Установка арматуры ленточного фундамента: Монтаж арматуры для фундамента своими руками

Содержание

Монтаж арматуры для фундамента своими руками

Монтаж арматуры для фундамента

Прочность бетона высока, но недостаточна для изготовления из него монолитных фундаментов для домов или бань. Для придания основаниям строений необходимых характеристик в них перед заливкой устанавливают стальные стержни по определенным правилам. О том, как правильно выполнять монтаж арматуры для фундамента и пойдет речь в дальнейшем.

Особенности армирования фундаментов

Установка арматуры для фундамента должна выполняться с соблюдением целого комплекса различных правил. Только при их соблюдении можно гарантировать качественное основание, которое выдержит нагрузку не только от массы самого строения, но и от давления грунта при его пучении.

Основным материалом для армирования бетонных фундаментов являются стальные стержни диаметром от 12 до 20 мм. Отличительной их особенностью является наличие выступающих продольных и косых ребер. Этот аспект позволяет улучшить контакт между арматурными стержнями и бетонной смесью, что, в свою очередь, повышает прочностные характеристики железобетонного основания дома.

На металлобазах арматура реализуется стержнями, длина которых составляет 11-12 метров. Это очень удобно при монтаже каркаса фундамента, так как позволяет устанавливать продольные стержни в армопоясе по всей длине стен домов без сращивания. К сожалению, данный аспект значительно осложняет транспортировку арматуры к месту проведения строительных работ, что может привести к удорожанию бюджета строения.

На некоторых направлениях при монтаже армирующего каркаса допускается установка гладкой стальной арматуры меньшего диаметра. При этом необходимо следить за отсутствием на поверхности стержней глубоких коррозионных поражений, которые могут повлиять на прочность будущего фундамента.

Располагать стержни необходимо в соответствие требованиям строительных норм и правил. Нижний ряд, состоящий из двух-трех прутков, располагают на высоте не менее 5 см от дна траншеи под фундамент. Шаг поперечной арматуры в ленточном фундаменте обычно составляет 0,5 метра. На углах и стыках с перемычками его принято уменьшать вдвое.

В местах крепления горизонтальных продольных и поперечных прутков принято устанавливать и вертикальные стержни. Таким образом создается стальная решетка с определенными размерами. Для соединения арматуры в местах стыка применяют два основных способа:

  1. Первый предполагает использование сварного шва. Данный вариант крепления арматурных стержней имеет множество противников и сторонников. Первые указывают на невысокую коррозионную стойкость сварки, что в последующем может привести к ее разрушению. Вторым импонирует более высокая скорость армирования ленточного фундамента.
  2. Второй вариант подразумевает соединение арматурных стержней ленточного фундамента вязальной проволокой. В ее качестве используют отожженную стальную нить толщиной около 1 мм. С помощью специальных приспособлений или простейшего слесарного инструмента куски проволоки надежно скрепляют элементы армопояса ленточного фундамента.

к оглавлению ↑

Определяем количество расходных материалов

Перед началом работ по армированию ленточного фундамента важно правильно рассчитать количество необходимых расходных материалов – стальных стержней – гладких или рифленых, и проволоки. Определить искомые параметры помогут известные правила монтажа арматурных стержней.

Определяем количество арматуры для армирования

Рассчитаем количество материалов для армирования ленточного фундамента на примере строительства дома с размерами стен в плане 6х8 метров и одной поперечной перегородкой. Ширина траншеи будет равна 0,4 метра, глубина – 1,9 метра. Сначала рассчитаем количество продольных стержней.

Для получения каркаса с максимальными прочностными характеристиками желательно уложить арматурные стержни в четыре нити – две снизу и две сверху. Для упрочнения углов желательно выполнить загибы концов на длину, равную 40D. При диаметре стержней в 16 мм величина загнутых концов будет равна 40х16=640мм.

Исходя из указанных параметров, необходимая длина стержней будет равна:

(6+1,28)х2х4+(8+1,28)х2х4+(6+1,28)х4=58,24+74,24+29,12=161,6, где

Первая скобка – длина стержней для стены длиной 6 метров с учетом загибов на обоих концах, вторая скобка – та же величина для стены длиной 8 метров и вторая скобка – длина стержней для перегородки. Количество стен каждой длины равно двум, количество стержней для армирования каждой из них – четырем.

Следующий этап – расчет поперечных горизонтальных и вертикальных стержней. Общая длина армирования составляет:

(6+8)х2+6=34 метра.

Армирование ленточного основания

Короткие стержни устанавливают с шагом 0,5 метра, значит, количество горизонтальных и вертикальных пар будет равно:

34х0,5=68

Длина стержней должна обеспечивать зазор между армопоясом и границами железобетонного основания дома, равный не менее 5 см с каждой стороны. Соответственно, длина горизонтальных стержней равна

40-5-5=30, вертикальных 190-5-5=180.

Общая длина арматуры для перемычек будет равна:

(68х0,3х2)+(68х1,8х2)=40,8+244,8=285,6 метра.

Исходя из строительных нормативов, для продольной арматуры диаметр стержней выбирают равным 12-20 мм, для горизонтальных и вертикальных перемычек диаметр прута может быть уменьшен до 8-10 мм.

Расчет арматуры для ленточного фундамента

Вязальная проволока устанавливается из расчета 0,3 метра на каждый монтажный узел. Учитывая необходимость крепления к продольным стержням вертикальной и горизонтальной перемычки, количество связок будет равно 68х8=544. Общая длина требуемой вязальной проволоки равна 544х0,3=163,2 метра.

к оглавлению ↑

Монтаж арматуры ленточного фундамента

Приобретя необходимое количество стальных стержней, перед их установкой своими руками желательно разрезать детали в необходимый размер. Делать это удобно с помощью болгарки и простейших приспособлений для контроля длины. Подготовив все необходимое, также с использованием простейших приспособлений выполняем загиб концов продольных стержней под углом 90о.

Арматуру с загнутыми концами укладываем в траншею. Для контроля высоты под нижний ряд стержней положите куски колотого силикатного или красного кирпича. В углах и на стыке с перемычкой стержни соединяем скрутками из вязальной проволоки между собой.

Следующий этап установки арматуры – монтаж горизонтальных перемычек нижнего ряда. Нарезанные ранее куски укладывают поверх стержней, соблюдая шаг установки не более 0,5 мера, и притягивают проволокой. Далее в углах устанавливают и фиксируют стяжками вертикальные проставки требуемой длины.

К верхним торцам стоек крепим продольные стержни с ранее загнутыми концами. Для контроля расстояния между элементами верхнего ряда параллельно ведем монтаж горизонтальных перемычек. Аналогично нижней обвязке загнутые части стержней стягиваем с перпендикулярными элементами, уложенными под соседними стенами.

Выполнять монтаж армирующего каркаса непосредственно в траншее – задача достаточно сложная из-за ограниченного пространства. Часто основную работу стараются выполнять наверху, выделив для этого ровную площадку недалеко от будущего фундамента. Из арматурных стержней вязальной проволокой скрепляют каркасы каждой стены, которые позже в готовом виде устанавливают в траншею. При большой длине стен дома для такого способа может потребоваться помощь подъемной строительной техники.

к оглавлению ↑

Особенности монтажа арматуры в углах

Как уже было отмечено ранее, правильное армирование углов ленточного фундамента из железобетона является очень важным элементом всей работы. Ошибки, допущенные на этом этапе, могут привести к дорогостоящему ремонту основания дома или к его демонтажу и полной замене.

Лучшим способом усилить углы фундамента и места присоединения перемычек – использование Г-образных стержней, имеющих достаточный загиб. Взаимное пересечение таких деталей и их надежная стяжка после заливки обеспечат требуемые прочностные характеристики ленточного фундамента.

Армирование углов ленточного фундамента

Если установка арматуры в ленточном фундаменте уже выполнена или элементы, изготовленные на земле лишены указанных особенностей, можно использовать другой способ. Заранее изготавливают загнутые под прямым углом угловые вставки с размером плеч не менее 700 мм. Их укладывают в углы, фиксируя к короткой продольной арматуре.

Для усиления жесткости фундаментных углов особое внимание требует и шаг арматуры в ленточном фундаменте. Горизонтальные вставки на расстоянии 1 метра от загиба ленты располагают с промежутком, который в два раза меньше стандартного. То есть, если на длинных сторонах каркаса перемычки располагались на расстоянии друг от друга 0,5 метра, то в углах эта величина должна быть уменьшена до 0,25 м.

    

Установка арматуры под фундамент | Строительный портал

Каждый застройщик хочет, чтобы здание любого назначения радовало своим долгим сроком эксплуатации. За устойчивость и надежность строения отвечает фундамент. Поэтому к его обустройству предъявляется особое внимание. Основными составляющими основания является бетон и арматура. Последний элемент играет важную роль. Ведь именно он придает бетонной смеси прочностные характеристики. Без использования армирования дом начнет проседать и крениться. В худшем случае произойдет разрушение стен. В статье речь пойдет  том, как правильно установить арматуру под фундамент.

Содержание:

  1. Разнообразие арматуры под фундамент
  2. Диаметр арматуры
  3. Расчет арматуры под фундамент
  4. Устройство арматуры под фундамент
  5. Несколько полезных советов
  6. Арматура под фундамент своими руками. Этапы работ

Разнообразие арматуры под фундамент

Стальная арматура под фундамент
  • Традиционно для упрочнения любого типа фундамента применяют металлические прутья из низкоуглеродистой стали. Этот продукт металлопроката представляет собой изделие круглого сечения с гладкой или рифленой поверхностью.
  • При производстве используется холоднокатаная и горячекатаная технология. Последний вариант как раз и позволяет выпускать стержни для формирования монолитных бетонных конструкций.

Арматура под фундамент фото

  • Металлические изделия с маркировкой от А2 до А6 имеют периодический профиль. Эти стержни рекомендованы для таких работ как обустройство основания при строительстве домов. Гладкие прутья используются лишь как вспомогательные элементы.  
  • Арматура прекрасно выдерживает как продольные, так и поперечные нагрузки. Ее расположение в каркасе позволяет правильно распределять силу динамических нагрузок и предотвращать появление трещин в конструкции.
Композитная арматура под фундамент
  • На рынке представлен относительно новый вид изделий для армирования – композитные стержни. Их применение не столь распространено на постсоветском пространстве, чем скажем в той же Америке или Японии.

2

  • Для изготовления прутьев используют стеклопластик или базальтовое волокно. Последний вариант характеризуется повышенной прочностью, но и стоимость данной  арматуры под фундамент стоимость  дороже стеклопластикового аналога.  
  • Такие изделия подходят для напряженного, ненапряженного и преднапряженного армирования различных конструкций. Выпуск продукции осуществляется в бухтах или стержнями. Они, как и изделия металлопроката, могут иметь периодический и гладкий профиль.
Традиции или новаторство

Для того, чтобы определиться в выборе между металлическими и композитными изделиями, можно сравнить их положительные качества и обратить внимание на минусы.

Плюсы установки металлической арматуры под фундамент

  • Упругость. Таким стержням можно придать любую форму прямо на строительной площадке.
  • Возможность проведения сварных работ. Соорудить каркас под заданные размеры не составит труда.
  • Огнестойкость. Изделия не деформируются и не теряют своих первоначальных характеристик даже под длительным воздействием открытого огня.
  • Доступность. Приобрести изделия металлопроката легко вне зависимости от региона страны.

Плюсы композитных стержней

  • Малый вес, что позволяет снизить дополнительную нагрузку на фундамент. Следовательно, и транспортировка изделий и погрузочно-разгрузочные работы проводятся без затруднений.
  • Не подверженность воздействию коррозии, щелочи, солей и кислот.
  • Низкая теплопроводность, а значит отсутствие мостиков холода.
  • Долгий срок службы от 50 до 100 лет.

Минусы металлических стержней

  • Подверженность разрушения от коррозионных процессов.
  • Значительный вес. В некоторых случаях данный фактор имеет решительное значение.

Минусы композитных стержней

  • Высокий модуль упругости. Чтобы создать криволинейный элемент необходимо обратиться в производственный цех.
  • Невысокий уровень огнестойкости. Конечно, это не поддерживающий горение материал, однако под воздействием высоких температур стержень размягчается, что негативно сказывается на прочности конструкции.

Выбор между этими материалами остается за застройщиком. Что касается цены арматуры на фундамент, то разница здесь не существенна. Учитывая стоимость продукции, транспортировку, затраты на установку – сэкономить за счет какого-либо вида арматуры не получится.

Диаметр арматуры

Требуемая прочность фундамента достигается за счет бетонной марки и правильно подобранного диаметра стержней. Самым надежным, но и более затратным вариантом послужит продукция с максимально возможным диаметром.

  • Обычно для работ подбираются прутья толщиной 8-12 мм. Данного показателя вполне достаточно для возведения строений с высокой степенью нагрузки. Но если планируется обустройство основы на небольшой глубине, то такой перерасход материала не обоснован.
  • При расчетах можно руководствоваться следующей пропорцией: сечение арматуры должно быть равно 0,1% от площади фундамента.
  • Одним из рациональных способов является подбор толщины арматуры исходя из ее расположения. Для продольного расположения берутся изделия диаметром в 10 мм при максимальной длине 3 м. В таком случае поперечные пруты могут иметь диаметр 6-8 мм.
  • Если планируется использовать арматуру большей длины, то есть свыше 3-х м, то тогда рекомендуемый диаметр будет равен 12 мм. Следовательно, поперечно расположенные стержни могут быть толщиной 8-10 мм.
  • Касательно композитных материалов следует сказать, что диаметр стеклопластиковых прутьев равный 6-8 мм аналогичен диаметру металлопрокатной продукции в 8-12 мм соответственно. Для замены стальных прутьев толщиной 6-8 мм композитным материалом берутся изделия диаметром 4-6 мм.

Расчет арматуры под фундамент

Чтобы не пришлось приостанавливать строительство при нехватке армирующего материала, а заодно и не доплачивать за вторую доставку необходимо нарисовать схему фундамента и рассчитать количество стержней.

Для наглядного примера возьмем дом 9 на 12 м с двумя несущими стенами длиной 9 и 6 м. Строение будет возводиться на основании ленточного типа. Как правило, для такой схемы используется прут диаметром 12 мм. В продольном расположении помещаются 4 штуки.

  • Сначала высчитывают периметр здания: (9+12)*2=216 (м).
  • К результату прибавляют длину основы под несущие стены: 216+9+6=231 (м).
  • Полученную длину умножают на количество прутьев: 231*4=924 (м).
  • Если не получилось приобрести стержни необходимой длины, то в расчет принимают дополнительные метры арматуры для перевязки, где нахлест должен составлять не менее 1 м.
  • Допустим, в проекте предусматривается одно соединение на продольных прутьях, тогда количество армирующих стержней по схеме умножается на количество стен. В итоге должно получиться: 4*6=24 (м). Полученный результат прибавляет к предыдущему значению: 924+24=948 (м).
  • Теперь рассчитаем гладкоствольную арматуру, необходимую для поперечной укладки, где ширина ленточного фундамента будет равняться 0,5 м. За шаг между перекладинами примем 0,3 м.
  • 231/0,3*0,5=385 (м).
  • Учесть все обрезки и нахлесты в предварительных расчетах довольно сложно. Поэтому специалисты рекомендуют к итоговому результату прибавить 10%.

Устройство арматуры под фундамент

Не погружаясь глубоко в расчеты и физико-технические характеристики используемых материалов при возведении фундамента можно сказать следующее:

  • бетон обладает высокой устойчивостью на сжатие, но малой устойчивостью на растяжение, в то же время стальные и композитные изделия спокойно выдерживают большие нагрузки на растяжение;
  • нижняя часть основания строения принимает силы растяжения, а верхняя – нагрузки на сжатие. Таким образом, объединяя армирующие элементы и бетон, удается добиться оптимального соотношения по устойчивости к различным видам воздействия;

Исходя из вышеизложенных тезисов, можно сделать вывод, что в армировании нуждается только нижняя часть основания. Но, здесь следует учитывать помимо нагрузок, производимых стенами зданий и другими конструкционными элементами, влияние на устойчивость силами морозного пучения грунта.

Особого внимания требуют углы. Именно на эти точки воздействуют максимальные нагрузки, поэтому экономить на материале нельзя ни в коем случае.

Несколько полезных советов

  • Продольно расположенные прутья берутся диаметром 8-12 мм. Чем выше показатели периметра стоящегося здания, тем больше должен быть диаметр. Для лучшего сцепления с бетонной массы лучше приобретать изделия с ребристой поверхностью.
  • Прутья не должны лежать на дне траншеи, располагаться близко к поверхности (но и сильно не углублять) или соприкасаться со стенками опалубки. Их необходимо надежно «спрятать» в толще бетона.
  • Поперечно и вертикально расположенные изделия несут меньшую нагрузку. В связи с чем для таких работ применяют гладкую продукцию меньшего диаметра (6-8 мм).

Арматура под фундамент своими руками. Этапы работ

Для данного процесса понадобиться минимальный набор:

  • непосредственно сама арматура;
  • вязальная проволока;
  • вязальный пистолет либо плоскогубцы;
  • время и терпение.

Этапы работ

  • В подготовленную опалубку, стенки которой надежно защищены гидроизоляционным материалом, засыпается слой песка. Подложка увлажняется и трамбуется. Поверх нее укладывают куски битого кирпича или камня. Они послужат опорой для стержней и не позволят им соприкасаться с дном. Расстояние между стенками опалубки и армирующим каркасом должно быть не менее 5 см.
  • Чтобы добиться максимальной прочности и надежности конструкции используют стержни максимальной длины. Таким образом, удастся избежать большого количества соединений, а заодно и снизить расход материала за счет отсутствия нахлестов.
  • Для стандартного основания шириной не более полуметра достаточно 4 продольных элементов, расположенных в 2 ряда (по 2 штуки сверху и снизу). Использование по 3 или 4 изделия актуально при более широком фундаменте либо при возведении дома на слабонесущем грунте.
  • Стержни вбиваются в вертикальном положении в землю, к ним привязывают нижний горизонтальный ряд арматуры. Посредством специально пистолета производится связка элементов. Вязальный крючок ускорит и облегчит весь процесс работ. Количество витков определяется путем опыта – в итоге должен получиться тугой узел.
  • При небольшом объеме работ используют обычны плоскогубцы. Проволоку длиной примерно в 30 см сгибают пополам так, чтобы с одной стороны образовалась петля. Обхватив отрезком проволоки два связываемых прутка, второй конец проволоки продевается в проушину. Затем оба конца вращательными движениями прокручиваются несколько раз, затягиваясь плотно в узел. Здесь важно не переусердствовать и не срезать проволоку в точке соединения.
  • Скрепление металлических элементов можно осуществить сварочным аппаратом. Такой способ позволит быстро и надежно объединить их в единую связку. Однако прочность может сыграть против. Во время морозов грунт начинает «ходить» и фундаменту приходится подстраиваться под него.
  • Проволока как раз и обеспечивает необходимый зазор для растяжения. К тому же перед сварными работами следует убедиться, что изделие металлопроката имеет маркировку С. Другие изделия просто потеряют часть прочности в точках соединения.
  • После нижних горизонтально расположенных прутьев переходят к верхнему ряду. Он должен располагаться в 50-60 мм от края траншеи вне зависимости от глубины заложения фундамента.
  • Углы армируются с использованием Г и П-образных усилений. Нельзя просто в таких точках наложить двойной ряд стержней. Угловое примыкание должно быть максимально прочным, этого можно добиться путем добавления дополнительных поперечных и вертикальных элементов. Те же правила применяются при обустройстве Т-образных перекрестий (места вхождения внутренних несущих стен во внешние капитальные стены).

Использование арматуры в сооружении бетонных конструкций – прием не новый. Однако лучше такой технологии светлые умы придумать еще не смогли. Желая предохранить основание дома от разрушения, не пренебрегайте данными работами, продлите эксплуатацию дома на более длительный срок.

Арматура под фундамент видео

Монтаж арматуры в ленточном фундаменте

Как известно, бетон является невероятно прочным материалом, однако в случае с фундаментом, а также многими другими бетонными конструкциями, просто необходимо применять качественное армирование. В современных условиях достаточно отправиться в строительный супермаркет и приобрести необходимый объем металлической арматуры. Такое решение однозначно укрепит фундамент, даже если мы имеем основание, возведенное с использованием не самого качественного раствора.

Что касается использования арматуры для армирования, то в данном случае необходимо проводить подробный расчет, позволяющий установить нужное количество металлических элементов основания. Стоит заранее отметить, что в этом расчете нужно учитывать не только площадь фундамента, но и специфику его конструкции.

В этой статье мы рассмотрим специфику использования армирования в ленточном фундаменте. Данный тип фундамента имеет свои особенности, о которых мы далее и поговорим. Кроме того, существует немало вариантов создания армирующего каркаса. В отдельных случаях строители имеют возможность сэкономить денежные средства, используя меньшие объемы арматуры. Также очень важно обратить внимание непосредственно на сам процесс монтажа армирования.

Специфика расчета необходимого количества арматуры

Если речь идет о расчете арматуры, то здесь нужно установить необходимое количество данного продукта, его диаметр и длину. Более того, в продаже можно найти арматуру разного типа. Зачастую в строительных магазинах имеются следующие типы продукции:

  • арматура с кольцевым профилем;
  • арматура с серповидным профилем;
  • смешанный профиль арматуры.

В случае с ленточным фундаментом строители советуют использовать любой из этих типов, но в это же время не рекомендуется применять продукцию, на которой отсутствуют ребра. Такая арматура подходит для многих других целей, однако с бетоном она будет схватываться не лучшим образом. В свою очередь, любые ребра создают сцепление с бетоном, поэтому вся конструкция окажется достаточно прочной.

Что касается диаметра арматуры, то в продаже можно найти самые разнообразные варианты, однако для создания ленточного фундамента рекомендуется задействовать металлическую продукцию диаметром 10-20 мм. Прутья, которые будут располагаться вертикально, могут иметь диаметр и около 6-8 мм.

После этого нужно определиться с минимальным содержанием арматуры в ленточном фундаменте. Для этого нужно использовать официальные стандарты СНиП, в которых представлены наиболее авторитетные данные по строительным работам. Таким образом, в пункте 7.3.5 указано, что минимальное содержание продольной арматуры должно быть не менее 0,1% от всей площади сечения ленты. К примеру, если мы имеем фундамент высотой 1200 мм, и шириной 400 мм, то общая площадь сечения армирования должна составлять 480 мм2. Это то самое минимальное значение, которое позволяет быть уверенным в надежности строительной конструкции. В том случае, если для проведения постройки фундамента не хватает арматуры, целесообразно заморозить проект, так как впоследствии может возникнуть аварийная ситуация.

Определение нужного количества стержней продольной арматуры

Для того чтобы определить необходимое количество продольной металлической продукции, нужно воспользоваться прошлыми расчетами и поделить полученное значение на сечение выбранной арматуры. Таким образом, мы получаем точное количество продольных стержней. В этом случае мы также можем воспользоваться строительными стандартами, если какие-то значения не полностью соответствуют проекту.

В это же время в СНиП можно найти полезные таблицы, которые позволяют определить количество арматуры, необходимой для фундамента, в зависимости от диаметра и общего количества стержней. Таким образом, можно предварительно оценить свои финансовые траты на укрепление фундамента.

Оптимальная схема армирования

В интернете можно найти огромное количество схем армирования фундаментов и других бетонных конструкций, но при этом стоит обратить внимание именно на самые простые варианты, которые уж точно не создадут проблем даже начинающим строителям.

Специалисты зачастую рекомендуют проводить армирование по квадрату или прямоугольнику. Соответственно, ширина каркаса должна составлять не более половины его высоты. Нужно иметь в виду, что ленточный фундамент зачастую неширокий, но очень длинный, поэтому основание будет подвергаться больше продольным растяжениям. Таким образом, вертикальные и поперечные элементы армирования представляют собой в больше степени конструктивные элементы фундамента.

Таким образом, если мы выбрали прямоугольное армирование, то высота металлической части фундамента должна быть больше ширины. Получается, что мы имеем 4 продольные линии арматуры. Количество поперечных элементов – не так важно. Главное —  сделать так, чтобы конструкция была надежной, и при заливке бетона не происходило никаких деформаций.

