Схема подключения лампочки через выключатель: Как подключить лампочку к выключателю, схемы на 1,2,3,4,5 лампочек

Содержание

Схема Подключения Лампочки Через Выключатель

Берем еще один отрезок провода, заключаем его в гофру и ведем к основной распределительной коробке.

Поместить провода в клеммы рис. Разъяснение схемы подключения для упрощения понимания Опишем схему подключения выключателя, работающего с одним осветительным прибором, в нашем случае с лампочкой.

Он повышает сроки службы, минимизирует размеры их колб.
✅Подключение одноклавишного выключателя

Затем нужно проверить работоспособность еще. Если соединение выходит одновременно длинным и гибким, его складывают пополам, поджимая пассатижами.

Соединенные провода аккуратно укладываются внутри монтажной коробки.

Схема подключения Подключение к распределительной коробке Сейчас начинается самый увлекательный процесс — подсоединение вашей проводки к распределительной коробке.

Нет, проверяем соединения.

Электропровод к лампочке, размещенной на потолке, идет по одному из таких желобов.

Подключение розетки и выключателя

Инструменты

Подключенная розетка устанавливается в своем подрозетнике, где и закрепляется крепежными винтами, после чего — проверяется уровнем. Двойной выключатель проходной Проходной выключатель нужен для того, чтобы иметь возможность управлять освещением из разных мест двух линий освещения, как, например, это показано на рис. Они также подключаются двумя проводами и могут подменять собой простые одноклавишные. За счет этого в нужное время подключаются или отключаются те или иные потребители энергии.

Зачистка изоляции выполняется на расстояние мм от края жилы. Еще раз скрутим провода, соединяющие рабочие фазы выключателя и общей сети, предварительно, отключив электроэнергию.

Если хотите более подробно разобраться в разновидности выключателей вы сможете прочитав статью Виды выключателей.

Одна из жил служит для создания непрерывной сети.

В нашем случае не важно, какой электропровод будет использован, медный или алюминиевый.

Крепёжные элементы для прокладки проводки в строениях из дерева. Монтируется распределительный короб.

Схема подключения показана на рисунке ниже.
Подключение одноклавишного выключателя и розетки. Простой способ.

Еще по теме: Какие технические требования для сопротивления изоляции

Особенности разводки проводов

Отрезок провода, предназначенный для потолка, заводим в гофру и ведем к стене с выключателем.

В первом варианте светильник гореть сможет только полностью. Не применяйте для изоляции скруток изоленту типа ПВХ — со временем она приклеится к контактам так, что при необходимости ее трудно будет убрать Если коробка снабжена винтовыми клеммами, контакты тогда выполняются с участием них.

Следите чтобы провода располагались только горизонтально и вертикально, чтобы перегибались под прямым углом.

Правда, потребуется небольшая переделка на клеммах самого светильника. После всех соединений места скрутки хорошенько изолируются и аккуратно укладываются. Соединенные провода нужно запаять и заизолировать.

Одну только скрутку использовать нельзя, она должна выполняться вместе с другим методом пайка, зажимы. Хочется отметить, что разбирать, как подключать каждое устройство по отдельности не имеет особого смысла, так как все они имеют общую схему, используемую при монтаже одноклавишного выключателя к лампочке от розетки. Схема подключения выключателя от розетки Практически все выключатели можно подключать по обобщённой схеме к источнику света — электрической лампочке.

Выполняем монтаж выключателя своими руками Монтаж начинается с установки выключателя. Порядок подключения выключателя и светильника точно такой же, как было рассмотрено выше. Для этого нет нужды проверять каждое. При монтаже одноклавишного переключателя понадобятся двухжильный провод и устройство включения.

На ввод идет фазный провод из распределительной коробки или от розетки. Оставив хороший запас, провод можно отрезать. Горит, можно пользоваться. Если на стене нет установленной распределительной коробки и проложенного провода, то придется тянуть его от общей распределительной коробки. Включение лампочки из разных мест Чтобы управлять светильником более чем из двух центров, дополнительно к проходным потребуются перекрестные одинарные выключатели.

При включении выключателя нагрузка подается на лампочку, при выключении прерывается. Потребуются инструменты и расходные материалы: отвертки — крестовая и плоская с индикатором для проверки наличия или отсутствия фазы, нож электрика, чтобы снять изоляцию, а также бокорезы и уровень.
Как подключить выключатель света и подключить розетку

Подготовка к подключению электроприборов

Подключение двух лампочек к одному переключателю. Перед монтажом нужно обесточить ремонтируемое помещение, для чего перевести автомат в распределительном щитке в нижнее положение.

Изоляционная лента для изолирования скруток. В случае его отсутствия, можно смело утверждать, что были допущены ошибки при соединении проводников с общей энергосистемой помещения. Это делается на входном электрическом щитке отключением общего или соответствующего группового коммутатора.

То есть выключатель разрывает рабочую жилу электропроводки.

Остальные два провода фазы, предназначенные для светильников, закрепляются в колодках в соответствии с клавишами выключателя и затягиваются болтами крепления. Устройство разрыва электрической цепи. Основные этапы работы: установить проходные выключатели, где они необходимы к каждому светильнику подсоединить один 3-х жильный кабель: ноль N , фаза L , защитный земля ведем провода необходимой длины от выключателей и светильников до распредкоробки учитываем то, что к выключателям подводят шесть контактов, то есть, два трехжильных кабеля в распредкоробке соединить их, руководствуясь схемами рис.

Укороченной скрутке требуется меньше изоленты. Берем еще один отрезок провода, заключаем его в гофру и ведем к основной распределительной коробке. Спасибо за внимание!

Рекомендуемые кабели и провода Для новой прокладки домашних электросетей освещения рекомендуется использовать кабели ВВГнг с однопроволочными медными, 1,5 кв. Дистанционный выключатель работает похожим образом, только вместо кнопки выключателя используется любой пульт ДУ который есть у вас дома. Нулевой кабель соединяется в жилкой, идущей от лампочки. На картинке показаны различные схемы подключения ламп к выключателю Предварительно изучить принципиальную схему.

Концы провода выключателя соединяются с рабочей жилой общей сети и с рабочей жилой лампочки. В строениях из камня или бетона электрические провода прячут в штробах под слоем штукатурки. Итак, от распределительного щита к коробке подходит два провода — красный фаза и ноль синий. Уложить их в разъём цокольного углубления и гнезда выключателя и прижать отвёрткой.

На картинке показаны различные схемы подключения ламп к выключателю Предварительно изучить принципиальную схему. Поэтому я написал несколько статей, в которых и рассказал о всех ньюансах их подключения. Их многообразие также впечатляет. Берем еще один отрезок провода, заключаем его в гофру и ведем к основной распределительной коробке. Схема подключения выключателя является достаточно простой, но нельзя забывать об одном правиле: подключение фазного провода к светильнику осуществляется через выключатель, то есть фаза всегда должна подключаться на разрыв.
Монтаж распределительной коробки (распаечной коробки). Подключение двухклавишного выключателя.

Схема подключения выключателя

Схема подключения выключателя

У каждого в доме находятся более четырех выключателей. Они работают исправно, но часто в самый неподходящий момент ломаются или вы просто решили сделать дома ремонт и заменить их на новые модели, и тогда вам приходится их менять. Если вы решили все сделать самостоятельно своими руками, то в этой статье вы найдете подробные схемы подключения одноклавишного и двухклавишного выключателей, разные рекомендации и советы по этому вопросу.

