), скобки и π (число пи), уже поддерживаются на настоящий момент.
С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘831 микроампер’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микроампер’ или ‘мкА’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрический ток’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’25 мкА в А‘ или ’20 мкА сколько А‘ или ’99 микроампер -> ампер‘ или ’90 мкА = А‘ или ’20 микроампер в А‘ или ’24 мкА в ампер‘ или ’16 микроампер сколько ампер‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.
Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(68 * 70) мкА’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии. 3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.
Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 3,841 599 965 041 4×1025. В этой форме представление числа разделяется на экспоненту, здесь 25, и фактическое число, здесь 3,841 599 965 041 4. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 3,841 599 965 041 4E+25. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 38 415 999 650 414 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.
Сколько ампер в 1 микроампер?
1 микроампер [мкА] = 0,000 001 ампер [А] — Калькулятор измерений, который, среди прочего, может использоваться для преобразования микроампер в ампер.
Как перевести миллиамперы в амперы и наоборот
На любом электроприборе можно найти характеристики в амперах, вольтах или ваттах, также встречаются и другие единицы, в частности миллиамперы или даже микроамперы. Нередко при работе или изучении каких-либо единиц измерения возникает неоходимость перевода их в другой формат. Далее рассказано, как переводить миллиамперы в амперы.
Что такое амперы и миллиамперы
Ампер — единица измерения силы тока, физической величины, равной отношению количества заряда к промежутку времени его прохождения через какую-либо поверхность или предмет; одна из 7 основных единиц в Международной системе единиц (СИ).
Амперметр – прибор, измеряющий в амперах. -3 А), который в миллиард раз меньше мегаампера.
Правописание дольных и кратных единиц, в их числе миллиампер и микроампер, будет выполняться в соответствии с правилами написания единиц и приставок, установленными ранее упомянутой Международной системой измерений (СИ).
- Приставка пишется слитно с наименованием или обозначением единицы.
- Недопустимо употребление двух или более приставок подряд (например, микромиллиампер).
- В большинстве случаев принято выбирать приставку таким образом, чтобы стоящее перед ней число находилось в диапазоне от 0,1 до 1000.
Дополнительная информация! Приставка милли переводится с латинского (mille) как «тысяча». Приставка микро имеет древнегреческие корни (μικρός) и переводится как «малый».
Что измеряется в амперах
Основной физической величиной, измеряемой в амперах, является сила тока (в формулах обозначается как «I»). Как говорилось ранее в определении ампера, она равняется отношению количества заряда, прошедшего за определённое время через проводник, к самому времени прохождения.
Также в амперах измеряются магнитодвижущая сила (физическая величина, модуль которой показывает способность создания магнитных потоков при помощи электрических токов) и разность магнитных потенциалов (скалярная величина, характеризующая энергетическую характеристику электростатического поля в данной точке). Зачастую на практике можно встретить употребление термина «ампер-виток» для обозначения этих величин. Но официально это считается устаревшей терминологией.
Как правильно измерять электрический ток в амперах
Следует уточнить, что измерение тока — это измерение его основных характеристик (силы и напряжения). Чаще всего в лабораторных или школьных условиях измеряется сила тока на проводнике или во всей электрической цепи. Для этого используют специальный прибор — амперметр. Который на схемах правильно обозначается как окружность с латинской буквой «A» внутри. -6 А.
Чтобы перевести микроамперы в миллиамперы, необходимо учитывать, что 1 мА = 1000 мкА. Для перевода величин будут использоваться те же действия, что и для миллиампер и ампер в первом алгоритме.
Электричество — обширнейшая тема в физике, для её усвоения необходимо понимание многих процессов и прежде всего — основной единицы, характеризующей её — ампера. А для правильного перевода величин необходимо знание приставок, принятых в СИ, и математики.
Калькулятор Электрического Тока | Измерение Единиц Электрического Тока : Ампер, Гаусс, Гильберт, Ватт / Вольт
МенюВалютаВремяДавлениеДлинаКомпьютерные единицыКулинарияМассаМощностьОбъемОсвещенностьПлотностьПлощадьРазмер обувиСилаСкоростьТемператураУголУскорениеЧастотаЭлектрический токЭлектромагнетизмЭнергияЯркостьSteam ID конвертерКалькуляторИнженерный калькуляторКалькулятор массы тела ИМТ
Контакты
Выберите единицу измерения электрического тока которую вы хотите конвертировать:
Базовая единица измерения электрического тока это ампер.
Единицы электрического тока вы можете конвертировать на этой страничке используя Преобразователь тока приведены ниже:
Единицы электрического тока
- Ампер —> Символ: A
- Био —> Символ: Bi
- Кулон/Секунда
- Абампер —> Символ: emu
- Статкулон —> Символ: esu
- Франклин/Секунда
- Гаусс
- Гигаампер —> Символ: GA
- Гильберт —> Символ: Gi
- Килоампер —> Символ: kA
- Мегаампер —> Символ: MA
- Микроампер —> Символ: μA
- Миллиампер —> Символ: mA
- Наноампер —> Символ: nA
- Пикоампер —> Символ: pA
- Сименс —> Символ: S
- Статампер —> Символ: sA
- Тераампер —> Символ: TA
- Вольт / Ом
- Ватт / Вольт
- Вебер/Генри
Популярные Единицы Измерения тока
- Ампер Миллиампер
- Гаусс Гильберт
- Ампер Ватт / Вольт
- Мегаампер Ампер
- Кулон/Секунда Био
- emu esu
Работа и энергия | ||
1 кв × ч | киловатт-час | 1 кв × ч = 10 гвт × ч |
1 гвт × ч | гектоватт-час | 1 гвт × ч = 100 вт × ч |
1 вт × ч | ватт-час | 1 вт × ч = 3 600 вт × сек ( ватт-секунд ) |
1 дж | джоуль | 1 дж = 1 вт × сек |
1 эрг | эрг | 1 эрг = 10-7 вт × сек |
1 кГ/м | килограммометр | 1 кГ/м = 9,81 вт × сек |
1 ккал | килокалория | 1 ккал = 1,16 вт × ч |
Ёмкость | ||
1 ф | фарада | 1 ф =106 мкф |
1 мкф | микрофарада | 1 мкф =106 пф = 10-6 ф |
1 пф | пикофарада | 1 пф =10-6 мкф = 10-12 ф = 0,9 см |
1 см | сантиметр | 1 см = 1,11 пф = 1,11 × 10-6 мкф = 1,11 ×10-12 ф |
Индуктивность | ||
1 гн | генри | 1 гн = 1000 мгн |
1 мгн | миллигенри | 1 мгн =1 000 мкгн=10-3 гн |
1 мкгн | микрогенри | 1 мкгн =10-3 мгн=10-6 гн = 1 000 см |
1 см | сантиметр | 1 см =10-3 мкгн = 10-6 мгн = 10-9 гн |
Частота | ||
1 Мгц | мегагерц | 1 Мгц = 1 000 кгц = 106 гц |
1 кгц | килогерц | 1 кгц = 1 000 гц = 103 гц |
1 гц | гepц | 1 гц = 10-3 кгц = 10-6 Мгц |
Как перевести амперы
Амперы – стандартная системная единица измерения силы тока (СИ). Довольно крупная по бытовым меркам, поэтому кратные единицы (килоампер) на практике используются редко. Зато в характеристиках электронной аппаратуры (особенно миниатюрной) часто встречается дольная единица – миллиампер. Бытоваяэлектроаппаратура обычно описывается таким параметром, как мощность (измеряется в ваттах). Подключать же бытовые электроприборы приходится к электросети, имеющей ограничение по силе тока. Чтобы избежать постоянного срабатывания предохранителей, необходимо представлять, как на практике перевести амперы в другие единицы измерения.Вам понадобится
Если требуется перевести амперы в другие единицы измерения силы тока (дольные или кратные), то просто умножьте количество ампер на соответствующий коэффициент. Так, например, чтобы перевести амперы в миллиамперы умножьте число ампер на 1000, а для перевода ампер в килоамперы – умножьте на 0,001. Соответственно, при переводе ампер в мегаамперы умножьте силу тока на 0,000001, а при переводе в микроамперы – умножьте на 1000000. Остальные дольные и кратные единицы измерения силы тока в быту и при решении стандартных задач практически не используются.
Чтобы оценить максимальную суммарную мощность потребителей электроэнергии, которую способна выдержать ваша электросеть, умножьте силу тока (в амперах), на которую рассчитаны предохранители, на напряжение в сети (220 вольт). Полученное значение будет равняться допустимой мощности одновременно подключенных электроприборов, выраженной в ваттах. Таким образом (чисто практически) амперы можно перевести в ватты.
Аналогично можно рассчитать максимальную мощность электроаппаратуры при ее подключении к автономным источникам энергии. Как правило, на аккумуляторах и элементах питания указывается напряжение и максимальный ток, на который рассчитан источник электроэнергии. При подключении слишком мощного потребителя, источник тока может очень быстро выйти из строя или, даже воспламениться.
Для определения потребляемой мощности изучите техническую документацию электроустройства или поищите информацию на корпусе прибора. Мощность электроаппаратуры указывается в ваттах (Вт, W), киловаттах (кВт, kW) или милливаттах (мВт, mW).
Пример.
Бытовая электрическая сеть рассчитана на максимальный ток 20 ампер.
Вопрос.
Сколько стоваттных электролампочек можно включить одновременно?
Решение.
1. Оцените максимальную мощность нагрузки электросети: 20(А) * 220(В) = 4400 (Вт).
2. Разделите общую допустимую мощность сети на мощность одной лампочки: 4400 (Вт) / 100 (Вт) = 44 (штуки).
Ответ.
Одновременно можно подключить 44 лампочки.
Что такое ампер-часы в аккумуляторе
Время автономной работы мобильного телефона, портативного инструмента или способность отдавать ток стартёру при пуске двигателя автомобиля – все это зависит от такой характеристики АКБ, как ёмкость. Она измеряется в ампер-часах или в миллиампер-часах. По величине ёмкости можно судить о том, сколько времени аккумулятор будет питать электрической энергией то или иное устройство. От неё зависит, как время разряда и заряда аккумулятора. При выборе аккумуляторной батареи для того или иного устройства полезно знать, что обозначает эта величина в ампер-часах. Поэтому сегодняшний материал будет посвящён такой характеристике, как ёмкость и её размерности в ампер-часах.
Содержание статьи
О ёмкости аккумулятора и почему ампер часы?
Вообще, ампер-час представляет собой внесистемную единицу электрического заряда. Её основное использование – это выражение ёмкости аккумуляторов.
Один ампер-час представляет собой электрический заряд, проходящий за 1 час через поперечное сечение проводника при пропускании тока 1 ампер. Можно встретить значения в миллиампер-часах.
Как правило, такое обозначение применяется для указания ёмкости аккумуляторов в телефонах, планшетах и других мобильных гаджетах. Давайте посмотрим, что значит ампер-час на реальных примерах.
Ёмкость автомобильного аккумулятора
На фото выше можно видеть обозначение ёмкости в ампер-часах. Это автомобильный аккумулятор 62 Ач. О чём нам это говорит? Из этой величины мы можем узнать, силу тока, с которой можно равномерный разряжать батарею до конечного напряжения. Для автомобильной АКБ конечное напряжение составляет 10,8 вольта. Стандартные циклы разряда обычно продолжаются 10 или 20 часов.
Исходя из вышесказанного, 62 Ач говорит нам о том, что этот аккумуляторная батарея способна на протяжении 20 часов отдавать ток 3,1 ампера. При этом напряжение на выводах батареи не опустится ниже 10,8 вольта.
Ёмкость аккумулятора ноутбука
На фото выше красным цветом подчёркнута ёмкость аккумулятора ноутбука – 4,3 ампер-часа. Хотя при таких величинах значение обычно выражается, как 4300 миллиампер-час (мАч).
Нужно ещё добавить, что системной единицей электрического заряда является кулон. Кулон связан с ампер-часами следующим образом. Один кулон в секунду равен 1 ампер. Следовательно, если перевести секунды в часы получится, что 1 ампер-час равен 3600 кулон.
Вернуться к содержанию
Как связаны ёмкость аккумулятора (ампер-час) и его энергия (ватт-час)?
Многие производители на своих аккумуляторах не указывают ёмкость в ампер-часах, а вместо этого ставят значение запасаемой энергии в ватт-часах. Такой пример показан на фотографии ниже. Это аккумулятор смартфона Samsung Galaxy Nexus.
Запасаемая энергия аккумулятора в ватт-часах
Прошу прощения за фото с мелким шрифтом. Запасаемая энергия составляет 6,48 ватт-часа. Запасаемую энергию можно рассчитать по следующей формуле:
1 ватт-час = 1 вольт * 1 ампер-час.
Тогда для аккумулятора Galaxy Nexus получаем:
6,48 ватт-часа / 3,7 вольта = 1,75 ампер-часа или 1750 миллиампер-час.
Вот так можно выяснить номинальную ёмкость аккумулятора по запасаемой энергии и напряжению. Читайте также о том, как проверить емкость аккумулятора телефона.
Вернуться к содержанию
Какие ещё есть разновидности ёмкости аккумулятора
Существует такое понятие, как энергетическая ёмкость аккумулятора. Она показывает способность АКБ разряжаться определённый временной интервал с постоянной мощностью. Временной интервал в случае автомобильных аккумуляторных батарей обычно устанавливают 15 минут. Энергетическую ёмкость первоначально стали измерять в Северной Америке, но затем к этому подключились производители АКБ в других странах. Её значение можно получить в ампер-часах по следующей формуле:
Е (Ач) = W (Вт/эл) / 4, где
Е – энергетическая ёмкость в ампер-часах;
W – мощность при 15 минутном разряде.
Есть и ещё одна разновидность, которая пришла к нам из США, это резервная ёмкость. Она показывает способность АКБ питать бортовую движущейся машины при неработающем генераторе. Проще говоря, можно узнать, сколько аккумулятор даст вам проехать на машине, если генератор выйдет из строя. Рассчитать эту величину в ампер-часах можно по формуле:
Е (ампер-часы) = T (минуты) / 2.
Важно отметить следующий момент. Величина ёмкости, наносимая на аккумуляторах, вычисляется при определённых условиях. Чаще всего это разряд в течение 10 и 20 часов. То есть, 55 Ач означает, что АКБ можно 10 часов разряжать током 5,5 ампера. Но это вовсе не означает, что батарею можно 1 час разряжать током 55 ампер. Если увеличивать разрядный ток, то время разряда снижается в соответствии со степенной зависимостью. Подробнее об этом мы писали в статье о ёмкости автомобильного аккумулятора.