Специфика вязки арматуры

Конечно же, вязка арматуры является крайне важным процессом, от которого зависит не только надежность армирования, но и общая геометрическая точность расположения арматуры. Соответственно, если мы ненадежно закрепим арматуру, при заливке бетона она может изменить свое положение. Более того, данную ошибку будет крайне сложно исправить, если бетон уже залит и набирает прочность. Зачастую используется 2 способа вязки арматуры:

  • При помощи проволоки. Да, действительно, для подобных мероприятий достаточно задействовать самую обычную проволоку, которой связываются элементы арматуры. Конечно же, для этого нам потребуется использовать прочную проволоку, которая при сгибании не будет повреждаться. Желательно провести небольшой тест прочности проволоки, так как рисковать при создании фундамента попросту нельзя. Чаще всего для обвязки двух или трёх арматур требуется около 30 см проволоки. Экономить на этом деле уж точно не следует.
  • При помощи сварки. Стоит сказать, что сварка для подобных работ используется намного реже, однако определенные преимущества есть и у этого способа крепления арматуры. В первую очередь мы получаем надежный шов, который однозначно выдержит вес бетонной смеси. Более того, такой вариант крепления позволяет быть уверенным, что арматура не сместится при заливке бетона.

Также существует еще немало других вариантов вязки арматуры. К примеру, нередко используются электрические крючки или шуруповерт со специальной насадкой.

Кроме того, некоторые специалисты рекомендуют использовать сварку для соединения арматуры лишь в безвыходных ситуациях, так как этот процесс несколько ухудшает армирующие свойства арматуры.

Особенности армирования углов ленточного фундамента

Специалисты, которые занимаются различными строительными проектами, утверждают, что армирование углов фундамента – это самая сложная задача, которая создает немало проблем. Во многих строительных стандартах указывается, что в углах арматура, выполняющая роль армирования, должна быть изогнутой. Конечно же, мало кто будет специально гнуть арматуру для этого процесса, поэтому зачастую в строительстве задействуют прямой материал.

Сообщается, что при таком раскладе существует большая вероятность возникновения трещин по углам фундамента, что впоследствии создает множество проблем, связанных с прочностью основания и всего строения.

Таким образом, существует два варианта усиления углов фундамента:

  • Армирование Г-образным усилением. В данном случае используется изогнутая арматура, можно задействовать сразу несколько элементов, расположив их внахлест. При таком раскладе армирование будет максимально эффективным и надежным.
  • Армирование П-образным усилением. Здесь все практически то же самое, что и в случае с прошлым вариантом укрепления, однако П-образная арматура обеспечивает большую надежность, хоть для этого придется использовать больше металлической продукции.

Однозначно необходимо использовать поперечную арматуру, которая по углам фундамента будет выполнять прибавлять площади всей представленной конструкции. Причем данный вопрос не зависит от того, какой мы имеем угол – прямой, острый или тупой.

Опять же, следует обратиться к строительным стандартам, где указывается немало информации непосредственно об армировании углов фундамента. Действительно, там имеется множество ситуаций, при которых угол фундамента будет иметь оригинальную конструкцию.

Остальные вопросы, связанные с армированием ленточного фундамента

Прежде чем приступать к монтажу арматуры в ленточном фундаменте, следует рассмотреть несколько важных вопросов, которые однозначно являются важными в этом процессе.

  • Выбор арматуры. Как мы уже говорили, при выборе арматуры следует обращать внимание на диаметр и другие габариты материала. При этом гладкую арматуру лучше вовсе не использовать. Однако в случае необходимости гладкую металлическую продукцию можно использовать в качестве поперечного армирования. Отдельно хотелось бы отметить, что при монтаже лучше всего использовать одну и ту же арматуру. Речь идет о том, в поперечных соединениях конструкции используется одна арматура, а в продольных – другая, однако в одних и тех же позициях лучше использовать один и тот же тип продукции. В том случае, если хозяева используют арматуру различного диаметра, длины и профиля, можно столкнуться с проблемами. Прежде всего речь идет о нагрузке на основание. Если в каком-то месте арматура окажется менее прочной, и нагрузка на фундамент будет слишком высокой, основание может покрыться трещинами. Такого допускать, конечно же, нельзя.
  • Специфика вязки арматуры. Мы уже упоминали о самых распространенных способах соединения арматуры для создания надежной конструкции. В это же время не стоит забывать, что комбинировать способы соединения все же не стоит. Более того, в подавляющем количестве случаев используется вязка при помощи проволоки. Достаточно всего лишь запастись крупным мотком материала, чтобы надежно соединить все элементы армирования. В том случае, если в конструкции обнаружатся ошибки (возможно, даже самые мелкие), проволоку можно просто убрать, либо удалить кусачками, после чего исправить ситуацию. В случае со сваркой все существенно сложнее. Для проведения качественных сварочных работ нужны деньги. Кроме того, очевидно, что после данного мероприятия изменить расположение элементов армирования уже не представится возможным. Кроме того, как мы уже говорили, специалисты в строительной сфере настойчиво рекомендуют отказываться от сварки арматуры в пользу вязки при помощи проволоки.
  • Общая прочность конструкции. На первый взгляд конструкция, состоящая из арматуры, может показаться достаточно прочной. Более того, даже небольшие испытания могут продемонстрировать отменную стойкость конструкции к деформациям. К сожалению, не все так просто, как может показаться на первый взгляд. К примеру, если заливка бетона будет происходить со специализированного транспорта (автомиксера), вполне возможны проблемы, связанные с устойчивостью армирования. Во время заливки сильный набор и вес бетонной смеси может сильно повлиять на конструкцию. Если в некоторых местах крепление проволокой оказалось достаточно слабым, это тут же проявится. Соответственно, в такой ситуации нужно либо проверять каждое соединение, либо производить заливку бетона вручную, делая все для того, чтобы армирующая конструкция не сместилась ни на миллиметр.
  • Расход материала. Мы уже рассматривали вопрос, связанный с необходимыми объемам арматуры. Стоит сказать, что многие хозяева специально использует побольше армирования, чтобы фундамент стал прочнее. На самом же деле никакого положительного эффекта от таких действий нет, поэтому следует использовать то самое минимальное значения количества арматуры, которое предусмотрено в строительных стандартах.

Армирование ленточного фундамента: 🏠 схема, расчет, монтаж

Прочное основание дома – это залог длительной и безопасной эксплуатации. Обязательным этапом работ является армирование ленточного фундамента. При этом сочетание крепкой арматуры и качественного бетона обеспечивает надежность конструкции.

Расчет фундамента

Попробуйте новый продукт


При создании каркаса фундамента важно грамотно выбрать материалы, произвести расчет и составить схему. Эти обязательные шаги предшествуют основному монтажу, который включает устройство подушки, опалубки и непосредственно заливку подготовленной формы.

Роль арматуры в ленточном фундаменте


Бетонное основание, поддерживающее здание, постоянно испытывает высокие нагрузки. Они обусловлены весом самой надземной конструкции, а также процессами, которые происходят в грунте. Ленточный фундамент имеет большую площадь контакта с нижележащими слоями земли. Со временем грунт уплотняется под подошвой фундамента. Но происходит этот процесс, как правило, неравномерно. В результате нагрузка в разных участках фундамента отличается и это вызывает внутреннее напряжение в конструкции. Ситуация усугубляется переменной влажностью в грунте, а также возможными аварийными протечками водоносных коммуникаций.


Под действием этих неблагоприятных факторов в бетоне со временем появляются трещины, расколы. Это влечет за собой разрушение фундамента и стен дома. Армирование помогает укрепить бетонную ленту и сохранить ее целостность. Металлический каркас арматуры сдерживает локальное давление и перераспределяет нагрузку в бетонной ленте. Поэтому, чтобы повысить надежность конструкции, необходимо обязательно армировать фундамент.

Можно ли заменить металл пластиком


Для армирования фундамента подходит материал разного качества. В строительстве применяют металлические и композитные элементы. Каркас из стеклопластика – это современное изобретение, однако для возведения частных домов он применяется редко. Для производства такой арматуры используют сверхпрочный стеклопластик. Внешне она выглядит в виде прутьев диаметром 4-18 миллиметров и длиной до 12 метров. На поверхности арматуры имеются спиралевидные ребра, повышающие степень сцепления с бетоном.


По своих техническим характеристикам строительный пластик не уступает металлу, а по некоторым позициям даже превосходит. Ленточный фундамент, имеющий арматуру из стеклопластика, более устойчив к разрывам. Однако у этого материала есть ряд недостатков, один из которых – высокая стоимость.


Пластиковая арматура слабее выдерживает давление сверху, не поддается свариванию и требует сложной технологии монтажа.

Какую выбирать арматуру


Для армирования ленточного фундамента подходят изделия разного класса. Выбирают арматуру, исходя из расчета и составленной схемы каркаса. При возведении ленточного фундамента подходят следующие виды арматуры:


  • Рабочая (диаметром от 12 мм).


  • Конструктивная (диаметром 8 мм).


  • Вязальная (проволока).


Чтобы армировать ленточный фундамент на однородном грунте, берут в работу прутья толщиной 10-14 мм. Для неоднородного субстрата нужны более крепкие изделия – 16-24 мм. Если стена дома имеет протяженность более трех метров, то для армирования фундамента под ней нужны рабочие стержни диаметром минимум 10 мм и максимум 40 мм.

Расчёт количества арматуры


Перед началом строительства фундамента всегда просчитывают, сколько арматуры понадобится для работы. Для этого необходимо знать параметры строения, схему каркаса. При возведении небольшого здания требуется материал для устройства двух каркасных поясов (нижнего и верхнего). Для каждого требуется по 3-4 стержня. Их располагают на расстоянии примерно 10 сантиметров.


Для соединения поясов нужна поперечная арматура. Общее количество прутьев высчитывают, умножая число прутков в обоих поясах на длину стен дома. Далее находят количество поперечных и вертикальных перемычек. При вычислениях удобнее пользоваться электронным калькулятором расчёта арматуры. Он помогает найти точное количество прутьев, необходимых для конкретного ленточного фундамента.

Схема изготовления каркаса


Типовая схема армирования на прямых участках состоит из продольных прутьев, которые вместе с поперечными элементами составляют объемную коробчатую конструкцию. Если закладывают высокий фундамент, то количество поясов в каркасе арматуры может быть не два, а три.


Расстояние между отдельными продольными элементами не должно мешать проникновению бетонного раствора. Если в состав бетона включен щебень фракции 20-40, то шаг между прутьями арматуры должен быть более 4 см.

Как и чем вязать сетку каркаса


Для вязки арматуры используют специальный крючок. С его помощью можно добиться скорости соединения элементов до 12-15 креплений в минуту. Чтобы ускорить процесс, рекомендуется пользоваться вязальным пистолетом. С этим приспособлением удается увеличить количество завязываемых узлов до 25-30 в минуту. Однако высокая скорость требует вложения финансов, поскольку хороший пистолет стоит дорого. Работу удорожает и специальная проволока, которая требуется к оборудованию.


Формирование каркаса начинают с подготовки проволоки и нарезки арматуры. По возможности длину прутьев сохраняют максимальной, так короткие отрезки уменьшают прочность фундамента и увеличивает расход арматуры.


Если навыка вязки арматуры мало, то рекомендуется начинать работу с короткого отрезка каркаса и далее переходить на более сложные участки.


Чтобы сделать узел, проволоку складывают вдвое и протягивают ее под местом соединения двух элементов. Затем прокручивают с помощью крючка. Затягивают проволоку крепко, но без лишних усилий, так как при сильном натягивании она может лопнуть. Силу натяжения отрабатывают опытным путем. Готовый хомут не должен двигаться от прикасания к нему. Если он сдвигается, то необходимо сделать страховочную завязку.


Сетку арматуры формируют таким образом, чтобы она была меньше параметров ленточного фундамента на 5 см с каждой стороны. То есть если лента фундамента имеет высоту 120 см и ширину 40 см, каркас должен быть соответственно 110 см в высоту и 30 см в ширину. Для фиксации на каждый узел используют проволоку длиной примерно 20 см. В местах соединения продольной арматуры должен быть нахлёст в 30 см. Процесс вязки осуществляют последовательно, согласно схеме армирования:


  1. На ровное место кладут два прута, выравнивают их по длине.


  2. Отступив от конца 20 см, привязывают поперечную арматуру.


  3. Остальные распорки привязывают на расстоянии 50 см.


  4. Подобным образом составляют второй пояс арматуры.


  5. Кладут заготовки на ребро на расстоянии высоты каркаса.


  6. По краям привязывают вертикальные распорки.


  7. По длине арматуры привязывают промежуточные элементы.

Можно ли воспользоваться сваркой


Специалисты рекомендуют отдавать предпочтение при армировании фундамента вязке, а не сварке. Это объясняется несколькими причинами. Во-первых, сварочные узлы на поперечных и продольных соединениях отличаются хрупкостью. Они уступают по прочности вязке в 2-2,5 раза. Во-вторых, в местах сварки часто начинается коррозионный процесс, в результате которого ленточный фундамент начинает медленно разрушаться.


В качестве исключения для ускорения работы допускается сварка на прямых участках арматуры. Однако соединение в углах при армировании ленточного фундамента должно осуществляться только с помощью перевязки проволокой.


Для сварки подходит лишь определенная марка металлической арматуры. Она имеет буквенное обозначение «С» и стоит значительно дороже обычного аналога.

Как армировать углы и примыкания


Перпендикулярные пруты, встречающиеся в углах и примыканиях ленточного основания, обязательно должны быть скреплены проволокой. Без угловой вязки армирование фундамента не имеет смысла, так как конструкция теряет монолитность.


Наиболее надежным вариантом является загнутый на 90 градусов прут, который повторяет угол. Чтобы осуществить такой способ армирования необходимо спецоборудование. Если диаметр прутьев небольшой (до 14 мм), то загнуть арматуру можно с помощью самодельных устройств. Загнутый прут имеет вид лапки. Длина каждой стороны должна быть не менее 35 диаметров. При таком способе внешний элемент арматуры одной стены соединяют с внешним прутом другой стены, а внутренний – с внутренним.


Другой вариант соединения арматуры требует применения Г-образного хомута. Его длинная сторона должна быть не менее 50 диаметров. Крепление осуществляют таким образом, чтобы угольник соединял внешний стержень одной стены с внутренним прутом перпендикулярной стены.


Третий вариант армирования углов фундамента – это использование П-хомутов. На один угол берут два элемента, у которых длины сторон равны 50-кратному диаметру. Каждый укрепляющий хомут фиксируют на два параллельных прутка и один перпендикулярный.


Чтобы ленточный фундамент прочно армировать на тупых углах, угловой стержень изгибают до нужного градуса и фиксируют к нему дополнительный для усиления. При этом внешние прутья арматуры соединяют с внутренними.

Армирование подошвы фундамента


Часто при строительстве зданий на пучинистых грунтах у фундамента делают дополнительное основание, которое называется подошвой. В результате бетонная лента приобретает большую стабильность, а дом меньше проседает. Чтобы подошва на 100% выполняла свои функции, ее также армируют.


Если грунты относятся к категории нормальных или среднепучинистых, в подошве ленточного фундамента делают один пояс рабочей арматуры. Одинарное армирование выдерживает умеренную подвижность субстрата. На сильно неустойчивых грунтах делают два пояса арматуры. Продольные прутья располагают на расстоянии 20-30 см друг от друга. Далее их соединяют поперечными отрезками и обвязывают проволокой места пересечений. Если подошва ленточного фундамента широкая, то поперечины делают также из ребристой рабочей арматуры. Она должна быть второго и третьего класса.

Земляные работы и подготовка подушки


Перед закладкой фундамента проводят подготовку грунта. Объем земляных работ для устройства этого вида основания небольшой. Первый этап – это рытье котлована под фундамент. Если планируется делать подошву, то размеры траншеи увеличивают. Второй этап – устройство подушки. Она помогает защитить бетонное основание от негативного воздействия грунтовой влаги и перераспределить нагрузку от подземных и надземных частей здания.


В большинстве случаев в качестве подушки используют песчано-щебеночную засыпку. Ее толщина должна быть в пределах 15-20 см. Материал равномерно распределяют по траншее и утрамбовывают.

Монтаж опалубки


Прежде чем устанавливать каркас арматуры в подготовленную траншею, в ней монтируют опалубку. Стенки формы для заливки бетона могут быть сделаны из разных материалов. Для этого подходят деревянные доски, фанера, металлические листы или пенополистирольные плиты. Наиболее универсальными и дешевыми материалами являются первые два. Деревянная опалубка, как правило, имеет многоразовое использование и может быть собрана в разных размерах. Щиты монтируют из обструганных сосновых досок толщиной 25-40 мм. Их предварительная сушка необязательна, так как слишком сухая древесина будет вытягивать из раствора влагу.


Процесс приготовления опалубки протекает в определенном порядке:


  1. Из древесных планок готовят вертикальные стойки, длина которых превышает высоту каркаса опалубки на 40-50 см. Этот запас нужен для прочного вбивания в землю. Один конец стоек заостряют.


  2. На земле раскладывают подготовленные вертикальные стойки на расстоянии 0,8-1,2 метра. К ним плотно без зазоров прибивают нарезанные доски.


  3. Готовые деревянные щиты устанавливают в траншею. Забивают стойки в землю до тех пор, пока нижние доски не достигнут поверхности.


  4. Между параллельными стенками устанавливают поперечины, которые будут контролировать ширину бетонной ленты.


  5. С наружных сторон опалубки ставят наклонные бруски, которые необходимы для удерживания стенок при заливке раствора.


Внутреннюю поверхность подготовленной опалубки выстилают полиэтиленом, чтобы предотвратить вытекание смеси сквозь возможные щели.

Установка каркаса и заливка бетоном


Перед началом заливки каркас опалубки проверяют на геометрию. Пространство внутри ограждения освобождают от мусора и посторонних предметов. В траншею кладут подкладки толщиной 5 см. Далее на них устанавливают связанный каркас арматуры, который собирался по чертежу. Вдоль него крепят фиксаторы, которые предотвращают соприкосновение армирования со стенками опалубки.


Заливку бетона производят одновременно по всей протяженности ленточного основания. Поэтому раствор или готовят на месте с помощью бетономешалки, или привозят на строительный участок в автомиксерах. Армирование и заливка ленточного фундамента под небольшие объекты (сарай, гараж, теплицу) не требуют больших затрат материалов. Бетон в этом случае можно замешивать вручную с помощью лопаты. После того как в опалубку залит слой примерно в 20 см, бетон уплотняют. Для этого удобно использовать ручной вибратор.

Требования к бетону


В состав бетонной массы входит вяжущее вещество (цемент), наполнители (песок, гравий, щебень), разбавитель (вода). Качество и количество этих составляющих определяет технические особенности раствора. Имеют значение четыре эксплуатационных показателя бетона:


  1. Класс или марочная прочность.


  2. Морозостойкость.


  3. Водонепроницаемость.


  4. Подвижность.


Марки бетона включают диапазон от М50 до М800. Для устройства армированного фундамента частного дома подходят марки от М100 до М300. В некоторых случаях используют бетон прочностью М400. В отношении морозостойкости для армированного основания применим материал категории F150. Показатель водонепроницаемости при условии хорошей гидроизоляции залитого каркаса имеет в данном случае чуть меньшее значение.


Удобоукладываемость (подвижность) определяет пластичность бетона и его распределение по объему. По этому критерию для ленточного фундамента подходят W2 (под легкие постройки) и W4 (под частные дома). Готовую бетонную смесь, привезенную в автобетоносмесителях, заливают в опалубку не позднее чем через 90 минут. Если раствор завозят на площадку в самосвалах без постоянного перемешивания, то этот период не должен превышать 45 минут.


При соблюдении всех правил армирования, подготовки опалубки и заливки бетона, фундамент способен выполнить все накладываемые на него функции. На протяжении всего срока эксплуатации такое основание выдерживает нагрузки и не дает зданию проседать.

Видео об армировании ленточного фундамента

Как правильно уложить арматуру в фундамент

При выполнении строительных мероприятий по возведению жилых зданий и объектов производственного назначения используются различные типы оснований, обеспечивающих устойчивость возводимого сооружения. Широко применяются основы, выполненные по периметру строения. Для укрепления такой конструкции выполняется армирование ленты.

Необходимость армирования ленточного фундамента обусловлена свойствами бетона, сохраняющего целостность под воздействием сжимающих нагрузок, но одновременно, склонного к появлению трещин под действием изгибающих моментов и растяжения. Компенсировать этот серьезный недостаток бетонного монолита позволяет армирование монолитного ленточного фундамента, повышающее устойчивость и период эксплуатации возводимых строений.

Основание здания воспринимает значительные нагрузки, связанные с реакцией почвы, массой строения и другими факторами. Арматурный каркас подвергается повышенным концентрациям напряжений, обеспечивая целостность бетонного массива. Ошибки армирования фундамента, связанные с разрушением нулевого уровня, могут вызывать фатальные последствия.

Фундамент – это основа постройки любого назначения, он представляет собой самую важную частью какого бы то ни было здания

Именно поэтому рассмотрим детально, как правильно армировать ленточный фундамент, остановимся на критериях выбора арматур, технологии армирования ленточного фундамента.

Расчетный этап

На проектной стадии важно квалифицированно рассчитать, какая нужна арматура для ленточного фундамента. Это позволит сформировать надежную основу, обеспечивающую прочностные характеристики возводимого здания при длительном ресурсе эксплуатации. Выполняя расчет на подготовительном этапе работ, следует проанализировать множество факторов:

  • особенности почвы в условиях конкретной строительной площадки;
  • действующие нагрузки, который воспринимает арматурный каркас;
  • масса здания, обусловленная особенностями конструкции и используемыми материалами;
  • климатические условия в районе строительства;
  • реакцию почвы, связанную с близким расположением грунтовых вод и промерзанием грунта при отрицательной температуре.

Правила армирования ленточного фундамента предусматривают особый подход к выбору материала в основе

По результатам проектных работ определяется диаметр арматуры для ленточного фундамента и принимается решение о степени заглубления основания в грунт:

  1. На ограниченную до 0,5 м глубину для твердых почв, не склонных к пучению.
  2. На увеличенную ниже уровня промерзания грунта глубину погружения для проблемных почв.

На этом варианты не исчерпываются. Ведь строительная наука не стоит на месте, разрабатываются новые опорные конструкции, обладающие повышенной прочностью. Внедрен и проверен в эксплуатации новый вариант основания, когда монолитная усиленная плита заливается на предварительно выполненный ленточный армированный каркас. Какая лучше конструкция основы, определяют на проектной стадии с учетом конкретных условий реальной местности. В зависимости от особенностей выбранной согласно проекту основы, проектировщиками принимается решение, выполнять ли армирование ленты или производить армирование фундаментной плиты, а также какую арматуру лучше использовать для фундамента.

Критерии выбора арматуры

Правильное армирование ленточного фундамента определяет прочностные характеристики опорной конструкции. Принимая решение, выполнить армирование плиты, расположенной на ленточной базе, или произвести усиление стандартного основания, ориентируйтесь на особенности маркировки арматурных прутьев.

Армирование монолитного ленточного фундамента предусматривает необходимость соблюдения определенных правил

Выполняйте армирование основания стальными прутками, имеющими следующие характерные особенности:

  • наличие индекса «С» в обозначении стальных стержней свидетельствует о возможности использования электросварочного оборудования для объединения элементов с общим каркасом;
  • присутствие заглавной буквы «К» в аббревиатуре подтверждает стойкость прутков к коррозии, возникающей при насыщении бетона влагой;
  • обозначение класса изделия А2 и А3, что позволяет применять стальные прутки, зафиксированные в общем каркасе проволокой, с сохранением прочности каждого из соединяемых элементов. Использование электрической сварки для фиксации таких прутков не допускается.

Необходимой эксплуатационной прочностью обладает арматура для фундамента, изготовленная из стальных стержней сечением 10–12 мм. Оптимальный диаметр арматуры для ленточного фундамента определяется согласно расчётам, учитывающим конкретные условия эксплуатации, особенности грунта и значения действующих нагрузок.

О необходимости усиления

Насколько необходимо укреплять бетонный массив стальной проволокой? Ведь бетон обладает достаточно высокими прочностными характеристиками. Действительно, бетон имеет повышенную устойчивость к сжимающим нагрузкам, но требует усиления от губительного воздействия разрывных усилий.

Наибольшая вероятность растяжения – на поверхности основания, именно там следует расположить арматуру

Укладка арматуры в ленточный фундамент: этапы работ, особенности, расход

Каждый из нас мечтает, чтобы дом для проживания был не только теплым, но и теплым, устойчивым и надежным. Чтобы этого добиться, необходимо обратить внимание на качество установленного фундамента. Так, укладка арматуры в ленточный фундамент способна увеличить его износоустойчивость и другие основные его качества на 60 — 70%.