 Схема подключения одноклавишного выключателя

Сначала давайте рассмотрим схему подключения одноклавишного выключателя, так как она проще и часто встречается. Запомните, что для сборки схемы подключения светильника помимо выключателя и проводов нам потребуется еще и распределительная коробка, в которой будут соединяться провода. Соединять их можно разными способами, но здесь мы рассмотрим простые скрутки. На фото ниже показаны все необходимые элементы: распредкоробка, патрон светильника и выключатель (уже разобранный)…

Теперь прокладываем все необходимые провода:

  1. Провод от щитка до распределительной коробки.
  2. Провод от распределительной коробки до выключателя.
  3. Провод от распределительной коробки до патрона светильника.

Далее разделываем все концы проводов и зачищаем жилы. В распредкоробке необходимо зачистить жилы на 3-4 см для создания надежной скрутки, а в патроне и выключателе нужно зачищать на 5-8 мм для подключения к контактам.

Подключаем провода к выключателю и патрону (клеммнику) светильника. В выключателе полярность не играет особой роли. В патроне фазный проводник необходимо подключать на центральный контакт, а нулевой проводник на боковой. Если в светильнике выведен из патрона клеммник, то на нем уже указанно куда заводить фазу, нуль и землю. Соблюдайте эти значения.

Собираем выключатель и ставим на место светильник…

Теперь необходимо в распределительной коробке скрутить провода и не перепутать ничего. Тут у вас должно получиться три скрутки:

  1. Нулевой проводник приходящий от щитка скручиваем с нулевым проводником уходящим на светильник.
  2. Фазный проводник приходящий от щитка скручиваем с фазным проводником уходящим на выключатель.
  3. Другой проводник приходящий от выключателя (он будет фазным при нажатии на клавишу выключателя) скручиваем с фазным проводником уходящим на светильник.

Теперь для лучшего контакта и длительной службы соединения необходимо все скрутки пропаять. Затем их изолируем изолентой или трубками ПВХ и аккуратно укладываем в распределительную коробку, желательно чтобы они не соприкасались с друг с другом.

На фото я не паял и не изолировал скрутки. Уж извиняйте меня.

Закрываем коробку и включаем свет!

Это еще не все…

В большинстве случаях бывает так, что от данной распредкоробки необходимо подключить следующую коробку, а от нее уже организовать свет в другой комнате. Ниже подробно покажу вам как это можно сделать.

Необходимо завести в существующую распределительную коробку провод и проложить его до следующей коробки.

Для подключения следующей распредкоробки (шлейфом) необходимо фазный проводник уходящий на нее скрутить с приходящим от щитка фазным проводником, а нулевой проводник уходящего провода нужно скрутить с приходящим от щитка нулевым проводником. На фото ниже это все прекрасно видно. Провод №1 — это приходящий провод от щитка, а провод №2 — это уходящий провод на следующую распредкоробку.

Схема подключения двухклавишного выключателя

Ниже предлагаю разобрать схему подключения двухклавишного выключателя. Тут сложного ничего нет и вы во всем сможете разобраться, главное только не перепутайте провода. Здесь уже необходимо на выключатель и в люстру вести 3-х жильные провода.

Перед подключением проводов к 2-х клавишному выключателю обязательно смотрите маркировку контактов. Обозначение «L» означает, что на данный контакт необходимо подключать приходящий из распредкоробки фазный проводник. Обозначения «1» и «2» означают, что на них необходимо подключать фазные проводники уходящие на разные группы ламп в люстре или на разные светильники №1 и №2.

На моем выключателе, который представлен на фото, все три контакта выведены на верх. У вас может быть все по другому. Это зависит от производителя и модели выключателя. Они бывают разные, но обозначения на них обычно одинаковые.

Теперь скручиваем провод. Главное тут ничего не перепутайте. На фото ниже я подробно все подписал и там все хорошо видно. Читайте внимательнее и соединяйте свои провода также. У вас должно получиться четыре скрутки. Как провод подключать к люстре или к разным светильникам я показал схематично. Если что-то не понятно пишите в комментариях, будем вместе разбираться. Еще учтите, что по проводу от выключателя к коробке по всем жилам будет протекать фаза и поэтому здесь не получится соблюсти цветовую маркировку.

Все скрутки пропаиваем, изолируем и аккуратно укладываем в распредкоробку.

Собираем выключатель и пробуем включать свет, таим образом проверяя правильность собранной схемы подключения выключателя.

Улыбнемся:

Пьяный электрик уткнулся лбом в столб.
Рядом болтается оголенный провод.
Электрик: — Неее пооонняял…
Хватает рукой провод, дергается от удара током:
— Все! Понял! Понял!

Как подключить выключатель света: схемы

Очень часто требуется самостоятельно разветвить проводку по дому, установить розетки и коммутаторы. Главное – иметь под рукой инструкцию и схему верной установки. Так как подключить выключатель света своими руками очень просто, все можно сделать без помощи специалистов.

Виды

Существуют различные типы переключателей света, которые используются для управления лампами в квартире или доме. Рассмотрим основные:

  1. Одноклавишные;
  2. Двухклавишные;
  3. Трехклавишные;
  4. Сенсорные;
  5. Дистанционные.

Одноклавишный коммутатор света является самым простым из существующих. В корпус устройства при помощи винтового соединения устанавливается металлическая скоба. Она управляет выключающей пластиной. По бокам скобы расположены лапки, при помощи которых вся конструкция устанавливается в коробку. Также в корпусе находится отделение с проводами.

Двухклавишный представляет собой два одноклавишных выключателя в одном корпусе. Особенностью является большее количество групп проводов. Вы можете подключить люстры с большим количеством лампочек или несколько ламп в разных комнатах. Аналогичную конструкцию имеют и трехклавишные модели.

Фото — одно и двух клавишные

Сенсорная модель работает за счет электрической схемы, встроенной в корпус. Часто оснащаются диодом, подсветкой или регулятором выключения. В коробе установлен специальный инфракрасный индикатор, который распознает тепло человеческого тела и замыкает контакты лампы. Модель с индикатором часто используется в местах общественного пользования.

Фото — сенсорный

Дистанционный прекрасно подойдет для управления освещением большого дома или квартиры. Он состоит из выключателя, оснащенного приёмником сигналов, и блока управления. Вы можете включать и выключать свет непосредственно от блока или используя для этой цели пульт. В основном используется в различных комплексах, а также в системе «Умный дом».

Фото — дистанционный

Как подключить одноклавишный

Для работы Вам понадобится выбранный коммутатор, распределительная коробка и лампа, к которой будет производиться подключение. Напрямую соединить однокнопочную модель очень просто. Как подключить одноклавишный выключатель света на одну лампочку:

  1. Фазный провод сети питания нужно подключать только через контакты устройства переключения, в противном случае лампа всегда будет под напряжением, что очень опасно. Всегда фаза подключается на разрыв. Очень часто домашние мастера устанавливают соединение разрыва на нулевой провод, что может стать причиной короткого замыкания или даже возгорания;
  2. Далее, последовательно соединяете провода настенного переключателя света и прибора освещения с питанием. Фаза питания – к коммутатору, ноль лампы к нулю фазе, фаза лампы с нулем выключателя.