Здесь можно ещё добавить, что при параллельном соединении АКБ их ёмкость суммируется. При последовательном соединении значение ёмкости не меняется.
Вернуться к содержанию
Как узнать, сколько реально ампер-часов в вашем аккумуляторе?
Рассмотрим процесс проверки ёмкости на примере автомобильного аккумулятора. Но такой разряд под контролем можно сделать для любой батареи. Будут отличаться только измеряемые величины.
Для того чтобы проверить реальные ампер-часы своего аккумулятора, нужно полностью его зарядить. Степень заряженности проконтролируйте по плотности электролита. Полностью заряженная АКБ должна иметь плотность электролита 1,27─1,29 гр./см3. Затем нужно собрать схему, показанную на следующем рисунке.
Схема для контрольного разряда аккумулятора
Вам нужно выяснить, для какого режима разряда указана ёмкость вашего аккумулятора (10 или 20 часов). И поставить аккумулятор на разряд силой тока, вычисленной по формуле ниже.
I = E / T, где
E – номинальная ёмкость батареи,
T – 10 или 20 часов.
Этот процесс требует постоянного контроля напряжения на выводах АКБ. Как только напряжение упадёт до 10,8 вольта (1,8 на банке), разряд нужно остановить. Время, за которое аккумулятор разрядился, вы умножаете на ток разряда. Получается реальная ёмкость батареи в ампер-часах.
Если у вас нет резистора, то можете использовать автомобильные лампочки (12 вольт) подходящей ёмкости. Мощность лампочки подбираете в зависимости от того, какой разрядный ток вам нужен. То есть, если нужен ток разряда 2 ампера, то мощность будет 12 вольт умножить на 2 ампера. Итого 24 ватта.
Разрядка аккумулятора автомобильными лампочками
Важно! После разряда аккумулятор сразу ставьте на зарядку, чтобы он не находился в таком разряженном состоянии. Для необслуживаемых аккумуляторов такой разряд лучше не делать вообще. При таком глубоком разряде они могут потерять часть своей ёмкости.
Вернуться к содержанию
Как выбрать ёмкость аккумулятора?
Для автомобилей аккумулятор можно подобрать по объёму двигателя. В таблице ниже можно посмотреть соответствие объёма двигателя ёмкости аккумулятора.
Ёмкость аккумулятора, А-ч | Транспортное средство | Объем двигателя, л |
---|---|---|
55 | легковые автомобили | 1 — 1,6 |
60 | легковые автомобили | 1,3 — 1,9 |
66 | легковые автомобили (кроссоверы, внедорожники) | 1,4 — 2,3 |
77 | грузовые автомобили малой грузоподъемности | 1,6 — 3,2 |
90 | грузовые автомобили средней грузоподъемности | 1,9 — 4,5 |
140 | грузовые автомобили | 3,8 — 10,9 |
190 | спецтехника (экскаваторы, бульдозеры) | 7,2 — 12 |
200 | грузовые автомобили (фуры, автопоезда) | 7,5 — 17 |
Ёмкость аккумулятора, А-ч | Транспортное средство | Объем двигателя, л |
Для легкового автомобиля класс седан или хэтчбек вполне хватит аккумуляторов ёмкостью 50─65 ампер-часов. Для внедорожников и крупных кроссоверов подойдут АКБ 70─95 ампер-часов. Если у вас автомобиль с дизельным двигателем и (или) большим числом потребителей тока в бортовой сети, то стоит взять аккумулятор с номинальной ёмкостью на 10─15 ампер-часов больше вышеназванных цифр.
Небольшой запас пригодиться и в зимнее время, когда из-за снижения температуры АКБ теряет часть своей ёмкости. Есть эмпирическая зависимость, согласно которой при снижении температуры ОС от 20 С на один градус аккумулятор теряет 1 ампер-час.
Излишняя ёмкость тоже ни к чему. Ведь бортовая сеть того или иного авто рассчитана на определённые характеристики АКБ. К примеру, генератор малолитражки просто не справится с зарядом АКБ для дизельного внедорожника. В результате батарея будет постоянно не заряжена до конца. При этом никаких преимуществ более ёмкого аккумулятора вы не получите, а только переплатите лишнего за ненужные ампер-часы. Советуем также прочитать статью о ремонте аккумулятора автомобиля.
Вернуться к содержанию
Опрос
Примите участие в опросе!
Загрузка …
Надеемся, что статья оказалась для вас полезной, и теперь вы имеете представление об ампер-часах в аккумуляторе. Голосуйте в опросе ниже и оценивайте материал!
Вернуться к содержанию
Сколько ампер в 1 квт таблица
Амперы в киловатты: как рассчитать, таблица
Сегодня для грамотного подсчета суммарного количества используемого электрического оборудования в электроцепи, правильного подбора электросчетчика или измерения изоляции необходимо овладеть техникой перевода амперов в ватты и знать их соотношение. О том, как перевести амперы в киловатты, как это правильно делать в однофазной и трехфазной цепи и сколько ампер в киловатте в цепи 220 вольт — далее.
Соотношение ампер и киловатт
Ампер считается измерительной единицей электротока в международной системе или же силой электротока, проникающей через проводниковый элемент в количестве один кулон за одну секунду.
Определение ампера и киловатта
Киловатт является подъединицей ватта и измерительной мощностной единицей, а также тепловым потоком, потоком звуковой энергии, активной и полной мощностью переменного электротока. Все это скалярные измерительные единицы в международной системе, которые можно преобразовывать.
Обратите внимание! Что касается соотношения данных показателей, то в 1А находится 0,22 кВт для однофазной цепи и 0,38 для трехфазной.
Соотношение измерительных величин
Зачем переводить амперы в киловатты
Многие люди привыкли при работе с электрическими приборами использовать киловатты, поскольку именно они отражаются на считывающих приборах. Однако многие предохранители, вилки, розетки автомата имеют амперную маркировку, и не каждый обычный пользователь сможет догадаться, сколько в ампераже устройства киловаттовой энергии. Именно из-за этих возникающих проблем необходимо научиться делать перевод величин. Также нередко это нужно, чтобы четко пересчитать, сколько и какой прибор потребляет электроэнергии. Иногда это избавляет от лишних трат на электроэнергию.
Подсчет используемого электрооборудования дома как цель перевода
Переводы с амперов в киловатты и наоборот
Осуществлять переводы величин можно тремя способами: универсальной таблицей, онлайн калькулятором или формулой. Что касается использования калькулятора, нужно в соответствующие поля вставить исходные показатели и нажать кнопку. Использовать эту систему удобно в том случае, когда приходится сталкиваться с большими цифровыми значениями.
Обратите внимание! Согласно универсальной таблице и формуле можно узнать, что в одном А находится 0,22 кВт или 0,38 кВт. Сделать перевод величин, используя имеющиеся цифры, можно при помощи калькулятора или умножением на приведенное значение. К примеру, чтобы посчитать, сколько будет 6А в кВт, нужно умножить 0,6 на 0,22. В итоге выйдет 1,32 кВт.
В однофазной электрической цепи
Чтобы вычислить необходимые величины в однофазной сети, где номинальный ток автоматического выключателя, к примеру, равен 10 А и в нормальном состоянии через него не течет энергия выше указанного значения, необходимо вычислить максимальную электромощность. Нужно подставить в формулу нахождения мощности значения напряжения и силы электротока и перемножить их между собой. Получится, что мощность будет равна 220*10=2200 ватт. Для перевода в меньшие значения необходимо цифру поделить на 1000. Выйдет 5,5 кВт. Это вся сумма мощностей, питающихся от автомата.
Перевод в однофазной электроцепи
В трехфазной электрической цепи
Перевод показателей в трехфазной сети, рассчитанной на 380 вольт, можно сделать подобным образом. Разница заключается в формуле. Чтобы определить искомые данные, необходимо подставить корень из трех в произведение напряжения и силы электротока. К примеру, автомат рассчитан на 40 А. Подставив значения, можно получить 26327 Вт. После деления значения на 1000 выйдет 26,3 кВт. То есть выйдет, что автомат сможет выдержать нагрузку.
При известном мощностном показателе трехфазной цепи рассчитывать рабочий ток можно, преобразовав данную формулу. То есть электромощность нужно поделить на корень из 3, умноженный на напряжение. В итоге, если электромощность равна 10 кВт, выйдет значение автомата в 16А.
Перевод в трехфазной электроцепи
Расчет
Для подсчета величин используются специальные формулы. После их подсчета останется только вставить их в приведенные выше формулы. Чтобы отыскать электроток, стоит напряжение поделить на проводниковое сопротивление, а чтобы отыскать мощность, необходимо умножить напряжение на токовую силу или же двойное значение силы тока умножить на сопротивление. Также есть возможность поделить двойное значение напряжения на сопротивление.
Обратите внимание! Нередко все необходимые данные прописаны на коробке или технических характеристиках на сайте производителя. Часто информация указана в кВт и ее посредством конвертора легко можно перевести в ампераж. Еще одним простым вариантом, как определить потребление энергии и ампераж, будет изучение электросчетчика или автоматического выключателя потребителя. Но в таком случае необходимо подключать только один прибор к сети.
Формула расчета
Таблица перевода
На данный момент сделать перевод величин в прямом и обратном порядке можно без особых проблем благодаря специальной таблице с названием «100 ампер сколько киловатт». С помощью нее можно без проблем вычислить необходимые значения. Особо ее удобно использовать, когда нужно подсчитать большие числа. Интересно, что сегодня существуют таблицы, рассчитанные на подсчет ампеража и энергии автоматического выключателя однофазной и трехфазной цепи. Приводятся стандартные данные тех аппаратов, которые сегодня можно приобрести на рынке.
Таблица переводов киловатт и ампер
Чтобы узнать необходимые данные, нужно использовать приведенные выше формулы или применять таблицу переводов. Данные измерительные величины помогут посчитать используемую энергию конкретным аппаратом и произвести другие расчеты в области электрики.
Перевести киловатты (кВт) в амперы (А): онлайн-калькулятор, формула
Инструкция по использованию: Чтобы перевести киловатты (кВт) в амперы (А), введите мощность P в киловаттах (кВт), напряжение U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).
Калькулятор кВт в А (1 фаза, постоянный ток)
Формула для перевода кВт в А
Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на напряжение U в вольтах (В).
Калькулятор кВт в А (1 фаза, переменный ток)
Формула для перевода кВт в А
Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).
Калькулятор кВт в А (3 фазы, переменный ток, линейное напряжение)
Формула для перевода кВт в А
Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF, напряжения U в вольтах (В) и квадратного корня из трех.
Калькулятор кВт в А (3 фазы, переменный ток, фазное напряжение)
Формула для перевода кВт в А
Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на утроенное произведение коэффициента мощности PF и напряжения U в вольтах (В).
Перевести Амперы в Киловатты | Сайт электрика
Всем привет. Сегодня поговорим о том, как перевести Амперы в Киловатты. Этот вопрос интересует многим людей, особенно в тот момент, когда появляется необходимость в ремонте электроприборов или при электромонтаже.
Содержание статьи:
1. Как перевести Амперы в Киловатты в однофазной сети
1 Киловатт сколько это Ампер
2. Как перевести Амперы в Киловатты в трёх фазной сети
Если взять к вниманию все электрические приборы, то обычному человеку в их технических характеристиках и маркировке разобраться довольно тяжело. Например, на автоматах, розетках, вилочках, предохранителях и так далее, маркировка указывается в Амперах. Зачастую пишется максимальный ток, на который рассчитано изделие.
А на самих электроприборах указывают потребляемую мощность, выраженную в Киловаттах или Ваттах. Отсюда появляется проблема с правильностью выбора защитной автоматики для определённых нагрузок.
Очевиден тот факт, что для освещения нужен один автомат, а для подключения бойлера или духовки, совсем другой. Вот тут появляется вопрос с переводом кВт в А.
Надеюсь, вы знаете, что дома у нас в розетках течёт переменный ток с напряжением 220 Вольт. Использую ниже написанные формулы, можно легко всё рассчитать.
Как перевести Амперы в Киловатты в однофазной сети
Вт – это А умноженный на В:
P = I * U
И наоборот – А равен Вт делённый на В:
I = P/U
P – мощность;
I – сила тока;
U – напряжение;
При расчётах, значение P должно браться исключительно в Вт. 1 кВт = 1000 Вт.
1 Киловатт сколько это Ампер
1 кВт = 1000 Вт/220 в = 4,54 А
Таблица подбора автомата по току и мощности.
Реальный пример. Необходимо заменить электрическую вилочку на стиральной машине мощностью 2,2 кВт. Используя формулу, подставляем значения:
I = 2200/220 = 10 А.
Для более долгосрочной и безопасной работы, к полученному числу необходимо прибавить запасу минимум 25%. 10 + 2,5 = 12,5. На такой номинал данное изделие, наверное, не выпускают, и при покупке округлять нужно в большую сторону. Оптимальным вариантом для замены будет вилочка на 16 А.
Как перевести Амперы в Киловатты в трёхфазной сети
Ватт = √3 * U * I;
√3 = 1,732;
P = √3 * U * I;
Ампер = Вт /(√3 * В)
I = P / √3 * U
Задача. Рассчитать мощность трёхфазного водонагревателя. При его работе токоизмерительные клещи показывают нагрузку 3,8 А.
P = 1,732 * 380 * 3,8 = 2501
Ответ: мощность водонагревателя составляет 2,5 кВт.
Примечание. Цифры могут быть совсем другими, в зависимости от схемы управления нагревателем.
Подведём итоги. Используя выше приведённые формулы, подобрать материалы для ремонта или монтажа, не составит ни какого труда, даже людям, не имеющим электротехнического образования.
Для закрепления информации смотрите видеоролик по теме. Он создан немного старомодно, но зато полезный и познавательный.
Так же читайте: Расчёт мощности трёхфазной сети.
На этом буду заканчивать. Свои вопросы пишите в комментариях. Если статья была полезной, то жмите на кнопки социальных сетей. До новых встреч. Пока.
С уважением Семак Александр!
Читайте также статьи:
Калькулятор перевода силы тока в мощность
Мощность в электрической цепи представляет собой энергию, потребляемую нагрузкой от источника в единицу времени, показывая скорость ее потребления. Единица измерения Ватт [Вт или W]. Сила тока отображает количество энергии прошедшей за величину времени, то есть указывает на скорость прохождения. Измеряется в амперах [А или Am]. А напряжение протекания электрического тока (разность потенциалов между двумя точками) измеряется в вольтах. Сила тока прямо пропорциональна напряжению.
