляции заключается в следующем:
- Сохранение тепла в зимний период и прохлады в летний период.
Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.
- Увеличение долговечности конструкций здания.
В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены. Такое утепление позволяет увеличить срок службы здания во много раз.
- Шумоизоляция.
Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).
- Увеличение полезной площади зданий.
Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.
Как правильно выбрать утеплитель?
При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием.
Основные требования, предъявляемые к теплоизоляционным материалам:
- Теплопроводность.
Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.
Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности.
Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.
Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и подходят для утепления вертикальных конструкций внутри помещений.
А как зависит теплопроводность от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.
А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.
Толщину утеплителя необходимо определять на основании теплотехнического расчета с учетом климатических особенностей территории, материала стены и её минимально допустимого значения сопротивления теплопередачи.
В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!
Таблица теплопроводности материалов
Материал | Теплопроводность материалов, Вт/м*⸰С | Плотность, кг/м³ |
Пенополиуретан | 0,020 | 30 |
0,029 | 40 | |
0,035 | 60 | |
0,041 | 80 | |
Пенополистирол | 0,037 | 10-11 |
0,035 | 15-16 | |
0,037 | 16-17 | |
0,033 | 25-27 | |
0,041 | 35-37 | |
Пенополистирол (экструдированный) | 0,028-0,034 | 28-45 |
Базальтовая вата | 0,039 | 30-35 |
0,036 | 34-38 | |
0,035 | 38-45 | |
0,035 | 40-50 | |
0,036 | 80-90 | |
0,038 | 145 | |
0,038 | 120-190 | |
Эковата | 0,032 | 35 |
0,038 | 50 | |
0,04 | 65 | |
0,041 | 70 | |
Изолон | 0,031 | 33 |
0,033 | 50 | |
0,036 | 66 | |
0,039 | 100 | |
Пенофол | 0,037-0,051 | 45 |
0,038-0,052 | 54 | |
0,038-0,052 | 74 |
- Экологичность.
Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.
- Пожарная безопасность.
Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.
- Паро- и водонепроницаемость.
Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.
- Долговечность.
В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату в первые годы службы значительно снижают свою эффективность. Зато пенополиуретан обладает сроком службы свыше 50 лет.
Достоинства и недостатки утеплителей
- Пенополиуретан – на сегодняшний день самый эффективный утеплитель.
Виды ППУ
Достоинства: бесшовный монтаж пеной, долговечность, лучшая тепло- и гидроизоляция.
Недостатки: дороговизна материала, неустойчивость к УФ-излучению.
- Пенополистирол (пенопласт) – востребован для использования в качестве утеплителя для помещений разных типов.
Достоинства: низкая теплопроводность, невысокая стоимость, удобство монтажа, водонепроницаемость.
Недостатки: хрупкость, легкая воспламеняемость, образование конденсата.
- Экструдированный пенополистирол – прочный и удобный материал, при необходимости элементов нужного размера легко разрезается ножом.
Достоинства: очень низкая теплопроводность, водонепроницаемость, прочность на сжатие, удобство монтажа, отсутствие плесени и гниения, возможность эксплуатации от -50⸰С до +75⸰С.
Недостатки: намного дороже пенопласта, восприимчивость к органическим растворителям, образование конденсата.
- Базальтовая (каменная) вата – минеральная вата, изготавливающаяся на базальтовой основе.
Достоинства: противостояние образованию грибков, звукоизоляция, прочность к механическим воздействиям, огнеупорность, негорючесть.
Недостатки: более высокая стоимость, по сравнению с аналогами.
- Эковата – утеплитель, выполненный на основе естественных материалов (волокна дерева и минералы). На сегодняшний день применяется довольно часто.
Достоинства: звукоизоляция, экологичность, влагостойкость, доступная стоимость.
Недостатки: во время эксплуатации повышается теплопроводность, необходимость специального оборудования для монтажа, возможность усадки.
- Изолон – современный утеплитель, изготавливаемый путем вспенивания полиэтилена. Является одним из самых востребованных.
Достоинства: низкая теплопроводность, низкая паропроницаемость, высокая шумоизоляция, удобство резки и монтажа, экологичность, гибкость, небольшой вес.
Недостатки: низкая прочность, необходимость устройства вентиляционного зазора.
- Пенофол – утеплитель, который отвечает многим требованиям, предъявляемым к качеству утеплителя и утепления различных помещений, а также конструкций и т.д.
Достоинства: экологичность, высокая способность к отражению тепла, высокая шумоизоляция, влагонепроницаемость, негорючесть, удобство перевозки и монтажа, отражение воздействия радиации.
Недостатки: малая жесткость, затрудненность крепления материала, в качестве теплоизоляции одного пенофола недостаточно.
Заключение
Рассмотренные достоинства и недостатки утеплителей позволят выбрать самый подходящий вариант уже на стадии проектирования. При этом учитывать все требования, предъявляемые к теплоизоляционному материалу, в первую очередь теплопроводность.
Полезно1Бесполезно
Теплопроводность и плотность пеноплэкса, сравнение с пенополистиролом ПСБ
Представлена сравнительная таблица значений коэффициента теплопроводности, плотности пеноплэкса и пенополистирола ПСБ различных марок в сухом состоянии при температуре 20…30°С. Указан также диапазон их рабочей температуры.
Теплоизоляцию пеноплэкс, в отличие от беспрессового пенополистирола ПСБ, производят при повышенных температуре и давлении с добавлением пенообразователя и выдавливают через экструдер. Такая технология производства обеспечивает пеноплэксу закрытую микропористую структуру.
Пеноплэкс, по сравнению с пенополистиролом ПСБ, обладает более низким значением коэффициента теплопроводности λ, который составляет 0,03…0,036 Вт/(м·град). Теплопроводность пеноплэкса приблизительно на 30% ниже этого показателя у такого традиционного утеплителя, как минеральная вата. Следует отметить, что коэффициент теплопроводности пенополистирола ПСБ в зависимости от марки находится в пределах 0,037…0,043 Вт/(м·град).
Плотность пеноплэкса ρ по данным производителя находится в диапазоне от 22 до 47 кг/м3 в зависимости от марки. Показатели плотности пенополистирола ПСБ ниже — плотность самых легких марок ПСБ-15 и ПСБ-25 может составлять от 6 до 25 кг/м3, соответственно.