Рассмотрим процедуру укладки арматурной сетки более подробно на примере наиболее популярного, а также востребованного типа цоколя – ленточного фундамента.

Ленточный тип основания

Для начала необходимо более подробнее остановиться на особенностях ленточного фундамента.

Он имеет вид «ленты», нанесенной вдоль всего периметра здания. Основной материал для нее — раствор бетона.

Рассмотрим основные его характеристики:

  • Простота установки
  • Минимальный срок проведения работ
  • Экономия денежных средств благодаря ручной работе без использования специализированной техники
  • Весь процесс строительства не требует работы с большим количеством сырья
  • Длительный срок эксплуатации (срок использования может достигать 100 лет)

Зачем необходимо проводить укрепление фундамента арматурной сеткой

Многие считают бетон самым крепким и прочным строительным материалом. Однако на самом деле этот материал достаточно хрупок.

  • Он может разрушиться из-за сдвига земной коры.
  • Подвержен влиянию влаги, которая может привести к постепенному разрушению.
  • С течением времени основные части, входящие в состав раствора, могут начать осыпаться.

Для предотвращения преждевременного разрушения и утраты крепости бетона необходимо проводить его укрепление путем наложения арматурной сетки. Укладка арматуры ленточного фундамента производится достаточно легко. Провести строительные работы самостоятельно могут практически все. В данном случае от строителей не требуется наличие специально образования или необычных навыков.

Особенности проведения укладки

Необходимо ознакомиться с основными особенностями установки:

  • Для работы необходимо использовать крепкие прутья из стали. Оптимальный диаметр – 1,2 см
  • Обращайте особенное внимание на работу в углах и на стыках фундамента. Очень важно соблюдать правильную технологию работы в этих местах. Ее нарушение приведет к дальнейшему разрушению всей конструкции.
  • Вязка арматуры ленточного фундамента производится следующим способом:

— за вертикальные прутья необходимо закрепить прутья, уложенные внахлест и по диагонали на горизонтальной поверхности сетки.

  • Внутри углов и на стыках должно появиться пересечение прутьев.
  • Прутья должны быть хорошо натянуты вдоль всего периметра здания.

Основные нюансы работы

Также при работе необходимо учитывать основные свойства арматурной сетки.

  • Материал бетон легко подвержен деформации и разрывам. Для его устранения применяют укрепление основания путем армирования.

Таким образом, достигается высокая прочность в углах, пересечениях и сгибах цоколя.

Снижается вероятность возникновения разрывов.

  • Чтобы основание имело повышенный уровень крепости на срезах, рекомендуется проводить процедуру вертикального его укрепления.
  1. металлические прутья имеет функцию поддерживающих основание стоек
  2. шаг установки вертикальной арматуры – не менее 50 см
  • Чтобы сетка не портилась и не разрушалась под воздействием окружающей среды, необходимо провести процедуру ее укрепления.

Для этого материал погружается в раствор бетона.

Нижняя часть вещества обрабатывается бетоном на 70 см, верхняя – на 6 см.

  • При проведении процедур можно использовать несколько слоев материала. Для его укрепления применяют не менее 3-4 прутьев на каждом слое.
  • Для достижения эффективного результата используются материалы с международной маркировкой А-Ш.
  • Количество материала обычно измеряется в тоннах. Для его расчета необходимо предварительно произвести замеры по необходимой толщине и длине сырья.

Арматура для основания

Правильный выбор материалов

  1. вспомогательные прутья
  2. основные
  • Правильный выбор диаметра сечения зависит от особенностей климата, требуемой величины нагрузки, уровня давления, технических характеристик материала (обычно он колеблется в районе 1-2 см)
  • Для связывания и закрепления элементов необходимо использовать вспомогательные прутья. Средний размер е толщины может достигать от 0,5 до 1 см
  • Вертикальные материалы устанавливаются 2 способами:
  1. вбиваются в грунт
  2. монтируются в жесткую поверхность основания

Проведение работы

Установка укрепляющего покрытия состоит из следующих основных этапов:

  1. Подготовительная работа
  2. Опалубка
  3. Обвязка арматуры ленточного фундамента
  4. Укладка ее непосредственно в основание

Используемые инструменты

Для проведения работы нам потребуются следующие строительные материалы:

  • Стержневые прутья. Диаметр – до 1,4 см. оптимальное количество – от 4 до 8. Для достижения наибольшей прочности рекомендуется использовать не менее 8 прутьев.
  • Проволока. Из нее необходимо изготовить обвязывающие перемычки. Они размешаются вдоль периметра цоколя по всей его ширине. Шаг арматуры ленточного фундамента составляет не менее 50-70 см

Все инструменты должны иметь ровную поверхность, не иметь повреждений и сколов. Необходимо их предварительно обработать специальным раствором, предотвращающим коррозию.

  • Проволока для соединения. Диаметр ее составляет от 1 до 1,2 см. ее используют для соединения стержней (продольных и поперечных)
  • Специализированная скоба для вязки. Выполняет связывающую функцию проволоки. Однако обладает наилучшими характеристиками.
  • Специальный крюк для вязания сетки. Его можно выполнить своими руками или приобрести специальный электрический инструмент.
  • Из профессиональных инструментов можно выделить специализированный пистолет для связывания прутьев.
  • Оборудование для сварки. Используется в случаях, когда необходима дополнительная жесткость материалам.

Ленточное основание с арматурами

Проведение работы

  1. Подготовка участка. Разметка территории. Очистка фундамента от пыли, загрязнений, мусора.
  2. Расчет силы нагрузки на материалы. Определение количества используемого сырья.
  3. Выбор количества материалов, типа, размера сырья.
  4. Проведение опалубочных работ. Опалубка производится при помощи деревянных щитов. Закрепить их на земле и придать устойчивость можно, закрепив их специальными колышками из древесины или металла. Опалубочные щиты устанавливаются в вырытую траншею.
  5. Для укрепления конструкции можно провести систему дренажа. Она состоит из слоев щебня и песка. Слои следует хорошо утрамбовать. Высота их не должна превышать 10 см.
  6. Внутри траншеи на расстоянии 2 м друг от друга устанавливаются вертикальные металлические пруты. Укрепить их можно раствором бетона и заглублением в грунт.
  7. Проведение связывания арматурной сетки.
  8. Закрепление сетки на металлических вертикальных прутьях.
  9. Ячейки сетки должны быть установлены на расстоянии не менее 5 см от стенок фундамента. Это предотвратит их преждевременное ржавление и коррозию.
  10. Все элементы строительства должны быть установлены равномерно с соблюдением горизонтального и вертикального уровня. Для достижения прочности необходимо укрепить сетку обломками кирпичей.

Расход материала

Очень важно правильно рассчитать необходимое количество строительного сырья.

Оно зависит от общей площади ленточного фундамента, площади здания.

При средней площади основания в 36 кв.м рекомендуется использовать прутья с сечением 1,4 см. В данном случае потребуется 30 м сырья для 1 уровня сетки: 24 м арматуры по всему периметру цоколя, 6 м – для внутренней отделки.

Если используется 4 уровня сетки, то потребуется 120 м стройматериала: 100 м сырья на периметр, 20 м – на внутренние отделочные работы.

  • Средний шаг установки – 50 см
  • Приемлемая ширина ленты – 30 см

Проведение предварительных расчетов не потребуется, если приобрести композитный тип арматуры.

Своевременное армирование ленточного фундамента позволяет укрепить его и придать ему долговечность и прочность. При проведении работ необходимо производить предварительные расчеты и следовать основным этапам.

Как правильно укладывать арматуру для фундамента под дом

Укладка арматуры в ленточный фундамент должна быть выполнена с учетом всех требований и правил, так как именно фундамент несет на себе основную нагрузку, оказываемую стенами и перекрытиями здания. Основание любого дома – это его базовая опорная часть, имеющая ряд особенностей, соблюдение которых является главным условием длительной эксплуатации всей постройки. Одним из важнейших можно считать укладку арматуры, фиксирующей и гарантирующей прочность всей конструкции.

Для чего нужна арматура в фундаменте

Бетон, который служит для заливки надежного основания дома, материал довольно прочный. Однако, для того, чтобы обеспечить высокий уровень его сопротивляемости различным нагрузкам, необходимо повысить и жесткость самого материала. Добиться поставленной цели можно благодаря применению арматурных прутов разных диаметров. Такая конструкция дает возможность усилить прочность материала и сделать его способным выдерживать большие нагрузки на растяжение.

Одним словом, после применения арматуры получают железобетон, способный:

  • значительно повысить несущую способность постройки;
  • препятствовать деформации основания дома, возникающей под воздействием движения грунта;
  • продлить срок эксплуатации здания.

Результатом высокого уровня трения, возникающего между бетоном и арматурой, является надежное сцепление этих материалов. А качественный железобетон станет гарантией возведения надежного и высокопрочного основания постройки. Это позволит в дальнейшем избежать растрескивания стен и разрушения. Получить качественный фундамент можно в том случае, если правильно уложить арматуру в опалубку еще на стадии ее возведения.

Что необходимо для выполнения работ

Арматурные пруты должны быть связаны определенным способом, иначе конструкция не выдержит нагрузок или пострадает от коррозии. Чтобы все работы были проведены качественно, и армирование стало качественной опорой, понадобятся:

  • арматурные стержни;
  • вязальная проволока;
  • металлические колышки;
  • арматурная проволока;
  • болгарка;
  • рулетка и болгарка.

Не обойдется выполнение работ без сварочного аппарата и шлифовальной машинки для обработки углов.

Этапы укладки арматуры

Проблема ленточного фундамента – это устойчивость к напряжению на изгиб. Такие нагрузки возникают в связи с изменениями, происходящим в грунте. Осадка или вспучивание могут отрицательно сказаться на фундаменте и привести к его деформации.

Чтобы надежно защитить всю конструкцию необходимо позаботиться об укладке арматуры на стадии сборки опалубки:

  1. Правильно выбрать схему укладки. Арматуру необходимо защитить от воздействия грунтовых вод, а для этого ее размещают в глубине бетона. Для армирования легкой постройки достаточно по всей длине ленточного фундамента разложить пруты так, чтобы два основных были внизу и еще два вверху.
  2. Всю конструкцию собирают в виде отдельных частей в стороне от опалубки. При сборке учитывают не только диаметр каждого используемого прута, но и расстояние, которое должно остаться от арматурной конструкции до дна, верха и боковых сторон выставленной опалубки. Вся металлическая конструкция должна быть утоплена в бетоне. Еще одно условие – правильно определить это расстояние. Оно не может быть менее 10 сантиметров.
  3. Из арматурной проволоки необходимо согнуть детали, в виде рамки. Количество таких деталей зависит от длины ленточного фундамента. Располагаться они будут на расстоянии пятидесяти сантиметров друг от друга. Для того чтобы сделать их правильно важно вспомнить о расстоянии от металлической конструкции до опалубки. Значит, высота и ширина каждой детали должна быть меньше соответствующих параметров опалубки на 5-10 сантиметров.
  4. В уголки рамки необходимо уложить, а затем приварить уложенные друг на друга стрежни диаметром 12 мм и длиной 2,5 — 3 метра.

Использовать сварку при создании армировочной конструкции нужно только в особых случаях. Можно это сделать при изготовлении рамок, а все остальные работы выполняют, используя только вязальную проволоку.

Укладывать пруты следует строго в уголки рамки, а фиксировать с помощью крючка и вязальной проволоки. Рекомендуемое расстояние между перемычками и прутами не превышает 25 сантиметров.

Правильно собранный каркас станет гарантией прочности железобетонного фундамента.

Установка арматуры для опалубки

Такой процесс, как установка арматуры для опалубки, требует внимательности и осторожности, а также точного соблюдения последовательности в выполнении работ. Для того, чтобы правильно уложить весь каркас в опалубку, необходимо укладывать его по сегментам. Прежде чем начнется установка каркаса, на дно траншеи в опалубку укладываем большие камни одинаковой высоты. Они станут опорой каркасу и обеспечат необходимое расстояние между ним и подушкой. Посмотрите видео, как правильно укладывать арматуру в опалубку.

Класть фрагменты каркаса нужно так, чтобы сохранять точное расстояние между опалубкой и боковыми сторонами металлической конструкции. Каждый последующий фрагмент надежно скрепляют с предыдущим. Крепление – это вязальная проволока, прочно скрученная с помощью специального крючка.

Скрепляя фрагменты каркаса, нужно помнить о том, что перекручивать проволоку придется прочно, надежно. Она должна держать конструкцию, предохраняя ее от выдавливания.

Укладывать каркас в опалубку нужно так, чтобы совпадали по длине и по уровню стержни в углах по всей длине фундамента. Скрепляют их после наложения одного на другой, используя ту же вязальную проволоку. Установка армировочного каркаса в опалубку ленточного фундамента выполненная правильно, гарантирует длительный срок использования и прочность основания для всей постройки. Заливая бетон, нельзя забывать о трамбовке, которая позволит избавиться от пузырьков воздуха и сохранить прочность железобетона.

Монтаж арматуры для фундамента

Монтаж арматуры для фундамента

Прочность бетона высока, но недостаточна для изготовления из него монолитных фундаментов для домов или бань. Для придания основаниям строений необходимых характеристик в них перед заливкой устанавливают стальные стержни по определенным правилам. О том, как правильно выполнять монтаж арматуры для фундамента и пойдет речь в дальнейшем.

Особенности армирования фундаментов

Установка арматуры для фундамента должна выполняться с соблюдением целого комплекса различных правил. Только при их соблюдении можно гарантировать качественное основание, которое выдержит нагрузку не только от массы самого строения, но и от давления грунта при его пучении.

Основным материалом для армирования бетонных фундаментов являются стальные стержни диаметром от 12 до 20 мм. Отличительной их особенностью является наличие выступающих продольных и косых ребер. Этот аспект позволяет улучшить контакт между арматурными стержнями и бетонной смесью, что, в свою очередь, повышает прочностные характеристики железобетонного основания дома.

На металлобазах арматура реализуется стержнями, длина которых составляет 11-12 метров. Это очень удобно при монтаже каркаса фундамента, так как позволяет устанавливать продольные стержни в армопоясе по всей длине стен домов без сращивания. К сожалению, данный аспект значительно осложняет транспортировку арматуры к месту проведения строительных работ, что может привести к удорожанию бюджета строения.

На некоторых направлениях при монтаже армирующего каркаса допускается установка гладкой стальной арматуры меньшего диаметра. При этом необходимо следить за отсутствием на поверхности стержней глубоких коррозионных поражений, которые могут повлиять на прочность будущего фундамента.

Располагать стержни необходимо в соответствие требованиям строительных норм и правил. Нижний ряд, состоящий из двух-трех прутков, располагают на высоте не менее 5 см от дна траншеи под фундамент. Шаг поперечной арматуры в ленточном фундаменте обычно составляет 0,5 метра. На углах и стыках с перемычками его принято уменьшать вдвое.

В местах крепления горизонтальных продольных и поперечных прутков принято устанавливать и вертикальные стержни. Таким образом создается стальная решетка с определенными размерами. Для соединения арматуры в местах стыка применяют два основных способа:

  1. Первый предполагает использование сварного шва. Данный вариант крепления арматурных стержней имеет множество противников и сторонников. Первые указывают на невысокую коррозионную стойкость сварки, что в последующем может привести к ее разрушению. Вторым импонирует более высокая скорость армирования ленточного фундамента.
  2. Второй вариант подразумевает соединение арматурных стержней ленточного фундамента вязальной проволокой. В ее качестве используют отожженную стальную нить толщиной около 1 мм. С помощью специальных приспособлений или простейшего слесарного инструмента куски проволоки надежно скрепляют элементы армопояса ленточного фундамента.

к оглавлению ↑

Определяем количество расходных материалов

Перед началом работ по армированию ленточного фундамента важно правильно рассчитать количество необходимых расходных материалов – стальных стержней – гладких или рифленых, и проволоки. Определить искомые параметры помогут известные правила монтажа арматурных стержней.

Определяем количество арматуры для армирования

Рассчитаем количество материалов для армирования ленточного фундамента на примере строительства дома с размерами стен в плане 6х8 метров и одной поперечной перегородкой. Ширина траншеи будет равна 0,4 метра, глубина – 1,9 метра. Сначала рассчитаем количество продольных стержней.

Для получения каркаса с максимальными прочностными характеристиками желательно уложить арматурные стержни в четыре нити – две снизу и две сверху. Для упрочнения углов желательно выполнить загибы концов на длину, равную 40D. При диаметре стержней в 16 мм величина загнутых концов будет равна 40х16=640мм.

Исходя из указанных параметров, необходимая длина стержней будет равна:

Первая скобка – длина стержней для стены длиной 6 метров с учетом загибов на обоих концах, вторая скобка – та же величина для стены длиной 8 метров и вторая скобка – длина стержней для перегородки. Количество стен каждой длины равно двум, количество стержней для армирования каждой из них – четырем.

Следующий этап – расчет поперечных горизонтальных и вертикальных стержней. Общая длина армирования составляет:

Армирование ленточного основания

Короткие стержни устанавливают с шагом 0,5 метра, значит, количество горизонтальных и вертикальных пар будет равно:

Длина стержней должна обеспечивать зазор между армопоясом и границами железобетонного основания дома, равный не менее 5 см с каждой стороны. Соответственно, длина горизонтальных стержней равна

40-5-5=30, вертикальных 190-5-5=180.

Общая длина арматуры для перемычек будет равна:

Исходя из строительных нормативов, для продольной арматуры диаметр стержней выбирают равным 12-20 мм, для горизонтальных и вертикальных перемычек диаметр прута может быть уменьшен до 8-10 мм.

Расчет арматуры для ленточного фундамента

Вязальная проволока устанавливается из расчета 0,3 метра на каждый монтажный узел. Учитывая необходимость крепления к продольным стержням вертикальной и горизонтальной перемычки, количество связок будет равно 68х8=544. Общая длина требуемой вязальной проволоки равна 544х0,3=163,2 метра.

Монтаж арматуры ленточного фундамента

Приобретя необходимое количество стальных стержней, перед их установкой своими руками желательно разрезать детали в необходимый размер. Делать это удобно с помощью болгарки и простейших приспособлений для контроля длины. Подготовив все необходимое, также с использованием простейших приспособлений выполняем загиб концов продольных стержней под углом 90 о .

Арматуру с загнутыми концами укладываем в траншею. Для контроля высоты под нижний ряд стержней положите куски колотого силикатного или красного кирпича. В углах и на стыке с перемычкой стержни соединяем скрутками из вязальной проволоки между собой.

Следующий этап установки арматуры – монтаж горизонтальных перемычек нижнего ряда. Нарезанные ранее куски укладывают поверх стержней, соблюдая шаг установки не более 0,5 мера, и притягивают проволокой. Далее в углах устанавливают и фиксируют стяжками вертикальные проставки требуемой длины.

К верхним торцам стоек крепим продольные стержни с ранее загнутыми концами. Для контроля расстояния между элементами верхнего ряда параллельно ведем монтаж горизонтальных перемычек. Аналогично нижней обвязке загнутые части стержней стягиваем с перпендикулярными элементами, уложенными под соседними стенами.

Выполнять монтаж армирующего каркаса непосредственно в траншее – задача достаточно сложная из-за ограниченного пространства. Часто основную работу стараются выполнять наверху, выделив для этого ровную площадку недалеко от будущего фундамента. Из арматурных стержней вязальной проволокой скрепляют каркасы каждой стены, которые позже в готовом виде устанавливают в траншею. При большой длине стен дома для такого способа может потребоваться помощь подъемной строительной техники.

Особенности монтажа арматуры в углах

Как уже было отмечено ранее, правильное армирование углов ленточного фундамента из железобетона является очень важным элементом всей работы. Ошибки, допущенные на этом этапе, могут привести к дорогостоящему ремонту основания дома или к его демонтажу и полной замене.

Лучшим способом усилить углы фундамента и места присоединения перемычек – использование Г-образных стержней, имеющих достаточный загиб. Взаимное пересечение таких деталей и их надежная стяжка после заливки обеспечат требуемые прочностные характеристики ленточного фундамента.

Армирование углов ленточного фундамента

Если установка арматуры в ленточном фундаменте уже выполнена или элементы, изготовленные на земле лишены указанных особенностей, можно использовать другой способ. Заранее изготавливают загнутые под прямым углом угловые вставки с размером плеч не менее 700 мм. Их укладывают в углы, фиксируя к короткой продольной арматуре.

Для усиления жесткости фундаментных углов особое внимание требует и шаг арматуры в ленточном фундаменте. Горизонтальные вставки на расстоянии 1 метра от загиба ленты располагают с промежутком, который в два раза меньше стандартного. То есть, если на длинных сторонах каркаса перемычки располагались на расстоянии друг от друга 0,5 метра, то в углах эта величина должна быть уменьшена до 0,25 м.

Как сделать монтаж ленточного фундамента своими руками

 

Вступление

В статье вы найдете почти инструкцию, как сделать монтаж ленточного фундамента: разметка, рытье траншеи, изготовление опалубки, заливка и правильная сушка фундамента.

Подготовка

Работа с фундаментом займет несколько дней. Поэтому перед работами нужно оборудовать участок для проживания. Лучший вариант установить бытовку. Аренда бытовки в г. Москва не так дорога, как может показаться. Если есть возможность бытовку нужно подключить к электропитанию.

Теперь прописные истины. Ленточный фундамент самый популярный и надежный фундамент для малоэтажного строительства. По конструкции это бетонная армированная лента, в сечении прямоугольник. Ленточный фундамент это мелкозаглубленный фундамент. Подробно о конструкции и назначении ленточного фундамента я писал в статье: «Что такое ленточный фундамент». Начинаем работы с проекта.

Проект фундамента

Проект фундамента лучше заказать у профессионалов. Часто фундаменты рассчитывают у продавцов домов, можно заказать расчет фундамента в местной районной организации, занимающейся капитальным строительством.

Самостоятельный расчет ленточного фундамента не такой сложный, но не рентабельный. Без практики и опыта можно ошибиться и через зиму получить трещины, как минимум в фундаменте. Считаем, проект фундамента есть. Делаем разметку.

Монтаж ленточного фундамента — разметка

Монтаж ленточного фундамента начинаем с разметки. Для ленточного фундамента требуется ровная площадка. Грунтовые воды должны проходить глубже 1 метра от поверхности. Разметка фундамента делается по проекту.

В принципе, размеры и схема фундамента составляется на основе строения, которое будет стоять на нем. Ленты фундамента, планируются под несущими, а лучше подо всеми стенами дома. Не забываем про веранду. Перед разметкой, нужно снять дерн (плодородный слой почвы).

Суть разметки в следующем.

  • Забиваем два колышка с поперечиной по одному углу фундамента с отступом 1 метр;
  • От него, на одном уровне от земли (30-40 см), натягиваем два строительных шнура по ширине фундамента. Отмеряем длину фундамента по обеим ниткам. Вбиваем аналогичную конструкцию на другом углу дома;
  • Аналогично вымеряем другие три стены фундамента;

Важно! Самое главное, чтобы получился прямоугольник или квадрат с точно прямыми углами. Для этого промеряются диагонали разметки. При прямых углах они должны быть равной длинны.

Конструкция для разметки остается до окончания всех работ, чтобы в любой момент можно было сделать контрольные промеры.

Рытье траншеи

Траншея роется шире фундамента для удобства установки опалубки. Расчетную глубину траншеи увеличиваем на 15 см для песчаной подушки и 15 см для слоя щебня.

Рыть начинаем с нижней точки.

Опалубка для фундамента

На дно готовой траншеи укладываем слой щебня (15 — 20 см) и слой песка (15-20 см). Слои трамбуем и выравниваем единый горизонтальный уровень.  На эти подушки будем ставить опалубку.

  • Изготавливаем опалубку из досок 5 см толщины.
  • Сначала делаем щиты. Размер щитов увеличиваем на ширину цоколя ( смотрим  свой проект). Собранные щиты собираем в опалубку.
  • Опалубку нужно укрепить. Для этого, забиваем колы по периметру опалубки и прочно подпираем опалубку досками для дополнительной прочности.
  • Высота опалубки должна быть выше расчетной на 30 мм. Это запас на усадку бетона.

Важно! Верхний край опалубки лучше выставить по уровню и использовать, как направляющие при заливке бетона.