Фото — подключение одноклавишника

Более сложно установить соединение на несколько ламп. Там нужно учитывать фазовые провода сразу нескольких потребителей. Просто будьте внимательны и строго следуйте озвученной схеме. Она работает следующим образом: при включении переключателя света (позиция вверх), на лампу начинает поступать электрический ток. Если клавишу опустить вниз – цепь разрывается, и поток направленных частиц прекращается.

Подключение двухклавишной модели

Стандартный двухкнопочный выключатель света предназначен для управления различными световыми устройства или несколькими группами одной лампы из единого места. Чаще всего их используют, если в люстре более 2 ламп (5,6). При этом нужно знать, что две клавиши используются для управления только двумя группами, если лампа разделена на большее их количество, то нужно использовать тройной переключатель.

Фото — подключение двухклавишной модели к люстре

 

Как самому подключить двухклавишный выключатель света:

  1. В такой модели есть три контакта – ввод и два выхода. При этом к контакту ввода присоединяется фаза от распредкоробки, а выводы нужны для управления отдельных групп люстры;
  2. В распределительную коробку нужно завести фазовый провод сети и её ноль;
  3. Первым делом между собой соединяются все нулевые проводники. Фазный подводится к вводу электрического выключателя света;
  4. Также в нём есть провода для каждой группы ламп. Они чаще всего разделены цветовой маркировкой. Чтобы каждая группа могла гореть независимо от другой, нужно каждую соединить с отдельным фазным проводом. К примеру, кабеля желтого и серого цвета: желтый отводится на группу 1, а серый – на группу 2;
  5. Нулевой провод выключателя соединяется с нулями ламп и сети;
  6. Остается только изолировать проводники.

При этом двойной выключатель света можно подключить так, чтобы при выключении одной группы (основной) выключалась и вторая (дополнительная), тогда схема будет немного иной. Нужно коммутировать устройством не каждую группу по отдельности, а обе сразу. Тройной можно соединять по аналогично схеме. Главное, чтобы при отключении клавиш разъединялась фаза, а не ноль.

Также очень часто требуется подключить коммутатор к лампе бра и розетке. Это очень экономит место в комнате, отведенное под электрические выходы. Тогда схема имеет следующий вид:

  1. Розетка устанавливается параллельно к питающим проводам. Фаза соответственно к фазе сети, а ноль – к нолю;
  2. Порядок включения светильника не меняется, делаем все также, как и описано выше.

Таким образом можно установить модель производства Legrand (Легранд), Viko, уаз или любые другие.

Как установить проходной

Сейчас очень популярной стала установка выключателей, которые позволяют из разных частей комнаты отключить одну группу. Рассмотрим, как правильно подключать проходные выключатели света:

Фото — схема подключения для проходного выключателя

  1. В схеме учитывается соединительная коробка, т. к. без неё будет сложно осуществить подключение;
  2. Нужно нулевой провод фазы завести в распредкоробку и соединить его с нулем лампы. Центральный фазный кабель соединяется с контактом ввода одного из выключателей на выбор;
  3. После этого два переключаемых контакта одного выключателя требуется соединить с аналогичными выводами второго;
  4. Теперь после соединения выключателей фаза с одного (к которому она была подключена ранее) переносится на второй. Все укладывается в коробку и закрывается.

Фото — принцип работы проходной модели

Обязательно изолируйте все контакты, иначе они будут коротить. Многие специалисты рекомендуют пользоваться спайкой контактов – она надежнее и долговечнее, чем изолента.

Схема подключения выключателя, розеток и ламп. Как подключать эти установочные изделия.

На данном рисунке представлена упрощённая электрическая схема подключения выключателя, розеток и ламп. Она является довольно распространенной и повсеместно используется при электрификации жилых квартир, подвальных, гаражных помещений, производственных, строительных объектов и т.д. А теперь давайте с Вами более подробней разберёмся с ней.

Для лучшего понимания схема подключения выключателя, розеток и ламп нарисована так, как она обычно располагается при своём монтаже. Начнём с электрощита. В каждом доме и квартире обязательно имеется щиток, к которому подходит ввод от основной электромагистрали (от ближайшего столба электропередач либо от основного распределительного щитка на площадке). На (в) этом щитке, как правило, находятся электросчётчик, УЗО, автоматические выключатели, предохранители и дополнительные устройства (к примеру, индикаторы сетевого напряжения, защита от перенапряжения и т.д.). Именно с него и происходит запитка всего помещения (частного дома, квартиры).

Предположим, что у нас имеется трёхкомнатная квартира. Обычно делается так: в каждой комнате устанавливается соединительная коробка (она на рисунке показана в виде круга). К ней подводятся провода (кабеля) от щитка и берётся электропитание с одного из автоматов на нём. Такие соединительные коробки являются местами коммутации всех силовых проводов электропроводки (от выключателей, светильников, розеток, кондиционеров и т.д.), что располагаются в данной комнате (помещении). Теперь, что касается самой схемы подключения выключателей и ламп. Как вы поняли (смотря на рисунок), в соединительной коробке имеется фаза (провод красного цвета) и ноль (синего цвета), которые приходят от щитка. Берётся фазный провод и к нему подсоединяется общий провод (также красного цвета) идущий к двухклавишному выключателю.

В разомкнутом положении выключателя фаза просто сидит на общей клемме и ждёт, пока нажатием на клавишу (клавиши) подадут её на провод, что соединен с одной из ламп. Провода, идущие к светильнику (лампам) обозначены зелёным цветом. В состоянии отключенного выключателя эти провода обесточены. Кстати, они проходят также через соед. коробку. Как Вы знаете, некоторые типы выключателей имеют неоновую подсветку. На рисунке она показана внутри выключателя в виде кружка с двумя меньшими кружками. Эта неоновая лампочка подключается через дополнительное сопротивление (последовательно). Данную подсветку следует включать так: один из её проводов прикручивается к общей клемме этого выключателя, а второй провод к одной из оставшихся клемм (на выключателе).

Эта подсветка будет светиться тогда, когда выключатель находится в положении разрыва контактов. Да, хочу напомнить, что такая подсветка хорошо работает с лампочками накаливания. С экономными лампами её нежелательно подключать (просто свет начнёт блымать даже при выключенном положении). Светильники, как правило, имеют несколько ламп. При раздельном подключении ламп (горит одна часть светильника, другая и обе сразу) соединение проводов происходит так: от каждой из ламп берётся по одному проводу и соединяются в одну скрутку. Вторые провода от этих ламп группируются по двум (фазным) скруткам. В итоге, первую общую скрутку соединяют с нулём, идущим от соединительной коробки, а сгруппированные остальные две скрутки садятся на два провода (зелёного цвета) идущие от выключателя.

Теперь, что касается схемы подключения розеток. Здесь все очень просто. Берётся два провода (фаза и ноль) идущие от соединительной коробки и подсоединяются к контактам на самой розетки. Далее от этой же розетки отводится второй провод (параллельно) и подключается к другой. Параллельно идущим проводом соединять розетки следует в том случае, когда эти розетки располагаются недалеко друг от друга (образовывая группу розеток). Если розетки находятся вдали между собой (к примеру, на противоположной стене комнаты), то их запитывают от другого провода (кабеля) идущего от общей соединительной коробки, принадлежащей этой комнате. Образовывая соединительные группы розеток, следует помнить и учитывать общую нагрузку на них (суммарный ток). Так как, соединив слишком много розеток в одной группе и запитав их от общего кабеля имеющего малое сечение, можно получить перегрузку по току на этот кабель и в итоге его нагрев.