Максимальная температура применения пенополистирола пеноплэкс составляет 75°С. У пенопласта ПСБ она несколько выше и может достигать 80°С. При нагревании выше 75°С пеноплэкс не плавится, однако ухудшаются его прочностные характеристики. Насколько при таких условиях увеличивается коэффициент теплопроводности этого теплоизоляционного материала, производителем не сообщается.
Марка пенополистирола | λ, Вт/(м·К) | ρ, кг/м3 | tраб, °С |
---|---|---|---|
Пеноплэкс | |||
Плиты Пеноплэкс комфорт | 0,03 | 25…35 | -100…+75 |
Пеноплэкс Фундамент | 0,03 | 29…33 | -100…+75 |
Пеноплэкс Кровля | 0,03 | 26…34 | -100…+75 |
Сегменты Пеноплэкс марки 35 | 0,03 | 33…38 | -60…+75 |
Сегменты Пеноплэкс марки 45 | 0,03 | 38…45 | -60…+75 |
Пеноплэкс Блок | 0,036 | от 25 | -100…+75 |
Пеноплэкс 45 | 0,03 | 40…47 | -100…+75 |
Пеноплэкс Уклон | 0,03 | от 22 | -100…+75 |
Пеноплэкс Фасад | 0,03 | 25…33 | -100…+75 |
Пеноплэкс Стена | 0,03 | 25…32 | -70…+75 |
Пеноплэкс Гео | 0,03 | 28…36 | -100…+75 |
Пеноплэкс Основа | 0,03 | от 22 | -100…+75 |
Пенополистирол ПСБ (пенопласт) | |||
ПСБ-15 | 0,042…0,043 | до 15 | до 80 |
ПСБ-25 | 0,039…0,041 | 15…25 | до 80 |
ПСБ-35 | 0,037…0,038 | 25…35 | до 80 |
ПСБ-50 | 0,04…0,041 | 35…50 | до 80 |
Следует отметить, что теплоизоляция пеноплэкс благодаря своей закрытой микропористой структуре практически не впитывает влагу, не подвергается воздействию плесени, грибков и других микроорганизмов, является экологичным и безопасным для человека утеплителем.
Кроме того, экструдированный пенополистирол пеноплэкс обладает достаточно высокой химической стойкостью ко многим используемым в строительстве материалам. Однако некоторые органические вещества и растворители, приведенные в таблице ниже, могут привести к размягчению, усадке и даже растворению теплоизоляционных плит.
Высокая хим. стойкость | Низкая хим. стойкость |
---|---|
Кислоты (органические и неорганические) | Ароматические углеводороды (бензол, толуол, ксилол) |
Растворы солей | Альдегиды (формальдегид, формалин) |
Едкие щелочи | Кетоны (ацетон, метилэтилкетон) |
Хлорная известь | Эфиры (диэтиловый эфир, этилацетат, метилацетат) |
Спирт и спиртовые красители | Бензин, керосин, дизельное топливо |
Вода и краски на водной основе | Каменноугольная смола |
Аммиак, фреоны, парафины, масла | Полиэфирные смолы (отвердители эпоксидных смол) |
Цементы, строительные растворы и бетоны | Масляные краски |
Источники:
- ООО «Пеноплэкс СПб».
- ГОСТ 15588-86 Плиты пенополистирольные. Технические условия.
Диаграмма теплопроводности изоляционного материала
| Инженеры Edge
Связанные ресурсы: теплопередача
Таблица теплопроводности изоляционного материала
Теплообменная техника
Таблица теплопроводности различных изоляционных материалов
R-значений на дюйм в единицах СИ и британской системе мер. (Типичные значения являются приблизительными и основаны на среднем значении имеющихся результатов. Диапазоны отмечены знаком «-».
Материал | м 2 · К / (Вт · дюйм) | фут 2 · ° F · ч / (БТЕ · дюйм) | м · К / Ш |
---|---|---|---|
Панель с вакуумной изоляцией | 7,04! 5,28–8,8 | 3000! R-30 – R-50 | |
Аэрогель кремнезема | 1,76! 1,76 | 1000! Р-10 | |
Жесткая панель из полиуретана (расширенная CFC / HCFC) начальная | 1. 32! 1.23–1.41 | 0700! R-7 – R-8 | |
Жесткая панель из полиуретана (вспененный CFC / HCFC), возраст 5–10 лет | 1,1! 1,10 | 0625! Р-6.25 | |
Панель жесткая полиуретановая (вспененный пентан) начальная | 1,2! 1,20 | 0680! Р-6,8 | |
Жесткая панель из полиуретана (вспененный пентан), возраст 5–10 лет | 0,97! 0,97 | 0550! Р-5.5 | |
Жесткая панель из полиуретана с пленочным покрытием (вспененный пентан) | 45-48 | ||
Жесткая панель из полиизоцианурата, облицованная фольгой (вспененный пентан) начальная | 1,2! 1,20 | 0680! Р-6,8 | 55 |
Жесткая панель из полиизоцианурата, облицованная фольгой (вспененный пентан), возраст 5–10 лет | 0,97! 0.97 | 0550! Р-5.5 | |
Пена для распыления полиизоцианурата | 1,11! 0,76–1,46 | 0430! R-4. 3 – R-8.3 | |
Пенополиуритан с закрытыми ячейками для распыления | 1.055! 0.97–1.14 | 0550! R-5.5 – R-6.5 | |
Фенольная пена для распыления | 1.04! 0.85–1.23 | 0480! R-4.8 – R-7 | |
Тинсулейт утеплитель для одежды | 1.01! 1.01 | 0575! Р-5.75 | |
Панели карбамидоформальдегидные | 0,97! 0,88–1,06 | 0500! R-5 – R-6 | |
Пена карбамид | 0,924! 0,92 | 0525! Р-5.25 | |
Экструдированный пенополистирол (XPS) высокой плотности | 0,915! 0,88–0,95 | 0500! R-5 – R-5.4 | 26-40 |