Изоляция фундамента

Готовую опалубку нужно покрыть рубероидом. Он предотвратит впитывание воды из бетона и обеспечит его равномерное застывание.

Армирование фундамента

Бетон ленточного фундамента требует армирования. Армирование это «скелет» фундамента, сделанный из арматуры диаметром по проекту.

Арматурный каркас вяжется проволокой. От армированного каркаса до края фундамента должно оставаться расстояние в 5-7 см. Это в дальнейшем предотвратит коррозию арматуры от грунта.

Делая опалубку, не забываем про вентиляцию подполья и отверстий для ввода/вывода коммуникаций. Для этих целей в «скелет» арматуры закладываем асбестоцементные или пластиковые.

Заливка бетона

Бетон лучше купить на заводе.

Важно! Марка бетона рассчитывается по весу дома и весу общей нагрузки на фундамент. Лучше использовать покупной бетон марки согласно проекту (обычно В15 или М200).

Чтобы самостоятельно замесить бетон без бетономешалки не обойтись. Пропорции цемент М400:Песок речной:Щебень 20 мм:Вода = 1:3:4:вода. Консистенция бетона должна получиться не жидкой.

Залитый бетон выравнивается по уровню, уплотняется глубинным вибратором и сразу накрывается полиэтиленом  или рубероидом для равномерного высыхания. Чтобы укрытие не сдувало ветром, на него укладывают доски для пресса.

Полную прочность бетон достигнет, через 28 суток. Опалубку можно снять через 14 дней.

Специально для сайта «Дом и ты».

©DomiTy.ru

Другие статьи раздела: Фундамент дома

 

Армирование бетонного фундамента: вязка каркаса и установка

Фундамент является частью здания, которая располагается внизу и принимает основные нагрузки, передавая их пластам почвы. Есть несколько методов изготовления бетонного основания. Строители выбирают тот или иной метод в зависимости от особенностей грунта, массы строения и других факторов. Так, при возведении малоэтажных домов чаще всего закладывают ленточные фундаменты. Важно, чтобы бетонная основа здания была прочной и долговечной. Чтобы укрепить ее, специалисты прибегают к армированию бетона. При этом важно принимать во внимание, что разные виды оснований из бетона предполагают применение разных стяжек и способов армирования.

Преимущества армирования фундамента

Установка арматуры помогает сделать бетон более качественным и прочным. Следовательно, здание, которое стоит на таком фундаменте, будет устойчивым и долговечным. Использование стяжки необходимо для того, чтобы со временем основание не подвергалось воздействию различных факторов. Стяжка помогает укрепить конструкцию.

Вернуться к оглавлению

Вязка каркаса арматуры

Вязка армированной сетки на каждом углу бетонного строения требует особой тщательности. Прутья загибают, а перехлесты – прячут в цементные стены. Чтобы определить, насколько прочна армированная вязка для стяжки основания, можно встать непосредственно на каркас. Правильно сделанная конструкция выдержит вес рабочего, и не будет деформироваться. Размещать прутья арматуры следует следующим образом:

  1. Перед тем как осуществить вязку и заливку бетона, нужно высчитать нагрузку бетона на основание. Эта величина позволит определить расход стройматериала (диаметр и объем прутьев при армировании).
  2. Во время изготовления каркаса особое внимание нужно обратить на возможную максимальную нагрузку, которая будет оказываться на основание вследствие деформации грунта.
  3. Чтобы бетон сделать крепче, арматуру следует поместить в бетонный раствор на глубину пять сантиметров.

Вернуться к оглавлению

Виды армирующих сеток для фундаментов

На современном рынке строительных материалов представлены четыре основных вида армированных сеток, которые используются для стяжки и других работ:

  1. Рабочая. При работе с фундаментом строители используют это изделие для противодействия растягиванию и давлению, которые возникают при нагрузках как извне, так и изнутри.
  2. Распределительная. С ее помощью можно закрепить прутья рабочей армирующей сетки, – это будет способствовать правильному распределению нагрузок.
  3. Монтажная. Такое армирование применяется при установке каркасов в нужное положение. После заполнения фундамента бетоном арматуру можно демонтировать.
  4. Хомуты. Используются для создания каркасов, несут некоторые нагрузки на себе. Хомуты схожи с распределительной армирующей сеткой.

Помимо этого, арматура бывает гладкой, рифленой. Применение рифленого каркаса позволяет повысить сопряжение бетона и армирующей стяжки.

Вернуться к оглавлению

Правила армирования

Установка каркаса в бетоне – сложный процесс, от правильности выполнения которого будет зависеть прочность фундамента. Перед армированием и закладкой основания из бетона, нужно произвести расчет всех нагрузок. Расчеты позволят подобрать правильный вид армирующей сетки. Для этого следует обратиться к специалисту.

Однако для стяжки фундамента существуют общие советы и рекомендации. При выполнении работ важно учитывать, что при строительстве малоэтажных зданий каркас скрепляется при помощи проволоки, а не сварочного аппарата, поскольку сварка изменяет свойства металлических прутьев на швах, что отрицательно сказывается на армирующей сетке. Кроме того, каркас необходимо располагать в конструкции основания здания (расстояние – минимум пять сантиметров от поверхности). Углы армируют при помощи согнутых прутьев. Сетку нужно очистить от ржавчины и сора, так как они снижают контакт каркаса с бетонной смесью.

Вернуться к оглавлению

Армирование монолитного ленточного фундамента

Для укрепления ленточного основания строения необходимо установить опалубку из древесины. В почву вбивают армирующую сетку, длина которой должна равняться глубине фундамента. Арматуру следует расположить на расстоянии пятидесяти миллиметров от деревянной опалубки. В котлован необходимо установить подставки для арматуры высотой в сто миллиметров. Можно приобрести их в специализированном магазине или воспользоваться кирпичами. Затем к штырям необходимо закрепить перемычки, а область пересечений скрепить проволокой.

Вернуться к оглавлению

Армирование плитного фундамента

Армирование плит предполагает использование армирующего каркаса из стали, который располагается внутри бетона. Сначала вам понадобится вырыть котлован, проверяя размеры с помощью специального уровня. Под основание укладывают подушку, в состав которой входит гравий, песок. Затем подушку гидроизолируют и укладывают на плиты. После проведения всех необходимых работ (укладка подушки, гидроизоляция) можно приступать к установке арматурного каркаса.

Для начала следует создать две армирующие сетки (диаметр каждой клетки – двадцать на двадцать сантиметров) из прутьев. Когда сетки будут готовы, одну из них располагают на нижнем слое гидроизоляционного материала, другую – в нескольких сантиметрах от поверхности плиты. Для армирования таких изделий устанавливают опалубку по всему периметру плитки. Она должна в точности повторять очертания строения. Каркас прикрепляют к стойкам, стоящим в вертикальном положении с внешней стороны основания. Стенки щитов накрывают картоном, при помощи которого можно удержать жидкость в цементной смеси. Затем раствор, залитый в деревянную опалубку, тщательно утрамбовывают.

Вернуться к оглавлению

Армирование столбчатого (свайного) фундамента

Армирование столбчатого фундамента.

Как правило, свайное основание делают на рыхлой почве при повышенном уровне подземных вод либо на неравномерном рельефе. Специалисты применяют разные сваи, которые следует связывать с помощью ростверка (конструкции, позволяющей скреплять материалы). Ростверк может быть бетонным (армированным), выполненным из разных деталей и стройматериалов. Ростверк из железобетона считается одним из наиболее качественных вариантов.

Перед началом работ определяют состав почвы. От этого будет зависеть длина свай, а также расстояние, размеры конструкции и ее способность выдерживать нагрузки. При произведении расчетов необходимо учитывать вес будущего строения, крыши, перекрытий и других нагрузок. Для основы применяют винтовые, буронабивные материалы. Вне зависимости от выбора свай, их следует армировать, чтобы придать прочность и устойчивость. Свайное основание нужно укрепить с помощью арматуры. Диаметр прутьев при этом должен составлять десять-четырнадцать миллиметров. Ростверк армируют каркасом поясов, связанных стержнями. Верхний арматурный пояс представляет собой сетку, состоящую из горизонтальных и вертикальных металлических стержней.

Вернуться к оглавлению

Заключение

Применение любого метода установки металлического каркаса в бетонное основание здания всегда требует правильного расчета всех данных: размеров изделия, объема строительных работ, количества материалов, особенностей грунта и пр.

важных функций спасут ваш дом

Что такое ленточный фундамент. Его виды, особенности конструкции, достоинства и недостатки применения. Этапы строительства ленточного фундамента.

Ленточный фундамент — это сплошная бетонная полоса, на которой по центру возводятся несущие стены. Он представляет собой ровное основание для стен, и его размеры должны быть достаточными для распределения нагрузки, передаваемой на фундамент, на участок грунта, способный выдержать вес здания без чрезмерного уплотнения.Сегодня для строительства фундаментов застройщики в основном используют бетон, так как его легко укладывать, насыпать и выравнивать в траншеи фундамента. Благодаря своей способности к затвердеванию бетон создает основу для стен и развивает надлежащую прочность на сжатие, чтобы выдерживать нагрузку на фундамент. Раньше ленточный фундамент строили из кирпича. Их устанавливали прямо на твердый грунт или возводили на ложе из натурального камня.

Какая ширина ленточного фундамента? Это предопределено несущей способностью грунта и предполагаемой нагрузкой.Чем больше несущая способность грунта, тем меньше ширина фундамента требуется для такой же конструкции.

Если ленточный фундамент должен быть построен на наклонной поверхности, вам, вероятно, потребуется создать ступенчатую конструкцию. Для правильной ступеньки фундамента общая толщина верхней части фундамента должна быть вдвое больше высоты ступеньки; или он должен быть равен 12 дюймам, если больше. Чтобы избежать возможной необходимости резать блоки или кирпичи, а также для обеспечения устойчивости будущей стены, кирпичную кладку или блочную кладку, выполняемую в дальнейшем, необходимо вшивать прямо на ступеньке.

Глубокий ленточный фундамент известен как наиболее используемый тип и самый дешевый метод при подходящих почвенных условиях. Полоса железобетона поддерживает стены. Глубина траншеи может варьироваться, хотя она должна быть не менее 40 дюймов в глубину и 24 дюйма в ширину. Минимальная глубина бетона должна составлять 9 дюймов.

Ширина фундамента определяется особенностями грунта, но обычно составляет 18 дюймов. Однако ваш строитель, скорее всего, укажет 24 дюйма; это условная ширина, применяемая при строительстве двухэтажных домов.

Широкий ленточный фундамент. Конструкции фундамента, построенные на грунтах с плохой несущей способностью, например, из мягких песчаных глин, должны быть значительно шире традиционных ленточных фундаментов, поскольку для большей устойчивости необходимо распределять нагрузку на большую площадь грунта. Чрезмерное увеличение ширины и глубины конструкции с целью предотвращения сдвига стен экономически не оправдано. Разумный вариант — построить фундамент из железобетона. Арматурные стержни добавляют фундаменту свойства прочности на растяжение, делая всю конструкцию способной противостоять растяжению и сжатию.

Преимущества и недостатки ленточного фундамента

Ленточный фундамент имеет как положительные, так и отрицательные качества. К положительным моментам можно отнести простоту конструкции, возможность возведения фундамента без дорогостоящих инструментов, а также его длительную эксплуатацию. К отрицательным качествам можно отнести сравнительно невысокую долговечность, дороговизну на завершающих этапах строительства (необходимо выполнять дополнительные ручные работы, такие как засыпка грунта между полосами и его выравнивание, пол здания и так далее), невозможность выполнить монолитную обвязку этаж до подвала.

Когда можно использовать ленточный фундамент?

Чтобы узнать, при каких условиях можно использовать ленточный фундамент, ознакомьтесь со строительными нормами. Подробно обратите внимание на следующее:

  1. При планировании строительства учитывайте требуемую ширину фундаментной ленты, указанную в строительных нормах и правилах.
  2. Бетонный раствор должен соответствовать требованиям совместимости с почвенными химикатами.
  3. Толщина бетонной полосы должна быть равной или превышать выступ внешней стороны стены, но не менее 6 дюймов.
  4. Высота ступеньки не должна превышать толщину фундамента.
  5. Фундамент выступает за край опор, дымоход образует сторону стены, а также выступает за внешнюю поверхность стены.

Разбиение на разделы

Уберите мусор с места и начните перегородку, положив на землю как внешние, так и внутренние границы будущего фундамента. Используйте колышки или арматурные стержни и веревки.

Когда разметка выполнена, вам следует изучить вариации на поверхности строительной площадки и выбрать самую низкую точку, на которую следует ссылаться при разметке глубины траншеи и для устранения разницы в высоте фундамента.

Подготовка к возведению ленточного фундамента

  1. Когда траншея будет готова, засыпьте песчаную основу, дно с гравием.
  2. Опалубка фундамента изготавливается из строганных досок толщиной примерно 40-50 мм. При возведении опалубки следует все время следить за ее вертикальностью. Рекомендуемый выступ рамы над землей — 12 дюймов. Необходимо построить небольшую базу.
  3. Следующий шаг — усиление фундамента.Арматурные стержни сечением 10-12 мм связываются вязальной проволокой специальной конструкции так, чтобы стороны квадратных ячеек составляли 12-16 дюймов. Для армирования можно использовать арматурные стержни из стали или стекловолокна. Укладывая арматуру в траншею, следите за выступами с краев. Оптимальная набивка — 50 мм. В этом случае наиболее эффективно в монолите будет расположена арматура.

Заливка бетонного ленточного фундамента

Заливку бетона производят сразу в случае товарного бетона или слоями, если бетон готовится самостоятельно.

  1. Приготовление бетона: цемент смешивают с просеянным речным песком в соотношении 1: 2 — 1: 2,5, разбавляют водой до жидкой кремообразной консистенции, после чего насыпают на подготовленный щебень. Количество щебня соответствует количеству песка. Перемешайте смесь, чтобы весь щебень смочился раствором.
  2. Залить бетон в подготовленную опалубку. Проколите бетон в нескольких местах металлическим бруском и утрамбуйте его деревянным бруском, чтобы удалить остатки воздуха из пустот.
  3. Залить бетон до уровня, указанного на опалубке. Таким образом опалубку следует задвигать снаружи для лучшего оседания бетона.
  4. Верхний слой выравнивается правилом или шпателем.
  5. Присыпать бетон просеянным сухим цементом; можно через сито. Этот метод позволяет верхнему слою бетона немного затвердеть и предотвращает его эрозию и растрескивание.
  6. Покройте бетон мешковиной или укрывным материалом и оставьте на 3-4 недели. В сухую погоду нужно смочить верхний слой бетона, чтобы он не пересыхал.

Рекомендовать:

Типы фундаментов домов.

Фундамент из железобетонных лент — перевод на польский язык — Linguee

железобетонная полоса f o otin g , фундамент w a ll s бетонных блоков забора обсадных труб и покрытых бетоном, [ …]

утепленная стиродуром,

[…]

изолированные по горизонтали и вертикали (рубероид, диспербит, пленка, ямочная мембрана)

adgt.pl

ławy żelbe до we, ści an y foundationowe z b locz ków szal unk owy ch zasypowych zb roj on zalewanych be до nem, ocieplone […]

стиродурем, изоловане

[…]

poziomo oraz pionowo (папа, диспербит, folia, folia kubełkowa)

adgt.pl

Моноли th i c железобетон s l ab s, точечные опоры a n d ленточный фундамент

domdevelopment.com .pl

Płyty żelbetowe mono li tyczn e, stopy i ławy fun dame nt owe

domdevelopment.com.pl

Подходит как

[…]
опалубка f o r полоса f o un dations, защита от замерзания или как круглая кромка f o r железобетонный фундамент .

schalungsstein.com

Nasz pustak może być stosowany zarówno prz y budowan iu Fundmentów , ś cian ek osłonowych, piwnic, jak i garaży podziemnych.

schalungsstein.com

Танки

[…]
находятся d o n железобетонные фундаменты , a nd герметичность […]

днища закреплены двумя слоями

[…]

стальных листов с контролируемым пространством между ними.

hbp-sa.pl

Зборники

[…]
posadowio ne na żelbetonowych Fundmentach , a sz czeln ć ich […]

dna zabezpieczaj dwie warstwy blach z monitoringiem przestrzeni między nimi.

hbp-sa.pl

перечень основных материалов — содержит информацию о количестве основных строительных материалов, выбранных в проекте, и покрытий: кровля, внешние облицовки и штукатурки, внутренние штукатурки, внешние стены и фундамент

[…]

изоляция стен,

[…]
кровельный утеплитель io n , ленточный фундамент a n d стены, внутренние и внешние wa ll s , железобетон s t ru арматура, пол […]

на потолке и на земле

eng.lk-projekt.pl

zawierające informacje dotyczące ilości głównych materiałów budowlanych, które przewidziane zostały w projekcie i obejmuje: pokrycie dachowe, tynki i okładziny

[…]

zewnętrzne, tynki

[…]
wewnętrzne, ocieplenie śc ia n zewnętrznych i ś ci an foundationowy ch , ocieplen ie dachu, ś cia ny owe, […

ściany zewnętrzne

[…]

i wewnętrzne, konstrukcje żelbetowe, posadzki na stropie i gruncie

lk-projekt.pl

Береговые лебедки будут

[…]
установленный на фундамент железобетон s l ab s которые имеют […]

уложено на подготовленную поверхность

[…]

в конце траншеи каждого трубопровода.

nord-stream.com

Wciągarki

[…]
zamontowane zostaną na podstaw ie z płyt ż el betow yc h ułożonych na […]

przygotowanym podłożu na końcu wykopu przeznaczonego

[…]

dla każdej z nitek rurociągu.

nord-stream.com

В процессе строительства

[…]
фаза завершена т h e фундаменты , s te el structu re s , железобетон c e il ings, полы и […]

стены, включая изоляцию

[…]

с внутренней облицовкой стен из нержавеющей стали.

plettac.pl

Przy budowie nowego obiektu spółka

[…]
ta odpowi ad ała za Fundmenty , k onstr uk cję stalową, uk łada nie wzmocnionych stóchw […]

podłogi i ściany wraz

[…]

z izolacją i okładziną ścian wewnętrznych ze stali szlachetnej.

plettac.pl

T h e бетонные фундаменты w i ll быть сборными […]

и будут доставлены на строительную площадку грузовиком или будут отлиты непосредственно в их окончательных положениях.

nord-stream.com

Fundamenty b eto now e bę prefabrykowane […]

i dostarczane ciężarówkami na miejsce budowy lub odlewane bezpośrednio w położeniu końcowym.

nord-stream.com

Залы устанавливаются на a бетон s u rf ac e o r ленточный фундамент , o r в некоторых случаях брусовые фундаменты […]

с анкерным креплением заземляющим стержнем.

haltec.co.uk

Halę możecie Państwo zamontować samodzielnie l u b z p omocą naszego wykwalifikowanego pracownika.

haltec.pl

Можно утилизировать «натуральный»

[…]

элемента, например,

[…]
соединенная сталь l o r железобетон c o ns автострады или другие подземные металлические конструкции, расположенные в здании di n g фундаменты o f d Размеры […]

не менее указанного выше.

дипол.пт

Można również wykorzystać elementy «naturalne»

[…]

takie jak np. połączone

[…]
pręty stalowe i elazobeto no we lub in ne odpowiednie podziemne structure ry meta low e znajdujące s w fu nd a. .]

mieszczących się w podanych wyżej granic.

dipol.com.pl

Исполнители t o f железобетонные фундаменты u n de r cyclone […]

фильтр, вентиляторы, силосы.

kobnext.pl

Wyko na nie fundamen to w żelbetowych p od cyklo fi ltr, goylatory, silosy.

kobnext.pl

Предварительно напряженная сталь состоит из

[…]

длинный, гнутый из стали

[…]
Используемые провода wi t h бетон o n c на стройплощадках до ma k e фундаменты , b al конусов или […]

мостов а также

[…]

используется в подземном строительстве и мостостроении.

eur-lex.europa.eu

Stal sprężająca składa się z

[…]

długich, Poskręcanych

[…]
drutów stalowy ch sto sowa ny ch wraz z be tone m na b udowa ch w celu t wor zenia f undamentów, […]

balkonów lub mostów,

[…]

a także w inżynierii podziemnej i przy budowie mostów.

eur-lex.europa.eu

В зависимости от несущей конструкции пристройки, а в

[…]
корпус из a железобетонный b u il ding, […]

ширина не изменена, стальной каркас

[…]

может быть по большей части установлен на внешних бетонных стенах или колоннах или даже прикреплен к внешним стенам фасадов на каждом этаже для распределения нагрузки.

arcelormittal.com

Zalenie od konstrukcji nośnej części

[…]
rozbudowywanej i w przyp adk u budynków ż el betow yc h, których […]

szerokość nie jest zmieniana, konstrukcja

[…]

stalowa może, w przeważającej części, być montowana na zewnętrznych ścianach betonowych lub słupach, a nawet mocowana do zewnętrznych ścian elewacji na kazeenia obiętrzia.

arcelormittal.com

(18) Радары для измерения уровня в резервуарах (TLPR) — это особый тип приложений для радиоопределения, которые используются для резервуаров

.
[…]

уровня и установлено

[…]
in Metalli c o r железобетон t a nk s или аналогичный […]

конструкции из материала с

[…]

сравнимые характеристики затухания.

eur-lex.europa.eu

(18) Radary sondujące poziom napełnienia zbiornika (TLPR) są to urządzenia radiolokacyjne, które wykorzystuje się do pomiarów poziomu napełniania

[…]

zbiornika i które instaluje się w

[…]
zbiornikac h wykon любой ch z metalu lub zbr ojo nego be tonu, […]

lub w подобных объектов wykonanych

[…]

z materiału o podobnych właściwościach tłumiących.

eur-lex.europa.eu

UAB Autokausta

[…]
строит и устанавливает монолитные бетонные стены, перекрытия, колонны, be am s , strip a n d dri ll e d фундаменты , p ol i sh e d бетон f l oo rs, inst al l s железобетон a n d металлические конструкции, сносит здания и выполняет различные […]

землеройно-транспортных работ.

autokausta.lt

Spółka UAB «Autokausta» wykonuje budowę ścian z

[…]

monolitycznego żelbetu,

[…]
przekryć , kolum n, belek , f undam en tów taśmow yc hiw ie rconych, szlifow an ychó 900 100 pod99 на owych, prace wykończeniowe, montuje konstrukcje żelbetowe i metalowe, wykonuje roboty w zakresie bu rz enia budynków oraz w szystkie prace…]

z zakresu przygotowania

[…]

terenu pod budowę i roboty ziemne.

autokausta.lt

Основная несущая конструкция

[…]
состоит из fo u r железобетон t o we rs измерения […]

9×9 м, включая лестницы, лифты и

[…]

этажа и расположены по углам внутреннего крытого двора.

arcelormittal.com

Główna konstrukcja

[…]
nośna skł a da s z czterech ż elb etow yc h wież o […]

wymiarach 9x9m, zawierających schody, windy i poziomy

[…]

serwisowe, ulokowane w narożnikach wewnętrznego, zadaszonego dziedzińca.

arcelormittal.com

При расчете глубины и уклона траншеи учтите, что после завершения установки длина трубы должна быть

[…]

заглубленный минимум на 300 мм от верха трубы до готовой

[…]
уровень АЗС (250 мм при u si n g железобетон ) .

kpsystem.com

Przy obliczaniu głębokości i nachylenia rowu należy wziąć pod uwagę, że gdy instalacja będzie gotowa, rura powinna być zakopana na głębokości zapewniającej

[…]

Minimalny Odstęp 300 mm od góry rury do poziomu wykończonego

[…]
подязду (25 0 мм w prz ypa dku zastosowania zbrojonego bet onu ) .

kpsystem.com

Позиция, которую должен занять Европейский Союз в Совместном комитете, созданном Европейско-Средиземноморским временным соглашением об ассоциации по торговле и сотрудничеству между Европейским сообществом, с одной стороны, и Организацией освобождения Палестины (ООП) в интересах

[…]

Палестинской администрации Западного берега

[…]
и Ga z a Strip , o f другие […]

часть, в части изменения статьи

[…]

15 (7) Протокола 3 относительно определения понятия «продукты происхождения» и методов административного сотрудничества в целях расширения применения этого положения об изъятии или освобождении от таможенных пошлин, должны основываться на проекте решения Объединенный комитет прилагается к настоящему Решению.

eur-lex.europa.eu

Stanowisko, jakie ma zająć Unia Europejska w ramach Wspólnego Komitetu utworzonego Eurośródziemnomorskim przejściowym układem stowarzyszeniowym w sprawie wymiany handlowej i wąl
[…]

(OWP) на Речи Палестинской автономии на

[…]
Zachodn im Brz egu i w S tref ie Gazy […]

з другой строны, w odniesieniu do zmiany art.