Видео по этой теме:

P.S. Учтите, что качественное выполнение работ в процессе установки электрических розеток, выключателей, ламп и прочих изделий ведёт к долговечной эксплуатации этих самых электроустройств. Даже мелочь, сделанная как попало, может в последствии обернуться массой проблем. Так что делайте всё на совесть (и не только себе)!

Выключатель с подсветкой и все, что с ней связано

Если ежедневные поиски выключателя в тёмной комнате отбирают немало времени и нервов, а перенести его в более удобное место не представляется возможным, то решить проблему можно с помощью подсветки, которая точно укажет местоположение клавиш включения света. На практике это реализуется путём добавления светодиода в имеющийся выключатель своими руками или через замену на аналогичный выключатель с подсветкой со встроенной неоновой лампочкой.

Схема и принцип действия подсветки с использованием светодиода

Схема подключения выключателя со светодиодной подсветкой показана на рис.1. Принцип её работы основан на законе Ома и довольно прост. В момент, когда контакты выключателя Q1 разомкнуты, ток нагрузки протекает по цепи L – R1 – LED – HL – N. Величина тока нагрузки не превышает рабочий ток через светодиод, то есть 10 мА. Естественно этого тока не хватит, чтобы зажечь лампу основного освещения. Для сравнения лампа накаливания мощностью 60 Вт потребляет 270 мА. К тому же основная часть напряжения сети 220В падает не на лампе, а на резисторе. В результате светится только светодиод, а его яркость зависит от сопротивления резистора R1.

Как только в комнате включить свет, сопротивление контактов выключателя, расположенных параллельно светодиоду с резистором, станет близким к нулю. Цепь протекания тока замкнётся через L – Q1 – HL – N. Ток нагрузки пойдёт по пути с наименьшим сопротивлением и светодиод погаснет.

Кстати, если из светильника выкрутить лампу или она перегорит, то подсветка работать перестанет.

Расчёт подсветки на светодиоде сводится к грамотному выбору резистора R1. Дело в том, что на нём падает 99% сетевого напряжения, а значит, мощность рассеивания довольно высока. Например, задавшись током светодиода 8 мА, рассчитаем параметры резистора:

Резистор, рассеивающий мощность почти 2 Вт, будет иметь большие размеры и нагреваться настолько сильно, что при контакте с пластиковым корпусом сможет его деформировать. Из-за этого недостатка рассмотренный вариант не нашёл практического применения.

С целью снижения тепловых потерь и защиты светодиода от пробоя, схему подсветки выключателя дополняют выпрямительным диодом (обычно 1N4007), соединённым последовательно со светодиодом (рис.2).

В этом случае к элементам схемы прикладывается не переменное напряжение 220В, а постоянное – в 0,45 раза меньше, то есть примерно 100В. Номинал резистора можно задавать в пределах 12-50 кОм и экспериментально подобрать вариант, при котором яркость подсвечивающего светодиода и температура поверхности резистора будут оптимальными. К преимуществам светодиодной подсветки, собранной своими руками, можно отнести возможность самостоятельно выбирать цвет свечения светодиода, его размер и место установки.

Подсветка с применением неоновой лампы

Схема и принцип действия выключателя с подсветкой на неоновой лампе полностью идентична схеме со светодиодом, но отличается улучшенными эксплуатационными показателями.

Основное преимущество неоновой лампочки – чрезмерно малый ток потребления, который не превышает 1 мА, а в идеале должен составлять 0,1-0,2 мА. Это позволяет устанавливать ограничивающий резистор намного меньшей мощности и размера, а именно: Получается, что миниатюрный резистор мощностью 0,125 Вт легко помещается под корпусом и совсем не греется. По сравнению со схемой на светодиоде, данный вариант более экономичный, надёжный и безопасный. А срок службы неоновой лампочки достигает 80 тыс. ч. Именно поэтому выключатели с подсветкой, в которых используется неоновая лампа, нашли более широкое практическое применение.

Подключение одноклавишного выключателя с подсветкой

Чтобы собрать, а затем подключить выключатель с подсветкой к сети 220В, потребуется немного времени и выполнение пунктов ниже приведенной инструкции.

  1. Необходимо обесточить комнату, в которой будет проводиться модернизация и установка выключателя подсветкой.
  2. Снять клавишу включения/выключения света, аккуратно поддевая её с боков отверткой.
  3. Демонтировать выключатель со стены и отсоединить провода.
  4. В зависимости от формы и размеров корпуса определить место установки светодиода.
  5. В обозначенном месте просверлить отверстие диаметром 5 мм.
  6. К одному из выводов светодиода припаять резистор, а ко второму – диод, соблюдая полярность.
  7. Во избежание короткого замыкания, большую часть выводов вместе с резистором спрятать под термоусадочной трубкой, оставив оголёнными края для подсоединения к клеммам.
  8. При необходимости собранную конструкцию удлинить проводами.
  9. С помощью суперклея закрепить светодиод в отверстии.
  10. Один из проводов подсветки вместе с «фазой» зажать в клемме выключателя.
  11. Другой провод подсветки вместе с проводом, идущим к лампе, подключить ко второму выводу выключателя.
  12. Произвести монтаж готового выключателя со светодиодом в обратной последовательности.

Если планируется использовать готовое изделие, то с 4 по 9 пункту пропускаются.

Подключение двухклавишного выключателя с подсветкой

В 90% случаев устройство двухклавишного выключателя с подсветкой ничем не отличается от одноклавишного аналога. Исключение могут составлять лишь эксклюзивные модели от зарубежных производителей. В основном же внутри выключателей с двумя клавишами управления освещением расположена одна неоновая лампочка с резистором, как показано на фото.

Несложно догадаться, что подсветка будет загораться и гаснуть только при нажатии на одну из клавиш. Однако производители выключателей не видят необходимости в установке второй неонки, так как для подсветки в темноте достаточно и одной индикаторной лампочки.

Последовательность действий по сборке подсветки двухклавишного выключателя такая же, как и для одноклавишных моделей. Отметим только то, что электрик в момент подсоединения проводов сам вправе выбрать, при нажатии на какую из клавиш неоновая лампочка будет гаснуть. Если речь идёт о сборке светодиодной подсветки своими руками, то при желании установить можно 2 светодиода – на каждую из клавиш в отдельности.

Возможные будущие проблемы

Даже такая простая конструкция как подсветка выключателя не лишена недостатков. В первую очередь это касается светодиодных ламп, внутри которых установлен электронный блок – драйвер. Из-за наличия подсветки, на цоколе выключенной LED-лампы присутствует небольшой потенциал, оказывающий влияние на работу драйвера. Так как схемотехнически драйверы устроены по-разному, то и проблемы в работе светильника могут проявляться по-разному, а именно:

  • в виде неприятного мерцания;
  • в виде тусклого свечения светодиодной лампы;
  • подсветка вовсе может не работать с некоторыми моделями LED-ламп – их драйвер разрывает электрическую цепь.

Похожие проблемы возникают, когда выключатель с подсветкой размыкает цепь светильника с компактной люминесцентной лампой, из-за наличия в ней импульсного блока питания. Поэтому, прежде чем покупать выключатель с подсветкой или приступать к модернизации имеющегося, следует быть уверенным, что к нему будет подключаться лампа накаливания или галогенка. В противном случае следует быть готовым устранять негативное мерцание и тусклое свечение.