Пенополистирол | 0.88! 0,88 | 0500! Р-5.00 | |
Жесткая фенольная панель | 0,79! 0,70–0,88 | 0400! R-4 – R-5 | |
Пена карбамидоформальдегидная | 0,755! 0,70–0,81 | 0400! R-4 – R-4. 6 | |
Войлок из стекловолокна высокой плотности | 0,755! 0,63–0,88 | 0360! R-3.6 – R-5 | |
Экструдированный пенополистирол (XPS) низкой плотности | 0.725! 0,63–0,82 | 0360! R-3.6 – R-4.7 | |
Айсинен насыпной (заливной) | 0,7! 0,70 | 0400! Р-4 | |
Формованный пенополистирол (EPS) высокой плотности | 0,7! 0,70 | 0420! Р-4.2 | 22-32 |
Пена для дома | 0,686! 0,69 | 0390! Р-3.9 | |
Рисовая шелуха | 0.5! 0,50 | 0300! Р-3.0 | 24 |
Стекловолокно | 0,655! 0,55–0,76 | 0310! R-3.1 – R-4.3 | |
Хлопковые войлоки (утеплитель Blue Jean) | 0,65! 0,65 | 0370! Р-3,7 | |
Формованный пенополистирол (EPS) низкой плотности | 0,65! 0,65 | 0385! Р-3. 85 | |
Айсинин спрей | 0.63! 0,63 | 0360! Р-3,6 | |
Пенополиуритан с открытыми порами | 0,63! 0,63 | 0360! Р-3,6 | |
Картон | 0,61! 0,52–0,7 | 0300! R-3 – R-4 | |
Войлок из каменной и шлаковой ваты | 0,6! 0,52–0,68 | 0300! R-3 – R-3.85 | |
Целлюлоза сыпучая | 0.595! 0,52–0,67 | 0300! Р-3 – Р-3.8 | |
Целлюлоза для влажного распыления | 0,595! 0,52–0,67 | 0300! Р-3 – Р-3.8 | |
Каменная и шлаковая вата сыпучая | 0,545! 0,44–0,65 | 0250! R-2,5 – R-3,7 | |
Стекловолокно насыпное | 0,545! 0,44–0,65 | 0250! R-2,5 – R-3,7 | |
Пенополиэтилен | 0.52! 0,52 | 0300! Р-3 | |
Цементная пена | 0,52! 0,35–0,69 | 0200! R-2 – R-3. 9 | |
Перлит сыпучий | 0,48! 0,48 | 0270! Р-2.7 | |
Деревянные панели, например обшивка | 0,44! 0,44 | 0250! Р-2,5 | 9 |
Жесткая панель из стекловолокна | 0.44! 0,44 | 0250! Р-2,5 | |
Вермикулит сыпучий | 0,4! 0,38–0,42 | 0213! R-2.13 – R-2.4 | |
Вермикулит | 0,375! 0,38 | 0213! Р-2.13 | 16-17 |
Солома | 0,26! 0,26 | 0145! Р-1.45 | 16-22 |
Бумажный бетон | 0260! Р-2.6-Р-3,2 | ||
Хвойная древесина (большая часть) | 0,25! 0,25 | 0141! Р-1.41 | 7,7 |
Древесная щепа и прочие насыпные изделия из древесины | 0,18! 0,18 | 0100! Р-1 | |
Снег | 0,18! 0,18 | 0100! Р-1 | |
Твердая древесина (большая часть) | 0. 12! 0,12 | 0071! Р-0,71 | 5,5 |
Кирпич | 0,03! 0,030 | 0020! Р-0,2 | 1,3–1,8 |
Стекло | 0,024! 0,025 | 0024! Р-0,14 | |
Литой бетон | 0,014! 0,014 | 0008! Р-0,08 | 0,43-0,87 |
Пробка
Пробка, вероятно, является одним из старейших изоляционных материалов, используемых в коммерческих целях, а в прошлом она была наиболее широко используемым изоляционным материалом в холодильной промышленности.В настоящее время из-за нехватки деревьев для производства пробки его цена относительно высока по сравнению с другими изоляционными материалами. Поэтому его использование очень ограничено, за исключением некоторых машинных оснований для уменьшения передачи вибрации. Он доступен в виде вспененных плит или плит, а также в виде гранул, его плотность варьируется от 110 до 130 кг / м 3, а среднее механическое сопротивление составляет 2,2 кг / м 2. Его можно использовать только при температуре 65 ° C. Он обладает хорошей теплоизоляционной эффективностью, довольно устойчив к сжатию и трудно поддается горению.Его основным техническим ограничением является тенденция к поглощению влаги со средней проницаемостью для водяного пара 12,5 г см м -2 день -1 мм рт. Ст. В таблицах A и B приведены некоторые типичные характеристики пробки.
ТАБЛИЦА A
Значения теплопроводности и плотности при 0 ° C стекловолоконной изоляции
Тип | Плотность | Теплопроводность |
(кг / м 3) | (Вт · м -1 ° C -1) / (ккал · ч -1 м -1 ° C -1) | |
Тип I | 10-18 | 0. 044 / 0,038 |
Тип II | 19-30 | 0,037 / 0,032 |
Тип III | 31-45 | 0,034 / 0,029 |
Тип IV | 46-65 | 0.033 / 0,028 |
Тип V | 66-90 | 0,033 / 0,028 |
Тип VI | 91 | 0,036 / 0,031 |
Стекловолокно, связанное смолой | 64-144 | 0. 036 / 0,031 |
Источник : Подготовлено авторами на основе данных из Melgarejo, 1995.
ТАБЛИЦА B
Значения теплопроводности и плотности пробковой изоляции при 20-25 ° C
Тип | Плотность | Теплопроводность |
(кг / м 3) | (Вт · м -1 ° C -1) / (ккал · ч -1 м -1 ° C -1) | |
Гранулированный сыпучий, сухой | 115 | 0.052 / 0,0447 |
Гранулированный | 86 | 0,048 / 0,041 |
Плита пробковая вспененная | 130 | 0,04 / 0,344 |
Доска пробковая вспененная | 150 | 0. 043 / 0,037 |
Вспененный со смолами / битумом | 100-150 | 0,043 / 0,037 |
Вспененный со смолами / битумом | 150–250 | 0,048 / 0,041 |
Источник : Подготовлено авторами на основе данных Melgarejo, 1995.