Чтобы самостоятельно рассчитать соотношение Ампер / Ватт или Вт / А, нужно использовать всем известный закон Ома. Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Определяется одним из трех равенств: P = I * U = R * I² = U²/R.
Следовательно, чтобы определить мощность источника потребления энергии, когда известна сила тока в сети, нужно воспользоваться формулой: Вт (ватты) = А (амперы) x I (вольты). А чтобы произвести обратное преобразование, надо перевести мощность в ваттах на силу потребления тока в амперах: Ватт / Вольт. Когда же имеем дело с 3-х фазной сетью, то придется еще и учесть коэффициент 1,73 для силы тока в каждой фазе.
Сколько Ватт в 1 Ампере и ампер в вате?
Чтобы перевести Ватты в Амперы при переменном или постоянном напряжении понадобится формула:
I = P / U, где
I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтахесли сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз.
Корень из трех приблизительно равен 1,73.
То есть, в одном ватте 4,5 мАм (1А = 1000мАм) при напряжении в 220 вольт и 0,083 Am при 12 вольтах.
Когда же необходимо перевести ток в мощность (узнать, сколько в 1 ампере ватт), то применяют формулу:
P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.
А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт). В промышленном оборудовании, питающемся от 380 Вольт, целых 657 Ватт.
Таблица перевода Ампер – Ватт:
6 | 12 | 24 | 220 | 380 | Вольт | |
5 Ватт | 0,83 | 0,42 | 0,21 | 0,02 | 0,008 | Ампер |
6 Ватт | 1,00 | 0,5 | 0,25 | 0,03 | 0,009 | Ампер |
7 Ватт | 1,17 | 0,58 | 0,29 | 0,03 | 0,01 | Ампер |
8 Ватт | 1,33 | 0,67 | 0,33 | 0,04 | 0,01 | Ампер |
9 Ватт | 1,5 | 0,75 | 0,38 | 0,04 | 0,01 | Ампер |
10 Ватт | 1,67 | 0,83 | 0,42 | 0,05 | 0,015 | Ампер |
20 Ватт | 3,33 | 1,67 | 0,83 | 0,09 | 0,03 | Ампер |
30 Ватт | 5,00 | 2,5 | 1,25 | 0,14 | 0,045 | Ампер |
40 Ватт | 6,67 | 3,33 | 1,67 | 0,13 | 0,06 | Ампер |
50 Ватт | 8,33 | 4,17 | 2,03 | 0,23 | 0,076 | Ампер |
60 Ватт | 10,00 | 5,00 | 2,50 | 0,27 | 0,09 | Ампер |
70 Ватт | 11,67 | 5,83 | 2,92 | 0,32 | 0,1 | Ампер |
80 Ватт | 13,33 | 6,67 | 3,33 | 0,36 | 0,12 | Ампер |
90 Ватт | 15,00 | 7,50 | 3,75 | 0,41 | 0,14 | Ампер |
100 Ватт | 16,67 | 8,33 | 4,17 | 0,45 | 0,15 | Ампер |
200 Ватт | 33,33 | 16,67 | 8,33 | 0,91 | 0,3 | Ампер |
300 Ватт | 50,00 | 25,00 | 12,50 | 1,36 | 0,46 | Ампер |
400 Ватт | 66,67 | 33,33 | 16,7 | 1,82 | 0,6 | Ампер |
500 Ватт | 83,33 | 41,67 | 20,83 | 2,27 | 0,76 | Ампер |
600 Ватт | 100,00 | 50,00 | 25,00 | 2,73 | 0,91 | Ампер |
700 Ватт | 116,67 | 58,33 | 29,17 | 3,18 | 1,06 | Ампер |
800 Ватт | 133,33 | 66,67 | 33,33 | 3,64 | 1,22 | Ампер |
900 Ватт | 150,00 | 75,00 | 37,50 | 4,09 | 1,37 | Ампер |
1000 Ватт | 166,67 | 83,33 | 41,67 | 4,55 | 1,52 | Ампер |
Зачем нужен калькулятор
Онлайн калькулятор позволит быстро перевести ток в мощность. Он позволяет пересчитать потребляемую силу тока 1 Ампер в Ватт мощности, какого-либо потребителя при напряжении 12 либо 220 и 380 Вольт.
Такой перевод мощности используют как при подборе генератора для потребителей тока в бортсети автомобиля 12 Вольт с постоянным током, так и в бытовой электронике, при прокладывании проводки.
Поэтому калькулятор перевода мощности в амперы или силу тока в ватты потребуется абсолютно всем электрикам или тем, кто занимается ею и хочет быстро перевести эти единицы. Но все же калькулятор главным образом предназначен для автовладельцев. С его помощью можно посчитать каждый электрокомпонент в автомобиле и использовать полученную сумму, чтобы понять, сколько электричества должен вырабатывать генератор или какой емкостью поставить аккумулятор.
Как пользоваться
Чтоб воспользоваться быстрым переводом и пересчитать Ампер в мощность Ватт необходимо будет:
- Ввести значение напряжения, которое питает источник.
- В одной ячейке указать значение потребляемого тока (в списке можно выбрать Ампер либо мАм).
- В другом поле сразу появится результат пересчета “ток в мощность” (по умолчанию отображается в Ватт, но есть возможность установить и кВт, тогда значение автоматически пересчитается в киловатты мощности).
Преобразование можно сделать как с амперов в ватты, так и на оборот с W в A, достаточно просто сразу ввести мощность потребителя, и тогда в другой ячейке отобразится сила потребляемого тока в сети с конкретно указанным напряжением.
Часто задаваемые вопросы
Сколько Ватт в Ампере?
Если речь об автомобильной сети, то в одном ампере 12 Ватт при напряжении 12В. В бытовой электросети 220 Вольт, сила тока в 1 ампер будет равна мощности потребителя на 220 Ватт, но если речь идет о промышленной сети 380 Вольт, то 657 Ватт в ампере.
12 ампер сколько ватт?
Сколько ватт мощности при 12 амперах потребления тока будет зависеть от того в сети с каким напряжением работает сам потребитель. Так 12А это может быть: 144 Ватт в автомобильной сети 12V; 2640 Ватт в сети 220V; 7889 Ватт в электросети 380 Вольт.
220 ватт сколько ампер?
Сила тока потребителя мощностью 220 Ватт будет отличаться зависимо от сети, в которой он работает. Это может быть: 18A при напряжении 12 Вольт, 1A если напряжение 220 Вольт либо 6A, когда потребление тока происходит в сети 380 Вольт.
5 ампер сколько ватт?
Чтобы узнать сколько Ватт потребляет источник на 5 ампер достаточно воспользоваться формулой P = I * U. То есть если потребитель включен в автомобильную сеть где всего 12 Вольт, то 5А будет 60W. При потреблении 5 ампер в сети 220V означает что мощность потребителя составляет 1100W. Когда потребление пяти ампер происходит в двухфазной сети 380V, то мощность источника составляет 3290 Ватт.
Перевести амперы (А) в киловатты (кВт): онлайн-калькулятор, формула
Инструкция по использованию: Чтобы перевести амперы (А) в киловатты (кВт), введите значения силы тока I в амперах (A), напряжения U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (если требуется), затем нажмите кнопку “Рассчитать”. Таким образом будет получена мощность P в кВт. Чтобы сбросить введенные данные, нажмите соответствующую кнопку.
Калькулятор А в кВт (1 фаза, постоянный ток)
Формула для перевода А в кВт
Мощность P в киловаттах (кВт) однофазной сети с постоянным током равняется произведению силы тока I в амперах (А) и напряжения U в вольтах (В), деленному на 1000.
Калькулятор А в кВт (1 фаза, переменный ток)
Формула для перевода А в кВт
Мощность P в киловаттах (кВт) однофазной сети с переменным током равняется силе тока I в амперах (А), умноженной на напряжение U в вольтах (В), коэффициент мощности PF и деленной на 1000.
Калькулятор А в кВт (3 фазы, переменный ток, линейное напряжение)
Формула для перевода А в кВт
Мощность P в киловаттах (кВт) трехфазной сети с переменным током и линейным напряжением равняется силе тока I в амперах (А), умноженной на напряжение U в вольтах (В), коэффициент мощности PF, квадратный корень из трех (√3) и деленной на 1000.
Калькулятор А в кВт (3 фазы, переменный ток, фазное напряжение)
Формула для перевода А в кВт
Мощность P в киловаттах (кВт) трехфазной сети с переменным током и фазным напряжением равняется утроенному произведению силы тока I в амперах (А), напряжения U в вольтах (В) и коэффициента мощности PF, деленному на 1000.
Калькулятор перевода силы тока в мощность, ампер в ватты
Для расчёта нагрузки на электрическую сеть и затрат электроэнергии можно использовать специальный калькулятор перевода силы тока в мощность. Такая функция появилась недавно, значительно облегчив ручное определение.
Хотя формулы известны давно, далеко не все хорошо знают физику, чтобы самостоятельно определять силу тока в сети. Калькулятор помогает с этим, поскольку для работы достаточно знать напряжение и мощность.
Что такое мощность Ватт [Вт]
Мощность — величина, определяющая отношение работы, которую выполняет источник тока, за определённый промежуток времени. Один ватт соответствует произведению одного ампера на один вольт, но при определении трат на электроэнергию используется величина киловатт/час.
Она соответствует расходу одной тысячи ватт за 60 минут работы. Именно по этому показателю определяется стоимость услуг электроэнергии.
В большинстве случаев мощность, которую потребляет прибор, указана в технической документации или на упаковке. Указанное количество производится за один час работы.
Например, компьютер с блоком питания 500 Вт будет крутить 1 кВт за 2 часа работы.
Помочь определить силу тока при известной мощности поможет калькулятор, который делает перевод одной физической величины в другую.
Что такое Сила тока. Ампер [А]
Сила тока представляет собой скорость, с которой электрический заряд течёт по проводнику. Один ампер равен заряду в один кулон, который проходит через проводник за одну секунду. Один кулон представляет собой очень большой заряд, поэтому в большинстве устройств эта величина измеряется в миллиамперах.
Сила тока зависит от сечения проводника и его длины. Это необходимо учитывать при планировке сооружений, а также выборе электрических приборов. Хотя большинству не следует задумываться на этот счёт, поскольку это задача инженеров и проектировщиков.
Сколько Ватт в 1 Ампере?
Для определения мощности цепи также важно понятие напряжения. Это электродвижущая сила, перемещающая электроны. Она измеряется в вольтах. Большинство приборов имеют в документации эту характеристику.
Чтобы определить мощность при силе тока в один ампер, необходимо узнать напряжение сети. Так, для розетки в 220 вольт получится: P = 1*220 = 220 Вт. Формула для расчёта: P = I*U, где I — сила тока, а U — напряжение. В трёхфазной сети нужно учитывать поправочный коэффициент, отражающий процент эффективности работы. В большинстве случаев он составляет от 0,67 до 0,95.
Таблица перевода Ампер – Ватт
Для перевода ватт в амперы необходимо воспользоваться предыдущей формулой, развернув её. Чтобы вычислить ток, необходимо разделить мощность на напряжение: I = P/U. В следующей таблице представлена сила тока для приборов с различным напряжением — 6, 12, 24, 220 и 380 вольт.
Помните, что для сетей с высоким напряжением, указанная сила тока отличается в зависимости от коэффициента полезного действия.
Таблица соотношения ампер и ватт, в зависимости от напряжения.
6В | 12В | 24В | 220В | 380В | |
5 Вт | 0,83А | 0,42А | 0,21А | 0,02А | 0,008А |
6 Вт | 1,00А | 0,5А | 0,25А | 0,03А | 0,009А |
7 Вт | 1,17А | 0,58А | 0,29А | 0,03А | 0,01А |
8 Вт | 1,33А | 0,66А | 0,33А | 0,04А | 0,01А |
9 Вт | 1,5А | 0,75А | 0,38А | 0,04А | 0,01А |
10 Вт | 1,66А | 0,84А | 0,42А | 0,05А | 0,015А |
20 Вт | 3,34А | 1,68А | 0,83А | 0,09А | 0,03А |
30 Вт | 5,00А | 2,5А | 1,25А | 0,14А | 0,045А |
40 Вт | 6,67А | 3,33А | 1,67А | 0,13А | 0,06А |
50 Вт | 8,33А | 4,17А | 2,03А | 0,23А | 0,076А |
60 Вт | 10,00А | 5,00А | 2,50А | 0,27А | 0,09А |
70 Вт | 11,67А | 5,83А | 2,92А | 0,32А | 0,1А |
80 Вт | 13,33А | 6,67А | 3,33А | 0,36А | 0,12А |
90 Вт | 15,00А | 7,50А | 3,75А | 0,41А | 0,14А |
100 Вт | 16,67А | 3,33А | 4,17А | 0,45А | 0,15А |
200 Вт | 33,33А | 16,66А | 8,33А | 0,91А | 0,3А |
300 Вт | 50,00А | 25,00А | 12,50А | 1,36А | 0,46А |
400 Вт | 66,66А | 33,33А | 16,7А | 1,82А | 0,6А |
500 Вт | 83,34А | 41,67А | 20,83А | 2,27А | 0,76А |
600 Вт | 100,00А | 50,00А | 25,00А | 2,73А | 0,91А |
700 Вт | 116,67А | 58,34А | 29,17А | 3,18А | 1,06А |
800 Вт | 133,33А | 66,68А | 33,33А | 3,64А | 1,22А |
900 Вт | 150,00А | 75,00А | 37,50А | 4,09А | 1,37А |
1000 Вт | 166,67А | 83,33А | 41,67А | 4,55А | 1,52А |
Используя таблицу также легко определить мощность, если известны напряжение и сила тока. Это пригодится не только для расчёта потребляемой энергии, но и для выбора специальной техники, отвечающей за бесперебойную работу или предотвращающей перегрев.
Зачем нужен калькулятор
Онлайн-калькулятор применяется для перевода двух физических величин друг в друга. Перевести амперы в ватты при помощи такого калькулятора — минутное дело. Сервис позволит быстро вычислить необходимую характеристику прибора, определить электроэнергию, которую будет расходовать техника за час работы.
Как пользоваться
Чтобы перевести ток в мощность, достаточно ввести номинальное напряжение и указать вторую известную величину. Калькулятор автоматически рассчитает неизвестный показатель и выведет результат.