Как подключить переключатель своими руками: описание действий и советы


Обычно мы используем один выключатель для включения и выключения люстры или светильника. Однако вы можете установить в квартире для управления освещением проходной выключатель или, как его еще называют, переключатель. Устройство позволяет включить свет в одном месте, а выключить в другом, например, в конце комнаты. Оно совместимо с лампами накаливания, энергосберегающими и светодиодными лампочками и внешне выглядит как традиционный выключатель, но схема его подключения отличается. В статье мы расскажем, как подключить переключатель с одной клавишей для контроля освещения из 2 мест.


Что такое проходной выключатель и зачем он нужен: подробный обзор


У изделия та же конструкция, что и у привычного выключателя, только количество выходов для контактов у него не 2, а 3: входящий и 2 выходящих. Традиционный либо смыкает, либо размыкает электрическую цепь. А проходной перекидывает цепь с одного контакта на другой. Принцип действия изображен на рисунке. Конструкция дает возможность включить свет в одной точке, а выключить — в другой. 


Отличия есть и по внешнему виду. Как правило, у проходных моделей на клавише изображены 2 вертикальных треугольника, смотрящих вверх и вниз. 


Если геометрические фигуры смотрят в стороны — это перекрестные (промежуточные) переключатели. Они нужны, если вы хотите управлять освещением из 3 и более точек в доме. Последовательность их подключения более сложная. Мы не рекомендуем пытаться самостоятельно произвести ремонт, если вы не имеет навыков в монтаже электропроводки. 


По наблюдениям пользователей, переключатели экономят электроэнергию и повышают комфорт использования освещения. Их рекомендуют монтировать в следующих случаях:


  • Если у вас длинный коридор или есть затемненные повороты в проходе.


  • В проходных комнатах, когда неудобно возвращаться, чтобы погасить свет.


  • В больших спальнях, когда приходится перед сном вставать с постели, чтобы нажать на выключатель.


  • На лестничных пролетах в многоэтажных коттеджах.


Некоторые считают, что во всех этих случаях можно воспользоваться реле времени. Но люди передвигаются с разной скоростью, и временного промежутка может не хватить, либо свет будет гореть зря. Эффективность применения переключателя очевидна.


Как установить проходной выключатель: этапы работы


Перед началом ремонта обратите внимание на 3 важных пункта:


  • Для монтажа переключателя используют трехжильный провод.


  • Покупайте в магазине 2 конечных проходных выключателя одной фирмы, чтобы их конструкции не различались и их легко было монтировать.  


  • Подключение обычных выключателей по предложенной схеме невозможно. Не годятся даже двухклавишные модели, у которых также на задней панели 3 клеммы.


Далее мы опишем последовательность действий сначала при установке выключателя в подрозетник, затем при соединении кабелей в распредкоробке. Все работы проводите при отсутствии напряжения в сети. 


Как установить переключатель в подрозетник


Самое главное на этом этапе найти общую контактную клемму, которая будет передавать ток от электрощитка. Как правило, схема, где какой зажим расположен, нарисована на задней панели переключателя. Если у вас недорогая модель или вы не разбираетесь в подобных схематичных инструкциях, воспользуйтесь индикаторной отверткой. После обнаружения нужного зажима подсоедините к нему фазный провод. Оставшиеся жилы установите в другие клеммы. Их положение значения не имеет. Закрепите конструкцию в подрозетнике. Аналогичным образом монтируется второй переключатель, только фазный кабель тянется к люстре. 


Как установить контакты проходного выключателя в монтажной коробке


В распределительную или распаечную коробку заводят 4 кабеля: от автомата распредщитка, от переключателей (для удобства обозначим их №1 и №2) и от светильника. Теперь надо правильно попарно соединить провода. Для соединения используйте самые маленькие двойные клеммы WAGO. 


Схема скрепления проводов для управления освещением из 2 разных точек представлена на рисунке. Она носит общий характер, далее мы распишем последовательность ваших действий более подробно. 


Для наглядности у изоляции всех проводов разный цвет. Наиболее частые маркировки


  • Белый или серый  — фаза — жила, по которой ток движется к светильнику.


  • Синий — ноль — провод с обратным движением тока.


  • Желто-зеленый — заземление. «Земля» не участвует в подаче электричества, но предотвращает удары, если один из элементов цепи выходит из строя.


Теперь последовательно соединяйте провода:


  • Ноль кабеля от коробки-автомата — с нулевым каналом, отходящим от светильника.


  • Соедините заземляющие жилы.


  • Фазу с распредщитка зажмите с фазой провода от общей клеммы выключателя №1.


  • Фазу кабеля от осветительного прибора — с общей жилой выключателя №2.


  • Остались отходящие провода с переключателей. Их можно соединить между собой произвольно, но старайтесь выдержать цветовую компоновку, чтобы в будущем никто не запутался в случае ремонта.  


Осталось проверить правильность подключения. Подайте напряжение и проверьте работу устройств. 


Мы описали схему подключения одноклавишного образца. Принцип подключения двух- и трехклавишного аналогичный. В моделях предусмотрены 2 или 3 входа и 4 или 6 выходов соответственно. Главное при монтаже не запутаться в проводах и клеммах. 


Распространенные ошибки при монтаже переключателя


Перечислим типичные промахи, которые совершают люди, впервые сталкивающиеся с установкой проходных выключателей.


  • Некоторые полагают, что при установке изделия в подрозетник общая клемма та, которая расположена отдельно. Но у разных производителей конструкции устройств отличаются, поэтому нет единого правила, где должен проходить фазный кабель. 


  • Бывают случаи, когда переключатель подключают по последовательной схеме обычного выключателя. Чтобы решить проблему, достаточно правильно поменять местами фазы. 


Ограничения в использовании проходных выключателей


Переключатели имеют недостатки, о которых важно знать, если вы решаете, устанавливать их или нет.


  • Отсутствие фиксированного положения клавиши, по которому можно узнать включена или нет лампочка. В обычных образцах есть стандартное размещение клавиши, которое свидетельствует, что ток не подается. У переключателей такое положение отсутствует. Если лампочка перегорела, вы не узнаете, есть ли в патроне напряжение. При замене прибора мы советуем обесточивать сеть, чтобы вас не ударило током или лампочка не взорвалась в руках.


  • Большое количество клемм в распределительной коробке. Мы расписали схему для двух конечных переключателей, но в некоторых помещениях устанавливают цепь из 3 или даже 5 выключателей. Тогда коробка становится забита соединенными проводами и зажимами. Это затрудняет ремонт и замену моделей. 


В отличие от монтажа традиционного выключателя, установка переключателя требует некоторых знаний и элементарных навыков работы с электричеством. Но если вы разберетесь в принципах подачи напряжения к осветительным приборам, будете соблюдать технику безопасности, работать с обесточенными проводами и использовать изолированные отвертки, самостоятельное подключение проходного выключателя окажется вполне по силам. 

Как подключить выключатель | Заметки электрика

Доброго времени суток, дорогие гости сайта «Заметки электрика».

Небольшое предисловие.

Помните, несколько дней назад я устанавливал квартирный электрический щиток? Так вот вчера мне позвонил хозяин этой квартиры с просьбой о помощи.