Связанные ресурсы:
© Copyright 2000-2021, Engineers Edge, LLC www.engineersedge.com
Все права защищены
Отказ от ответственности
| Обратная связь | Реклама
| Контакты
Дата / Время:
* Большая часть от Янга, Хью Д., Университетская физика, 7-е изд. Таблица 15-5. Значения для аэрогеля алмаза и диоксида кремния из Справочника по химии и физике CRC. Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. Имея это в виду, два приведенных выше столбца не всегда совпадают.Все значения взяты из опубликованных таблиц, но не могут считаться достоверными. Значение 0,02 Вт / мК для полиуретана может быть принято как номинальное значение, которое определяет пенополиуретан как один из лучших изоляторов. NIST опубликовал процедуру численного приближения для расчета теплопроводности полиуретана на http://cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана, наполненного фреоном, плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0.022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК. | Индекс Таблицы Ссылка |
(PDF) Теплофизические свойства пенополиуретана и их расплавов
К. Лаутенбергер, Г. Рейн и К. Фернандес-Пелло, «Применение генетического алгоритм оценки свойств материала
для моделирования пожара на основе данных лабораторных испытаний на огнестойкость », Fire Safety Journal, Vol.41, No.
3, 2006, pp. 204-214.
Г. Рейн, А. Бар-Илан, А. С. Фернандес-Пелло, Дж. Л. Эллзи, Дж. Л. Тореро и Д. Л. Урбан, «Моделирование
одномерного тлея полиуретана в условиях микрогравитации», Труды 30-го Международного симпозиума
on Combustion, Чикаго, штат Иллинойс, 25-30 июля 2004 г., Combustion Institute,
Pittsburgh, PA, Vol. 30, No. 2, 2005, pp. 2327-2334.
А. Матала, «Оценка параметров твердофазной реакции для моделирования пожара», магистерская работа,
Хельсинкский технологический университет, Эспоо, 2008 г.
Т.Г. Клири и Дж. Дж. Квинтьер, «Характеристика воспламеняемости пенопластов», NISTIR 4664,
Национальный институт стандартов и технологий, Гейтерсбург, Мэриленд, 1991.
Д. Хопкинс-младший и Дж. Дж. Квинтьер, «Свойства материала и прогнозы возгорания. для термопластов »,
Журнал пожарной безопасности, Том. 26, No. 3, 1996, pp. 241-268.
К. М. Батлер, Т. Дж. Олемиллер и Г. Т. Линтерис, «Отчет о ходе численного моделирования поведения потока расплава полимера
в эксперименте», Труды 10-й Международной конференции INTERFLAM
, INTERFLAM ’04, Эдинбург, Шотландия, 5-7 июля , 2004 г., Interscience Communications
Limited, Лондон, Англия, 2004 г., стр.937-948.
М. А. Абдельрахман, С. М. Саид, А. Ахмад, М. Инам и Х. Абул-Хамайель, «Теплопроводность
некоторых основных строительных материалов в Саудовской Аравии», Journal of Building Physics, Vol. 13, No. 4, 1990,
pp. 294-300.
А. Бугерра, А. Айт-Мохтар, О. Амири и М.Б. Диоп, «Измерение теплопроводности,
температуропроводности и теплоемкости высокопористых строительных материалов с использованием метода нестационарного плоского источника
», Международные коммуникации в области тепла и массообмен, Vol.28, No. 8, 2001, pp. 1065-
1078.
С. А. Аль-Айлан, «Измерение тепловых свойств изоляционных материалов с использованием метода источника переходной плоскости
», Прикладная теплотехника, Vol. 26, No. 17-18, 2006, pp. 2184-2191.
Указание по применению № 9, Свойства теплопередачи в наножидкостях, Hot Disk AB, Упсала, Швеция,
2009.
М. Густавссон и С. Э. Густавссон, «Теплопроводность как индикатор содержания жира в молоке»,
Thermochimica Acta, Vol.442, № 1-2, 2006, стр. 1-5.
Y. He, «Быстрое измерение теплопроводности с помощью сенсора с горячим диском: Часть 2. Определение характеристик термопасты
», Thermochimica Acta, Vol. 436, No. 1-2, 2005, pp. 130-134.
Д. Прайс, Ю. Лю, Дж. Дж. Милнс, Р. Халл, Б. К. Кандола и А. Р. Хоррокс, «Исследование
механизма огнестойкости и подавления дыма меламином в гибкой полиуретановой пене
», Пожар и материалы , Vol. 26, вып.4-5, 2002, стр. 201-206.
BS 5852: 2006, Методы испытаний для оценки воспламеняемости мягких сидений
тлеющими и горящими источниками возгорания, Британский институт стандартов, Лондон, Англия, 2006.
BS 4735: 1974, Лабораторный метод испытания для оценки характеристик горизонтального горения
образцов размером не более 150 мм × 50 мм × 13 мм (номинал) из ячеистых пластиков и материалов из пористой резины
при воздействии небольшого пламени, Британский институт стандартов, Лондон, Англия, 1974.
AS / NZS 1530.3: 1999, Методы огневых испытаний строительных материалов, компонентов и конструкций —
Одновременное определение воспламеняемости, распространения пламени, тепловыделения и дымовыделения,
Стандарты
Австралия, Сидней, Австралия, 1999.
Технический бюллетень 117, Требования, процедура испытаний и оборудование для испытания пламени
Устойчивость упругих наполнителей, используемых в мягкой мебели, Бюро домашней мебели
и теплоизоляции, Сакраменто, Калифорния, 2000.
Часть 25 — Стандарты летной годности: самолеты транспортной категории, Приложение F к Части 25, Часть I —
Критерии испытаний и процедуры для подтверждения соответствия § 25.853 или § 25.855 Федерального управления гражданской авиации
, Вашингтон, округ Колумбия, 1972.
К. Денекер, Дж. Дж. Лиггат и К. Э. Снейп, «Взаимосвязь между термической деградацией
Химия и воспламеняемость коммерческих гибких полиуретановых пен», Журнал прикладных исследований
Polymer Science, Vol.100, No. 4, 2006, pp. 3024-3033.