[…]

15 уст. 7 Protokołu 3 dotyczącego Definicji pojęcia „produkty pochodzące” или метод współpracy administracyjnej w celu przedłużenia stosowania tego przepisu dotyczącego zwrotu lub zwlníčníní zw

eur-lex.europa.eu

В данном случае мы имеем законченное экономическое управление

[…]

пакет, который надо

[…]
утвердить, в ва y o f усиленный фундамент , s o , что в будущем, […]

когда придет следующий шторм

[…]

, еврозона не может пошатнуться.

europarl.europa.eu

W tym przypadku stworzyliśmy pakiet zarządzania

[…]

gospodarczego, który

[…]
powinniśmy zatw ie rdzi ć j ak o wzmocnione фундаментальный, by w przys ości, […]

kiedy nadejdzie następna burza,

[…]

strefa euro już się nie zachwiała.

europarl.europa.eu

Водонепроницаемый пол из однослойного сплава

[…]
приваривается непосредственно к сплаву ki c k полоса a n d i s усиленная i n t он задняя часть для высоких нагрузок вилочного погрузчика.

krone-trailer.com

Wodoszczelne, ciągłe korytko podłogowe

[…]

jest przyspawane

[…]
bezpośrednio do li stew odbojowych , aw t ylnej częś ci doda tko wo wzmocnione w cel ua cel u …]

dużych obciążeń z wózka widłowego.

крона-прицеп.com

Железобетонный фундамент s l ab a n d strip f o ot ing

domdevelopment.com.pl

Płyta fu nd amento wa i stopy f un d.

domdevelopment.com.pl

Это означало, что на короткое время

[…]
лед на т h e бетонный фундамент h a d подлежит замене […]

специальным слоем песка толщиной 2 см.

wirtgen.dk

Oznaczało to, e na krótki

[…]
czas na betono wym fundamencie zam iast lo du musiała […]

się znaleźć specjalna warstwa piasku o grubości dwóch centymetrów.

wirtgen.dk

создание проемов в нижней части стен до

[…]
содержат n ew l y железобетонные фундаменты ( F ig ure 6.2.2)

arcelormittal.com

wykonanie otworów w dolnej części murów, w celu

[…]
wypełnienia ic h nowy mi fundamen tam i elbetowymi ( rys une k 6.2 ,2 )

arcelormittal.com

Основная основная конструкция состоит из несущих элементов

[…]

каркасов и элементов стабилизации, обеспечивающих устойчивость объекта и

[…]
переносит нагрузку с т o железобетонный фундамент .

trimo.eu

Główna konstrukcja stalowa składa się z ramy nośnej oraz

[…]

elementów стабильный, które zapewniaj стабильный объект oraz

[…]
przenoszą obcią ż enia na wzmocnieni e betonowych f un dam entó w .

trimo.pl

Фундамент железобетонный , w al ls из […]

Кирпич пустотелый керамический, перекрытия железобетонные монолитные внутренние

[…]

подъезда, деревянная крыша покрыта черепицей.

kpb.com.pl

Fundamenty ż el bet owe, śc iany z pustaków ceramicznych […]

poryzowanych, stropy monolityczne żelbetowe, klatki schodowe wewnętrzne,

[…]

dach o konstrukcji drewnianej kryty blachodachówką.

kpb.com.pl

flex ib l e полосы o r t ubes, из которых видимая ширина не превышает 5 мм, включая di n g полосы c u t от w id e r полосы o r f пленок, изготовленных из веществ, используемых для производство волокон, перечисленных в пунктах 19–41 Приложения I и пригодных для текстильного производства; кажущаяся ширина — это ширина т h e полоса o r t ube когда […]

сложенный, плоский, сжатый

[…]

или скрученная, или средняя ширина, если ширина неоднородна.

eur-lex.europa.eu

jącej 5 мм, włączająctaśmy wy cię te z szerszych taś m lu b błon wytworzonych z субстанция służących do pr c 10099 uk onych w załączniku I pod pozycjami 19–41 i które można zastosować we włókiennictwie; widoczna szerokość jest szerokością zwiniętej, sp ł aszcz one j, ściśniętej lu b s kręcub on ej taśmy lki l..]

gdy szerokość nie jest

[…]

jednolita, jest to jej średnia szerokość.

eur-lex.europa.eu

Мы создаем проект т h e фундаменты a s i индивидуальный f er r o бетон m o нет литическая конструкция, для широко развитой сети профессиональных бетонных центров и простых проектных решений должны […]

не создает затруднений

[…]

любой компании, имеющей опыт такого строительства.

konar.eu

Fundamenty pro jektu je my jako indywidualne żelbetowe konstrukcje monolityczne, gdyż szeroko rozwinięta na terenie kraju sieć profesjonalnyc h węzł 99 99 99 99 99 99 99 99 99 99 99 99 99 związania projektowe […]

nie powinny sprawić

[…]

trudności żadnej firmie wykonawczej posiadającej doświadczenie w wykonywaniu tego typu konstrukcji.

konar.eu

Основы для ремонта неисправного фундамента

Фундамент — это метод увеличения глубины фундамента или ремонта дефектного фундамента. Это может произойти, если вы планируете добавить этажи к существующей конструкции или когда фундамент поврежден.

Один из видимых признаков того, что ваше здание нуждается в подкреплении, — это видимые трещины.Зданию необходимо укрепить фундамент, если трещины шире ¼ дюйма и есть некоторые признаки неисправного фундамента, особенно диагональные трещины. Разрушения фундамента также можно рассматривать как вздыбленный фундамент, потрескавшиеся или прогнутые стены и потрескавшиеся бетонные полы.

Самый распространенный метод крепления — метод заливки массой. Этот процесс требует последовательной выемки секций на заранее установленную глубину под основанием и укладки бетона на каждую яму. Повторяйте этот метод, пока вся пораженная область не будет укреплена.Существуют и другие методы и техники поддержки, которые описаны в следующих разделах.

Опора на винтовых сваях и кронштейнах

Основание с помощью винтовых свай и скоб обычно используется в некоторых случаях, когда традиционный процесс крепления невозможен. В некоторых зданиях может потребоваться выемка грунта на большую глубину или, возможно, невозможно использовать свайную установку, что делает его идеальным для использования метода винтовых свай и кронштейнов. Винтовые сваи и кронштейны могут быть установлены только бригадой из двух человек вручную или с помощью небольшого оборудования, такого как мини-экскаватор.

Винтовые сваи могут быть установлены в фундаменты, способные работать на растяжение и сжатие, выдерживать вертикальные и поперечные силы ветра, а также силы вибрации и сдвига. Они идеально подходят для использования с опорными кронштейнами. Затем конструкцию можно поднять обратно в горизонтальное положение, а вес фундамента перенести на систему опор и кронштейнов. Винтовые сваи имеют много преимуществ по сравнению с традиционными сваями, такими как скорость установки, низкий уровень шума и минимальная вибрация, которая может вызвать повреждение окружающей территории.

Свайно-балочный метод

Укрепление свай и балок — еще один отличный и предпочтительный метод облегчения опоры. Использование этой системы требует установки мини-сваи по обе стороны от поврежденной стены. После того, как сваи были установлены, под стеной снимается кирпичная кладка и используется железобетонная игольчатая балка для соединения свай и поддержки стены.

Уменьшение расстояния между игольчатыми балками позволяет выдерживать очень высокие нагрузки.Несущая способность нижележащих пластов будет определять количество, диаметр, глубину и шаг используемых свай. При таком методе крепления могут использоваться бурозабивные сваи или забивные сваи. Преимуществами подкладки из свай и балок являются:

  • Подходит для ограниченного доступа
  • Быстрее традиционной основы
  • Высокая грузоподъемность
  • Меньше простоев, меньше отходов и быстро завершается

Опора на свайном плоту

Подкрепление свайным плотом необходимо использовать, когда необходимо подкрепить всю конструкцию.Рекомендуется, когда фундамент слишком глубокий для других методов крепления фундамента или в областях, где почва настолько твердая, что небольшое оборудование не может копать на требуемую глубину. Сваи размещаются в определенных местах по условиям нагрузки; затем карманы под опорами ломаются и укрепляются игольчатые балки, которые выдерживают нагрузку на стену. Затем строится кольцевая балка, чтобы связать все иглы, и конструкция заливается бетоном. Преимущества этой системы:

  • Обеспечивает поперечные и поперечные связи по всей конструкции.
  • Экономичен на глубине более 1,5 м.
  • Нет необходимости во внешнем доступе.
  • Уменьшает нарушение работы дренажных систем.

Опорные насадки

Обычно для достижения лучших результатов этот процесс должен быть разработан или проведен инженером-строителем, но вот несколько советов, которые помогут вам в процессе обоснования.

  • Укладку основания нужно начинать с углов и обрабатывать внутрь.
  • Фундамент должен выполняться только на несущих стенах.
  • Не подкладывать под ненесущие стены.
  • Начало подкрепления под полосой опоры. Рекомендуется начинать с не менее 3 футов в длину, два фута в ширину и два фута в глубину.
  • После завершения земляных работ засыпьте полость бетоном. Бетон следует смешать, используя одну часть цемента, три части песка и шесть частей заполнителя.
  • Не забудьте использовать опалубку по краям.
  • Допускается укладка бетона не менее чем на два дня.
  • Используйте стержень, чтобы полость под существующим фундаментом была заполнена.
  • Перед загрузкой убедитесь, что бетон полностью затвердел.
  • Как только бетон наберет достаточную прочность, отломите выступающую опору.
  • Разрезать бетон по массе бетонной поверхности.
  • Засыпка и компактная. Если у вас возникли проблемы с достижением необходимого уплотнения, добавьте воды в почву из шланга.

Эффективность ленточного фундамента с армированием георешеткой для различных типов грунтов в Мосуле, Ирак

Abstract

Основная причина проблемного разрушения грунта при определенной нагрузке — низкая несущая способность и чрезмерная осадка.В связи с растущим интересом к использованию неглубокого фундамента для поддержки тяжелых конструкций важно изучить методы улучшения почвы. Техника использования геосинтетического армирования широко применяется в последние несколько десятилетий. Целью данной статьи является определение влияния использования георешетки Tensar BX1500 на несущую способность и осадку ленточного фундамента для различных типов почв, а именно Аль-Хамедат, Башика и Аль-Рашидия в Мосуле, Ирак. Расчет армированных и неармированных грунтовых оснований проводился численно и аналитически.Был протестирован ряд условий путем изменения количества ( N ) и ширины ( b ) слоев георешетки. Результаты показали, что георешетка может улучшить несущую способность основания и уменьшить осадку. Почва на участке Аль-Рашидиа была песчаной и показала лучшее улучшение, чем почвы на двух других участках (глинистые почвы). Оптимальная ширина георешетки ( b ) в пять раз превышала ширину основания ( B ), в то время как оптимальное число георешетки ( N ) получено не было.Наконец, численные результаты предельной несущей способности были сопоставлены с аналитическими результатами, и сравнение показало хорошее соответствие между результатами анализа и оптимальным диапазоном, опубликованным в литературе. Значительные результаты показывают, что усиление георешетки может способствовать улучшению грунтового основания, однако напрямую не зависит от ширины и количества только георешетки. Различные свойства почвы и размер основания также влияют на значения BCR и SRR, подтвержденные расчетами коэффициента улучшения.Таким образом, полученные результаты дополнили преимущества эффективного применения укрепленных грунтовых оснований.

Образец цитирования: Хасан Н.И., Мохд Тайб А., Мухаммад Н.С., Мат Язид М.Р., Муталиб А.А., Абанг Хасболлах Д.З. (2020) Эффективность ленточного фундамента с армированием георешеткой для различных типов почв в Мосуле, Ирак. PLoS ONE 15 (12):
e0243293.

https://doi.org/10.1371/journal.pone.0243293

Редактор: Цзяньго Ван, Китайский университет горного дела и технологий, КИТАЙ

Поступило: 17 июня 2020 г .; Принята к печати: 19 ноября 2020 г .; Опубликовано: 17 декабря 2020 г.

Авторские права: © 2020 Hasan et al.Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии указания автора и источника.

Доступность данных: Все соответствующие данные находятся в документе.

Финансирование: Инициалы автора: AMT Номер гранта: GGPM-2018-039 Спонсор: Universiti Kebangsaan Malaysia URL: https://www.ukm.my/portal/ Роль спонсора: Оплата сборов за публикацию и предоставление оборудования для проекта.

Конкурирующие интересы: Авторы заявили, что никаких конкурирующих интересов не существует.

Введение

Методы улучшения грунта с помощью геосинтетических материалов были широко разработаны за последние несколько десятилетий, особенно в области строительства дорожных покрытий и фундаментов. Хотя было проведено множество экспериментальных исследований для определения эффекта геосинтетического армирования, анализ различается в отношении свойств геотекстиля, таких как форма и размеры, расстояние и толщина [1–13].Кроме того, в исследованиях также анализируется влияние различных типов грунтов и конструкций основания. Что касается поведения грунта с классификацией песчаных грунтов, многочисленные аналитические исследования внесли свой вклад в изучение взаимодействия грунта и конструкции, проведенного несколькими исследователями в отношении несущей способности оснований из грунта, армированного георешеткой [13-17]. Кроме того, бесчисленные численные модели, позволяющие сэкономить время и средства, были выполнены для исследования несущей способности и осадки армированного грунта [9, 18–29].Концепция армированного грунта как строительного материала, основанная на существовании взаимодействий между грунтом и арматурой за счет прочности на растяжение, фрикционных и адгезионных свойств арматуры, была впервые введена французским архитектором и инженером Анри Видалем в 1960-х годах [29]. С тех пор этот метод широко используется в инженерно-геологической практике. Геосинтетические материалы, которые используются в армированных грунтах, бывают разных типов, включая геосетки, геотекстиль, геомембраны, геосинтетические глиняные облицовки, геосетки и геоячейки [30].Георешетка — один из строгальных геосинтетических материалов, обычно изготавливаемых из полимеров; В настоящее время различные разновидности геосеток изготавливаются из полипропилена или полипропилена высокой плотности (HDPP), что способствует эффективному использованию различных геотекстильных материалов.

Фундамент с системой армирования грунтом называется фундаментом с грунтовым покрытием (РПГ). На рис. 1 показан типичный геосинтетический армированный грунт фундамент и описание различных геометрических параметров. Параметры армирования георешеткой включают расстояние между верхними слоями ( и ), расстояние по вертикали ( с или х ), количество армирующих слоев ( N ), общую глубину армирования ( d ) и ширину арматуры ( б ).Как указано в литературе, оптимальное значение для параметров ( u / B ) и ( h / B ) составляет 0,33 (где B — ширина основания). Во многих исследованиях были выбраны разные размеры основания и георешетки, но все результаты указывают на различное поведение в зависимости от классификации почвы. Можно понять, что разные географические районы имеют разные типы почвы и условия, следовательно, правильная конструкция используемой георешетки важна для улучшения грунтовых оснований.Более того, фундаменты из армированного грунта могут быть экономичной альтернативой обычным фундаментам мелкого заложения с большими размерами основания, которые, в свою очередь, увеличивают осадку фундамента из-за увеличения глубины зоны влияния под фундаментом или замены слабых слоев грунта подходящими материалами [31] .

За последние тридцать лет было проведено множество экспериментальных, численных и аналитических исследований для изучения поведения RSF для различных типов почв.Все исследования показали, что использование арматуры может значительно увеличить несущую способность и уменьшить осадку грунтовых оснований [33]. Чен и Абу-Фарсах и др. . В работе [34] для оценки преимуществ фундамента с усиленным грунтом использовались две концепции, например коэффициент несущей способности (BCR) и коэффициент уменьшения осадки (SRR). BCR определяется как отношение несущей способности фундамента из армированного грунта к несущей способности фундамента из неармированного грунта, тогда как SRR определяется как отношение уменьшения осадки основания на основе армирования к осадке основания из неармированного грунта при постоянном поверхностном давлении [ 35].BCR представлен как:
(1)

Где:

( q ult ) r — предельная несущая способность фундамента из армированного грунта.

( q ult ) u — предельная несущая способность неармированного грунтового основания.

И SRR определяется как:
(2)

Где:

с R — осадка из армированного грунтового основания.

с 0 — осадка неармированного грунтового основания.

Многие из этих исследовательских усилий были направлены на изучение параметров и переменных, которые будут влиять на значения BCR и SRR. Другие исследования также были сосредоточены на улучшении осадки фундамента, других геотехнических конструкций и методов расчета, таких как Abbas и др. . [36], Rosyidi и др. . [37], Khajehzadeh и др. . [38], Joh и др. .[39], Чик и др. . [40], Ли и др. . [41], Азриф и др. . [42] и Zhanfang и др. . [43] работают. Гвидо и др. . [1] провели экспериментальное исследование земляных плит, армированных геотекстилем. Их модельные испытания проводились с использованием квадратного фундамента на песке. Они показали, что BCR уменьшалась с увеличением ед. / Б ; улучшение несущей способности было незначительным, когда количество армирующих слоев было увеличено до трех, что соответствовало глубине воздействия 1 . 0B для u / B , h / B и b / B соотношения 0,5, 0,25 и 3. Незначительное улучшение BCR наблюдалось при увеличении отношения длин ( b / B ) армирования сверх трех с двумя армирующими слоями и u / B и h / B отношениями 0,25 и 0,25 соответственно. Кроме того, Ли и др. . [44] провели испытание лабораторной модели с использованием жесткой ленточной опоры, опирающейся на плотный песок, покрывающий мягкую глину, со слоем геотекстиля на границе раздела.Они обнаружили, что слой армирования на границе раздела песок-глина привел к дополнительному увеличению несущей способности и уменьшению осадки основания; Эффективная ширина арматуры, которая привела к оптимальным характеристикам основания, оказалась примерно в пять-шесть раз больше ширины основания.

Кроме того, исследование методом конечных элементов, проведенное Курианом и др. . [45] на ленточном основании, поддерживаемом армированным песком, с использованием модели грунта Дункана-Чанга показали явное уменьшение осадки в армированном песке при более высоких нагрузках, чем в случае неармированного песка.Численные результаты также показали, что небольшое увеличение осадки произошло в армированном песке на начальной стадии процесса нагружения. Возможное объяснение этого явления дано Курианом и др. . [45] было то, что нормальная нагрузка была слишком мала, чтобы мобилизовать достаточное трение между почвой и арматурой. Относительное движение между грунтом и арматурой увеличивалось с увеличением нагрузки и уменьшалось с увеличением глубины армирования.Максимальное напряжение сдвига на границе раздела грунт-арматура произошло на относительном расстоянии ( x / B ) примерно 0,5 от центра основания, а напряжение, развиваемое в арматуре, было максимальным в центре и постепенно уменьшалось к концу. арматуры. С другой стороны, Махарадж [19] выполнил численный анализ на ленточном основании, поддерживаемом армированной глиной, с использованием модели грунта Друкера – Прагера. Он пришел к выводу, что в случае однослойной арматуры оптимальное соотношение расстояния между верхними слоями ( u / B ) оказалось около 0.125 из армированной глины. Он также обнаружил, что коэффициент эффективной длины ( b / B ) арматуры был около 2,0, глубина воздействия зависела от жесткости арматуры, а увеличение геосинтетической жесткости уменьшало оседание основания.

Хотя многие исследования показали много интересных особенностей механизма взаимодействия грунт-геосинтетика, методы, используемые для проектирования геосинтетических грунтовых систем, все еще различаются и в большинстве случаев озадачивают инженеров.В основном использовался расчет системы армированного грунта с использованием методов предельного равновесия, который считался очень консервативным [46–48]. В последнее время внедрение метода конечных элементов для моделирования и анализа системы армированного грунта обеспечило соответствующие проектные характеристики, низкую стоимость и скорость, с использованием различных систем армирования грунта и граничных условий [49]. Однако необходимость численного и аналитического исследования, учитывающего основные факторы механизма взаимодействия армированного грунтового основания, остается актуальной.В этой статье анализ несущей способности и осадки армированного георешеткой и неармированного грунтового основания трех участков (т.е. Аль-Хамедат, Аль-Рашидия и Башика) в Мосуле, Ирак, проводится численно с помощью программы конечных элементов Plaxis. и сравнивается с аналитической несущей способностью, рассчитанной теоретически с использованием метода, разработанного Ченом и Абу-Фарсахом [17]. Производные и аналитические методы основаны на анализе предельного равновесия и рассчитывают только предельную несущую способность для данного осадки.Поскольку с помощью этих методов невозможно получить осадки, поэтому осадки, полученные в результате численного анализа, были использованы в теоретическом методе.

Механизм армирования георешеткой

Во многих случаях при строительстве неглубокие фундаменты возводятся поверх существующего слабого грунта, что приводит к низкой несущей способности и чрезмерным проблемам осадки. Недостатки могут вызвать структурное повреждение, снижение срока службы и ухудшение уровня производительности [50].В этих условиях методы улучшения почвы использовались в течение долгого времени для решения проблемы, связанной с этими типами почв. Несколько исследователей разработали различные методы улучшения почвы для повышения прочности почвы с помощью различных методов стабилизации. Для решения вышеупомянутых проблем с почвой было разработано несколько типов методов улучшения почвы, включая цементацию, вертикальные дренажи, замену почвы, укладку свай и геосинтетическое армирование [51–54]. Полимерная природа геосинтетического материала делает геосинтетические изделия долговечными в различных условиях грунта и окружающей среды.Общие применения геосинтетики в области геотехнической инженерии включают повышение прочности и жесткости подземного грунта, подчеркнутого на неглубоких фундаментах и ​​тротуарах, обеспечение устойчивости грунтовых подпорных конструкций и откосов, обеспечение безопасности плотин, как обсуждалось в Han et al . [55] и Ван и др. . [56] работают. Георешетка используется для улучшения механических характеристик подземного грунта при внешних нагрузках. Таким образом, он широко применяется в качестве армирующих слоев в стенах из механически стабилизированного грунта (MSE) и геосинтетического армированного грунта (GRS), в качестве меры стабилизации откосов и в качестве армирования подземного грунта под тротуарами и основаниями.Высокая растягивающая способность геосеток позволяет слоям армирования принимать на себя значительную часть растягивающих напряжений, возникающих в массиве грунта из-за действия внешней нагрузки. Таким образом, георешетки действуют как армирующие элементы и усиливают нагрузочно-деформационные характеристики армированного грунтового массива.

В ходе некоторых экспериментальных исследований Бинке и Ли [14] оценили несущую способность грунта, армированного металлическими полосами; Результаты испытаний показали, что несущая способность может быть улучшена в 2–4 раза за счет усиления грунта.Результаты их испытаний также показали, что арматура, размещенная ниже глубины воздействия, которая составляла приблизительно 2B , оказала незначительное влияние на увеличение несущей способности и размещение первого слоя на ( u / B = 0,3) ниже основание фундамента привело к максимальному улучшению. Акинмусуру и Акинболаде [57] исследовали влияние использования канатных волокон в качестве армирующих элементов на песчаную почву; их результаты показали, что предельная несущая способность может быть увеличена до трех раз по сравнению с неармированным грунтом; Оптимальное расстояние между верхними слоями ( и ) было определено как 0 . 5B , и они показали, что улучшение несущей способности было незначительным, когда количество армирующих слоев было увеличено до трех, что соответствовало глубине воздействия 1 . 75Б . Сакти и Дас [2] провели экспериментальное исследование фундамента из глинистого грунта, армированного геотекстилем. Результаты их испытаний показали, что большинство преимуществ геотекстильного армирования было получено при соотношении расстояния между верхними слоями ( u / B ), равном 0.От 35 до 0,4. Для u / B 0,33 и h / B 0,33 BCR увеличился с 1,1 до 1,5, когда количество слоев увеличилось с 1 до 3, и после этого оставался практически постоянным. Затем определено, что глубина воздействия при укладке геотекстиля составляет 1,0 B . Наиболее эффективная длина геотекстиля равнялась четырехкратной ширине ленточного фундамента

.