По его словам в коридоре пропал «свет». Я ему еще по телефону предложил проверить исправность лампы освещения, но он мне сказал, что лампу проверил и она исправна. Тогда я решил наведаться к нему в гости и посмотреть, почему нет освещения в коридоре. А ведь я ему говорил, что его электропроводка требует замены, на что он меня убедительно уверял в обратном.

 

Начало работ

И вот я на месте. Взяв свой инструмент, я еще раз проверил исправность лампы в коридоре. Лампа действительно была исправна. После этого я приступил к поиску неисправности. Скажу сразу, что искать долго то и не пришлось.

Но обо всем по порядку, чтобы Вы представили о чем идет речь.

Несколько слов о самом выключателе и месте его установки. Одноклавишный выключатель внутренней установки расположен в коридоре. Вот так он выглядит.

С помощью этого выключателя включается освещение в коридоре. Освещение выполнено в виде одной энергосберегающей лампы. Поэтому в данной статье мы рассмотрим схему подключения одноклавишного выключателя для одной лампочки.

В статье о том, как повесить люстру Вы узнаете все способы установки и крепления люстры.

 

Схема подключения одноклавишного выключателя

Это самая простая схема подключения выключателя. Думаю, она не вызовет у Вас затруднений, т.к. на выключатель приходит всего 2 провода.

С квартирного щитка питание (фаза — провод красного цвета, ноль — провод синего цвета) приходит в распределительную коробку, которая находится в коридоре.

Важно знать!!! Читайте статью как правильно соединять провода в распределительной коробке.

Фаза (красного цвета) соединяется в распределительной коробке с проводом (красного цвета), который идет на выключатель. С выключателя провод (оранжевого цвета) уходит обратно в распределительную коробку, где соединяется с проводом (оранжевого цвета), идущим на нагрузку (лампу). Это и есть коммутируемая фаза на лампу.

Ноль (синего цвета) соединяется в распределительной коробке с проводом (синего цвета), который сразу уходит на нагрузку (лампочку). Для соединений проводов в распределительной коробке удобно использовать клеммы Ваго.

Вот аналогичная схема, только вместо одной лампочки, подключено пять.

Внимание!!! Выключатель всегда должен разрывать именно фазу, а не ноль. 

Все это необходимо ради нашей же электробезопасности. При замене лампы, достаточно будет отключить выключатель, и в патроне не будет напряжения. Меняй себе спокойно. Если же перепутать, и выключателем коммутировать ноль, то при замене лампы, она в любом случае останется под напряжением. А это очень опасно. Читайте мои статьи про действие электрического тока на человека и несчастный случай на производстве (пример).

Если Вас интересует как подключить двухклавишный выключатель, то тогда читайте мою статью про схему подключения двухклавишного выключателя.

 

Ищем неисправность

Вернемся к неисправности.

Итак, выкрутив лампочку из патрона (Е27) и включив выключатель, проверяем с помощью указателя напряжения приходит фаза (оранжевого цвета по рисунку) с выключателя на лампу или нет. В нашем случае фаза на лампу не приходит. Это говорит о следующих неисправностях. Либо это неисправен сам выключатель, либо электропроводка от выключателя до лампы находится в обрыве (смотрите схему подключения выключателя).

Далее необходимо проверить приходит ли фаза на сам выключатель. Для этого нам необходимо снять клавишу выключателя. Только делать это нужно предельно осторожно, т.к. современные конструкции очень хрупки.

Сняв клавишу, мы увидим винты крепления выключателя к подрозетнику и винты крепления проводов к выключателю. Вот здесь нам и нужно убедиться в наличии фазы на выводах.

Для этого опять же применяем указатель низкого напряжения »Контакт-55ЭМ», и производим замер приходящей фазы и уходящей.

И вот тут нас ждал «сюрприз».

Фаза на выключатель приходила, а с него уже не уходила. Это говорит о том, что неисправен сам выключатель. Поэтому его нужно снимать.

Отключаем напряжение в квартире с помощью автоматического выключателя. Кстати, это особенность именно этой квартиры. Если у Вас в квартирном или этажном щите находятся несколько линий (групп), то соответственно отключаем автомат той линии (группы), где будут производиться работы.

Затем откручиваем винты крепления выключателя и аккуратно отгибаем его. Прошу заметить, что винты крепления проводов я пока не откручивал.

И что мы видим?

А видим мы следующее. Один из проводов выпал из клеммы выключателя.

И еще видим, что полностью отсутствует цветовая маркировка проводов. Это и стоило ожидать, т.к. электропроводка в квартире достаточно старая.

Причина отпавшего провода заключается в слабой протяжке винтов крепления проводов.

 

Завершение работ

Неисправность была устранена, провод вставлен обратно в клемму и винты затянуты.

Выключатель подключен. Осталось только вставить его в металлический подрозетник и затянуть винты крепления выключателя.

А теперь можно проверить выполненную работу. Включаем напряжение на отключенном участке схемы и проверяем работу одноклавишного выключателя. Все работает исправно.

Кстати, а Вы знаете почему мигает энергосберегающая лампа?

P.S. Ну вот на этом и завершим статью, где я рассказал Вам о схеме подключения одноклавишного выключателя и как проводить поиск неисправности электропроводки. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Как управлять каждой лампой с помощью отдельного переключателя в параллельном освещении?

Управление каждой лампой с помощью независимого одностороннего переключателя в параллельной цепи освещения?

В сегодняшнем базовом руководстве по установке домашней электропроводки мы покажем , как подключать и управлять каждой лампой независимо, используя отдельные односторонние переключатели при параллельном подключении освещения.

Ниже приведено простое пошаговое руководство со схемой и схемой подключения, которое показывает , как подключить три разные лампочки параллельно для управления с трех разных и независимых переключателей и мест?

Требования:

  • Односторонние переключатели (SPST = однополюсный, сквозной) x 3 шт.
  • Лампа (лампочка) x 3 шт.
  • Короткие отрезки кабелей x 11 шт. :

    Подключите все электрические соединения, как показано на рисунке ниже.

    Как управлять каждой лампой отдельно с помощью односторонних переключателей в параллельных цепях освещения

    • Первая и вторая лампы горят, потому что оба отдельных переключателя S 1 и S 2 , которые подключаются к лампам через Линия находится в положении ВКЛ., Поэтому цепь завершена.
    • Третья лампа выключена, потому что выключатель S 1 , который подключен к лампочке через линию, выключен, поэтому схема ведет себя как разомкнутая цепь, что означает, что нет возможности протекать ток в цепи.Следовательно, лампочка не светится

    Связанное сообщение: Схема электропроводки лестницы — как управлять лампой из двух мест с помощью двухпозиционных переключателей?

    Теперь рассмотрим следующую принципиальную электрическую схему. Это такая же схема, как показано выше, но переключатели и лампочка откладывают только наоборот, т.е. S 1 и S 2 находятся в положении ВЫКЛ, поэтому лампа 1 и лампа 2 выключены, а S 3 горит, а лампа 3 светится.

    Лампочки подключены параллельно

    Полезно знать:

    • Выключатели и Предохранители должны быть подключены через линию (под напряжением).
    • Соединение электрических устройств и приборов, таких как вентилятор, розетка, лампочка и т. Д., Предпочтительнее, чем последовательное подключение.
    • Параллельный или последовательно-параллельный способ подключения более надежен, чем последовательный.