Л. Б. Валенсия, Т. Рогом, Э. Гийом, Г. Рейн и Дж. Л. Тореро, «Анализ продуктов основного газа
при горении полиэфирополиуретановой пены при различных уровнях освещенности», Fire Safety
Journal, Vol. 44, No. 7, 2009, pp. 933-940.
А. Тьюарсон, «Выделение тепла и химических соединений при пожарах», Справочник по пожарам SFPE
Protection Engineering, третье издание, П. Дж. ДиНенно и др. (Ред.), Национальная ассоциация противопожарной защиты,
Quincy, MA, 2002, стр. 3-82–3-161.
Бетон | |||
Газобетонная плита | 0,160 | 840 | 500 |
Литой бетон (плотный) | 1.400 | 840 | 2100 |
Литой бетон (легкий) | 0,380 | 1000 | 1200 |
Литой бетон | 1,130 | 1000 | 2000 |
Бетонный блок (тяжелый) | 1.630 | 1000 | 2300 |
Бетонный блок (средний) | 0,510 | 1000 | 1400 |
Бетонный блок (легкий) | 0,190 | 1000 | 600 |
Павиур из бетона | 0.960 | 840 | 2000 |
Пеношлак | 0,250 | 960 | 1040 |
Блок из пенобетона | 0,240 | 1000 | 750 |
Огнеупорный изоляционный бетон | 0.250 | 837 | 1050 |
Вермикулит агрегат | 0,170 | 837 | 450 |
Бетонная плитка | 1.100 | 837 | 2100 |
Сушеный заполнитель для тяжелого бетона — CC01 | 1.310 | 837 | 2243 |
Тяжелый бетонный невыдержанный заполнитель — CC11 | 1,802 | 837 | 2243 |
Тяжелый бетонный невыдержанный заполнитель — HF-C12 | 1,730 | 837 | 2243 |
Легкий бетон — 80 фунтов — CC21 | 0.36 | 837 | 1282 |
Легкий бетон — 30 фунтов — CC31 | 0,130 | 837 | 481 |
Легкий бетон — 40 фунтов — HF-C14 | 0,173 | 837 | 641 |
Легкий бетон — HF-C2 | 0.380 | 837 | 609 |
Тяжелый бетонный блок — пустотелый — CB01 | 0,812 | 837 | 1618 |
Тяжелый бетонный блок — заполненный бетоном — CB02 | 1,310 | 837 | 2234 |
Тяжелый бетонный блок — наполненный перлитом — CB03 | 0.384 | 837 | 1650 |
Тяжелый бетонный блок — бетон с частичным заполнением — CB04 | 1.011 | 837 | 1826 |
Тяжелый бетонный блок — бетон и перлит с наполнителем — CB05 | 0,825 | 837 | 1842 |
Бетонный блок средней плотности — пустотелый — CB21 | 0.519 | 837 | 1218 |
Бетонный блок средней плотности — с бетонным заполнением — CB22 | 0,771 | 837 | 1842 |
Бетонный блок средней плотности — с перлитом — CB23 | 0,262 | 837 | 1250 |
Бетонный блок средней плотности — бетон с частичным заполнением — CB24 | 0.572 | 837 | 1426 |
Бетонный блок средней плотности — бетон и перлитный наполнитель — CB25 | 0,431 | 837 | 1442 |
Легкий бетонный блок — пустотелый — CB41 | 0,384 | 837 | 1041 |
Легкий бетонный блок — заполненный бетоном — CB42 | 0.639 | 837 | 1666 |
Легкий бетонный блок — с перлитом — CB43 | 0,220 | 837 | 1073 |
Легкий бетонный блок — бетон с частичным заполнением — CB44 | 0,486 | 837 | 1250 |
Легкий бетонный блок — бетон и перлитный наполнитель — CB45 | 0.360 | 837 | 1266 |
Гравий, постельные принадлежности и т. Д. | |||
Каменная крошка | 0.960 | 1000 | 1800 |
Гравий | 0,360 | 840 | 1840 |
Грунт на гравийной основе | 0,520 | 184 | 2050 |
Постельное белье из плитки | 1.400 | 650 | 2100 |
Изоляционные материалы | |||
Плита Eps | 0.035 | 1400 | 25 |
Кремний | 0,180 | 1004 | 700 |
Одеяло из стекловолокна | 0,040 | 840 | 12 |
Стекловолоконная плита | 0,035 | 1000 | 25 |
Плита из минерального волокна | 0.035 | 1000 | 30 |
Фенольная пена | 0,040 | 1400 | 30 |
Полиуретановая плита | 0,025 | 1400 | 30 |
Уф-пена | 0,040 | 1400 | 10 |
Плита из древесной шерсти | 0.100 | 1000 | 500 |
Кирпич изоляционный вермикулитный | 0,270 | 837 | 700 |
Огнеупорный изоляционный бетон | 0,250 | 837 | 1050 |
Стекловата | 0.040 | 670 | 200 |
Thermalite — высокопрочный | 0,190 | 1050 | 760 |
Thermalite ‘Turbo’ | 0,110 | 1050 | 480 |
Thermalite ‘Shield’ / ‘Smooth Face’ | 0.170 | 1050 | 650 |
Siporex | 0,120 | 1004 | 550 |
P.V.C | 0,160 | 1004 | 1379 |
Полистирол | 0,030 | 1380 | 25 |
Твердая резина | 0.150 | 1000 | 1200 |
Доска Cratherm | 0,050 | 837 | 176 |
Уф-пена Два | 0,030 | 1764 | 30 |
Уф-пена Два | 0,030 | 1764 | 30 |
Облицовка из легкого металла | 0.290 | 1000 | 1250 |
Плотная изоляция для перекрытий Eps (пенополистирол) | 0,025 | 1400 | 30 |
Ячеистое стекло | 0,050 | 800 | 136 |
Стекловолокно — органическое соединение | 0.036 | 1000 | 100 |
Вспученный перлит — органическая связка | 0,052 | 1300 | 16 |
Вспененная резина — жесткая | 0,032 | 1700 | 72 |
Ячеистый полиуретан | 0.023 | 1600 | 24 |
Клеточный полиизоцианурат | 0,023 | 900 | 32 |
Клеточный фенол — минеральное волокно со связующим на основе смолы | 0,042 | 700 | 240 |
Плита из цементного волокна — измельченная древесина со связующим цемента оксисульфида магнезии | 0.082 | 1300 | 350 |
Вермикулит расслоенный | 0,068 | 1300 | 120 |
Войлок и мембрана — Войлок — HF-E3 | 0,190 | 1674 | 1121 |
Войлок и мембрана — Отделка — HF-A6 | 0.415 | 1088 | 1249 |