Узнать напряжение и стандартную силу тока можно в технической документации устройства. Для приборов бытовой техники обычно указывается мощность, из которой также легко вычислить ток. Для удобства в калькуляторе можно переключать ватты на киловатты, а ампера на миллиамперы.
Как рассчитать ампер для электродвигателя?
Обычно для размера электродвигателя он оценивается в лошадиных силах (л.с.) или киловаттах (кВт). Мы можем распознать размер электродвигателя, если обратиться к их киловаттам или лошадиным силам. Итак, исходя из мощности (кВт / л.с.), как мы можем узнать мощность ампер полной нагрузки для электродвигателя?
На этот раз я хочу рассказать о том, как рассчитать ампер при полной нагрузке (FLA) электродвигателя исходя из их номинальной мощности. Это несложно, если мы знаем правильную формулу, чтобы получить ответ.Из этого расчета мы можем только оценить значение тока полной нагрузки.
Мы не можем получить фактический ток при полной нагрузке, потому что он зависит от КПД двигателя. Если электродвигатели имеют более высокий КПД, они потребляют меньше ампер, например, двигатель мощностью 10 л.с. с КПД 60% будет потреблять около 65 А. 230 В переменного тока по сравнению с примерно 45 А для двигателя с номиналом 80%.
Как рассчитать мощность (кВт и л.с.) в амперах (I)?
1) киловатт (кВт) в ампер (л)
Для 3-х фазного питания; кВт = I x V x 1.732 х пф
Для однофазного питания; кВт = I x V x pf
Пример: 1 компрессор мощностью 37 кВт, 415 В переменного тока, 3 фазы и 80% мощности, рассчитать ампер при полной нагрузке?
Расчет:
кВт = I x V x 1,732 x pf
I = кВт / (В x 1,732 x пФ)
I = 37 / (415 х 1,732 х 0,8)
I = (37/575) x 1000
I = 64,4 ампера (ампер полной нагрузки)
2) Мощность в лошадиных силах (л.с.) в амперах (л)
Сначала мы должны преобразовать из л.с. в кВт, используя эту формулу:
1 л.с. = 0.746 кВт
После этого используйте формулу из кВт в ампер:
Для 3-х фазного питания; кВт = I x V x 1,732 x pf
Для однофазного питания; кВт = I x V x pf
Пример: —
Асинхронный двигатель на 1 блок мощностью 25 л.с., 200 В переменного тока, 3 фазы, коэффициент мощности 90%, рассчитан ток полной нагрузки.
Расчет: —
кВт = 25 л.с. x 0,746
кВт = 18,65
кВт = I x V x 1.732 x pf
I = кВт / В x 1,732 x пФ
I = 18,65 / (200 х 1,732 х 0,9)
I = (18,65 / 311,76) x 1000
I = 59,8 ампер (ампер полной нагрузки)
.
Киловатт (кВт) в BHP калькулятор преобразования
киловатт (кВт) для тормозной мощности (л.с.) калькулятор преобразования мощности и как преобразовать.
Калькулятор преобразования
кВт в л.с.
Введите мощность в киловаттах и нажмите кнопку Преобразовать :
Преобразование
л.с. в кВт ►
Как преобразовать кВт в л.с.
Мощность одного механического тормоза равна 0,745699872 киловатт:
1 л.с. = 745,699872 Вт = 0,745699872 кВт
Таким образом, преобразование мощности в киловатт в л. С. Определяется по формуле:
P (л.с.) = P (кВт) /0.745699872
Пример
Преобразование 100 кВт в л. С.:
P (л.с.) = 100 кВт / 0,745699872 = 134,102 л.с.
Таблица преобразования
л.с. в кВт
Киловатт (кВт) | Тормозная мощность (л.с.) |
---|---|
0,1 кВт | 0.134 л.с. |
1 кВт | 1.341 л.с. |
2 кВт | 2.682 л.с. |
3 кВт | 4.023 л.с. |
4 кВт | 5.364 лс |
5 кВт | 6,705 л.с. |
6 кВт | 8.046 л.с. |
7 кВт | 9.387 л.с. |
8 кВт | 10.728 л.с. |
9 кВт | 12.069 л.с. |
10 кВт | 13.410 л.с. |
20 кВт | 26.820 л.с. |
30 кВт | 40.231 л.с. |
40 кВт | 53.641 лс |
50 кВт | 67.051 л.с. |
60 кВт | 80.461 л.с. |
70 кВт | 93.872 л.с. |
80 кВт | 107.282 л.с. |
90 кВт | 120.692 л.с. |
100 кВт | 134.102 л.с. |
200 кВт | 268.204 л.с. |
300 кВт | 402.307 л.с. |
400 кВт | 536.409 лс |
500 кВт | 670.511 л.с. |
600 кВт | 804.613 л.с. |
700 кВт | 938.715 л.с. |
800 кВт | 1072.818 л.с. |
900 кВт | 1206.920 л.с. |
1000 кВт | 1341.022 л.с. |
Преобразование
л.с. в кВт ►
См. Также
.
Перевести кВт в л.с. — Перевод единиц измерения
›› Перевести киловатты в лошадиные силы [электрические]
Пожалуйста, включите Javascript использовать конвертер величин
›› Дополнительная информация в конвертере величин
Сколько кВт в 1 л. с.? Ответ 0,746.
Мы предполагаем, что вы конвертируете киловатт в лошадиных сил [электрическая] .
Вы можете просмотреть более подробную информацию по каждой единице измерения:
кВт или
л.с. Производная единица СИ для мощности — ватт.
1 ватт равен 0,001 кВт, или 0,0013404825737265 л.с.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать киловатты в лошадиные силы.
Введите ваши собственные числа в форму для преобразования единиц!
›› Таблица быстрой конвертации кВт в л.с.
1 кВт до л.с. = 1,34048 л.с.
5 кВт до л.с. = 6,70241 л.с.
10 кВт до л.с. = 13,40483 л.с.
15 кВт в л.с. = 20.10724 л.с.
от 20 кВт до 26 л.с.80965 л.с.
25 кВт / л.с. = 33,5 1206 л.с.
30 кВт до л.с. = 40,21448 л.с.
40 кВт до л.с. = 53,6193 л.с.
50 кВт до л.с. = 67.02413 л.с.
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из л.с. в кВт, или введите любые две единицы ниже:
›› Преобразователи общей мощности
кВт до дина сантиметр / час
кВт до фунт-фут в час
кВт до миллиона британских тепловых единиц в час
кВт до сантиватта
кВт до калорий в секунду
кВт до pferdestarke
кВт до британских тепловых единиц / с
кВт до эргономичного вейпера
кВт в секунду
кВт в грамм-сила-сантиметр в час
›› Определение: Киловатт
Префикс СИ «килограмм» представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.
Итак, 1 киловатт = 10 3 Вт.
Определение ватта следующее:
Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ. Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 ВА).
›› Определение:
лошадиных сил
Электрическая мощность, используемая в электротехнической промышленности для электрических машин, составляет ровно 746 Вт (при 100% КПД).
›› Метрические преобразования и др.
Конвертировать единицы.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
.
Преобразование кВт в Вт — Преобразование единиц измерения
›› Перевести киловатты в ватты
Пожалуйста, включите Javascript использовать конвертер величин
›› Дополнительная информация в конвертере величин
Сколько кВт в 1 Вт? Ответ — 0,001.
Мы предполагаем, что вы конвертируете киловатт и ватт .
Вы можете просмотреть более подробную информацию по каждой единице измерения:
кВт или w
Производная единица СИ для мощности — ватт.
1 кВт равен 1000 ватт.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать киловатты в ватты.
Введите ваши собственные числа в форму для преобразования единиц!
›› Таблица быстрой конвертации kw в
w
от 1 кВт до w = 1000 Вт
2 кВт до мощности = 2000 Вт
3 кВт до мощности = 3000 Вт
4 кВт до мощности = 4000 Вт
5 кВт до мощности = 5000 Вт
от 6 кВт до мощности = 6000 Вт
от 7 кВт до w = 7000 Вт
от 8 кВт до w = 8000 Вт
9 кВт до w = 9000 Вт
10 кВт до w = 10000 Вт
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из w до кВт, или введите любые две единицы ниже:
›› Преобразователи общей мощности
кВт до килограмм-сила-метр в минуту
кВт до британских тепловых единиц в минуту
кВт до килопонд-метр в час
кВт до фут фунт-сила в минуту
кВт до декаватта
кВт до тонны
кВт до дина-сантиметра в час
кВт до калории в секунду
кВт в джоуль в секунду
кВт в зеттаватт
›› Определение: Киловатт
Префикс СИ «килограмм» представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.
Итак, 1 киловатт = 10 3 Вт.
Определение ватта следующее:
Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ. Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 ВА).
›› Определение: Ватт
Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ. Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 ВА).
›› Метрические преобразования и др.
Конвертировать единицы.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
.
Перевести микроамперы в миллиамперы — Перевод единиц измерения
›› Перевести микроамперы в миллиамперы
Пожалуйста, включите Javascript использовать конвертер величин
›› Дополнительная информация в конвертере величин
Сколько микроампер в 1 миллиампере? Ответ — 1000.
Мы предполагаем, что вы конвертируете мкА в мкА .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
мкА или миллиампер
Основной единицей СИ для электрического тока является ампер.
1 ампер равен 1000000 микроампер, или 1000 миллиампер.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать микроампер в миллиампер.
Введите ваши собственные числа в форму для преобразования единиц!
›› Таблица преобразования микроампер в миллиампер
1 микроампер в миллиампер = 0,001 миллиампер
10 мкампер в миллиампер = 0,01 миллиампер
50 мкА в миллиампер = 0. 05 миллиампер
100 микроампер в миллиампер = 0,1 миллиампер
200 микроампер в миллиампер = 0,2 миллиампер
500 микроампер в миллиампер = 0,5 миллиампер
1000 микроампер в миллиампер = 1 миллиампер
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из миллиампер в микроампер, или введите любые две единицы ниже:
›› Преобразователи электрического тока общие
микроампер на сименс-вольт
микроампер на вольт / ом
микроампер на гауссовский
микроампер на гилбертовый
микроампер на абампер
микроампер на наноампер
микроампер на тераамп
микроампер на ватт / вольт от
микроампер на ватт / вольт от
микроампер на ватт / вольт
мкА
›› Определение: Микроампер
Префикс SI «micro» представляет собой коэффициент 10 -6 , или в экспоненциальной записи 1E-6.
Так 1 микроампер = 10 -6 ампер.
›› Определение: Миллиампер
Префикс системы СИ «милли» представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.
Итак, 1 миллиампер = 10 -3 ампер.
›› Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных.Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
.
Преобразование кВт в пс — Преобразование единиц измерения
›› Перевести киловатты в пфердестарке
Пожалуйста, включите Javascript использовать конвертер величин
›› Дополнительная информация в конвертере величин
Сколько кВт в 1 л. с.? Ответ 0,73549875.
Предполагается, что вы конвертируете киловатт в киловатт .
Вы можете просмотреть более подробную информацию по каждой единице измерения:
кВт или пс
Производная единица СИ для мощности — ватт.
1 Вт равен 0,001 кВт, или 0,0013596216173039 пс.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как переводить киловатты в пферестарки.
Введите ваши собственные числа в форму для преобразования единиц!
›› Таблица быстрой конвертации кВт в пс
от 1 кВт до пс = 1,35962 л.с.
от 5 кВт до пс = 6,79811 л.с.
от 10 кВт до пс = 13,59622 л.с.
от 15 кВт до пс = 20,39432 л.с.
от 20 кВт до пс = 27.19243 л.с.
от 25 кВт до пс = 33,99054 л.с.
от 30 кВт до пс = 40,78865 л.с.
от 40 кВт до пс = 54,38486 л.с.
от 50 кВт до пс = 67.98108 л.с.
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из пс в кВт или введите любые две единицы ниже:
›› Преобразователи общей мощности
кВт на гектоватт
кВт на фунт-фут в секунду
кВт на фунт-сила-фут в минуту
кВт на аттоват
кВт на нановатт
кВт на cheval vapeur
кВт на килопонд-метр / час
кВт на фунт-фунт-сила в час
кВт на я
кВт в грамм-сила сантиметр в секунду
›› Определение: Киловатт
Префикс СИ «килограмм» представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.
Итак, 1 киловатт = 10 3 Вт.
Определение ватта следующее:
Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ. Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 ВА).
›› Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных.Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
.
Перевести микроамперы в амперы — Перевод единиц измерения
››
Перевести микроамперы в амперы
Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php
››
Дополнительная информация в конвертере величин
Сколько микроампер в 1 амперах?
Ответ — 1000000.
Мы предполагаем, что вы конвертируете между мкА и мкА .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
мкА или
Ампер
Базовой единицей СИ для электрического тока является ампер.
1 ампер равен 1000000 микроампер, или 1 ампер.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать микроампер в ампер.
Введите свои числа в форму для преобразования единиц!
››
Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из
ампер в микроампер, или введите любые две единицы ниже:
››
Преобразователи общего электрического тока
микроампер на электростатический блок
микроампер на дециамп
микроампер на тераампер
микроампер на статамп
микроампер на гауссовый
микроампер на гигаампер
микроампер на биот
микроампер на гектоампер
микроампер на 5000 килоампер от
микроампер до 5000 килоампер от
до 5000 кило
››
Определение: Микроампер
Префикс SI «micro» представляет коэффициент
10 -6 , или в экспоненциальной записи 1E-6.
Итак, 1 микроампер = 10 -6 ампер.
››
Определение: Amp
В физике ампер (символ: A, часто неофициально сокращается до ампер) — это базовая единица СИ, используемая для измерения электрических токов. Нынешнее определение, принятое 9-й сессией ГКПМ в 1948 году, гласит: «Один ампер — это тот постоянный ток, который, если он поддерживается в двух прямых параллельных проводниках бесконечной длины, с незначительным круглым поперечным сечением и помещен на расстоянии одного метра в вакууме, дает между этими проводниками действует сила, равная 2 × 10 -7 ньютон на метр длины ».
››
Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн
калькулятор преобразования для всех типов единиц измерения.
Вы также можете найти метрические таблицы преобразования для единиц СИ.
в виде английских единиц, валюты и других данных. Введите единицу
символы, сокращения или полные названия единиц длины,
площадь, масса, давление и другие типы. Примеры включают мм,
дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см,
метры в квадрате, граммы, моль, футы в секунду и многое другое!
Перевести амперы в микроамперы — Перевод единиц измерения
››
Перевести амперы в микроамперы
Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php
››
Дополнительная информация в конвертере величин
Сколько ампер в 1 микроампере?