    Предупреждение:

    • Электричество — наш враг, если вы дадите ему шанс убить вас, помните, они никогда его не упустят. Пожалуйста, прочтите все меры предосторожности и инструкции при выполнении этого руководства на практике.
    • Отключите источник питания перед обслуживанием, ремонтом или установкой электрического оборудования.
    • Никогда не пытайтесь работать на электричестве без надлежащего руководства и ухода.
    • Работать с электричеством только в присутствии лиц, обладающих хорошими знаниями, практической работой и опытом, умеющих обращаться с электричеством.
    • Прочтите все инструкции и предупреждения и строго следуйте им.
    • Выполнение собственных электромонтажных работ опасно, а также незаконно в некоторых областях. Прежде чем вносить какие-либо изменения в подключение электропроводки, обратитесь к лицензированному электрику или в энергоснабжающую компанию.
    • Автор не несет ответственности за какие-либо убытки, травмы или повреждения в результате отображения или использования этой информации, или если вы попробуете какую-либо схему в неправильном формате. Поэтому, пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.

    Учебные пособия по монтажу электрической проводки:

    The Simple Circuit

    Простая схема

    Понимание основ работы с автомобильной электрической системой важно для ваших базовых навыков и помогает вам выявлять первопричины и устранять электрические неисправности.Следующая информация поможет вам изучить элементы электричества, определить методы понимания цепей, сопротивления, нагрузки, проверить напряжение холостого хода или доступное напряжение, а также падение напряжения.

    Помните о трех элементах электричества; напряжение, сила тока и сопротивление. Напряжение (иногда называемое электродвижущей силой) — это представление электрической потенциальной энергии между двумя точками в электрической цепи, выраженное в вольтах. Подумайте о напряжении как об электрическом давлении, которое существует между двумя точками в проводнике, или о силе, которая заставляет электроны двигаться в электрической цепи.Другими словами, это давление или сила, которые заставляют электроны двигаться в определенном направлении внутри проводника. Когда электроны перемещаются из отрицательно заряженной области в положительно заряженную область, это движение электронов между атомами называется электрическим током. Электрический ток — это мера потока этих электронов через проводник или электричества, протекающего в цепи или электрической системе. Если вы подумаете о садовом шланге в качестве примера, ток — это количество воды, протекающей через шланг.Напряжение — это величина давления, под которым вода проходит через шланг.

    Этот поток электронов измеряется в единицах, называемых амперами. Амперы или ампер — это единица измерения силы или скорости протекания электрического тока. Электрическое сопротивление описывает величину сопротивления протеканию тока. Чем больше значение сопротивления, тем больше он борется. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи. Это сопротивление или противодействие тока измеряется в Ом.Один вольт — это величина давления, необходимая для того, чтобы пропустить один ампер тока через один ом сопротивления в цепи.

    ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ

    Цепь — это законченный путь, по которому течет электричество. Основными элементами базовой электрической цепи являются: источник, нагрузка и заземление. Электричество не может течь без источника питания (батареи), нагрузки (лампочка или резистор-электрическое устройство / компонент) и замкнутого проводящего пути (соединяющих его проводов).Электрические цепи состоят из проводов, соединителей проводов, переключателей, устройств защиты цепей, реле, электрических нагрузок и заземления. Схема, показанная ниже, имеет источник питания, предохранитель, выключатель, лампу и провода, соединяющие их в петлю. Когда соединение завершено, ток течет от положительной клеммы батареи через цепь к отрицательной клемме батареи.

    В замкнутой цепи напряжение источника обеспечивает электрическое давление, проталкивающее ток через цепь.Сторона источника цепи включает в себя все части цепи между положительным полюсом батареи и нагрузкой. Нагрузка — это любое устройство в цепи, которое производит свет, тепло, звук или электрическое движение при протекании тока. Нагрузка всегда имеет сопротивление и потребляет напряжение только при протекании тока. В приведенном ниже примере один конец провода от второй лампы возвращает ток в аккумулятор, поскольку он подключен к кузову или раме транспортного средства. Корпус или рама работают как заземление (то есть часть цепи, которая возвращает ток к батарее).

    ТРЕБОВАНИЯ К ЦЕПИ

    Полная электрическая цепь необходима для практического использования электричества. Электроны должны течь от источника питания и возвращаться к нему. Соединяя отрицательный и положительно заряженный концы источника питания с проводником, мы получаем потенциал движения электронов. Таким образом, полная цепь — это «путь» или петля, которая позволяет электричеству (току) течь. Но чтобы заставить этот контур или схему работать на нас, нам нужно добавить две вещи: источник питания (аккумулятор или генератор переменного тока) и нагрузку (пример — фары).После того, как электричество выполнило свою работу через Нагрузку, оно должно вернуться к Источнику (Батареи). Если у вас где-то в этой цепи произойдет обрыв, у вас будет разрыв электрического тока. Это также известно как «разомкнутая цепь». Напряжение холостого хода измеряется при отсутствии тока в цепи.

    Типы цепей

    Существует три основных типа цепей: последовательные, параллельные и последовательно-параллельные. Отдельные электрические цепи обычно объединяют одно или несколько устройств сопротивления или нагрузок.Конструкция автомобильной электрической цепи будет определять, какой тип цепи используется, но все они требуют одинаковых основных компонентов для правильной работы:

    1. Источник питания (аккумулятор, генератор, генератор и т. Д.) Необходим для обеспечения потока электронов (электричества).

    2. Защитное устройство (предохранитель, плавкая вставка или автоматический выключатель) предотвращает повреждение цепи в случае короткого замыкания.

    3. Управляющее устройство (переключатель, реле или транзистор) позволяет пользователю управлять включением или выключением цепи.

    4.Нагрузочное устройство (лампа, двигатель, обмотка, резистор и т. Д.) Преобразует электричество в работу.

    5. Проводник (обратный путь, заземление) обеспечивает электрический путь к источнику питания и от него.

    Цепи серии

    Компоненты последовательной цепи соединены встык один за другим, чтобы образовалась простая петля для протекания тока через цепь. Последовательная цепь имеет только один путь к земле, все нагрузки размещены последовательно, поэтому ток должен проходить через каждый компонент, чтобы вернуться на землю.Если в цепи есть разрыв (например, перегоревшая лампочка), вся цепь и любые другие лампочки гаснут. Если путь прерван, ток не течет, и никакая часть цепи не работает. Рождественские огни — хороший тому пример; когда гаснет одна лампочка, вся струна перестает работать.

    Параллельные схемы

    Параллельная цепь имеет более одного пути для прохождения тока. На каждую ветвь подается одинаковое напряжение. Если сопротивление нагрузки в каждой ветви одинаково, ток в каждой ветви будет одинаковым.Если сопротивление нагрузки в каждой ветви разное, ток в каждой ветви будет разным. Компоненты параллельной цепи соединены бок о бок, поэтому для протекания тока можно выбирать пути в цепи. Если одна ветвь сломана, ток продолжит течь к другим ветвям.

    В параллельной цепи ниже два или более сопротивления (R1, R2 и т. Д.) Соединены в цепь следующим образом: один конец каждого сопротивления подключен к положительной стороне цепи, а один конец подключен к отрицательной стороне. боковая сторона.

    Последовательные параллельные схемы

    Последовательно-параллельная схема имеет некоторые компоненты, включенные последовательно, а другие — параллельно. Источник питания и устройства управления или защиты обычно включены последовательно; нагрузки обычно параллельны. Если последовательный участок прерывается, ток перестает течь по всей цепи. Если параллельная ветвь разорвана, ток продолжает течь в последовательной части и оставшихся ветвях.