Минеральная вата / волокно — Батт — IN01 | 0,043 | 837 | 10 |
Минеральная вата / волокно — наполнитель — IN11 | 0,046 | 837 | 10 |
Минеральная вата / волокно — наполнитель — IN12 | 0.046 | 837 | 11 |
Целлюлозный наполнитель — IN13 | 0,039 | 1381 | 48 |
Изоляционная плита — HF-B2 | 0,043 | 1381 | 48 |
Изоляционная плита — HF-B5 | 0.043 | 837 | 32 |
Предварительно формованная минеральная плита — IN21 | 0,042 | 711 | 240 |
Пенополистирол — IN31 | 0,035 | 1213 | 29 |
Вспененный полиуретан — IN41 | 0.023 | 1590 | 24 |
Формальдегид мочевины — IN51 | 0,035 | 1255 | 11 |
Обшивка изоляционной панелью — IN61 | 0,055 | 1297 | 288 |
Изоляционная плита для черепицы — IN63 | 0.058 | 1297 | 288 |
Изоляционная плита Обшивка основания гвоздя — IN64 | 0,064 | 1297 | 400 |
Предварительно формованная изоляция крыши — IN71 | 0,052 | 837 | 256 |
Металл | |||
Сталь | 50.000 | 480 | 7800 |
Медь | 200.000 | 418 | 8900 |
Алюминий | 160.000 | 896 | 2800 |
Облицовка из легкого металла | 0,290 | 1000 | 1250 |
Стальной сайдинг — HF-A3 | 44.970 | 418 | 7690 |
Гипс | |||
Штукатурка (плотная) | 0.500 | 1000 | 1300 |
Гипс (легкий) | 0,160 | 1000 | 600 |
Гипсокартон | 0,160 | 840 | 950 |
Перлитный гипсокартон | 0.180 | 837 | 800 |
Гипсовая штукатурка | 0,420 | 837 | 1200 |
Перлитовая штукатурка | 0,080 | 837 | 400 |
Штукатурка вермикулит | 0.200 | 837 | 720 |
Гипсовая потолочная плитка | 0,380 | 840 | 1120 |
Цементная штукатурка | 0,720 | 800 | 1860 |
Перлитовая штукатурка | 0,220 | 1300 | 720 |
Перлитовая штукатурка — песчано-заполнитель | 0.810 | 800 | 1680 |
Цементная штукатурка — с песчаным заполнителем — CM03 | 0,721 | 837 | 1858 |
Гипсокартон / гипсовая плита — HF-E1 | 0,160 | 837 | 801 |
Гипсовый гипс легкий заполнитель — GP04 | 0.230 | 837 | 721 |
Гипсовая штукатурка — песчаный заполнитель — GP06 | 0,819 | 837 | 1682 |
Стяжки и штукатурки | |||
Внешний рендеринг | 0.500 | 1000 | 1300 |
Стяжка | 0,410 | 840 | 1200 |
Гранолитная штукатурка / стяжка | 0,870 | 837 | 2085 |
Штукатурка — HF-A1 | 0,721 | 837 | 2659 |
Пески, камни и почвы | |||
Каменная крошка | 0.960 | 1000 | 1800 |
Гравий | 0,360 | 840 | 1840 |
Грунт на гравийной основе | 0,520 | 184 | 2050 |
Песчаник | 1,830 | 712 | 2200 |
Гранит (красный) | 2.900 | 900 | 2650 |
Мрамор (белый) | 2,770 | 802 | 2600 |
Культивируемая песчаная почва 12,5% D.W. Влажность | 1,790 | 1190 | 1800 |
Обработанная песчаная почва 25,0% D.W. Влага | 2,220 | 1480 | 2000 |
Культурно-глинистая почва 12,5% D.W. Влажность | 1,180 | 1250 | 1800 |
Культурно-глинистая почва 25,0% D.W. Влажность | 1,590 | 1550 | 2000 |
Культурная торфяная почва 133% D.W. Влага | 0,290 | 3300 | 700 |
Культурная торфяная почва 366% D.W. Влажность | 0,500 | 3650 | 1100 |
Сухой известняковый грунт | 1,490 | 840 | 2180 |
Лондонская глина | 1.410 | 1000 | 1900 |
Почва | 1,729 | 837 | 1842 |
Камень — ST01 | 1,802 | 837 | 2243 |
Камень — HF-A3 | 1,435 | 1674 | 881 |
Терраццо — TZ01 | 1.802 | 837 | 2243 |
Плитка | |||
Глиняная плитка | 0.840 | 800 | 1900 |
Бетонная плитка | 1.100 | 837 | 2100 |
Сланцевая плитка | 2.000 | 753 | 2700 |
Пластиковая плитка | 0,500 | 837 | 1950 |
Резиновая плитка | 0.300 | 2000 | 1600 |
Пробковая плитка | 0,080 | 1800 | 530 |
Асфальт / асбестовая плитка | 0,550 | 837 | 1900 |
P.V.C. / Асбестовая плитка | 0.850 | 837 | 2000 |
Плитка потолочная | 0,056 | 1000 | 380 |
Гипсовая потолочная плитка | 0,380 | 840 | 1120 |
Облицовка из легкого металла | 0.290 | 1000 | 1250 |
Акустическая плитка — минеральное волокно | 0,050 | 800 | 290 |
Акустическая плитка — AC01 | 0,057 | 1339 | 288 |
Акустическая плитка — HF-E5 | 0.061 | 2142 | 480 |
Плитка из полой глины — 1 ячейка — CT01 | 0,498 | 837 | 1121 |
Плитка из полой глины — 2 ячейки — CT03 | 0,571 | 837 | 1121 |
Плитка из полой глины — 3 ячейки — CT06 | 0.692 | 837 | 1121 |
Глиняная плитка — HF-C1 | 0,571 | 837 | 1121 |
Асфальтоукладчик — Глиняная плитка — CT11 | 1,802 | 837 | 1922 |
шифер — SL01 | 1.442 | 1464 | 1602 |
Древесина | |||
Деревянные полы | 0.140 | 1200 | 650 |
Фанера (легкая) | 0,150 | 2500 | 560 |
Фанера (тяжелая) | 0,150 | 1420 | 700 |
Деревянные блоки | 0.140 | 1200 | 650 |
Плита из древесной шерсти | 0,100 | 1000 | 500 |
Оргалит (средний) | 0,080 | 2000 | 600 |
Оргалит (стандартный) | 0.130 | 2000 | 900 |
Сосна (влажность 20%) | 0,140 | 2720 | 419 |
Пробковая доска | 0,040 | 1888 | 160 |
ДСП | 0,150 | 2093 | 800 |
Обшивка | 0.140 | 2000 | 650 |
Дуб (Радиальный) | 0,190 | 2390 | 700 |
Пробковая плитка | 0,080 | 1800 | 530 |
Фанера — PW01 | 0,115 | 1213 | 545 |
Мягкое дерево — WD01 | 0.115 | 1381 | 513 |