Ответ — 1.0E-6.
Мы предполагаем, что вы конвертируете между ампер и мкА .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
ампер или
микроампер
Базовой единицей СИ для электрического тока является ампер.
1 ампер равен 1 ампера, или 1000000 микроампер.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать ампер в микроампер.
Введите свои числа в форму для преобразования единиц!
››
Таблица преобразования ампер в микроампер
1 ампер в микроампер = 1000000 микроампер
2 ампера в микроампер = 2000000 микроампер
3 ампера в микроампер = 3000000 микроампер
4 ампера в микроампер = 4000000 микроампер
5 ампер в микроампер = 5000000 микроампер
6 ампер в микроампер = 6000000 микроампер
7 ампер в микроампер = 7000000 микроампер
8 ампер в микроампер = 8000000 микроампер
9 ампер в микроампер =
00 микроампер
10 ампер в микроампер = 10000000 микроампер
››
Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из
микроампер в ампер, или введите любые две единицы ниже:
››
Преобразователи общего электрического тока
ампер на тераампер
ампер на пикоампер
ампер на статамп
ампер на гигаампер
ампер на миллиампер
ампер на декаампер
ампер на сантиампер
ампер на биот
ампер на сантиметр от
ампер в секунду от
ампер / с 7000 вольт
ампер
››
Определение: Amp
В физике ампер (символ: A, часто неофициально сокращается до ампер) — это базовая единица СИ, используемая для измерения электрических токов.Нынешнее определение, принятое 9-й сессией ГКПМ в 1948 году, гласит: «Один ампер — это тот постоянный ток, который, если он поддерживается в двух прямых параллельных проводниках бесконечной длины, с незначительным круглым поперечным сечением и помещен на расстоянии одного метра в вакууме, дает между этими проводниками действует сила, равная 2 × 10 -7 ньютон на метр длины ».
››
Определение: Микроампер
Префикс SI «micro» представляет коэффициент
10 -6 , или в экспоненциальной записи 1E-6.
Итак, 1 микроампер = 10 -6 ампер.
››
Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн
калькулятор преобразования для всех типов единиц измерения.
Вы также можете найти метрические таблицы преобразования для единиц СИ.
в виде английских единиц, валюты и других данных. Введите единицу
символы, сокращения или полные названия единиц длины,
площадь, масса, давление и другие типы. Примеры включают мм,
дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см,
метры в квадрате, граммы, моль, футы в секунду и многое другое!
Преобразование ампер [A] в микроампер [мкА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц
Конвертер длины и расстоянияМассовый преобразовательКонвертер сухого объема и общих измерений при приготовлении пищиПреобразователь площадиКонвертер объёма и общих измерений при приготовлении пищиПреобразователь температурыПреобразователь давления, напряжения, модуля ЮнгаЭнергия и конвертер работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углового КПД, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц хранения информации и данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения Инерционный преобразователь Конвертер момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на объем) Конвертер температурного интервалаКонвертер температурного расширенияКонвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер объёмного расходаПреобразователь массового расходаМолярный расход раствора Конвертер массового потока Конвертер массового потока ) Конвертер вязкостиКинематический преобразователь вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL )Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния Оптическая сила (диопт. Преобразователь r) в увеличение (X) Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимости уровней в дБм, дБВ, ваттах и других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данныхПреобразователь единиц типографии и цифровых изображенийКонвертер единиц измерения объёма древесиныКалькулятор молярной массыПериодическая таблица
Обзор
Чесменское сражение Ивана Айвазовского
Мы обязаны комфортом нашей повседневной жизни электрическому току. Он генерирует излучение в видимом спектре и не только освещает наши дома, но также готовит и разогревает пищу в различных электроприборах, таких как электрические плиты, микроволновые печи и тостеры.Поскольку у нас есть электричество, нам не нужно добывать топливо, чтобы разжечь огонь. Благодаря электричеству мы также можем быстро перемещаться по горизонтальной плоскости внутри поездов, поездов метро и высокоскоростных поездов, а также по вертикальным плоскостям на эскалаторах и лифтах. Мы обязаны теплом и комфортом в наших домах электрическому току, потому что он питает наши электрические обогреватели, кондиционеры и вентиляторы. Различные машины с электрическим приводом значительно упрощают нашу работу как в повседневной жизни, так и в различных отраслях промышленности. Действительно, мы живем в эпоху электричества, потому что именно электричество позволяет нам использовать наши компьютеры, смартфоны, Интернет, телевидение и другие интеллектуальные электронные технологии. Учитывая, насколько удобно использовать электричество как форму энергии, неудивительно, что мы тратим столько усилий на ее производство.
Может показаться необычным, но идея практического использования электричества впервые была воспринята некоторыми из наиболее консервативных членов общества — военно-морскими офицерами. В этом элитарном обществе было трудно продвигаться вверх, и столь же трудно было убедить адмиралов, которые начинали юнгой в эпоху парусного спорта, в необходимости перехода на бронированные боевые корабли с паровыми двигателями, но молодые офицеры предпочитали и поддерживали инновации.Благодаря успеху использования огневых кораблей во время русско-турецкой войны 1770 года, которая привела к победе в Чесменской битве, военно-морской флот начал рассматривать возможность модернизации систем защиты порта за счет использования старой береговой артиллерии в сочетании с военно-морскими минами, были новаторскими в то время.
Корабельная радиостанция, ок. 1910. Канадский музей науки и техники, Оттава
Разработка различных типов морских мин началась в начале 19 века, и наиболее успешные разработки включали автономные мины, активируемые электричеством.В 1870-х годах немецкий физик Генрих Герц разработал устройство для подрыва поставленных на якорь мин с помощью электричества. Одна из разновидностей этого устройства, морская рогатая мина, широко известна и часто появляется в исторических фильмах о войне. Его свинцовый «рог» имеет емкость с электролитом, который разрушается при контакте с корпусом корабля. Электролит питает простую батарею, которая, в свою очередь, подрывает мину.
Радиостанция Hudson’s Bay Company, ок. 1937. Канадский музей науки и техники, Оттава
Морские офицеры были одними из первых, кто оценил потенциал свечей Яблочкова, которые были одними из первых источников электрического света. Они были далеки от совершенства, но излучали свет от электрической дуги и раскаленного добела положительного электрода, сделанного из угля. Они использовались для сигнализации поля боя и для освещения поля боя. Использование мощных прожекторов давало преимущество стороне, использовавшей их, для освещения поля боя в ночных боях или для передачи информации и координации действий различных военно-морских частей во время морских сражений. Прожекторы, используемые в маяках, улучшили навигацию в опасных прибрежных водах.
Вакуумная лампа, ок. 1921. Канадский музей науки и техники, Оттава
Неудивительно, что военно-морской флот также был взволнован адаптацией технологий, позволяющих беспроводную передачу информации. Большой размер первых передающих устройств не был проблемой для военно-морского флота, потому что на их кораблях было достаточно места для размещения этих удобных, но порой больших машин.
Электрическое оборудование использовалось для упрощения заряжания орудий на борту кораблей, в то время как силовые электрические механизмы использовались для вращения орудийных башен и повышения точности и эффективности орудий.Телеграф машинного приказа позволял экипажу общаться и повышал его эффективность, что давало значительное преимущество в бою.
Одним из самых ужасающих случаев использования электрического тока в морском сражении было использование Третьим рейхом подводных лодок рейдеров. Подводные лодки Гитлера, действовавшие по тактике «Волчьей стаи», потопили многие транспортные конвои союзников. Известная история Convoy PQ 17 — один из примеров.
Drummondville Радиопередатчик, ок. 1926. Канадский музей науки и техники, Оттава
Британский флот смог получить несколько машин Enigma, используемых немцами для кодирования сообщений, и им удалось взломать их код с помощью Алана Тьюринга, известного как отец современные вычисления.Союзники перехватили радиосвязь немецкого адмирала Карла Дёница, и с этой информацией смогли использовать прибрежные военно-воздушные силы, чтобы загнать в угол Волчью стаю и оттеснить ее к берегам Норвегии, Германии и Дании. Благодаря этому с 1943 года рейды ограничились короткими.
Беспроводной телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава
Гитлер планировал добавить к своим подводным лодкам ракеты Фау-2, чтобы их можно было использовать для атаки на восточное побережье США.Однако быстрое продвижение союзников на Западном и Восточном фронтах помешало ему сделать это.
Современный флот сложно представить без авианосцев и атомных подводных лодок. Они питаются от ядерных реакторов, которые сочетают в себе технологии 19 века на основе пара, технологии 20 века на основе электричества и ядерные технологии 21 века. Энергетические системы атомных подводных лодок вырабатывают достаточно электроэнергии, чтобы удовлетворить потребности большого города в энергии.
В дополнение к использованию электричества, которое мы уже обсуждали, недавно военно-морской флот начал рассматривать другие применения электричества, такие как использование рельсотрона. Рельсотрон — это электрическая пушка, которая использует снаряды кинетической энергии, которые обладают огромным разрушительным потенциалом.
Джеймс Клерк Максвелл. Статуя Александра Стоддарта. Фото Ad Meskens / Wikimedia Commons
Немного истории
С развитием надежных источников энергии для постоянного тока (DC), таких как гальваническая батарея, созданная итальянским физиком Алессандро Вольта, многие выдающиеся ученые по всему миру начали изучать свойства электрический ток и вызываемые им физические явления, а также его практическое использование в науке и технике.«Звездный список» ученых включает Георга Ома, который вывел закон Ома для описания поведения электрического тока в основной электрической цепи; немецкий физик Густав Кирхгоф, разработавший расчеты для более сложных электрических цепей; и французский физик Андре Мари Ампер, открывший закон, описывающий свойства замкнутого контура, на который действует магнитное поле и через него проходит электрический ток. Этот закон известен теперь как круговой закон Ампера. Независимая работа английского физика Джеймса Прескотта Джоуля и русского ученого Генриха Ленца завершилась открытием закона джоулева нагрева, который количественно определяет тепловой эффект электрического тока.
Хендрик Антун Лоренц, картина Менсо Камерлинг-Оннеса (1860–1925) в 1916 году.
Работы Джеймса Клерка Максвелла были посвящены дальнейшему исследованию свойств электрического тока и заложили основу современной электродинамики. Теперь эти работы известны как уравнения Максвелла. Максвелл также разработал теорию электромагнитного излучения и предсказал многие явления, такие как электромагнитные волны, радиационное давление и другие. Позже существование электромагнитных волн было экспериментально доказано немецким физиком Генрихом Рудольфом Герцем.Его работы по отражению, интерференции, дифракции и поляризации электромагнитных волн были использованы при изобретении радио.
Жан-Батист Био (1774–1862)
Несколько экспериментальных работ французских физиков Жана-Батиста Био и Феликса Савара о проявлении магнетизма в присутствии электрического тока, обобщенных в законе Био – Савара, и исследованиях блестящего французского математика Пьера-Симона Лапласа, который обобщил приведенные выше экспериментальные результаты в виде математической абстракции, впервые установил связь между двумя сторонами одного явления и положил начало изучению электромагнетизма.Гениальный британский физик Майкл Фарадей продолжил их работу и открыл электромагнитную индукцию. Современная электротехника построена на работах Фарадея.
Физик из Нидерландов Хендрик Лоренц внес ценный вклад в объяснение природы электрического тока. Он разработал классическую теорию электронов и предположил, что атомы состоят из более мелких заряженных частиц и что свет является результатом колебаний этих частиц. Он также вывел уравнение для описания силы, действующей на движущийся заряд изнутри электромагнитного поля.Эта сила известна как сила Лоренца.
Определение электрического тока
Электрический ток можно определить как упорядоченное движение заряженных частиц. Учитывая это определение, электрический ток измеряется количеством заряженных частиц, которые проходят через поперечное сечение проводника за заданную единицу времени.
I = q / t , где q — заряд в кулонах, t — время в секундах, а I — электрический ток в амперах.
Другое определение электрического тока зависит от свойств проводников и описывается законом Ома:
I = В / R , где В, — напряжение в вольтах, R — сопротивление в омах. , I — ток в амперах.
Электрический ток измеряется в амперах (А) и единицах, производных от них, таких как наноампер (одна миллиардная часть ампера, нА), микроампер (одна миллионная часть ампера, мкА), миллиампер (тысячная часть ампера, мА). ), килоампер (тысяча ампер, кА) и мегаампер (миллион ампер, МА).
В СИ единицей измерения электрического тока является
[А] = [C] / [s]
Поведение электрического тока в различных средах
Алюминий является очень хорошим проводником и широко используется в электропроводке.
Электрический ток в твердых материалах, включая металлы, полупроводники и диэлектрики
При рассмотрении электрического тока мы должны учитывать среду, которая его переносит, в частности, заряженные частицы, присутствующие в материале или веществе в текущем состоянии.Этот материал или вещество может быть твердым, жидким или газообразным. Уникальным примером различных состояний вещества является монооксид дигидрогена или оксид водорода, известный нам просто как вода. Мы можем увидеть его твердым, если посмотрим на лед из морозильника, который мы сделали для охлаждения напитков — большинство из них основаны на воде. С другой стороны, при приготовлении чая или растворимого кофе мы используем кипяток. Если бы мы подождали, пока вода закипит, прежде чем налить ее в чайник, мы бы увидели «туман», выходящий из носика чайника — этот туман состоит из капель воды, образовавшихся из газообразного состояния воды (пара), которое выходит из носика и контактирует с холодным воздухом.
Существует еще одно состояние вещества, известное как плазма. Низкотемпературная плазма составляет верхние слои звезд, ионосферу Земли, пламя, электрическую дугу и вещество внутри люминесцентных ламп — это лишь несколько примеров. Трудно воссоздать высокотемпературную плазму в лаборатории, поскольку для этого требуются чрезвычайно высокие температуры, превышающие 1 000 000 К.
Эти высоковольтные автоматические выключатели содержат два основных компонента: размыкающие контакты и изолятор, соединяющий два провода вместе.
По своей структуре твердые материалы можно разделить на кристаллические и аморфные. Первые имеют структурированную кристаллическую решетку. Атомы и молекулы такого вещества образуют двух- или трехмерные кристаллические решетки. Кристаллические твердые тела включают металлы, их сплавы и полупроводники. Мы можем легко визуализировать кристаллические твердые тела, представляя снежинки, которые представляют собой кристаллы уникальной формы. Аморфные вещества не имеют кристаллической решетки. Диэлектрики обычно аморфны.