Чжоу и Вэнь [58] провели экспериментальное исследование, чтобы изучить эффект использования однослойной песчаной подушки, армированной геоячейками, на мягкой почве.Результаты показали, что произошло существенное уменьшение осадки нижележащего мягкого грунта, а коэффициент реакции земляного полотна K30 был улучшен на 3000%; деформация уменьшилась на 44%. Более того, Рафтари и др. . [24] провели численный анализ на ленточном основании, поддерживаемом усиленным откосом, с использованием модели грунта Мора – Кулона. Результаты испытаний показали, что осадка фундамента на неармированном склоне более сильная, чем на усиленном.Так как осадка в армированной ситуации с тремя слоями арматуры уменьшилась примерно на 50%. Они сообщили, что для достижения наименьшей осадки оптимальное вертикальное расстояние между георешетками ( х ) должно быть эквивалентно ширине фундамента ( B ). Khing и др. . [5] провели серию модельных испытаний на ленточных фундаментах, поддерживаемых песком, армированным георешеткой. Результаты испытаний показали, что размещение георешетки на глубине ( d / B ) больше 2.25 не привел к улучшению несущей способности ленточного фундамента. Для достижения максимальной выгоды минимальный коэффициент длины ( b / B ) георешетки должен быть равен 6. BCR, рассчитанный при ограниченном соотношении осадки ( s / B ), равном 0,25, 0,5 и 0,75, составляет примерно 67 % –70% от окончательного BCR.

Адамс и Коллин [11] выполнили несколько серий крупномасштабных полевых испытаний. Испытания проводились в бетонном боксе с четырьмя квадратными опорами различных размеров.Для испытаний был выбран мелкодисперсный песок для бетонного раствора с плохой сортировкой. Результаты испытаний показали, что три слоя армирования георешеткой могут значительно увеличить несущую способность и что коэффициент предельной несущей способности (BCR) может быть увеличен до более чем 2,6 для трех слоев армирования. Однако величина осадки, необходимая для этого улучшения, составляла примерно 20 мм ( s / B = 5%) и могла быть неприемлемой для некоторых применений фундамента. Результаты также показали, что положительные эффекты армирования при низком коэффициенте осадки ( s / B ) могут быть максимально достигнуты, когда расстояние между верхними слоями меньше 0.25 Б . В качестве альтернативы, Араб и др. . [27] провели численный анализ на ленточном основании, поддерживаемом песчаным грунтом, с использованием модели затвердевающего грунта. Они сообщили, что для геометрических параметров u / B = h / B = 0,5 и b / B = 4, эффект увеличения количества слоев георешетки ( N ) на несущую способность армированных георешеткой грунтов увеличили несущую способность и немного увеличили общую жесткость армированного песка.Увеличение жесткости георешетки также привело к увеличению BCR. Несмотря на то, что исследования грунтового основания, армированного георешеткой, проводились широко, поведение грунта не отражено полностью, особенно с учетом оптимизированного применения георешетки. Численное моделирование в этом исследовании способствует более глубокому пониманию грунтового основания за счет определения арматуры в моделях грунта.

Численное моделирование

Численное моделирование поведения армированного и неармированного грунтового основания проводилось с использованием программного обеспечения Plaxis.Plaxis — это программа конечных элементов, специально разработанная для анализа деформации и устойчивости в инженерно-геологических задачах [59]. В этом исследовании процесс тестирования включает в себя полное моделирование грунта, усиления георешетки, установки фундамента и приложения нагрузки, как показано на рисунке 1. Реальные сценарии могут быть смоделированы с помощью модели плоской деформации, которая используется в текущей задаче. Модель плоской деформации подходит для реализации с относительно однородным поперечным сечением, схемой нагружения и большой протяженностью модели в направлении, перпендикулярном плоскости модели, где нормальные напряжения полностью учитываются, но смещения и деформации принимаются равными нулю. .

Анализ модели

В Plaxis доступны различные модели почв. С помощью моделирования методом конечных элементов в данной работе была рассмотрена упруго-идеально пластичная модель грунта Мора – Кулона. Конститутивная модель Мора-Кулона широко используется в большинстве инженерно-геологических задач, поскольку исследователи показали, что комбинации напряжений, приводящие к разрушению в образцах грунта в трехосных испытаниях, соответствуют контуру разрушения по критерию Мора-Кулона (шестиугольная форма) Голдшейдера [60].При использовании конститутивной модели Мора-Кулона в качестве входных данных требуются пять параметров [61]. Эти пять параметров могут быть получены путем анализа основных испытаний грунта, и они состоят из двух параметров жесткости: эффективного модуля Юнга ( E ′) и эффективного коэффициента Пуассона ( v ′) и трех параметров прочности: эффективного сцепления ( c ′), Эффективный угол трения ( φ ′) и угол расширения ( ψ ). В 2D-пространстве огибающая разрушения символизирует прямую или слегка изогнутую линию, касающуюся круга Мора или точек напряжения.В диапазонах напряжений в пределах очага текучести почвенный материал эластичен. По мере развития критического сочетания напряжения сдвига и эффективного нормального напряжения точка напряжения будет совпадать с зоной разрушения, и предполагается идеально пластичное поведение материала с непрерывным сдвигом при постоянном напряжении. После достижения идеально пластичного состояния материал никогда не сможет вернуться к полностью эластичному поведению без каких-либо необратимых деформаций. Ленточный фундамент моделируется как жесткая плита и в анализах считается очень жестким и грубым.

Детали армированных георешеткой грунтов, рассмотренных в модельных испытаниях, показаны в Таблице 1. В Plaxis армирование георешетки представлено с помощью специальных элементов растяжения (пятиузловых элементов георешетки). Георешетки имеют только нормальную жесткость и не имеют жесткости на изгиб, которая может выдерживать только растягивающие усилия. Единственное свойство материала георешетки — это упругая осевая жесткость EA . Чтобы смоделировать взаимодействие элементов георешетки с окружающей почвой, часто бывает удобно комбинировать эти элементы георешетки с интерфейсами.Назначенные интерфейсы почва-георешетка показаны на рис. 2. Каждому интерфейсу присвоена виртуальная толщина, которая является воображаемым размером, используемым для определения свойств материала границы раздела. Модель упруго-идеально пластическая используется для описания поведения границ раздела при моделировании взаимодействия грунт-георешетка. Кулоновский критерий используется для различения упругого поведения, при котором небольшие смещения могут происходить внутри границы раздела, и пластического поведения границы раздела, когда происходит постоянное скольжение.Параметры границы раздела рассчитываются из параметров окружающей почвы с использованием коэффициента взаимодействия R inter , который определяется как отношение прочности на сдвиг границы раздела к прочности почвы на сдвиг [59]. В этом исследовании используются 15-узловые элементы грунта, а прочность поверхности раздела установлена ​​вручную. Для реального взаимодействия грунт-конструкция граница раздела слабее и гибче, чем связанный грунт, а это означает, что значение R между должно быть меньше 1.Следовательно, в настоящем исследовании предполагается, что R между равно 0,9.

После того, как геометрическая модель полностью определена и свойства материала назначены слоям грунта и структурным объектам, сетка применяется для расчетов методом конечных элементов (КЭ). Plaxis включает в себя процедуру полностью автоматического создания сетки, в которой геометрия дискретизируется на элементы базового типа элемента и совместимые структурные элементы, как показано на рис. 3. Основным типом элемента в сетке, использованной в настоящем исследовании, является треугольный. элемент со средним размером 0.5–2 м, что обеспечивает точный расчет напряжений и разрушающих нагрузок. Plaxis предлагает пять различных плотностей ячеек, от очень крупной до очень мелкой. Предварительные расчеты проводились с использованием пяти доступных уровней глобальной грубости сетки, чтобы получить наиболее подходящую плотность сетки и минимизировать влияние зависимости сетки на моделирование методом конечных элементов. В ходе анализа количество треугольных элементов и точек напряжения в модели для каждого участка было изменено в зависимости от плотности сетки и расположения арматуры.В таблице 2 показано изменение количества элементов и точек напряжений в зависимости от плотности сетки моделей трех участков для случая пяти слоев георешетки. Как видно на рис. 4, размер сетки оказывает минимальное влияние на результаты после примерно 240 элементов для участка Башика и 400 элементов для участков как Аль-Хамедат, так и Аль-Рашидиа. Для Ba’shiqa это соответствует крупной сетке с уточнением вокруг элементов георешетки и основания модели, где ожидаются большие концентрации напряжений, и средней сетки с уточнением как для Аль-Хамедат, так и для Аль-Рашидиа.

Смоделированные граничные условия предполагались такими, что вертикальные границы были свободными по вертикали и ограничены по горизонтали, в то время как нижняя горизонтальная граница была полностью фиксированной, как показано на рис. 5. Рассматриваемые вертикальные границы сетки находились на расстоянии 10 м от центра сетки. фундамент с каждой стороны, в то время как нижняя горизонтальная граница была на 20 м ниже основания фундамента, так что эти границы не влияют на напряжения и деформации, возникающие в массиве грунта.В исследовании использовалась точечная нагрузка. Конструкция моделировалась с увеличивающейся величиной нагрузки до тех пор, пока почва не достигла невозможности исследовать оседание под действием приложенной нагрузки. После создания геометрической модели и создания сетки конечных элементов необходимо указать начальное напряженное состояние. Начальные условия состоят из двух различных режимов: один режим для создания начального давления воды, а другой режим для задания начальной геометрической конфигурации и создания начального эффективного поля напряжений.Поскольку слои почвы для Аль-Хамедат и Башика сухие, а уровень грунтовых вод на участке Аль-Рашидиа достаточно глубок, чтобы не влиять на поведение фундамента, состояние грунтовых вод было принято как незначительное. Начальные напряжения в грунте генерируются с использованием формулы Джаки, выраженной уравнением 3 (в программном обеспечении Plaxis процедура создания начальных напряжений в грунте часто известна как процедура K 0 ).
(3)
где K 0 — коэффициент бокового давления грунта, а φ — угол внутреннего трения грунта.

Plaxis позволяет выполнять различные типы расчетов методом конечных элементов, такие как расчет пластичности, анализ консолидации, анализ уменьшения Phi-c и динамический расчет. Для текущего исследования был выбран пластический расчет. Для проведения анализа упругопластической деформации следует выбрать пластический расчет. Этот тип расчета подходит для большинства практических геотехнических приложений. В инженерной практике проект делится на фазы проекта. Точно так же процесс расчета в Plaxis также разделен на этапы расчета.В данном исследовании рассматриваются два этапа расчета. Первый — это начальная фаза, которая представляет начальную ситуацию проблемы. Второй этап включает в себя усиление георешетки и приложение нагрузки на внешние линии.

При расчете методом конечных элементов анализ становится нелинейным, если задействован расчет пластичности, что означает, что каждый этап расчета необходимо решать в этапах расчета (этапах нагрузки). Размер шага и алгоритм решения важны для нелинейного решения.Если шаг вычисления подходящего размера, то количество итераций, необходимых для достижения равновесия, будет небольшим, примерно 5–10, а если шаг большой, то количество требуемых итераций будет чрезмерным, и решение может отличаться. Итерационные параметры в программном обеспечении: желаемый минимум и максимум в первую очередь предназначены для определения того, когда расчет должен включать большие или меньшие шаги. Если расчет может решить шаг нагрузки (следовательно, сходиться) за меньшее количество итераций, чем желаемый минимум, который по умолчанию равен 4, он начинает использовать шаг нагрузки, который в два раза больше.Если, однако, для вычисления требуется больше итераций, чем желаемый максимум, который по умолчанию равен 10 для схождения, вычисление решит выбрать шаг вычисления только половинного размера. Для пластического анализа изменение желаемого минимума или желаемого максимума не влияет на результаты. Пока расчет сходится на каждом шаге, неважно, использует ли расчет много маленьких шагов с несколькими итерациями или ограниченное количество больших шагов с большим количеством итераций на шаг.

Существует несколько процедур для решения задач нелинейной пластичности. Все процедуры основаны на автоматическом выборе размера шага в зависимости от применяемого алгоритма. Предельный уровень продвижения нагрузки — одна из таких процедур, которая используется в текущем анализе. Процедура автоматического определения размера шага используется в основном для этапов расчета, на которых необходимо достичь определенного предельного уровня нагрузки. Процедура завершает расчет при достижении заданного уровня нагрузки или при обнаружении разрушения грунта.Количество дополнительных шагов установлено на 1000, чтобы процесс расчета продолжался до конца до того, как будет достигнуто количество дополнительных шагов. В этой процедуре итерационные параметры установлены на стандартные и показали хорошую производительность при сходимости вычислений. В стандартных настройках допустимая ошибка, которая представляет собой отклонение от точного решения, была установлена ​​на 0,03, коэффициент чрезмерной релаксации, который отвечает за уменьшение количества итераций, необходимых для сходимости, был установлен на 1,2, максимальное количество итераций было установлено на 50, желаемая минимальная и максимальная итерация была установлена ​​на 4 и 10 соответственно, и, наконец, было активировано управление длиной дуги, что важно для сходимости вычислений и точного определения нагрузки при отказе, иначе расчет будет повторяться и нагрузка при отказе будет переоценен.Поэтапное строительство было выбрано в качестве варианта ввода нагрузки, где можно определить значение и конфигурацию нагрузки, а также состояние отказа, которое должно быть достигнуто. Поскольку поэтапное строительство выполняется с использованием процедуры предельного уровня увеличения нагрузки, оно контролируется общим множителем (∑Mstage). Этот множитель обычно начинается с нуля и достигает конечного уровня 1,0 в конце фазы расчета. Временной интервал фазы расчета считается нулевым, поскольку анализ модели является пластическим и не включает консолидацию или использование модели ползучести мягкого грунта.

Свойства материала

Почвы были собраны с трех разных участков в Мосуле, Ирак: Аль-Хамедат, Башика и Аль-Рашидия. Мосул расположен в северной части Ирака. Район характеризуется обширными равнинами и антиклиналями. Возле реки Тигр расположены три уровня накопленных террас аллювиальных почв. Большая часть почвы в этом районе умеренно экспансивного типа. Плоские участки между антиклиналями покрыты слоистыми наносами стока, которые включают глину, песок, ил, а иногда и покрыты рассыпным гравием.В таблице 3 показаны механические и физические свойства почвы, а в таблице S1 показаны пределы Аттерберга и размер зерна для каждого вовлеченного участка. В данном исследовании использовался бетонный ленточный фундамент шириной B = 600 мм. Свойства основания показаны в Таблице 4. Двухосные георешетки (Tensar BX1500), показанные на Рис. 5, использовались для укрепления почвы на всех трех участках. Различные свойства армирования георешеткой, использованные при моделировании методом конечных элементов данного исследования, показаны в таблице 5.

Результаты и обсуждения

Результаты, полученные от Plaxis для определения предельной несущей способности и осадки основания, представляли собой кривые осадки под нагрузкой усиленного и неармированного грунта на трех упомянутых площадках, в то время как результаты аналитического анализа Уравнение Мейерхоф [63] и метод, полученный Ченом и Абу-Фарсахом [17], были значениями BCR для этих грунтов с усилением георешеткой.

Грунты неармированные

Три моделирования методом конечных элементов были проведены с использованием программного обеспечения Plaxis для оценки предельной несущей способности неармированного грунта для каждого участка. На рис. 6 показана деформированная сетка (увеличенная до 15 раз) грунта под действием разрушающей нагрузки. На рис. 6 можно увидеть небольшой пучок грунта по краям основания и осадку 57,43 мм, что указывает на разрушение грунта при сдвиге. На рис. 7 и 8 показаны разработанные вертикальное напряжение и вертикальное смещение неармированного грунта, соответственно, при приложении разрушающей нагрузки.На рис. 7 и 8 показан пузырь приращений вертикального напряжения и вертикального смещения, соответственно, в пределах профиля почвы из-за приложения нагрузки полосы [64]. Однако вертикальное напряжение и вертикальное смещение уменьшались с увеличением глубины, как показано на этих рисунках значениями штриховки контуров. Соответствующие напряжения и перемещения в горизонтальном направлении представлены на рисунках 9 и 10 соответственно. Максимальные горизонтальные напряжения на рис. 9 были сосредоточены непосредственно под основанием на глубине B и по горизонтали шириной B ; кроме того, по штриховке горизонтальных напряжений было ясно, что грунт разрушился под действием местного сдвига.

Максимальная часть горизонтального смещения, представленная на Рис. 10, приходилась на поверхность почвы, и это было причиной вспучивания почвы по краям основания. Однако эти горизонтальные напряжения и смещения значительно повлияли на поведение георешетки, как будет обсуждаться позже в разделе с усиленным грунтом. Напряжения сдвига и деформации, связанные с разрушением, показаны на рисунках 11 и 12 соответственно. Обратите внимание, что максимальные касательные напряжения и деформации или зона сильного сдвига были расположены под краями основания и почти распространялись на глубине 2 B по горизонтали на расстоянии B от краев основания и значительно уменьшались на нижние глубины.Тем не менее, местное разрушение при сдвиге было почти очевидно из затенения касательных напряжений, показанных на рис. 11. На рис. 13 представлены точки пластичности или точки пластичности разрушения, образовавшиеся в массиве грунта под действием разрушающей нагрузки. Пластическая точка — это точка, соответствующая необратимому напряжению и деформации, которая расположена на огибающей Мора-Кулона (огибающая является функцией угла внутреннего трения сцепления грунта).

На рис. 13 также показаны точки растяжения (точки с черным цветом) на поверхности почвы, которые соответствуют трещинам от растяжения (участки напряжений от растяжения).Однако эти точки натяжения указывали на то, что грунт разрушился под действием растяжения, а не сдвига. Теоретическая предельная несущая способность неармированного грунта была получена с помощью формул (4) — (9). Параметры прочности на сдвиг (c и φ ) и удельный вес ( γ ), используемые в следующих уравнениях, показаны в таблице 3.

Сайт Аль-Хамедат:

Сайт Башики:

Сайт в Аль-Рашидии:

Результаты неармированного грунтового основания, полученные численным анализом, и теоретическая предельная несущая способность, полученная Мейерхофом [63], показаны в Таблице 6.Здесь можно увидеть, что численные значения несущей способности были больше теоретических значений. Высокое значение несущей способности может быть связано с тем, что уравнения несущей способности обычно недооценивают (более консервативно) предельную несущую способность грунта [64]. Кривые зависимости давления от осадки из численного анализа неармированных грунтовых оснований трех площадок показаны на рис. 14–16. Кроме того, эти цифры показывают метод, используемый для определения предельной несущей способности по кривым нагрузки – осадки; он представляет собой консервативное и наиболее реальное состояние отказа.Этот метод представляет собой метод касательных пересечений, разработанный Траутманном и Кулхави [65].

Из рисунков 14–16 можно заметить, что грунт Аль-Хамедат демонстрирует более высокую несущую способность ( q u = 640 кПа ), чем два других участка, где грунт Ba’shiqah показывает промежуточную несущую способность. значение ( q u = 365 кПа ), а почва Аль-Рашидия является самой низкой ( q u = 67 кПа ) среди почв.Это различие может быть связано с характеристиками и свойствами почвы, указанными в Таблице 3 и Таблице S1. Считается, что почва на участке Аль-Хамедат представляет собой твердую глину с высокой степенью сцепления ( c = 40 кПа ), Аль-Рашидиа представляет собой песчаный грунт с высоким углом трения ( φ = 28 °) с нулевым сцеплением ( c = 0 кПа), в то время как почва на участке Башика классифицируется как глинистая от низкой до средней с относительно низким сцеплением ( c = 15 кПа ) по сравнению с почвой Аль-Хамедат.

Армированные грунты

Девяносто расчетов методом конечных элементов было проведено на армированном грунтовом основании, чтобы изучить влияние усиления георешетки на предельную несущую способность и осадку ленточного основания, расположенного на трех упомянутых участках. Деформированная сетка (увеличенная до 10 раз) армированного георешеткой грунта показана на рис. 17. Кроме того, осадка была уменьшена до 44,68 мм за счет включения арматуры георешетки, где уменьшение осадки было отнесено за счет подъемных сил. создается арматурой георешетки во время деформации и мобилизации осевых растягивающих сил слоев арматуры.Кроме того, просачивание грунта на краях основания уже исчезло, что означало, что грунт не разрушился при сдвиге, как упоминалось ранее в случае неупрочненного грунта. На рис. 18 показаны горизонтальные напряжения, возникающие в массиве укрепленного грунта. Видно, что горизонтальные напряжения были немного увеличены до значения 228,96 кН / м 2 из-за передачи части вертикальной нагрузки на горизонтальную нагрузку, которую несет арматура и, в свою очередь, на окружающий грунт. Кроме того, горизонтальные напряжения были распределены по слоям арматуры шириной 5 B , что указывало на сцепление и взаимодействие слоев почвы и георешетки; в результате силы растяжения внутри арматуры были мобилизованы, как показано на рис.19.

На рис. 20 показано распределение горизонтальных смещений в армированном грунте. Понятно, что смещение уменьшено до 8,68 мм из-за ограничения слоев арматуры, стрелки почти одинаково распределены по слоям арматуры и небольшие значения смещения, вызванные на поверхности почвы, по сравнению с неармированным состоянием, когда большая часть горизонтального смещения произошла на верхняя часть почвы, вызывающая вспучивание почвы. Следовательно, разрушение грунта при сдвиге предотвращается за счет передачи приложенной вертикальной нагрузки к силам растяжения в арматуре георешетки за счет поверхностного трения и опоры между грунтом и арматурой.На рисунках 21 и 22 показаны напряжения сдвига и деформации армированного грунта и их распределение вдоль арматуры георешетки, соответственно. Замечено, что области концентрации касательных напряжений и деформаций под фундаментом уменьшаются за счет распределения напряжений и деформаций вдоль и через слои арматуры, что приводит к изменению плоскости разрушения и предотвращает разрушение в армированной зоне. Пластические точки в усиленной зоне изображены на рис. 23.Показано, что точки пластичности сильно концентрируются вдоль армированной зоны, что указывает на экстремальные напряжения, возникающие на границе раздела между почвой и георешеткой. Следовательно, это оправдывает взаимодействие между грунтом и георешеткой и изменение механизма разрушения.

Влияние ширины георешетки

(b) и количества слоев георешетки (N) на предельную несущую способность

На рис. 24–26 показано изменение BCR с шестью различными значениями ширины георешетки (b) для от 1 до 5 слоев георешетки ( N ) для трех участков Аль-Хамедат, Аль-Рашидиа и Башика, соответственно.Из рисунков 24–26 видно, что увеличение ширины георешетки (b) и номера георешетки (N) приводит к увеличению BCR для всех трех участков. Кроме того, грунт на Аль-Рашидиа способствует более высокому повышению предельной несущей способности, чем на двух других участках. Улучшение может быть связано с различием свойств почвы и размера зерна, как показано в Таблице 3 и Таблице S1. Почва Аль-Рашидиа песчаная и имеет угол трения ( φ = 28 °), больший, чем на двух других участках, в которых пассивные силы и силы трения между почвой и георешеткой будут выше, чем на двух глинистых участках [8].Что касается участков Аль-Хамедат и Башика с глинистыми почвами, то почва участка Башика с глинистостью от низкой до средней лучше улучшается, чем грунт участка Аль-Хамедат, который представляет собой твердую глину с точки зрения предельной несущей способности. Следовательно, используя армирование георешеткой со слабой глиной, почва может улучшиться до более жесткой глины. Однако максимальное улучшение предельной несущей способности может быть получено при b / B = 5 для любого номера георешетки на этих трех участках, поэтому оптимальная ширина георешетки (b) для трех участков составляет 5 B в то время как не было оптимального номера геосетки (N) , полученного как N = 5, все три почвы показывают хорошее улучшение несущей способности основания.

Влияние ширины георешетки

(б) и количества слоев георешетки (N) на расчетную опору

Коэффициент уменьшения осадки (SRR%) в зависимости от ширины георешетки ( b ) с числом слоев георешетки от 1 до 5 ( N ) показан на рисунках 27–29 для почв Аль-Хамедат, Аль-Рашидия и Ба’шика соответственно. Из этих рисунков видно, что увеличение ширины слоя георешетки (b) и номера георешетки ( N ) привело к уменьшению осадки основания для трех участков.На рисунках 27–29 наблюдалось уменьшение осадки фундамента (SRR%), полученное на этих трех участках в результате увеличения ширины арматуры георешетки (b) и количества слоев георешетки ( N ). Показано, что большее уменьшение осадки фундамента при увеличении ширины георешетки (b) достигается за счет грунта участка Башика для первых трех слоев георешетки ( N = от 1 до 3), за которым следует грунт Сайты Аль-Рашидиа и Аль-Хамедат соответственно.В то время как в точке N = 4 и 5 почва Аль-Рашидиа начала показывать более высокие улучшения, чем почва стоянки Башика, в отличие от почвы стоянки Аль-Хамедат, которая демонстрирует наименьшее улучшение.