Твердая древесина — WD11 | 0,158 | 1255 | 721 |
Дерево — HF-B7 | 0,121 | 837 | 593 |
Фанера — Дугласская пихта | 0,120 | 1200 | 540 |
Гонт Древесина — WS01 | 0.115 | 1255 | 513 |
Теплопроводность
Теплопроводность
Теплопроводность — это свойство материала. Не будет отличаться от
размеры материала, но это зависит от температуры,
плотность и влажность материала. Тепловой
проводимость материала зависит от его температуры, плотности и
содержание влаги. Теплопроводность, обычно встречающаяся в таблицах, составляет
значение действительно для нормальной комнатной температуры.Это значение не будет отличаться
значительно между 273 и 343 К (0 — 70 ° C). Когда высокие температуры
например, в духовках, влияние температуры должно быть
учтено.
Как правило, легкие материалы являются лучшими изоляторами, чем тяжелые.
потому что легкие материалы часто содержат воздухозаборники. Сухой неподвижный воздух
очень низкая проводимость. Слой воздуха не всегда будет хорошим
изолятором, потому что тепло легко переносится излучением и
конвекция.
Когда материал, например изоляционный, становится влажным, воздух
корпуса наполняются водой и, поскольку вода является лучшим проводником
чем воздух, увеличивается проводимость материала.Вот почему это
очень важно устанавливать изоляционные материалы, когда они сухие и
следите за тем, чтобы они оставались сухими.
Проводимость против проводимости
Электропроводность (k) — это свойство материала, означающее его способность
проводить тепло через его внутреннюю структуру. Поведение по отношению к другому
рука является свойством объекта и зависит как от его материала, так и от
толщина. Электропроводность равна удельной электропроводности, умноженной на толщину, в дюймах.
единиц Вт / м²К. Поскольку проводимость обратно пропорциональна удельному сопротивлению,
поэтому общее сопротивление материала может быть выражено как его общее
толщина, деленная на общую проводимость.В таблице ниже представлен список
строительных материалов и их теплопроводности для сухой (закрытой)
и влажные (наружные) условия.
Группа | Материал | Удельная масса (кг / м3) | Теплопроводность (Вт / мК) | |
---|---|---|---|---|
Сухой | мокрый | |||
Металл | Алюминий | 2800 | 204 | 204 |
Медь | 9000 | 372 | 372 | |
Свинец | 12250 | 35 | 35 | |
Сталь, Чугун | 7800 | 52 | 52 | |
цинк | 7200 | 110 | 110 | |
Натуральный камень | Базальт, Гранит | 3000 | 3.5 | 3,5 |
Голубой камень, Мрамор | 2700 | 2,5 | 2,5 | |
Песчаник | 2600 | 1,6 | 1,6 | |
Кладка | Кирпич | 1600-1900 | 0,6-0,7 | 0,9–1,2 |
Кирпич силикатный | 1900 | 0.9 | 1,4 | |
1000-1400 | 0,5-0,7 | |||
Бетон | Гравийный бетон | 2300-2500 | 2,0 | 2,0 |
Легкий бетон | 1600-1900 | 0,7–0,9 | 1,2–1,4 | |
1000-1300 | 0.35-0,5 | 0,5-0,8 | ||
300-700 | 0,12-0,23 | |||
Пемзобетон | 1000-1400 | 0,35-0,5 | 0,5–0,95 | |
700-1000 | 0,23–0,35 | |||
Изоляционный бетон | 300-700 | 0.12-0,23 | ||
Ячеистый бетон | 1000-1300 | 0,35-0,5 | 0,7–1,2 | |
400-700 | 0,17–0,23 | |||
Шлакобетон | 1600-1900 | 0,45–0,70 | 0,7–1,0 | |
1000-1300 | 0.23-0,30 | 0,35-0,5 | ||
Неорганическое | Асбестоцемент | 1600-1900 | 0,35-0,7 | 0,9–1,2 |
Гипсокартон | 800-1400 | 0,23–0,45 | ||
Гипсокартон | 900 | 0,20 | ||
Стекло | 2500 | 0.8 | 0,8 | |
Пеностекло | 150 | 0,04 | ||
Минеральная вата | 35-200 | 0,04 | ||
Плитка | 2000 | 1,2 | 1,2 | |
Пластыри | Цемент | 1900 | 0,9 | 1.5 |
лайм | 1600 | 0,7 | 0,8 | |
Гипс | 1300 | 0,5 | 0,8 | |
Органическое | Пробка (развернутая) | 100-200 | 0,04–0,0045 | |
Линолеум | 1200 | 0,17 | ||
Резина | 1200-1500 | 0.17-0,3 | ||
ДВП | 200-400 | 0,08-0,12 | 0,09–0,17 | |
Дерево | Твердая древесина | 800 | 0,17 | 0,23 |
Хвойная древесина | 550 | 0,14 | 0,17 | |
Фанера | 700 | 0.17 | 0,23 | |
Оргалит | 1000 | 0,3 | ||
Мягкая доска | 300 | 0,08 | ||
ДСП | 500–1000 | 0,1-0,3 | ||
ДСП | 350-700 | 0,1–0,2 | ||
Синтетика | Полиэстер (GPV) | 1200 | 0.17 | |
Полиэтилен, полипропилен | 930 | 0,17 | ||
Поливинилхлорид | 1400 | 0,17 | ||
Синтетическая пена | Пенополистирол, эксп. (ПС) | 10-40 | 0,035 | |
То же, экструдированный | 30-40 | 0.03 | ||
Пенополиуретан (PUR) | 30–150 | 0,025–0,035 | ||
Твердая пена на основе фенольной кислоты | 25-200 | 0,035 | ||
ПВХ-пена | 20-50 | 0,035 | ||
Изоляция полости | Изоляция стенок полости | 20–100 | 0.05 | |
Битумные материалы | Асфальт | 2100 | 0,7 | |
Битум | 1050 | 0,2 | ||
Вода | Вода | 1000 | 0,58 | |
Лед | 900 | 2.2 | ||
Снег свежий | 80-200 | 0,1–0,2 | ||
Снег, старый | 200-800 | 0,5–1,8 | ||
Воздух | Воздух | 1,2 | 0,023 | |
Почва | Почва лесная | 1450 | 0.8 | |
Глина с песком | 1780 | 0,9 | ||
Влажная песчаная почва | 1700 | 2,0 | ||
Почва (сухая) | 1600 | 0,3 | ||