В нормальных условиях электрический ток течет через твердые тела благодаря движению свободных электронов, которые становятся несвязанными в результате отрыва валентных электронов от атома. Мы также можем разделить твердые тела в зависимости от характера потока электричества внутри них на проводники, полупроводники и изоляторы. Свойства различных материалов определяются на основе дискретной электронной зонной структуры. Это зависит от ширины запрещенной зоны, в которой нет электронов.Изоляторы имеют самую широкую запрещенную зону, которая иногда может достигать 15 эВ. Изоляторы и полупроводники не имеют электронов в проводящем промежутке при температуре абсолютного нуля, но при комнатной температуре некоторые электроны были бы удалены из валентных зон из-за тепловой энергии. В проводниках, таких как металлы, зона проводимости перекрывается с валентными зонами. Вот почему даже при абсолютном нуле существует большое количество электронов, и это все еще верно, когда температура повышается до точки плавления. Эти электроны позволяют электрическому току проходить через материал. Полупроводники имеют небольшую ширину запрещенной зоны, и их способность проводить электричество во многом зависит от температуры, излучения и других факторов, таких как присутствие примесей.
Трансформатор с ламинированным сердечником. По бокам хорошо видны двутавровые и Е-образные стальные листы.
Сверхпроводники создают особые условия для электрического тока. Это материалы с нулевым сопротивлением прохождению электрического тока.Электроны проводимости этих материалов образуют группы частиц, которые связаны друг с другом за счет квантовых эффектов.
Как следует из названия, изоляторы плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания электрического тока между проводящими поверхностями из разных материалов.
В дополнение к электрическому току, протекающему по проводникам при постоянном магнитном поле, при переменном магнитном поле его изменения вызывают явление, известное как вихревые токи, которые также называют токами Фуко.Чем больше скорость изменения магнитного поля, тем сильнее вихревые токи. Они не текут по определенному маршруту, а вместо этого текут в замкнутых контурах в проводнике.
Вихревые токи вызывают скин-эффект, который представляет собой тенденцию протекания переменного электрического тока (AC) и магнитного потока в основном вдоль поверхностного слоя проводника, что приводит к потере энергии. Чтобы уменьшить эти потери на вихревые токи в сердечниках трансформаторов, их магнитные цепи разделены. Это делается путем наложения слоев тонких стальных изолированных пластин, которые образуют сердечник трансформатора.
Хромированная пластиковая лейка для душа
Электрический ток в жидкостях (электролитах)
Все жидкости могут проводить электрический ток в определенной степени при приложении к ним электрического напряжения. Жидкости, проводящие электрический ток, называются электролитами. Электрический ток переносится положительно и отрицательно заряженными ионами, известными соответственно как катионы и анионы, которые присутствуют в жидкости из-за электролитической диссоциации. В электролитах ток течет из-за движения ионов по сравнению с током, возникающим из-за движения электронов в металлах.Этот ток в электролитах характеризуется перемещением вещества к электродам и образованием новых химических элементов вокруг электродов или отложением этих новых веществ на электроде.
Это явление легло в основу электрохимии и позволяет нам количественно определять эквивалентный вес различных химических веществ. Это позволило превратить неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать химические источники энергии в виде первичных (или одноразовых) и аккумуляторных батарей и топливных элементов.Это, в свою очередь, позволило совершить скачок в развитии технологий. Просто заглянув под капот вашего автомобиля и изучив автомобильный аккумулятор, вы сможете увидеть результаты десятилетий работы исследователей и инженеров.
Автомобильный аккумулятор, установленный в 2012 году Honda Civic
Многие производственные процессы, зависящие от протекания электрического тока в электролитах, могут придать конечному продукту привлекательный внешний вид (например, гальваническое покрытие хромом и никелем) и защитить объекты от коррозии.Электроосаждение и электротравление — фундаментальные процессы в современной электротехнике при создании различных электронных компонентов. Эти процессы очень часто используются, например, в микропроизводстве, и количество электронных компонентов, производимых с использованием этих технологий, достигает десятков миллиардов в год.
Электрический ток в газах
Электрический ток в газах зависит от количества в нем свободных электронов и ионов. Из-за большего расстояния между частицами газа по сравнению с жидкостями и твердыми телами молекулы и ионы в газах обычно проходят большие расстояния, прежде чем столкнуться. Из-за этого протекание электричества в газах в нормальных условиях затруднено. То же верно и для смесей газов. Примером смеси газов является воздух, который в электротехнике считается хорошим изолятором. В обычных условиях многие другие смеси газов также являются хорошими изоляторами.
Неоновая лампа для проверки отвертки показывает, что присутствует напряжение 220 В.
Поток электричества в газах зависит от различных физических факторов, таких как давление, температура и компоненты, составляющие эту смесь.Кроме того, ионизирующее излучение тоже играет роль. Например, газ может проводить электричество, если его облучают ультрафиолетовым или рентгеновским излучением, если на него воздействуют катодные или анодные частицы или частицы, испускаемые радиоактивным веществом, или даже если температура этого газа высока.
Когда энергия поглощается электрически нейтральными атомами или молекулами газа и когда образуются ионы, этот эндотермический процесс называется ионизацией. Когда энергия достигает определенного порога, электрон или группа электронов преодолевают потенциальный барьер и покидают атом или молекулу, становясь, таким образом, свободными электронами.Атом или молекула, которую оставили электроны, тоже больше не нейтральны, они заряжены положительно. Свободные электроны могут присоединяться к нейтрально заряженным атомам или молекулам и образовывать отрицательно заряженные ионы. Положительно заряженные ионы могут забирать обратно отрицательно заряженные электроны при столкновении с ними и, таким образом, снова становиться нейтральными. Этот процесс называется рекомбинацией.
Когда электрический ток проходит через газ, его состояние изменяется. Это приводит к сложной зависимости между электрическим током и напряжением, которая более или менее регулируется законом Ома, но только при малых электрических токах.
Электрические разряды в газах могут быть как несамостоятельными, так и самоподдерживающимися. Несамостоятельные разряды создают электрический ток, который возможен только при наличии внешних ионизирующих факторов. Когда они отсутствуют, электрический ток через газ не течет. С другой стороны, во время самоподдерживающихся разрядов электрический ток поддерживается из-за ионизации нейтральных атомов и молекул в газе, которые были ускорены электрическим полем при столкновении со свободными электронами и ионами.В этих условиях электрический ток возможен даже без внешних ионизирующих факторов.
Вольт-амперные характеристики бесшумного разряда
Когда разность потенциалов между анодом и катодом мала, несамостоятельный разряд называют тихим или таунсендовским. С увеличением напряжения увеличивается и сила тока. Сначала это увеличение пропорционально напряжению (участок OA на вольт-амперной характеристике бесшумного разряда), но постепенно скорость нарастания замедляется (участок AB на графике).Когда все оторвавшиеся частицы, которые высвободились в результате процесса ионизации, движутся к катоду и аноду одновременно, увеличения тока не происходит (участок BC на графике). Если напряжение снова увеличивается, ток также увеличивается, и бесшумный разряд становится несамостоятельным лавинным зарядом. Примером несамостоятельного разряда является тлеющий разряд в газоразрядных лампах высокого давления различного назначения.
Когда несамостоятельный разряд трансформируется в самостоятельный разряд, электрический ток увеличивается (точка E на кривой).Этот момент известен как электрический пробой.
Электронная фотовспышка с ксеноновой трубкой (красный прямоугольник)
Все различные типы зарядов, описанные выше, являются стационарными или установившимися разрядами. Их свойства не зависят от времени. Помимо этих разрядов, существуют также нестабильные разряды, которые обычно возникают в очень неравномерных электрических полях, например, на заостренных или искривленных поверхностях проводников или электродов. Существует два типа неравномерных разрядов: коронный разряд и искровой разряд.
Ионизация при коронном разряде не вызывает электрического пробоя. Этот разряд вызывает повторяющийся процесс запуска несамостоятельного разряда в небольшом ограниченном пространстве вокруг проводника. Хорошим примером коронного разряда является свечение в воздухе вокруг антенн, громоотводов или линий электропередач высоко над землей. Коронный разряд вокруг линий электропередач вызывает потерю энергии. Раньше это сияние было знакомо мореплавателям — свечение вокруг мачт кораблей было известно как св.Элмо огонь. Коронный разряд используется в лазерных принтерах и копировальных аппаратах. Он генерируется устройством, создающим коронный разряд, металлической струной, к которой приложено высокое напряжение. Коронный разряд ионизирует газ, который, в свою очередь, ионизирует светочувствительный барабан. В этом случае полезен коронный разряд.
По сравнению с коронным разрядом электростатический разряд вызывает электрический пробой. Это похоже на прерывистые светлые нити, которые разветвляются и заполнены ионизированным газом. Они появляются и исчезают, производя большое количество тепла и света.Типичным примером естественного электростатического разряда является молния. Электрический ток в нем может достигать десятков килоампер. Прежде чем может произойти молния, должна быть создана нисходящая формация лидера, известная как лидер или искра. Вместе со ступенчатым лидером он образует строение лидера. Молния обычно состоит из множественных электростатических разрядов в нисходящей формации лидера для разряда отрицательной молнии «облако-земля». В электронных вспышках в фотографии используется мощный электростатический разряд.Разряд здесь образуется между электродами импульсной лампы из кварцевого стекла, заполненного смесью благородных ионизированных газов.
Когда электрический разряд сохраняется в течение длительного периода времени, он называется электрической дугой. Электрическая дуга используется в дуговой сварке, которая является незаменимой технологией в современном строительстве, используется для возведения стальных конструкций различного размера и назначения, от небоскребов до авианосцев и автомобилей. Электрическая дуга используется не только для соединения материалов, но и для их резки.Разница между этими двумя процессами заключается в силе используемого тока. Сварка происходит при относительно более низких токах, в то время как для резки требуются более высокие токи электрической дуги. Само порезание происходит при удалении расплавленного металла, и для его удаления используются разные методы.
Еще одно применение электрической дуги в газах — газоразрядные лампы, которые отгоняют тьму на наших улицах, площадях и стадионах (в этих условиях обычно используются натриевые лампы).Металлогалогенные лампы, которые заменили лампы накаливания в автомобильных фарах, также используют эту технологию.
Электрический ток в вакууме
Вакуумная трубка в передающей станции. Канадский музей науки и техники, Оттава
Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только в том случае, если свободные носители тока, такие как электроны или ионы, генерируются посредством термоэлектронной эмиссии, фотоэлектрической эмиссии или других факторов. способами.
Подобные телекамеры использовались в 1980-х годах.Канадский музей науки и техники, Оттава
Основным методом получения электрического тока в вакууме с использованием электронов является термоэлектрическая эмиссия электронов металлами. Когда электрод нагревается (он называется горячим катодом), он испускает электроны в трубку. Эти электроны вызывают электрический ток, пока присутствует другой электрод (называемый анодом), и пока между ними существует определенное напряжение требуемой полярности. Такие вакуумные лампы называются диодами и проводят электрический ток только в одном направлении.Они блокируют ток, если есть попытка заставить ток течь в обратном направлении. Это свойство используется для преобразования переменного тока (AC) в постоянный (DC) посредством процесса выпрямления. Это делается системой диодов.
Если рядом с катодом добавить дополнительный электрод, известный как сетка, мы получим устройство, называемое триодом, которое значительно усиливает даже небольшие изменения напряжения в управляющей сетке относительно катода. В результате это изменяет ток и напряжение на нагрузке, которая последовательно подключена к вакуумной лампе, относительно источника питания.Эта система, называемая усилителем, используется для усиления различных сигналов.
Использование электронных ламп с большим количеством управляющих сеток, таких как тетроды, пентоды и даже пятиэлектродные преобразователи с семью электродами, было революционным в генерации и усилении радиосигналов и позволило создать современные системы радио- и телевещания.
Современный видеопроектор
Исторически радио было разработано первым, потому что было относительно легко разработать методы преобразования и передачи относительно низкочастотных сигналов, а также разработать схему для приемных устройств, которые могут усиливать и смешивать радиочастоты для их преобразования. в акустический сигнал посредством процесса демодуляции.
Когда было изобретено телевидение, электронные лампы, называемые иконоскопами, использовались для испускания электронов за счет фотоэлектрического эффекта падающего на них света. Дальнейшее усиление сигнала производилось ламповым усилителем. Для просмотра захваченного и переданного изображения использовались электронно-лучевые трубки (ЭЛТ), которые также были вакуумными трубками. В ЭЛТ изображение создавалось на экране путем обратного преобразования сигнала. Это было сделано путем ускорения электронов до высокой скорости с помощью одной (или трех для цветного телевидения) электронных пушек в сильном электрическом поле.Поле создавалось приложением большого напряжения между катодом электронной пушки и анодом ЭЛТ. Пучки высокоскоростных электронов направлялись на экран, покрытый люминесцентным материалом, и с него излучался видимый свет. Изображение было создано двумя взаимно синхронизированными системами: одна считывала сигнал с иконоскопа, а другая выполняла растровое сканирование. Первые электронно-лучевые трубки были монохромными.
SU3500 Сканирующий электронный микроскоп. Департамент материаловедения и инженерии.Университет Торонто
Вскоре после этого было разработано цветное телевидение. Иконоскопы в цветном телевидении были гибридными системами, которые реагировали только на свет определенного цвета, будь то красный, синий или зеленый. Цветные люминофорные точки электронно-лучевых трубок телевизора излучали свет за счет электрического тока, создаваемого электронной пушкой. Они реагировали на ударяющие по ним ускоренные электроны и излучали свет определенного цвета и яркости. Были использованы специальные теневые маски, чтобы лучи каждой цветной электронной пушки попадали на точки люминофора правильного цвета.
В современных технологиях теле- и радиовещания используются более современные материалы на основе полупроводников, которые потребляют меньше энергии.
Одним из широко используемых методов получения изображения внутренних органов является рентгеноскопия. Катод испускает электроны, которые разгоняются до такой скорости, что при попадании на анод генерируют рентгеновское излучение, которое может проникать в мягкие ткани человеческого тела. Рентгенограммы дают врачам уникальную информацию о состоянии костей, зубов и некоторых внутренних органов и даже могут помочь определить такие заболевания, как рак легких.
Лампа бегущей волны С-диапазона. Канадский музей науки и техники, Оттава
В общем, электрические токи, образованные движением электронов в вакууме, находят широкое применение. Вакуумные лампы, ускорители частиц, масс-спектрометры, электронные микроскопы, генераторы вакуума высокой частоты, такие как лампы бегущей волны, клистроны и резонаторные магнетроны, — это лишь некоторые из примеров того, как мы используем этот тип электрического тока. Следует отметить, что именно магнетроны нагревают и готовят пищу в микроволновых печах.