Разница в SRR% может быть вызвана двумя причинами: хорошим углом трения грунта Башика ( φ = 25 °) и возникновением эффекта глубокой опоры [50] в почве участка Башика, который делает общее разрушение грунта сдвигом развито ниже армированной зоны.В этом случае натяжение всех слоев георешетки в усиленной зоне будет мобилизовано, поскольку основание выйдет из строя с точки зрения предельной несущей способности после пробивки слоев георешетки. Почва участка Аль-Рашидиа показывает второе более высокое улучшение и при N = 4 и 5, что указывает на более высокое улучшение грунтового поселения. Как указывалось ранее, грунт на участке Аль-Рашидиа песчаный и имеет самый высокий угол трения ( φ ) между двумя другими участками, в которых значение мобилизованного натяжения слоев георешетки в усиленной зоне будет выше, чем это два участка из-за попадания частиц песка в отверстия георешетки.Более того, может возникнуть более высокое сопротивление трению в зоне контакта между почвой и слоями георешетки. С другой стороны, грунт Аль-Хамедат имеет угол трения ( φ = 20 °) ниже, чем у двух других участков, что приводит к меньшему трению в зоне контакта грунта с георешеткой и меньшим пассивным силам на краях ребра георешетки. Таким образом, небольшое улучшение отражается на оседании фундамента, даже несмотря на то, что в этой почве может происходить эффект глубокого залегания.

Из рисунков 27–29 также можно увидеть, что почва Аль-Хамедат демонстрирует лучшее улучшение положения основания, поскольку число георешетки ( N ) увеличивалось, чем приращение ширины георешетки ( b ), в то время как почва Башика была противоположной .Увеличение может быть связано с более высокой прочностью почвы на участке Аль-Хамедат ( c = 40 кПа ), чем с почвой Башика ( c = 15 кПа ), где на нее могут повлиять количество слоев георешетки ( N ) больше ширины георешетки ( b ). Оптимальная ширина георешетки ( b ) для трех участков при любом номере георешетки также составляет 5 B , в то время как не было получено оптимальное число георешетки ( N ), N = 5 все три почвы показали хорошее улучшение опоры основания.

Коэффициент улучшения (IF)

Коэффициент улучшения (IF) определяется как отношение несущей способности армированного грунта ( q усиленного ) к неармированному грунту ( q неармированного ) в определенные с / B соотношения. Где s / B — отношение осадки фундамента к ширине фундамента. IF при различных соотношениях с / B был рассчитан для сравнения предельной несущей способности грунтов с различным номером георешетки ( N ) на разных уровнях осадки.Вариация IF с соотношениями s / B трех сайтов показаны на рис. 30–32. Из этих цифр очевидно, что при увеличении осадки основания коэффициент улучшения (предельная несущая способность армированного грунта) увеличивается для любого номера георешетки, и это ожидается, поскольку слоям георешетки требуется осадка основания для мобилизации их сил растяжения, следовательно, повышение устойчивости к приложенным вертикальным нагрузкам. Также можно отметить влияние номера георешетки ( N ), увеличение количества слоев георешетки приводит к увеличению IF, таким образом, уменьшая начальную осадку, необходимую для мобилизации натяжения слоя георешетки и обеспечения устойчивости армированного грунта. сопротивление приложенным нагрузкам даже при очень высокой осадке без обрушения.

Более того, использование георешетки в почве на участке Аль-Хамедат демонстрирует меньший коэффициент улучшения и достигает очень большого поселения для улучшения несущей способности основания по сравнению с двумя другими участками. Это большое поселение связано с тем, что почва Аль-Хамедат представляет собой очень прочную глину ( c = 40 кПа) с низким углом трения ( φ = 20 °), чем на двух других участках, и, следовательно, требует высокой осадки для мобилизации напряжения в георешетке. слоев, почва Башика также глинистая ( c = 15 кПа) с углом трения ( φ = 25 °) лучше, чем грунт Аль-Хамедат, поэтому он показал лучшее улучшение предельной несущей способности и более низкое оседание для мобилизации напряжение в слоях георешетки, чем в почве Аль-Хамедат.В то время как почва Аль-Рашидиа показала самое высокое улучшение предельной несущей способности и самое низкое оседание при мобилизации напряжения в слоях георешетки, что связано с почвой Аль-Рашидии, это песок с более высоким углом трения ( φ = 28 °), кроме того, Георешетка лучше работает с песчаным грунтом из-за угла трения и сцепления частиц с отверстиями георешетки.

Сравнение численного и аналитического анализа

BCR численного анализа с использованием Plaxis и аналитического анализа с использованием метода, разработанного Ченом и Абу-Фарсахом [17] для армированных грунтов трех участков, сравниваются на рис. 33–35.Эти рисунки показывают изменение BCR численного и аналитического анализа с номером георешетки ( N ) для почв Аль-Хамедат, Аль-Рашидиа и Башика, соответственно.

Из рисунков 33-35 заметно, что аналитический анализ является почти линейным и показал небольшую разницу с численным анализом, что может быть связано с ограничениями в определении точной глубины продавливания в глинистых грунтах (Al-Hamedat & Ba’shiqa), что впоследствии приводит к низкому или высокому сопротивлению грунта приложенным нагрузкам.Кроме того, значения угла наклона арматуры георешетки (ξ и α) для глинистых участков (Аль-Хамедат и Башика) и песчаных участков (Аль-Рашидиа) под нагрузкой на фундамент могут быть выбраны не совсем так, как они есть в действительности. Однако общий аналитический анализ показал почти хорошие результаты, близкие к численному анализу.

Заключение

Что касается комплексного анализа методом конечных элементов и аналитического анализа, включение арматуры может улучшить несущую способность основания и уменьшить осадку.Несущая способность и уменьшение осадки усиленного грунтового основания для трех участков увеличивались с увеличением ширины слоев георешетки ( b ). Степень улучшения несущей способности и осадки фундамента для каждого участка была разной. Почва участка Аль-Хамедат показала меньшее улучшение, чем два других участка, в то время как почва участка Аль-Рашидиа показала более высокое улучшение. Оптимальная ширина георешетки для всех трех участков составила (5 B ).Увеличение количества слоев георешетки ( N ) привело к повышению несущей способности и уменьшению осадки армированного грунтового основания на всех трех участках. По мере увеличения количества георешеток степень улучшения несущей способности и осадки фундамента для каждого участка была различной. Почва участка Аль-Хамедат показала меньшее улучшение, чем два других участка, в то время как почва участка Аль-Рашидиа показала более высокое улучшение. Оптимального числа георешеток не было, так как три участка показали хорошее улучшение даже при N = 5.Использование армирования георешеткой с песчаными грунтами или слоями слабых глин привело к лучшему повышению несущей способности и уменьшению осадки, чем более сильные слои, которые требуют более высокого оседания, чтобы показать свои улучшения; это было ненадежно, потому что фундамент мелкого заложения был почти рассчитан на определенный уровень поселения. BCR из аналитического анализа увеличивались по мере увеличения количества ( N ) и ширины ( b ) георешетки. Их приращение было почти линейным и показало приемлемые значения, которые близко соответствовали BCR из численного анализа.Это исследование убедительно доказывает, что усиление георешетки потенциально способствует улучшению грунтового основания, однако напрямую не зависит от ширины и количества только георешетки. Различные свойства почвы и размер основания также влияют на значения BCR и SRR. Общие выводы дополняют преимущество эффективного применения укрепленных грунтовых оснований.

Ссылки

  1. 1.
    Гвидо В. А., Чанг Д. К. и Суини М. А. Сравнение земляных плит, армированных георешеткой и геотекстилем.Канадский геотехнический журнал, 1986, 23 (4): 435–440.
  2. 2.
    Сакти Дж. П. и Дас Б. М. Модельные испытания ленточного фундамента на глине, армированной слоями геотекстиля. Совет по исследованиям в области транспорта, 1987 г. Получено с https://trid.trb.org/view/289088
  3. 3.
    Хуанг К. и Тацуока Ф. Несущая способность укрепленного горизонтального песчаного грунта. Геотекстиль и геомембраны, 1990, 9 (1): 51–82.
  4. 4.
    Мандал Дж. Н. и Сах Х. С. Испытания несущей способности глины, армированной георешеткой.Геотекстиль и геомембраны, 1992, 11 (3): 327–333.
  5. 5.
    Хинг К. Х., Дас Б. М., Пури В. К., Кук Э. Э., Йен С. С. Несущая способность ленточного фундамента на песке, армированном георешеткой. Геотекстиль и геомембраны, 1993, 12 (4): 351–361.
  6. 6.
    Омар М. Т., Дас Б. М., Пури В. К. и Йен С. С. Максимальная несущая способность фундаментов мелкого заложения на песке с армированием георешеткой. Канадский геотехнический журнал, 1993, 30 (3): 545–549.
  7. 7.Шин Э., Пинкус Х., Дас Б., Пури В., Йен С. и Кук Э. Несущая способность ленточного фундамента на глине, армированной георешеткой. Журнал геотехнических испытаний, 1993, 16 (4): 534.
  8. 8.
    Дас Б. М. и Омар М. Т. Влияние ширины фундамента на модельные испытания на несущую способность песка с армированием георешеткой. Геотехническая и геологическая инженерия, 1994, 12 (2): 133–141.
  9. 9.
    Етимоглу Т., Ву Дж. Т. Х., Сагламер А. Несущая способность прямоугольных фундаментов на песке, армированном георешеткой.Журнал геотехнической инженерии, 1994, 120 (12): 2083–2099.
  10. 10.
    Дас Б. М., Шин Э. К. и Сингх Г. Ленточный фундамент на глине, усиленной георешеткой: предварительная процедура проектирования. Международное общество морских и полярных инженеров. Шестая Международная конференция по морской и полярной инженерии, 1996 г., 26–31 мая, Лос-Анджелес, Калифорния, США.
  11. 11.
    Адамс М. Т. и Коллин Дж. Г. Испытания под нагрузкой на большие модели на геосинтетических основаниях из армированного грунта.Журнал геотехнической и геоэкологической инженерии, 1997, 123 (1).
  12. 12.
    Зайни М. И., Каса А. и Наян К. А. Прочность на сдвиг границы раздела геосинтетической глиняной облицовки (GCL) и остаточного грунта. Международный журнал передовых наук, инженерии и информационных технологий, 2012. 2 (2): 156–158.
  13. 13.
    Xie L., Zhu Y., Li Y. и Su T. C. Экспериментальное исследование давления кровати вокруг геотекстильного матраса с наклонной пластиной. PLoS ONE, 2019, 14 (1): e0211312.pmid: 30682145
  14. 14.
    Бинке Дж. И Ли К. Л. Испытания несущей способности армированных земляных плит. Журнал геотехнической и геоэкологической инженерии, 1975, 101 (Протокол ASCE # 11792).
  15. 15.
    Уэйн М. Х., Хан Дж. И Акинс К. Проектирование геосинтетических армированных фундаментов. геосинтетика в системах усиления фундамента и контроля эрозии, 1998 г., взято с https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0113604
  16. 16.
    Михаловски Р.L. Предельные нагрузки на грунты с усиленным фундаментом. Журнал геотехнической и геоэкологической инженерии, 2004, 130 (4): 381–390.
  17. 17.
    Чен К. и Абу-Фарсах М. Анализ предельной несущей способности ленточных фундаментов на армированном грунтовом фундаменте. Почвы и фундаменты, 2015, 55 (1): 74–85.
  18. 18.
    Лав Дж. П., Берд Х. Дж., Миллиган Г. В. Э. и Хоулсби Г. Т. Аналитические и модельные исследования армирования слоя зернистой насыпи на мягком глиняном грунте.Канадский геотехнический журнал, 1987, 24 (4): 611–622.
  19. 19.
    Махарадж Д. К. Нелинейный конечно-элементный анализ опор полосы на армированной глине. Электронный журнал геотехнической инженерии, 2003, 8.
  20. 20.
    Эль Савваф М. А. Поведение ленточного фундамента на песке, армированном георешеткой, над мягким глиняным откосом. Геотекстиль и геомембраны, 2007, 25 (1): 50–60.
  21. 21.
    Ахмед А., Эль-Тохами А. М. и Марей Н. А. Двумерный конечно-элементный анализ лабораторной модели насыпи.В геотехнической инженерии для смягчения последствий стихийных бедствий и реабилитации, 2008 г., https://doi.org/10.1007/978-3-540-79846-0_133
  22. 22.
    Аламшахи С., Хатаф Н. Несущая способность ленточных фундаментов на песчаных склонах, армированных георешеткой и анкерной сеткой. Геотекстиль и геомембраны, 2009, 27 (3).
  23. 23.
    Чен К., и Абу-Фарсах М. Численный анализ для изучения масштабного эффекта неглубокого фундамента на укрепленных грунтах. Рестон, Вирджиния: Материалы конференции ASCE Geo-Frontiers 2011, 13–16 марта 2011 г., Даллас, Техас | г 20110000.
  24. 24.
    Рафтари М., Кассим К. А., Рашид А. С. А., Моайеди Х. Осадка мелкого фундамента возле укрепленных склонов. Электронный журнал геотехники, 2013, 18.
  25. 25.
    Аззам У. Р. и Наср А. М. Несущая способность основания из оболочек на армированном песке. Журнал перспективных исследований, 2015, 6 (5). pmid: 26425361
  26. 26.
    Хусейн М.Г. и Мегид М.А. Трехмерный метод конечных элементов для моделирования двухосной георешетки с применением к почвам, усиленным георешеткой.Геотекстиль и геомембраны, 2016, 44 (3): 295–307.
  27. 27.
    Араб М. Г., Омар М. и Тахмаз А. Численный анализ фундаментов мелкого заложения на грунте, армированном георешеткой. Сеть конференций MATEC, 2017, 120.
  28. 28.
    Каса А., Чик З. и Таха М. Р. Глобальная устойчивость и оседание сегментных подпорных стен, армированных георешеткой. ТОЖСАТ, 2012, 2 (4): 41–46.
  29. 29.
    Видаль, М. Х. Развитие и будущее армированной земли. Труды симпозиума по укреплению грунта на ежегодном съезде ASCE, Питтсбург, Пенсильвания, 1978, стр. 1–61.
  30. 30.
    Кернер Р. М., Карсон Д. А., Дэниел Д. Э. и Бонапарт Р. Текущее состояние тестовых участков Цинциннати GCL. Геотекстиль и геомембраны, 1997, 15 (4–6), 313–340.
  31. 31.
    Бушехриан А. Х., Хатаф Н. и Гахрамани А. Моделирование циклического поведения неглубоких фундаментов, опирающихся на геомеш и песок, армированный якорями. Геотекстиль и геомембраны, 2011, 29 (3): 242–248.
  32. 32.
    Рен Ю. Мгновенная реакция на нагрузку и оседание ленточных фундаментов, опирающихся на глину, армированную георешеткой, 2015 г., Получено с https: // etda.библиотеки.psu.edu/catalog/25223
  33. 33.
    Габр М. А., Додсон Р. и Коллин Дж. Г. Исследование распределения напряжений в песке, армированном георешеткой. Геосинтетика в системах армирования фундамента и контроля эрозии, 1998 г., взято с https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0113608
  34. 34.
    Чен К., Абу-Фарсах М. Ю., Шарма Р., Чжан Х. Лабораторное исследование поведения фундаментов на геосинтетически армированных глинистых почвах. Отчет об исследованиях в области транспорта: Журнал Совета по исследованиям в области транспорта, 2004, 2007, (1): 28–38.
  35. 35.
    Алаваджи Х. А. Испытания модели пластиной нагрузкой на складной грунт. Журнал Университета Короля Сауда — Технические науки, 1998, 10 (2).
  36. 36.
    Аббас Дж. М., Чик З. Х. и Таха М. Р. Моделирование и анализ одной сваи, подвергшейся воздействию поперечной нагрузки. Электронный журнал геотехнической инженерии, 2008, 13 (E): 1–15.
  37. 37.
    Росьиди С. А., Таха М. Р. и Наян К. А. М. Эмпирическая модельная оценка несущей способности осадочного остаточного грунта методом поверхностных волн.Jurnal Kejuruteraan, 2010, 22 (2010): 75–88.
  38. 38.
    Khajehzadeh М., Таха М. Р., Эль-Шафи А. & Ислами М. Измененный частиц оптимизации рой для оптимальной конструкции фундамента распространения и подпорной стенки. Журнал Чжэцзянского университета: Science A, 2011, 12 (6): 415–427.
  39. 39.
    Джох С. Х., Хванг С. К., Хассанул Р. и Рахман Н. А. Построение поперечного сечения модуля упругости железнодорожного полотна под балластом для определения потенциальной осадки. Журнал Корейского общества железных дорог, 2011, 14 (3): 256–261.
  40. 40.
    Чик З., Альджанаби К. А., Каса А. и Таха М. Р. Моделирование искусственной нейронной сетью с перекрестной проверкой десятикратной проверки поведения оседания каменной колонны под насыпью шоссе. Арабский журнал наук о Земле, 2013, 7 (11): 4877–4887.
  41. 41.
    Ли Ю. П., Янг Ю., Йи Дж. Т., Хо Дж. Х., Ши Дж. Й. и Го С. Х. Причины проникновения самоподъемных оснований в глины после монтажа. PLoS ONE, 2018, 13 (11): e0206626. pmid: 30395581
  42. 42.Азриф М., Закиран М. Н. Ф., Сякира М. Р. Н., Азуан С. М., Нур Р. К., Ли Э. К. и др. Применение геофизических исследований к возникновению поселений — тематическое исследование. На 2-м совещании EAGE-GSM в Азиатско-Тихоокеанском регионе по наукам о приповерхностной геологии и инженерии (2-е совещание EAGE-GSM в Азиатско-Тихоокеанском регионе по приповерхностной геонауке и инженерии) Европейская ассоциация геологов и инженеров, EAGE, 2019.
  43. 43.
    Чжаньфан Х., Сяохун Б., Чао Ю. и Яньпин В. Вертикальная несущая способность фундамента из свайного разжижаемого песчаного грунта при горизонтальной сейсмической силе.PLoS ONE, 2020, 15 (3): e0229532. pmid: 321
  44. 44.
    Ли К., Манджунатх В. и Дэвайкар Д. Численные и модельные исследования ленточного фундамента, поддерживаемого системой армированного гранулированного грунта и мягкого грунта. Канадский геотехнический журнал, 2011 г., 36: 793–806.
  45. 45.
    Куриан Н. П., Бина К. С. и Кумар Р. К. Осадка армированного песка в фундаменте. Журнал геотехнической и геоэкологической инженерии, 1997, 123 (9): 818–827.
  46. 46.
    Зорнберг Дж.Г., Лещинский Д. Сравнение международных критериев проектирования геосинтетических армированных грунтовых конструкций. В: Ochiai et al. (ред.) Ориентиры в укреплении земли, 2003, 2: 1095–1106.
  47. 47.
    Лещинский Д. О глобальном равновесии при проектировании геосинтетической армированной стены. J. Geotech. Geoenviron. Англ. ASCE, 2009, 135 (3): 309–315.
  48. 48.
    Ян К. Утомо П. и Лю Т.Л. Оценка подходов к расчету на основе равновесия сил и деформации для прогнозирования нагрузок на арматуру в геосинтетических конструкциях из армированного грунта.j.GeoEng, 2013, 8 (2): 41–54.
  49. 49.
    Sieira A.C.F. Вытягивание геотекстиля: численный прогноз. Int. J. Eng. Res., 2016, Appl. 6 (11–4): 15–18.
  50. 50.
    Шарма Р., Чен К., Абу-Фарсах М. и Юн С. Аналитическое моделирование грунтового основания, армированного георешеткой. Геотекстиль и геомембраны, 2009, 27 (1): 63–72.
  51. 51.
    Лю С. Ю., Хан Дж., Чжан Д. В. и Хун З. С. Комбинированный метод DJM-PVD для улучшения мягких грунтов. Geosynthetics International, 2008, 15 (1): 43–54.
  52. 52.
    Rowe R.K. и Taechakumthorn C. Комбинированное воздействие PVD и армирования на насыпи на чувствительных к скорости грунтов. Геотекстиль и, 2008, 26 (3): 239–249.
  53. 53.
    Ван К., Ли X., Сюн З., Ван К., Су К. и Чжан Ю. Экспериментальное исследование влияния цементирующей арматуры на прочность на сдвиг трещиноватого массива горных пород. PLoS ONE, 2019, 14 (8): e0220643. pmid: 31404074
  54. 54.
    Ван Ю., Гэ Л., Ченди С., Ван Х., Хан Дж.И Го З. Анализ гидравлических характеристик улучшенных песчаных грунтов с мягкими породами. PLoS ONE, 2020, 15 (1): e0227957. pmid: 31978135
  55. 55.
    Хан Дж., Покхарел С. К., Ян Х., Манандхар К., Лещинский Д., Халахми И. и др. Характеристики оснований из RAP, армированных геоячейками, на слабом грунтовом полотне при полномасштабных движущихся колесных нагрузках. Журнал материалов в гражданском строительстве, 2011, 23 (11): 1525–1534.
  56. 56.
    Ван Дж. К., Чжан Л. Л., Сюэ Дж. Ф. и Йи Т. Реакция на осадку неглубоких квадратных фундаментов на песке, армированном георешеткой, при циклической нагрузке.Геотекстиль и геомембраны, 2018, 46 (3): 586–596.
  57. 57.
    Акинмусуру Дж. О. и Акинболаде Дж. А. Устойчивость нагруженных опор на армированном грунте. Журнал геотехнической и геоэкологической инженерии, 1981, 107 (ASCE 16320 Proceeding).
  58. 58.
    Чжоу Х. и Вэнь X. Модельные исследования песчаной подушки, армированной георешеткой или геоячейками, на мягком грунте. Геотекстиль и геомембраны, 2008, 26 (3): 231–238.
  59. 59.
    Бринкгрев Р. Б. Дж. И Вермеер П.A. Конечноэлементный код для анализа грунтов и горных пород. А. А. Балкема, Роттердам, Нидерланды, 1998.
  60. 60.
    Гольдшейдер М. Истинные трехосные испытания на плотном песке. Практикум по определяющим отношениям для почв, 1982, 11–54. Получено с https://ci.nii.ac.jp/naid/10007804852/
  61. 61.
    Бринкгрев, Р. Б. Дж., Кумарсвами, С., Свольфс, В. М., Уотерман, Д., Чесару, А., Бонньер, П. Г. и др., 2014 г., Plaxis 2014. PLAXIS bv, Нидерланды.
  62. 62.
    NAUE GmbH & Co.KG, 2012. https://www.naue.com/naue-geosynthetics/geogrid-secugrid/ (веб-сайт) [10 июня 2020 г.]
  63. 63.
    Мейерхоф, Г.Г. Предельная несущая способность фундаментов. geotecniadecolombia.com 1963, Получено с http://geotecniadecolombia.com/xtras/ Максимальная несущая способность фундаментов.pdf
  64. 64.
    Буссинеск, Дж. Применение потенциалов равновесия и движения твердых эластичных материалов, Готье-Виллар, Париж, (1883).
  65. 65.Траутманн К. Х. и Кулхави Ф. Х. Поведение при подъеме и перемещении насыпных фундаментов. Журнал геотехнической инженерии, 1988, 114 (2): 168–184.

Разница между раздвижной и полосовой опорой

5 декабря 2019 г.

Разброс и ленточный фундамент — это термины, используемые для описания
размещение неглубокого фундамента в здании. Фундаменты мелкого заложения
построены в месте, где слой почвы находится на небольшой глубине. Эти основы
должны выдерживать нагрузки конструкции.Глубина залегания фундаментов
обычно меньше его ширины. Фундамент и ленточный фундамент — это типы
мелкие фундаменты, которые обычно обозначаются как синонимы. Чтобы
правильно определить, что есть что, ниже представлены их различия.

Терминология

Подкладка фундамента также называется изолированной
опора, подушечка и индивидуальная опора. С другой стороны, ленточная опора
также известен как непрерывная опора.