Напольное покрытие | Плитка напольная | 2000 | 1.5 | |
Паркет | 800 | 0,17-0,27 | ||
Ковер из нейлонового войлока | 0,05 | |||
Ковер (поролон) | 0,09 | |||
Пробка | 200 | 0,06-0,07 | ||
Шерсть | 400 | 0.07 |
Влияние структурных характеристик и текучей среды на эффективную теплопроводность спеченной медной пены
Основные особенности
- •
Пористая медь с хорошо контролируемой пористостью, размером пор и формой пор была произведена с помощью нового метода держателя пространства.
- •
Естественная конвекция обеспечивает до 50% эффективной теплопроводности пористой меди с высокой пористостью.
- •
Была установлена линейная зависимость между вкладом жидкости и параметрами пористости и размером частиц Cu.
- •
Соотношение между теплопроводностью и пористостью хорошо согласуется с модифицированной моделью степенного закона.
Abstract
Теплообменники с отличными характеристиками теплопередачи очень востребованы как разработка мощных микросхем и интегральных схем.Благодаря большой площади поверхности и хорошей теплопроводности пористый металл стал потенциальным материалом для будущих теплообменников. В данном исследовании для изготовления образцов вспененной меди с хорошо контролируемым размером частиц, пористостью и размером пор был использован метод порошковой металлургии. Экспериментально исследовано влияние размера частиц, пористости и естественной конвекции на так называемую эффективную теплопроводность (ETC) медной пены и механизм теплопередачи в системе медная пена-жидкость.Эффект естественной конвекции был изучен путем сравнения ETC систем медная пена, медная пена-воздух и медная пена-вода. Результаты показывают, что на теплопроводность спеченного образца меди сильно влияет размер частиц исходного медного порошка. Средний размер частиц (45–70 мкм) был идеальным для получения наилучшей теплопроводности. Зависимость ETC от пористости может быть правильно описана моделью степенного закона. Также была предложена линейная корреляция для описания влияния пористости и размера пор на вклад жидкости в систему металлическая пена – жидкость.
Ключевые слова
Эффективная теплопроводность
Медная пена
Естественная конвекция
Спекание медного порошка
Пористая среда
Рекомендуемые статьиЦитирующие статьи (0)
Посмотреть аннотацию
© 2020 Автор (ы). Опубликовано Elsevier B.V.
Рекомендуемые статьи
Цитирующие статьи
Теплопроводность пенополистирола XPS (экструдированный полистирол)
Пенополистирол является хорошими теплоизоляционными материалами и поэтому часто используется в качестве строительных изоляционных материалов.Экструдированный пенополистирол (XPS) состоит из закрытых ячеек и обеспечивает улучшенную шероховатость поверхности, большую жесткость и пониженную теплопроводность. На изображении ниже показано применение изоляционного материала в типичной домашней конструкции. XPS применяется в этом случае для повышения эффективности изоляционной системы для каркасного потолка.
Поскольку теплопроводность материала XPS является ключевым показателем качества, производители и заказчики постоянно ищут простые способы получения данных о характеристиках теплопроводности материала.Недавно европейский производитель материала XPS отправил в нашу лабораторию несколько образцов для определения характеристик с помощью датчика C-Therm Modified Transient Plane Source. Производитель отправил несколько образцов купонов.
Хотя производитель образцов XPS вырезал образцы до меньших размеров, чем типичные размеры платы XPS — это НЕ ОБЯЗАТЕЛЬНО — датчик MTPS может легко обрабатывать образцы большего формата — в конечном итоге образцы были определены по размеру из-за соображений доставки.
Тестовая установка MTPS
Испытательная установка соответствовала довольно типичной схеме размещения образца на датчике, как показано на рисунке ниже. Для лучшей поддержки образца на датчике использовалась удлинительная пластина. Для образцов большего размера датчик на тестовом образце был бы перевернут. Образец тестировали как сверху, так и снизу для оценки однородности / консистенции образца.
Результаты эксперимента
Результаты тестирования образца были доступны в течение 10 минут при тестировании как верхней, так и нижней части образца и обобщены в таблице ниже:
Образец | Верхний | Нижний | ||
1 | 0.0334 | 0,0341 | ||
2 | 0,0344 | 0,0342 | ||
3 | 0,0341 | 0,0342 | ||
4 | 0,0343 | 0,0340 | ||
5 | 0,0340 0,0340 | 0,0340 | ||
Среднее значение | 0,0341 | 0,0341 |
Результаты испытаний на теплопроводность XPS (Вт / мК)
Результаты испытаний показали, что материал имеет превосходную консистенцию и полностью соответствует ожидаемому диапазону теплопроводности.