Недавняя очень ценная технология, использующая электрический ток в вакууме, — это осаждение тонких пленок в вакууме. Эти пленки имеют декоративную или защитную функцию. Материалы, используемые в этой технике, — это металлы, их сплавы и их соединения с кислородом, азотом и углеродом. Эти пленки либо изменяют, либо сочетают в себе электрические, оптические, механические, магнитные, каталитические и связанные с коррозией свойства поверхности, которую они покрывают.
Для получения комплексного соединения пленки используется технология ионно-лучевого осаждения.Некоторыми примерами этой технологии являются катодно-дуговое напыление и его коммерческий вариант мощного импульсного магнетронного распыления. В конце концов, именно электрический ток создает пленочное покрытие на поверхности благодаря ионам.
Ионно-лучевое распыление создает пленки из нитридов, карбидов и оксидов металлов, которые обладают исключительным набором механических, теплофизических и оптических свойств, включая твердость, долговечность, электро- и теплопроводность и оптическую плотность.Другим способом добиться этих результатов невозможно.
Электрический ток в биологии и медицине
Макет операционной в Институте знаний Ли Ка Шинг, Торонто, Канада. Пациенты-роботы-манекены, которые могут моргать, дышать, плакать, истекать кровью и моделировать болезни, используются для обучения
Понимание поведения электрического тока внутри биологических систем дает биологам и врачам мощный инструмент для исследований, диагностики и лечения.
С точки зрения электрохимии все биологические объекты содержат электролиты, независимо от их структуры.
При рассмотрении того, как электрический ток проходит через биологический объект, мы должны учитывать состояние клеток этого объекта. В этом отношении клеточная мембрана является важной структурой, которую необходимо учитывать. Это внешний слой каждой клетки, который защищает клетку от негативного воздействия окружающей среды за счет избирательной проницаемости для различных веществ. Другими словами, он пропускает одни вещества, а другие останавливает. С точки зрения физики, мы можем рассматривать эту мембрану как эквивалентную схему, которая состоит из параллельного соединения конденсатора с несколькими цепями, которые имеют последовательное соединение между источником электрического тока и резистором.Благодаря такой структуре электропроводность этого биологического объекта зависит от частоты приложенного напряжения и типов напряжения.
Трехмерное изображение волоконных путей, соединяющих различные области мозга. Это изображение было получено с использованием метода неинвазивной диффузионной тензорной визуализации (DTI)
Биологическая ткань состоит из клеток, внеклеточной жидкости, кровеносных сосудов и нервных клеток. При подаче электрического тока нервные клетки возбуждаются и посылают сигналы сокращаться или расслаблять мышцы и кровеносные сосуды животного.Следует отметить, что течение электрического тока в биологических тканях нелинейно.
Классическим примером воздействия электрического тока на биологический объект является серия экспериментов итальянского врача, физика и биолога Луиджи Гальвани, который считается одним из отцов-основателей электрохимии. В этих экспериментах он пропустил электрический ток по нервам лягушки, и это вызвало сокращение мышц и движение ноги. В 1791 году его открытия были описаны в отчете об электрических силах в движении мышц.Долгое время в учебниках явление, открытое Гальвани, именовалось гальванизмом. Даже сейчас этот термин иногда используется для обозначения определенных процессов и устройств.
Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году британский хирург и врач Ричард Кейтон и русский врач Василий Данилевский независимо друг от друга показали, что мозг может генерировать электричество. Другими словами, они обнаружили ионный ток, протекающий в мозгу.
Биологические объекты могут генерировать не только микротоки, но также значительные напряжения и токи в рамках своего повседневного функционирования.Задолго до работ Гальвани британский биолог Джон Уолш доказал электрическую природу системы защиты от электрического луча. Шотландский хирург и физиолог Джон Хантер подробно описал механизм, с помощью которого электрические лучи генерируют электричество. Результаты их исследования были опубликованы в 1773 году.
Функциональная магнитно-резонансная томография (фМРТ) — это неинвазивный метод, который позволяет врачам измерять активность мозга, обнаруживая изменения в кровотоке.
Современная медицина и биология используют различные методы для исследования. живые организмы, которые включают как инвазивные, так и неинвазивные методы.
Классическим примером инвазивного метода является исследование крыс, которые бегают по лабиринту или выполняют другие задания с имплантированными в их мозг электродами.
С другой стороны, неинвазивные методы — это такие широко известные методы диагностики, как электроэнцефалография и электрокардиография. В этих процедурах электроды, контролирующие электрические токи в головном мозге или сердце, используются для измерения на коже человека или животного под наблюдением. Чтобы улучшить контакт с электродами, на кожу наносят физиологический раствор, поскольку он является хорошим электролитом и может хорошо проводить электрический ток.
Помимо использования электрического тока для исследований и наблюдения за состоянием различных химических процессов и реакций, одним из наиболее эффективных способов использования электричества является дефибрилляция, которая в фильмах иногда изображается как «перезапуск» сердца, которое уже остановилось. работающий.
Тренировочный автоматический внешний дефибриллятор (AED)
Действительно, запуск кратковременного импульса значительной величины может иногда (но очень редко) перезапустить сердце. Однако чаще используются дефибрилляторы, чтобы скорректировать аритмическое биение сердца и вернуть его к норме.Хаотические аритмические сокращения известны как фибрилляция желудочков, и поэтому устройство, которое возвращает сердце в норму, называется дефибриллятором. Современные автоматизированные внешние дефибрилляторы могут регистрировать электрическую активность сердца, определять фибрилляцию желудочков сердца, а затем рассчитывать силу тока, необходимую пациенту, на основе этих факторов. Во многих общественных местах теперь есть дефибрилляторы, и медицинское сообщество надеется, что эта мера предотвратит множество смертей, вызванных дисфункцией сердца пациента.
Медработники обучены определять физиологическое состояние сердечной мышцы по электрокардиограмме и быстро принимать решения о лечении, намного быстрее, чем это могут сделать автоматические внешние дефибрилляторы, доступные для населения.
Отдельно стоит упомянуть об искусственных кардиостимуляторах, контролирующих сердечные сокращения. Эти устройства имплантируются под кожу или под грудную мышцу пациента и передают импульсы электрического тока напряжением около 3 В через электрод в сердечную мышцу.Это стимулирует нормальный сердечный ритм. Современные кардиостимуляторы могут проработать 6–14 лет, прежде чем потребуется их замена.
Характеристики электрического тока, его генерация и использование
Электрический ток характеризуется его величиной и видом. В зависимости от его поведения типы электрического тока делятся на постоянный ток или постоянный ток (он не меняется со временем), гармонический ток (он изменяется случайным образом со временем) и переменный ток или переменный ток (он изменяется со временем в соответствии с определенной схемой, обычно это регулируется периодическим законом).Для некоторых задач требуется как постоянный, так и переменный ток. В данном случае мы говорим об переменном токе с постоянной составляющей.
Термоядерный реактор Токамак де Варенн. Варенн, Квебек, 1981. Канадский музей науки и техники, Оттава
Исторически первый трибоэлектрический генератор электрического тока, машина Вимшерста, создавала его, натирая шерстью кусок янтаря. Более совершенные генераторы того же типа теперь называются генераторами Ван де Граафа — они названы в честь изобретателя самой ранней из этих машин.
Как мы уже говорили ранее, электрохимический генератор был изобретен итальянским физиком Алессандро Вольта. Этот генератор получил дальнейшее развитие в современных сухих батареях, аккумуляторных батареях и топливных элементах. Мы до сих пор используем их, потому что это очень удобные источники энергии для всех видов устройств, от часов и смартфонов до автомобильных аккумуляторов и аккумуляторов электромобилей Tesla.
В дополнение к генераторам постоянного тока, описанным выше, существуют также генераторы, использующие ядерное деление изотопов, известные как атомные батареи, а также магнитогидродинамические генераторы, которые сегодня имеют очень ограниченное применение из-за их низкой мощности, технических ограничений. их конструкции и по ряду других причин.Тем не менее генераторы радионуклидов используются в энергонезависимых системах, например, в космосе, в автономных подводных аппаратах и гидроакустических станциях, в маяках, внутри маяковых буев, а также в Арктике и Антарктике.
Коммутатор в мотор-генераторной установке, 1904. Канадский музей науки и техники, Оттава
В электротехнике генераторы делятся на генераторы постоянного тока и генераторы переменного тока.
Все эти генераторы работают благодаря электромагнитной индукции, открытой Майклом Фарадеем в 1831 году.Фарадей построил первый униполярный генератор малой мощности, который генерировал постоянный ток. Что касается первого генератора переменного тока, то история гласит, что он был описан Фарадею в 1832 году в анонимном письме, подписанном как «П. М. » После публикации этого письма Фарадей через год получил еще одно, в котором он благодарил и предлагал усовершенствовать конструкцию, добавив стальное кольцо для переноса магнитного потока магнитных полюсов катушек. Однако неясно, соответствует ли эта история действительности.
В то время применение переменного тока еще не было найдено, поскольку все практические применения электричества в то время требовали постоянного тока, включая ток, используемый в минной войне, электрохимии, недавно разработанном электротелеграфии и первых электродвигателях.Вот почему многие изобретатели сосредоточились пока на улучшении генераторов постоянного тока, изобретая для этого различные коммутационные устройства.
Одним из первых генераторов, которые нашли практическое применение, был магнитоэлектрический генератор, созданный немецким и русским исследователем Морицем фон Якоби, работавшим в России с 1835 по 1874 год. Он использовался минными отрядами ВМФ Российской армии для воспламенения взрывателей. морских мин. Улучшенные генераторы этого типа используются и по сей день для активации мин, и их часто можно увидеть в фильмах о Второй мировой войне, где партизаны или диверсанты используют их для взрыва мостов, схода с рельсов поездов и других подобных приложений.
Линза лазера с приводом компакт-дисков
С тех пор ведущие инженеры соревновались друг с другом в улучшении генераторов переменного и постоянного тока, создав окончательное противостояние между двумя титанами современной области производства электроэнергии, с Томасом Эдисоном из General Electric на одном с другой стороны, Никола Тесла из Westinghouse. Победил больший капитал, и технологии Tesla для генерации, транспортировки и преобразования переменного тока стали наследием американского общества. Это дало значительный толчок к развитию экономики США и вывело страну на лидирующие позиции в мире.
В дополнение к способности производить электричество для различных нужд, которая зависела от преобразования механического движения в электричество из-за обратимости электрических машин, стала реальностью еще одна возможность обратного преобразования электрического тока в механическое движение. Это было сделано с помощью электрических двигателей, работающих на постоянном и переменном токе. Можно сказать, что эти типы машин являются одними из наиболее широко используемых технологий, и они включают стартеры автомобилей и мотоциклов, приводы коммерческих машин и станков, а также бытовые устройства и электронику.Благодаря этим устройствам мы научились выполнять различные задачи, такие как резка, сверление и формование. Благодаря этим технологиям мы также используем оптические диски, такие как компакт-диски и жесткие диски, в наших компьютерах — без них мы не смогли бы создать миниатюрные прецизионные электродвигатели постоянного тока.
Помимо привычных нам электромеханических двигателей, ионные двигатели также работают за счет электрического тока. Эти двигатели используют принцип движения за счет испускания ускоренных ионов данного вещества.В настоящее время они используются в космосе в основном для вывода на орбиту небольших спутников. Весьма вероятно, что будущие технологии 22-го века, такие как фотонные лазерные двигатели, которые все еще разрабатываются и которые будут вести наши межзвездные корабли на скоростях, приближающихся к скорости света, также будут зависеть от электрического тока.
Аналоговый мультиметр со снятой верхней крышкой
Генераторы постоянного тока можно также использовать для выращивания кристаллов для электронных компонентов.Этот процесс требует дополнительных стабильных генераторов постоянного тока. Такие прецизионные твердотельные генераторы электрического тока называются стабилизаторами тока.
Измерение электрического тока
Следует отметить, что устройства для измерения электрического тока, такие как микроамперметры, миллиамперметры и амперметры, сильно отличаются друг от друга в зависимости от их конструкции и принципов измерения, которые они используют. К ним относятся амперметры постоянного тока, амперметры переменного тока низкой частоты и амперметры переменного тока высокой частоты.
Измерительные механизмы этих устройств можно разделить на подвижную катушку, подвижное железо, подвижный магнит, электродинамические, индукционные, термоанемометрические и цифровые амперметры. Большинство аналоговых амперметров включает подвижную или неподвижную раму с намотанной катушкой и неподвижными или подвижными магнитами. Благодаря такой конструкции типичный амперметр имеет эквивалентную схему, которая представляет собой последовательное соединение катушки индуктивности и резистора с конденсатором, подключенным параллельно им. Из-за этого аналоговые амперметры недостаточно чувствительны для измерения высокочастотного тока.
Подвижная катушка с иглой и спиральными пружинами измерителя, использованная в аналоговом мультиметре выше. Некоторые люди по-прежнему предпочитают аналоговые мультиметры, которые практически не изменились с 1890-х годов.
Основным измерительным прибором амперметра является миниатюрный гальванометр. Его диапазоны измерения создаются за счет использования дополнительных шунтирующих резисторов с малым сопротивлением, и это сопротивление ниже, чем у обычного гальванометра. Таким образом, используя одно устройство в качестве основы, можно создавать различные измерительные устройства для измерения токов с разными диапазонами, включая микроамперметры, миллиамперметры, амперметры и даже килоамперметры.
Обычно при электрических измерениях важно поведение тока. Он может быть измерен как функция времени и иметь разные типы, например постоянный, гармонический, гармонический, импульсный и т. Д. Его величина характеризует способ работы электронных схем и устройств. Идентифицированы следующие значения тока:
- мгновенное,
- размах амплитуды,
- среднее,
- среднеквадратичная амплитуда.
Мгновенный ток I i — значение тока в любой момент времени.Его можно просмотреть на экране осциллографа и измерить каждый момент времени, глядя на осциллограф.
Размах амплитуды тока I м — наибольшее мгновенное значение тока за данный период времени.
Среднеквадратичное значение амплитуды тока I находится как квадратный корень из среднего арифметического квадратов мгновенных токов для периода формы сигнала.
Все аналоговые амперметры обычно измеряют среднеквадратичное значение амплитуды тока.
Среднее значение тока — это среднее значение всех значений мгновенного тока за время измерения.