Использование

Фундамент — один из самых распространенных и простых типов.
фундаментов.В основном они предназначены для поддержки отдельной колонны. Эти
колонны используются для удержания нагрузки здания. Обычно каждый столбец
иметь свою опору. С другой стороны, ленточные опоры обычно встречаются в
несущая кладка, и действует как длинная полоса, поддерживающая
вес всей стены. Они используются
где строительные нагрузки воспринимаются целыми стенами, а не отдельными колоннами,
например, в старых зданиях из кирпича. Они также установлены, чтобы позволить
нагрузка внутренних и внешних стен, которые должны быть помещены на ленточные опоры на
внешняя граница здания.На участках часто используются ленточные фундаменты.
где здание расположено на наклонной поверхности и может быть построено простым
земляные работы и техника заливки бетона. Обычно выполняется две заливки бетона.
требуется при установке ленточного фундамента.

Структура

Фундамент может быть круглой, квадратной или прямоугольной формы.
плита одинаковой толщины, на которой сидит колонна. Иногда он ступенчатый или
сгорбился, чтобы распределить нагрузку на большой площади. Однако ленточный фундамент — это
состоит из ряда столбцов, которые расположены так близко друг к другу, что
опоры перекрывают друг друга или почти касаются друг друга.

Материалы

Обычно строятся как раздвижные, так и ленточные опоры.
из железобетона. Непрерывные опоры для опор из массивного кирпича и
шпон. Также используются бетонные блочные и каменные конструкции. Полоска
фундаменты обеспечивают линию поддержки, где колонны или несущие стены
нуждаются в поддержке. Ленточный фундамент может быть ступенчатым или гладким.
конструкции железобетонных фундаментов.

Для получения дополнительной информации о раздвижных и ленточных фундаментах,
свяжитесь с Dirt Cheap Mini Diggers.Мы опытные экскаваторы и землеройные машины.
подрядчики, имеющие большую клиентскую базу в Мельбурне. Мы вносим свой
успеха компании на высоком уровне работы, который требуется от наших
сотрудников и к тому удовлетворению, которое они доставили нашим многочисленным клиентам
года. Наша цель — предоставить всем нашим клиентам доступную цену и
высокий уровень обслуживания.

Оптимизировано NetwizardSEO.com.au

Фондов

Фондов

Фонды

Виды фундамента

Фундаменты мелкого заложения (иногда называемые «раздельными опорами») включают подушечки («изолированные опоры»), ленточные опоры и плоты.

Глубокие фундаменты
включают сваи, свайные стены, диафрагменные стены и кессоны.


Типы фундаментов

Фундамент мелкого заложения

Фундаменты мелкого заложения — фундаменты, заложенные вблизи подготовленной поверхности земли; как правило, если глубина фундамента (D f ) меньше ширины основания и менее 3 м. Это не строгие правила, а просто рекомендации: в основном, если нагрузка на поверхность или другие условия поверхности влияют на несущую способность фундамента, это «неглубокий».Неглубокие фундаменты (иногда называемые «раздвижными опорами») включают подушки («изолированные опоры»), ленточные опоры и плоты.

Фундаменты мелкого заложения используются, когда поверхностные грунты достаточно прочные и жесткие, чтобы выдерживать приложенные нагрузки; они обычно непригодны для слабых или сильно сжимаемых почв, таких как плохо уплотненная насыпь, торф, современные озерные и аллювиальные отложения и т. д.


Фундамент мелкого заложения

Падовый фундамент

Фундаменты с подкладкой используются для выдерживания отдельной точечной нагрузки, например, от несущей колонны.Они могут быть круглыми, квадратными или прямоугольными. Обычно они состоят из блока или плиты одинаковой толщины, но они могут быть ступенчатыми или изогнутыми, если требуется для распределения нагрузки от тяжелой колонны. Фундаменты с подушечками обычно неглубокие, но можно использовать и глубокие фундаменты с подушками.


Фундамент мелкого заложения

Фундамент ленточный

Ленточный фундамент используется для поддержки линии нагрузок либо из-за несущей стены, либо, если линия колонн нуждается в опоре, когда положение колонн настолько близко, что отдельные опорные основания были бы неприемлемыми.


Фундамент мелкого заложения

Плотные фундаменты

Плотные фундаменты используются для распределения нагрузки от конструкции на большую площадь, обычно на всю площадь конструкции. Они используются, когда нагрузки на колонны или другие нагрузки на конструкцию близки друг к другу и отдельные опорные основания взаимодействуют друг с другом.

Плотный фундамент обычно представляет собой бетонную плиту, простирающуюся по всей загруженной площади.Он может быть усилен ребрами или балками, встроенными в фундамент.

Фундаменты на плотах имеют то преимущество, что они снижают дифференциальные осадки, поскольку бетонная плита сопротивляется дифференциальным движениям между положениями загрузки. Они часто необходимы на мягких или рыхлых грунтах с низкой несущей способностью, поскольку могут распределять нагрузки на большую площадь.


Типы фундаментов

Фундамент глубокий

Глубокие фундаменты — это фундаменты, заложенные слишком глубоко под готовой поверхностью грунта, чтобы на их несущую способность основания влияли условия поверхности, обычно это происходит на глубине> 3 м ниже уровня готовой земли.К ним относятся сваи, опоры и кессоны или компенсированные фундаменты с использованием глубоких фундаментов, а также глубокие подушечные или ленточные фундаменты. Глубокие фундаменты могут использоваться для передачи нагрузки на более глубокие и более подходящие слои на глубине, если неподходящие почвы присутствуют вблизи поверхности.

Сваи — это относительно длинные тонкие элементы, которые передают нагрузки на фундамент через слои грунта с низкой несущей способностью на более глубокие слои почвы или породы с высокой несущей способностью. Они используются, когда по экономическим соображениям, конструкционным соображениям или условиям почвы желательно передавать нагрузки на слои за пределами практической досягаемости фундаментов мелкого заложения.В дополнение к опорным конструкциям сваи также используются для анкеровки конструкций против подъемных сил и для оказания помощи конструкциям в сопротивлении боковым и опрокидывающим силам.

Опоры — это фундамент, выдерживающий большую конструктивную нагрузку, который сооружается на месте в глубоких котлованах.

Кессоны представляют собой форму глубокого фундамента, который сооружается над уровнем земли, затем опускается до необходимого уровня путем выемки грунта или выемки грунта изнутри кессона.

Компенсированные фундаменты — это глубокие фундаменты, в которых снятие напряжений, вызванных земляными работами, приблизительно уравновешивается приложенным напряжением, создаваемым фундаментом. Таким образом, прикладываемое чистое напряжение очень мало. Компенсированный фундамент обычно представляет собой глубокий фундамент.


Фундамент глубокий

Сваи

Свайные фундаменты можно классифицировать по

тип сваи

(разные конструкции, которые должны поддерживаться, и разные условия грунта, требуют разных типов сопротивления) и

тип конструкции

(могут использоваться разные материалы, конструкции и процессы).


Сваи

Виды сваи

Сваи часто используются, потому что на достаточно малых глубинах невозможно найти адекватную несущую способность, чтобы выдержать нагрузки конструкции. Важно понимать, что сваи получают опору как от концевого подшипника , так и от поверхностного трения . Пропорция несущей способности, создаваемая либо торцевым подшипником, либо поверхностным трением, зависит от условий почвы. Сваи могут использоваться для поддержки различных типов структурных нагрузок.


Типы свай

Концевые опорные сваи

Концевые несущие сваи — это сваи, оканчивающиеся твердым, относительно непроницаемым материалом, таким как скала или очень плотный песок и гравий. Большую часть своей несущей способности они получают за счет сопротивления слоя у носка сваи.


Типы свай

Сваи фрикционные

Фрикционные сваи получают большую часть своей несущей способности за счет поверхностного трения или адгезии.Это обычно происходит, когда сваи не достигают непроницаемого пласта, а забиваются на некоторое расстояние в проницаемый грунт. Их несущая способность определяется частично концевой опорой и частично поверхностным трением между заделанной поверхностью почвы и окружающей почвой.


Типы свай

Сваи переходные осадки

Сваи, уменьшающие оседание, обычно закладываются под центральной частью фундамента плота, чтобы уменьшить дифференциал осадки до приемлемого уровня.Такие сваи укрепляют почву под плотом и помогают предотвратить перекос плота в центре.


Типы свай

Сваи натяжные

Конструкции, такие как высокие дымоходы, опоры электропередачи и пирсы, могут подвергаться большим опрокидывающим моментам, и поэтому часто используются сваи, чтобы противостоять возникающим подъемным силам на фундаменте. В таких случаях возникающие силы передаются на грунт по длине заделки сваи.Сила сопротивления может быть увеличена в случае буронабивных свай за счет недораскачивания. При проектировании натяжных свай необходимо учитывать эффект радиального сжатия сваи, так как это может привести к снижению сопротивления вала примерно на 10-20%.


Типы свай

Сваи с боковой нагрузкой

Почти все свайные фундаменты подвергаются, по крайней мере, некоторой степени горизонтальной нагрузки. Величина нагрузок по отношению к приложенной вертикальной осевой нагрузке, как правило, будет небольшой, и никаких дополнительных расчетов конструкции обычно не требуется.Однако в случае причалов и пристаней, несущих ударные силы швартованных судов, свайных оснований для опор мостов, эстакад для мостовых кранов, высоких дымоходов и подпорных стен, горизонтальный компонент является относительно большим и может оказаться критическим при проектировании. Традиционно сваи в таких случаях устанавливаются под углом к ​​вертикали, обеспечивая достаточное горизонтальное сопротивление за счет составляющей осевой нагрузки сваи, которая действует горизонтально. Однако способность вертикальной сваи противостоять нагрузкам, приложенным нормально к оси, хотя и значительно меньше, чем осевая способность этой сваи, может быть достаточной, чтобы избежать необходимости в таких «сгребающих» или «битых» сваях, установка которых является более дорогой. .Поэтому при проектировании свай для восприятия боковых сил важно это учитывать.


Типы свай

Сваи в насыпи

Сваи, проходящие через слои средне- или плохо уплотненного заполнителя, будут подвержены отрицательному поверхностному трению , которое вызывает сопротивление вниз вдоль ствола сваи и, следовательно, дополнительную нагрузку на сваю. Это происходит, когда заливка затвердевает под действием собственного веса.


Сваи

Виды свайных конструкций

Вытесняемые сваи вызывают смещение почвы как в радиальном, так и в вертикальном направлении, когда вал сваи забивается или вдавливается в землю. При использовании несмещаемых свай (или сменных свай) грунт удаляется, а образовавшаяся яма, заполненная бетоном или сборной бетонной сваей, опускается в яму и заливается раствором.


Виды свайного строительства

Сваи вытесняющие

Пески и зернистые почвы имеют тенденцию уплотняться в процессе смещения, в то время как глины имеют тенденцию к вспучиванию.Сами вытесняющие сваи можно разделить на разные типы, в зависимости от того, как они построены и как они вставляются.


Сваи вытесняющие

Сваи вытеснительные целиком предварительно сформированные

Они могут быть из сборного железобетона;

армированный по всей длине (предварительно напряженный)

сочлененный (усиленный)

полый (трубчатый) профиль

или они могут быть из стали различного сечения.


Сваи вытесняющие

Забивные и забивные сваи

Этот тип сваи может быть двух форм. Первый включает в себя вбивание временной стальной трубы с закрытым концом в землю для образования пустоты в почве, которая затем заполняется бетоном по мере извлечения трубы. Второй тип такой же, за исключением того, что стальная труба остается на месте, образуя прочный кожух.


Сваи вытесняющие

Винтовые забивочные сваи

Конструкция этого типа выполняется с использованием специального шнека.Однако почва уплотняется, а не удаляется, поскольку шнек ввинчивается в землю. Шнек установлен на полой штанге, которую можно заполнить бетоном, поэтому, когда необходимая глубина будет достигнута, бетон может быть закачан вниз по штоку, и шнек будет медленно отвинчиваться, оставляя сваю на месте.


Сваи вытесняющие

Способы установки

Сваи забиваются или вдавливаются в грунт.Можно использовать несколько различных методов.


Способы установки

Падающий вес

Падающий груз или ударный молот — это наиболее часто используемый метод установки вытесняющих свай. Вес примерно вдвое меньше веса сваи поднимается на подходящее расстояние в направляющей и отпускается, чтобы ударить по головке сваи. При забивании полой трубы сваи вес обычно воздействует на пробку в нижней части сваи, таким образом уменьшая любые избыточные напряжения по длине трубы во время вставки.

Вариантами простого отбойного молотка являются отбойные молотки одностороннего и двустороннего действия . Они приводятся в движение паром, сжатым воздухом или гидравлически. В молоте одностороннего действия вес поднимается сжатым воздухом (или другими средствами), который затем выпускается, и весу позволяют упасть. Это может происходить до 60 раз в минуту. Молоток двустороннего действия такой же, за исключением того, что сжатый воздух также используется при движении молота вниз. Однако этот тип молота не всегда подходит для забивки бетонных свай.Хотя бетон может выдерживать сжимающие напряжения, создаваемые молотком, ударная волна, создаваемая каждым ударом молота, может создавать высокие растягивающие напряжения в бетоне при возврате. Это может привести к разрушению бетона. Вот почему бетонные сваи часто подвергаются предварительному напряжению.


Способы установки

Дизельный молот

Быстрые контролируемые взрывы можно производить от дизельного молота. Взрывы поднимают таран, который используется для забивания сваи в землю.Хотя вес поршня меньше, чем вес, используемый в отбойном молотке, повышенная частота ударов может компенсировать эту неэффективность. Этот тип молота лучше всего подходит для забивки свай через несвязные зернистые грунты, где большая часть сопротивления приходится на торцевую опору.


Способы установки

Вибрационные методы забивки свай

Вибрационные методы могут оказаться очень эффективными при забивании свай через несвязные зернистые грунты.Вибрация сваи возбуждает зерна почвы, прилегающие к свае, делая ее почти свободной, что значительно снижает трение вдоль вала сваи. Вибрация может создаваться электрическими (или гидравлическими) эксцентриками, вращающимися в противоположных направлениях, прикрепленными к головке сваи, обычно действующими с частотой около 20-40 Гц. Если эту частоту увеличить примерно до 100 Гц, это может вызвать продольный резонанс в свае, и скорость проникновения может достигать 20 м / мин в умеренно плотных зернистых грунтах.Однако большая энергия, возникающая в результате вибрации, может повредить оборудование, распространение шума и вибрации также может привести к заселению близлежащих зданий.


Способы установки

Способы установки домкратом

Домкратные сваи чаще всего используются для опор существующих конструкций. Выкапывая грунт под конструкцией, можно вставить короткие куски сваи и втолкнуть их в землю, используя в качестве реакции нижнюю часть существующей конструкции.


Виды свайного строительства

Сваи несмещаемые

При использовании несмещаемых свай почва удаляется, а образовавшаяся яма заполняется бетоном или, иногда, сборная бетонная свая опускается в яму и заливается раствором. Глины особенно подходят для этого типа образования свай, поскольку в глинах требуется только стенка скважины. опора близко к поверхности земли. При бурении более неустойчивого грунта, такого как гравий, может потребоваться какая-либо форма обсадной трубы или опоры, например, бентонитовая суспензия.В качестве альтернативы раствор или бетон можно вводить из шнека, вращающего гранулированный грунт. Таким образом, существует четыре типа несмещаемых свай.

Этот метод строительства создает неравномерную поверхность раздела между стволом сваи и окружающей почвой, что обеспечивает хорошее сопротивление поверхностному трению при последующей нагрузке.


Несвижные сваи

Буронабивные сваи малого диаметра

Обычно они имеют диаметр 600 мм или меньше и обычно изготавливаются с использованием штатива.Оборудование состоит из штатива, лебедки и троса, управляющего различными инструментами. Основные инструменты показаны на этой диаграмме.

В зернистых почвах основной инструмент состоит из тяжелой цилиндрической оболочки с режущей кромкой и откидной заслонкой внизу. Для проведения раскопок этого типа необходима вода. При перемещении корпуса вверх и вниз на дне ствола скважины происходит разжижение грунта (поскольку под корпусом создается низкое давление, поскольку разжиженный грунт быстро перемещается вверх), и он течет в корпус и может быть поднят на лебедку. поверхность и опрокинуты.При просверливании сыпучей почвы существует опасность чрезмерного разрыхления материала по бокам отверстия. Чтобы предотвратить это, необходимо продвинуть временную обсадную колонну, вбив ее в землю.

В связных грунтах скважину продвигают путем многократного опускания инструмента крестообразного сечения с цилиндрической режущей кромкой в ​​грунт, а затем подъема его на поверхность вместе с грунтовым грузом. Оказавшись на поверхности, глина, которая прилипает к крестообразным лезвиям, разделяется на пары.


Несвижные сваи

Буронабивные сваи большого диаметра

Большие скважины диаметром от 750 мм до 3 м (с 7-метровыми нижними расширениями) возможны при использовании роторного бурового оборудования. Шнековая установка обычно монтируется на кран или грузовик.

Спиральный или ковшовый шнек, показанный на этой схеме, прикреплен к валу, известному как штанга Келли (телескопический элемент квадратного сечения, приводимый в движение горизонтальным вращателем).С помощью этой техники возможна глубина до 70 м. Использование бентонитовой суспензии в сочетании с бурением ковшовым шнеком может устранить некоторые трудности, связанные с бурением мягких илов и глин, а также рыхлых зернистых грунтов без постоянной поддержки обсадными трубами. Одним из преимуществ этого метода является возможность недостаточного расширения. При использовании расширяющегося бурового инструмента диаметр основания сваи может быть увеличен, что значительно повысит несущую способность сваи на конце.Однако недостаточное расширение — это медленный процесс, требующий остановки бурения для смены инструмента и медленный процесс при фактической операции недостаточного расширения. В глине часто предпочтительнее использовать более глубокий стержень с прямыми сторонами.


Несвижные сваи

Частично формованные сваи

Этот тип сваи особенно подходит в условиях, когда земля переувлажнена или когда есть движение воды в верхнем слое почвы, что может привести к выщелачиванию цемента из монолитной бетонной сваи.Отверстие просверливают обычным способом, а затем в него опускают кольцевые секции, чтобы получить полую колонну. Затем можно разместить арматуру и нанести раствор вниз к основанию сваи, вытесняя воду и заполняя зазор снаружи и сердцевину внутри колонны.


Несвижные сваи

Сваи, залитые цементным раствором или бетоном

Использование шнеков непрерывного действия становится все более популярным методом при строительстве свай.Эти сваи обладают значительными экологическими преимуществами во время строительства. Их уровень шума и вибрации низкий, и нет необходимости во временной обсадной трубе ствола скважины или бентонитовой суспензии, что делает его пригодным как для глин, так и для сыпучих грунтов. Единственная проблема в том, что они ограничены по глубине до максимальной длины шнека (около 25 м). Сваи строятся путем ввинчивания шнека непрерывного действия в землю на необходимую глубину, оставляя почву в шнеке. Затем раствор (или бетон) может быть выдавлен вниз по полому валу шнека, а затем продолжает накапливаться снизу, когда шнек с грузом грунта извлекается.Затем арматуру можно опустить до схватывания раствора.

Альтернативная система, используемая в зернистых почвах, заключается в том, чтобы оставить почву на месте и смешать ее с цементным раствором, находящимся под давлением, когда шнек вынимается, оставляя столбик земли, армированной раствором.


Сваи

Факторы, влияющие на выбор сваи

Есть много факторов, которые могут повлиять на выбор свайного фундамента. Перед принятием окончательного решения необходимо рассмотреть все факторы и принять во внимание их относительную важность.


Факторы, влияющие на выбор сваи

Расположение и тип конструкции

Для конструкций над водой, таких как причалы и пирсы, наиболее подходящими являются забивные или забивные сваи (в которых оболочка остается на месте). На суше выбор не так прост. Приводные монолитные типы обычно самые дешевые при умеренных нагрузках. Однако часто бывает необходимо, чтобы сваи устанавливались так, чтобы не вызывать какого-либо значительного подъема грунта или вибрации из-за их близости к существующим конструкциям.В таких случаях наиболее подходит буронабивная набивная свая. Для тяжелых конструкций, испытывающих большие нагрузки на фундамент, обычно наиболее экономичны буронабивные сваи большого диаметра. Домкратные сваи подходят для опор существующих конструкций.


Факторы, влияющие на выбор сваи

Состояние грунта

Забивные сваи не могут быть экономично использованы в грунтах, содержащих валуны, или в глинах, когда вертикальное волнение грунта может быть опасным.Точно так же буронабивные сваи не подходят для рыхлого водонасыщенного песка, а недорасширенные основания нельзя использовать в несвязных грунтах, поскольку они подвержены обрушению до того, как можно будет уложить бетон.


Факторы, влияющие на выбор сваи

Прочность

Это обычно влияет на выбор материала. Например, бетонные сваи обычно используются в морских условиях, поскольку стальные сваи подвержены коррозии в таких условиях, а деревянные сваи могут быть повреждены буровыми моллюсками.Однако на суше бетонные сваи не всегда лучший выбор, особенно там, где почва содержит сульфаты или другие вредные вещества.


Факторы, влияющие на выбор сваи

Стоимость

При принятии окончательного решения о выборе сваи большое значение имеет стоимость. Общая стоимость установки свай включает в себя фактическую стоимость материала, время, необходимое для забивки свай в плане строительства, испытательную нагрузку, расходы на инженера по надзору за установкой и погрузкой, а также организационные и накладные расходы, понесенные между моментом первоначальной установки. расчистка площадки и время начала строительства надстройки.


Сваи

Свайные группы

Сваи чаще устанавливаются группами, а не одиночными. Группу свай следует рассматривать как составной блок из свай и грунта, а не как набор отдельных свай. На вместимость каждой сваи может повлиять забивка последующих свай в непосредственной близости. Уплотнение грунта между соседними сваями может привести к более высоким контактным напряжениям и, следовательно, к увеличению пропускной способности ствола этих свай.Конечная вместимость группы свай не всегда зависит от индивидуальной вместимости каждой сваи. При анализе емкости свайной группы необходимо учитывать 3 режима отказа.

Разрушение одной сваи

Отказ рядов свай

Отказ блока

Способы установки, условия грунта, геометрия группы свай и то, как группа ограничена, — все это влияет на поведение любой группы свай. Если группа выйдет из строя как блок, полное трение вала будет мобилизовано только по периметру блока, поэтому любое увеличение пропускной способности вала отдельных свай не имеет значения.При расчете конечной несущей способности необходимо использовать площадь всего основания блока, а не только площади основания отдельных свай в группе. Такое разрушение блока может произойти, если сваи расположены близко друг к другу или если используется заглушка сваи, контактирующая с землей. Разрушение рядов свай может произойти, если расстояние между сваями в одном направлении намного больше, чем в перпендикулярном направлении.


Факультет окружающей среды и технологий, Университет Западной Англии

Непрерывное усиление опор из ленты | Tekla User Assistance

Последнее обновление 16 октября 2018 г. от

Анил Кумар Колла
анилкумар[email protected]

Непрерывная ленточная опора, поддерживающая несколько точек соприкосновения или область точек соприкосновения.

Ленточная опора поддерживает, например, длину стены или ряд близко расположенных колонн.

В Tekla Structures ленточный фундамент имеет форму многоугольника, которую пользователь определяет путем выбора точек.

Плагин армирования позволяет создавать арматуру для ленточных фундаментов любой формы (полигональной формы).

Как найти

Плагин

« Непрерывное армирование опор » доступен в «Прикладной части функциональности Tekla Structures, которая разработана для расширения возможностей Tekla Structures, но не включена в установку Tekla Structures

и Компонент» после установки.

Использование

Щелкните значок « Непрерывная ленточная арматура » в разделе «Приложение и компонент».

Порядок ввода

1) Подобрать ленточный фундамент.

После установки плагина армирование расположено, как показано ниже

Плагин Dialog

Крышки

Дополнительная длина стержня под углом:

Значение коэффициента
Точная длина

Поля, выделенные на приведенном выше рисунке цветом Blue , являются начальным и конечным смещениями основных стержней относительно фундамента.
Поле, выделенное зеленым цветом , является угловым смещением для всех сетевых шин во всех углах.
Поля, выделенные цветом Red , служат для определения начального и конечного смещений для хомутов.

Поля, выделенные красным цветом на приведенном выше рисунке, являются закрытием боковых полос к верхней и нижней полосам.
Поля, выделенные синим цветом, предназначены для крепления стремени к опоре.

Основные стойки

На этой вкладке пользователь может определить следующие параметры.