Разница между максимальным и минимальным значением электрического тока называется размахом сигнала.
В наши дни для измерения электрического тока широко используются мультиметры и осциллографы. Оба этих устройства предоставляют информацию не только о форме , тока или напряжения, но и о других важных характеристиках сигнала.К ним относятся частота периодических сигналов, и поэтому важно знать предел частоты измерительного устройства при измерении электрического тока.
Измерение электрического тока с помощью осциллографа
Проиллюстрируем сказанное выше серией экспериментов по измерению активных и пиковых значений тока синусоидального и треугольного сигналов. Мы будем использовать генератор сигнала, осциллограф и мультиметр.
Схема эксперимента 1 показана ниже:
Генератор сигналов FG подключен к нагрузке, которая состоит из мультиметра (MM), соединенного последовательно с шунтом Rs и нагрузочным резистором R.Сопротивление шунтирующего резистора R s составляет 100 Ом, а сопротивление нагрузочного резистора R составляет 1 кОм. Осциллограф ОС подключен параллельно шунтирующему резистору R s . Номинал шунтирующего резистора выбирается из условия R s << R. Проводя этот эксперимент, помним, что рабочая частота осциллографа намного выше рабочей частоты мультиметра.
Тест 1
Подаем на нагрузочный резистор синусоидальный сигнал частотой 60 Гц и амплитудой 9 В.Современные осциллографы имеют очень удобную кнопку Auto Set, которая позволяет отображать любой измеренный сигнал, не касаясь других органов управления осциллографа. Нажимаем кнопку Auto Set и наблюдаем за сигналом на экране, как на иллюстрации 1. Здесь диапазон сигнала составляет около пяти больших делений, а значение каждого деления составляет 200 мВ. Мультиметр показывает значение электрического тока как 3,1 мА. Осциллограф определяет среднеквадратичную амплитуду на резисторе как U = 312 мВ. Среднеквадратичное значение тока на резисторе R s можно определить по закону Ома:
I RMS = U RMS / R = 0.31 В / 100 Ом = 3,1 мА,
, что соответствует значению 3,1 мА на мультиметре. Обратите внимание, что диапазон тока в нашей цепи, состоящей из двух последовательно включенных резисторов и мультиметра, равен
I PP = U PP / R = 0,89 В / 100 Ом = 8,9 мА
Мы знаем, что пиковый и фактические значения электрического тока и напряжения отличаются в √2 раза. Если мы умножим I RMS = 3,1 мА на √2, мы получим 4,38. Удвоим это значение — получим 8.8 мА, что очень близко к измеренному осциллографом току (8,9 мА).
Test 2
Теперь уменьшим генерируемый сигнал вдвое. Диапазон сигнала на осциллографе также уменьшится примерно вдвое (463 мВ), а мультиметр покажет значение, которое также примерно уменьшено вдвое и составляет 1,55 мА. Определим значение активного тока на осциллографе:
I RMS = U RMS / R = 0,152 В / 100 Ом = 1,52 мА,
что примерно такое же значение, которое показывает мультиметр (1 .55 мА).
Test 3
Теперь увеличим частоту генератора до 10 кГц. Изображение на осциллографе изменится, но диапазон сигнала останется прежним. Значение на мультиметре уменьшится — это связано с диапазоном частот мультиметра.
Test 4
Давайте снова воспользуемся начальной частотой 60 Гц и напряжением 9 В, но изменим форму сигнала на генераторе с синусоидальной на треугольную. Диапазон сигнала на осциллографе остается прежним, но значение на мультиметре уменьшается по сравнению со значением тока, которое он показал в тесте 1.Это связано с изменением среднеквадратичного значения тока. Осциллограф показывает приведенное значение среднеквадратичного напряжения, измеренного на резисторе R s = 100 Ом.
Меры безопасности при измерении электрического тока и напряжения
Пьедестал для самостоятельной камеры с телесуфлером и тремя мониторами для домашней видеостудии
- При измерении тока и напряжения мы должны помнить, что в зависимости от того, насколько безопасно здание, например, относительно малое напряжение 12–36 В может быть опасным и даже опасным для жизни.Поэтому крайне важно соблюдать следующие меры безопасности.
- Не измеряйте токи, если для измерения требуются специальные навыки (например, измерение токов в цепях с напряжением выше 1000 В).
- Не измеряйте токи в труднодоступных местах и на высоте.
- При измерении токов в жилой распределительной сети используйте специальные средства защиты, такие как резиновые перчатки, коврики или ботинки.
- Не используйте сломанные или поврежденные измерительные приборы.
- При использовании мультиметров убедитесь, что установлены параметры измерения и правильный диапазон измерения.
- Не используйте измерительный прибор со сломанными зондами.
- Тщательно следуйте инструкциям производителя по использованию измерительного прибора.
Эту статью написал Сергей Акишкин
У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.
Ампер (А), электрический блок
Определение ампер
Ампер или ампер (обозначение: A) — это единица измерения электрического тока.
Устройство Ampere названо в честь Андре-Мари Ампера из Франции.
Один ампер определяется как ток, протекающий с электрическими
заряд одного кулона в секунду.
1 А = 1 К / с
Амперметр
Амперметр или амперметр — это электрический прибор, который используется
для измерения электрического тока в амперах.
Когда мы хотим измерить электрический ток на нагрузке,
амперметр подключается последовательно к нагрузке.
Сопротивление амперметра близко к нулю, поэтому он не будет
влияют на измеряемую цепь.
Таблица префиксов единиц ампер
название | символ | преобразование | пример |
---|---|---|---|
микроампер (микроампер) | мкА | 1 мкА = 10 -6 А | I = 50 мкА |
миллиампер (миллиампер) | мА | 1 мА = 10 -3 А | I = 3 мА |
ампер (амперы) | A | – | я = 10А |
килоампер (килоампер) | кА | 1кА = 10 3 А | I = 2кА |
Как преобразовать ампер в микроампер (мкА)
Ток I в микроамперах (мкА) равен току I в амперах (А), деленному на 1000000:
I (мкА) = I (A) /1000000
Как преобразовать амперы в миллиампера (мА)
Ток I в миллиамперах (мА) равен току I в амперах (А), деленному на 1000:
I (мА) = I (A) /1000
Как перевести ампер в килоампер (кА)
Ток I в килоамперах (мА) равен току I в амперах (А), умноженному на 1000:
I (кА) = I (A) ⋅ 1000
Как преобразовать амперы в ватты (Вт)
Мощность P в ваттах (Вт) равна току I в амперах (A), умноженному на напряжение V в вольтах (В):
P (W) = I (A) ⋅ V (V)
Как преобразовать амперы в вольты (В)
Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):
В (В) = P (Ш) / I (A)
Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):
В (В) = I (A) ⋅ R (Ом)
Как преобразовать амперы в Ом (Ом)
Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):
R (Ом) = В (В) / I (А)
Как преобразовать амперы в киловатты (кВт)
Мощность P в киловаттах (кВт) равна току I в амперах (A), умноженному на напряжение V в вольтах (В), деленному на 1000:
P (кВт) = I (A) ⋅
В (В) /1000
Как перевести ампер в киловольт-ампер (кВА)
Полная мощность S в киловольт-амперах (кВА) равна действующему току I RMS
в амперах (A), умноженное на действующее значение напряжения V RMS в вольтах (В), деленное на 1000:
S (кВА) = I RMS (A) ⋅
В RMS (В) /1000
Как преобразовать амперы в кулоны (К)
Электрический заряд Q в кулонах (Кл) равен току I в амперах (А), умноженному на время протекания тока t в секундах (с):
Q (C) = I (A) ⋅ т (s)
См. Также
Преобразование
Микроампер в Ампер | мкА до
А
Используйте этот преобразователь мкА в А для преобразования значений тока из микроампер в амперы (микроампер в ампер), где 1 микроампер равен 1.0E-6 ампер. Введите текущее значение, чтобы узнать, сколько ампер в микроамперах.
Если вам нравятся наши усилия, поделитесь ими с друзьями.
Замена переключателя: амперы в микроамперы
Примечание : Единица измерения тока в системе СИ — Ампер или Ампер .
Symbol : микроампер — мкА , ампер — A
Значение в амперах = 1.0E-6 x Значение в микроамперах.
Есть 1.0E-6 ампер в микроампер, т.е. 1 микроампер равен 1.0E-6 ампер. Поэтому, если вас попросят преобразовать микроампер в ампер, просто умножьте значение микроампера на 1,0E-6.
Пример: преобразовать 12 мкА в А
12 микроампер равняется 12 X 1.0E-6 ампер, то есть 1,2E-5 ампер.
микроампер до | ампер | |
---|---|---|
12 мкА | 1.2E-5 A | |
20 мкА | 2.0E-5 A | |
28 мкА | 2,8E-5 A | |
36 мкА | 3,6E-5 A | |
44 мкА | 4.4E-5 A | |
5.2E-5 A | ||
60 мкА | 6.0E-5 A | |
68 мкА | 6.8E-5 A | |
76 µA | 7.6E-5 84602 | 8.4E-5 A |
92 мкА | 9.2E-5 A | |
100 мкА | 0,0001 A | |
108 мкА | 0,000108 A | |
116 µA | 0,000116 A | |
A | ||
0,000132 A | ||
140 мкА | 0,00014 A | |
148 мкА | 0,000148 A | |
156 µA | 0,000156 1660 µA | |
172 мкА | 0,000172 A | |
180 мкА | 0,00018 A | |
188 µA | 0,000188 A | 0.000188 A |
микроампер до | ампер | ||
---|---|---|---|
212 мкА | 0,000212 A | ||
220 мкА | 0.00022 A | ||
228 µA | 0,000228 A | ||
236 µA | 0,000236 A | ||
244 µA | 0.000244 A | 0.000244 A | |
268 мкА | 0,000268 A | ||
276 мкА | 0,000276 A | ||
284 µA | 0.000284 A | 0292 A | |
300 µA | 0,0003 A | ||
308 µA | 0,000308 A | ||
316 µA | 0,000316 A | ||
340 мкА | 0,00034 A | ||
348 мкА | 0,000348 A | ||
356 µA | 0,000356 A | 6 3614 | |
372 мкА | 0,000372 A | ||
380 мкА | 0,00038 A | ||
388 µA | 0,000388 A | ||
Преобразовать микроамперы в амперы (мкА в А)
Вы переводите единицы электрический ток из Микроампер в Ампер
1 Микроампер (мкА)
=
1.0E-6 Ампер (А)
Результаты в амперах (A):
1 (мкА) = 1.0E-6 (А)
Конвертировать
Вы хотите перевести Амперы в Микроамперы?
Как преобразовать микроамперы в амперы
Чтобы преобразовать микроамперы в амперы, умножьте электрический ток на коэффициент преобразования. Один микроампер равен 1,0E-6 ампер, поэтому используйте эту простую формулу для преобразования:
микроампер = ампер × 1,0E-6
Например, вот как преобразовать 5000 микроампер в амперы с помощью формулы, приведенной выше.
5000 мкА = (5000 × 1.0E-6) = 0,005 А
1 Микроампер равен сколько Амперам?
1 микроампер равен 1.0E-6 ампер: 1 мкА = 1.0E-6 A
В 1 микроампере 1.0E-6 ампер. Чтобы преобразовать микроампер в ампер, умножьте полученное значение на 1,0E-6 (или разделите на 1000000).
1 Ампер равен сколько Микроампер?
1 Ампер равен 1000000 Микроампер: 1 А = 1000000 мкА
В 1 Ампере 1000000 Микроампер.Чтобы преобразовать амперы в микроамперы, умножьте полученное число на 1000000 (или разделите на 1,0E-6).
Популярные преобразователи электрического тока:
Ампер в Мегаампер, Миллиампер в Килоампер, Мегаампер в Ампер, Килоампер в Микроампер, Ампер в Микроампер, Килоампер в Ампер, Мегаампер в Миллиампер, Микроампер в Килоампер, 9000 Ампер в Микроампер, Миллиампер в Миллиампер 26 Амперы
Микроампер | Ампер | Ампер | Микроампер | ||||
---|---|---|---|---|---|---|---|
1 мкА | 1.0E-6 A | 1 A | 1000000 мкА | ||||
2 мкА | 2.0E-6 A | 2 A | 2000000 мкА | ||||
3 мкА | 3.014E-6 | 3000000 мкА | |||||
4 мкА | 4.0E-6 A | 4 A | 4000000 мкА | ||||
5 мкА | 5.0E-6 A | 6136 5000000 | 6 6 мкА | 6.0E-6 A | 6 A | 6000000 мкА | |
7 мкА | 7.0E-6 A | 7 A | 7000000 мкА | ||||
8 мкА | 8.0E-6 A | 8 A | 8000000 мкА | ||||
9 мкА | 9.014E-6 | 00 мкА | |||||
10 мкА | 1.0E-5 A | 10 A | 10000000 мкА | ||||
11 мкА | 1.1E-5 A | 11 A | 11 A | 1.2E-5 A | 12 A | 12000000 мкА | |
13 мкА | 1.3E-5 A | 13 A | 13000000 мкА | ||||
14 мкА | 1.4E-5 A | 14 A | 14000000 мкА | ||||
15 мкА | 1.5E | 15000000 мкА | |||||
16 мкА | 1,6E-5 A | 16 A | 16000000 мкА | ||||
17 мкА | 1,7E-5 A | 17 A0 | 17 A | 18 мкА | 1.8E-5 A | 18 A | 18000000 мкА |
19 мкА | 1.9E-5 A | 19 A | 100 мкА | ||||
20 мкА | 2.0E-5 A | 20 A | 20000000 мкА |
1 Килоампер в Абампере равен | 100 |
1 килоампер в амперах равен | 1000 |
1 килоампер в Био равен | 100 |
1 килоампер в сантиамперах равен | 100000 |
1 килоампер в кулонах в секунду равен | 1000 |
1 килоампер в дециамперах равен | 10000 |
1 килоампер в Декаампере равен | 100 |
1 Килоампер в ЭВС тока равен | 100 |
1 килоампер в ESU тока равен | 2997924536843.1 |
1 килоампер во Франклине / секунда равен | 2994011976047,9 |
1 килоампер по Гилберту равен | 1256,64 |
1 килоампер в гектоамперах равен | 10 |
1 килоампер в мегамперах равен | 0,001 |
1 килоампер в микроампере равен | 1000000000 |
1 Килоампер в Миллиамперах равен | 1000000 |
1 килоампер в вольт Сименса равно | 1000 |
1 килоампер в статамперах равен | 2997924536843. |