    Внутреннее освещение приборной панели — хороший пример соединения резисторов и ламп в последовательно-параллельную цепь.В этом примере, регулируя реостат, вы можете увеличить или уменьшить яркость света.

    Диагностические схемы

    Проблемы с электрической цепью обычно вызваны неисправным компонентом или низким или высоким сопротивлением в цепи.

    Низкое сопротивление в цепи, как правило, может быть вызвано коротким замыканием компонента или замыканием на землю и, как правило, приводит к перегоранию предохранителя, плавкой вставки или автоматического выключателя.

    Высокое сопротивление в цепи может быть вызвано коррозией или разрывом в цепи источника или заземления.Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи.

    УСТРОЙСТВА ЗАЩИТЫ ЦЕПИ

    Устройства защиты цепей используются для защиты проводов и разъемов от повреждения избыточным током, вызванным перегрузкой по току или коротким замыканием. Избыточный ток вызывает чрезмерное нагревание, что может вызвать «разрыв цепи» защиты цепи. Предохранители, плавкие вставки и автоматические выключатели используются в качестве устройств защиты цепей. Устройства защиты цепей доступны в различных типах, формах и определенных номинальных токах.

    Предохранители

    Предохранитель

    A является наиболее распространенным типом устройства защиты от перегрузки по току. В электрическую цепь вставлен предохранитель, который получает такое же электрическое питание, что и защищаемая цепь. Короткое замыкание или заземление позволяет току течь на землю до того, как он достигнет нагрузки. Поэтому, когда подается слишком большой ток, превышающий номинал предохранителя, он «перегорает» или «перегорает», потому что металлический провод или плавкий элемент в предохранителе плавится. Это размыкает или прерывает цепь и предотвращает повреждение проводов, разъемов и электронных компонентов схемы перегрузкой по току.Размер металлического плавкого элемента (или плавкой вставки) определяет его номинал.

    Помните, что чрезмерный ток вызывает избыточное тепло, и именно тепло, а не ток вызывает размыкание цепи защиты. Как только предохранитель «перегорел», его необходимо заменить новым. После того, как вы определили, что предохранитель перегорел, наиболее важным элементом является обеспечение замены предохранителя с той же номинальной силой тока, что и перегоревший. Максимальная нагрузка на один предохранитель не должна превышать семидесяти процентов от номинала предохранителя.Обычно следует выбирать предохранитель с номиналом, немного превышающим нормальный рабочий ток (сила тока), который может использоваться при любом напряжении ниже номинального напряжения предохранителя. Если новый предохранитель тоже перегорел, значит, в цепи что-то не так. Проверьте проводку к компонентам, которые выходят из строя сгоревшим предохранителем. Ищите плохие соединения, порезы, разрывы или шорты.

    Предохранители

    имеют разные время-токовые нагрузочные характеристики для конечного времени работы при использовании и для скорости, с которой плавкий элемент перегорает в ответ на состояние перегрузки по току.Со временем нормальные скачки напряжения могут вызвать усталость предохранителей, что может привести к перегоранию предохранителя даже при отсутствии неисправности. На предохранителях всегда указывается номинальный ток в амперах, на который они рассчитаны в непрерывном режиме при стандартной температуре.

    Расположение предохранителей

    Предохранители расположены по всему автомобилю. Обычное расположение включает в себя моторный отсек, под приборной панелью за левой или правой панелью защиты или под IPDM.Предохранители обычно сгруппированы вместе и часто смешиваются с другими компонентами, такими как реле, автоматические выключатели и плавкие элементы.

    Крышки блока предохранителей

    Крышки блока предохранителей / реле обычно маркируют расположение и положение каждого предохранителя, реле и элемента предохранителя, содержащегося внутри.

    Типы предохранителей

    Предохранители подразделяются на основные категории: предохранители ножевого типа и патронные предохранители старого образца. Используются несколько вариаций каждого из них.

    Общие типы предохранителей

    Лопастной предохранитель и плавкий элемент на сегодняшний день являются наиболее часто используемыми. Предохранители ножевого типа имеют пластиковый корпус и два штыря, которые вставляются в гнезда и могут быть установлены в блоки предохранителей, линейные держатели предохранителей или зажимы предохранителей. Существуют три различных типа плавких предохранителей; предохранитель Maxi, предохранитель Standard Auto и предохранитель Mini.

    Базовая конструкция

    Предохранитель плоского типа представляет собой компактную конструкцию с металлическим элементом и прозрачным изоляционным корпусом, который имеет цветовую кодировку для каждого номинального тока.(Стандартный автоматический режим показан ниже; однако конструкция предохранителей Mini и Maxi одинакова.)

    Номинальный ток предохранителя, сила тока

    Номинальные значения силы тока предохранителя для предохранителей Mini и Standard Auto идентичны. Однако для определения номинальной силы тока предохранителей макси используется другая схема цветовой кодировки.

    Плавкие вставки и элементы предохранителей

    Плавкие вставки делятся на две категории: патрон плавкого элемента и плавкая вставка.Конструкция и принцип действия плавких вставок и элементов предохранителей аналогичны плавким предохранителям. Основное отличие состоит в том, что плавкая вставка и плавкий элемент используются для защиты электрических цепей с более высоким током, обычно цепей на 30 ампер или более. Как и в случае с предохранителями, при перегорании плавкой вставки или плавкого элемента его необходимо заменить новым. Плавкие вставки защищают цепи между аккумулятором и блоком предохранителей.

    Плавкие вставки

    Плавкие вставки — это короткие отрезки проволоки меньшего диаметра, предназначенные для плавления при перегрузке по току.Плавкая вставка обычно на четыре (4) сечения провода меньше, чем цепь, которую она защищает. Изоляция плавкой вставки — специальный негорючий материал. Это позволяет проводу расплавиться, но изоляция останется нетронутой в целях безопасности. Некоторые плавкие ссылки имеют на одном конце тег, который указывает их рейтинг. Как и предохранители, плавкие вставки необходимо заменять после того, как они «перегорели» или расплавились. Многие производители заменили плавкие вставки плавкими вставками или предохранителями Maxi.

    Картридж с предохранителем

    Предохранители, плавкая вставка картриджного типа, также известна как предохранители Pacific.Элемент имеет клеммную и плавкую части как единое целое. Элементы предохранителя почти заменили плавкую перемычку. Они состоят из корпуса, в котором находятся клемма и предохранитель. Картриджи с плавкими предохранителями имеют цветовую маркировку для каждой силы тока. Хотя элементы предохранителей доступны в двух физических размерах и могут быть вставлены или привинчены, вставной тип является наиболее популярным.

    Конструкция картриджа с плавким элементом

    Конструкция элемента предохранителя довольно проста.Цветной пластиковый корпус содержит элемент термозакрепления, который виден через прозрачный верх. Номиналы предохранителей также указаны на корпусе.

    Цветовая маркировка элемента предохранителя

    Номинальные значения силы тока предохранителя приведены ниже. Плавкая часть элемента предохранителя видна через прозрачное окошко. Номинальные значения силы тока также указаны на предохранительном элементе.

    Плавкие элементы

    Плавкие элементы часто располагаются рядом с аккумулятором сами по себе.

    Плавкие элементы также могут располагаться в блоках реле / ​​предохранителей в моторном отсеке.

    Автоматические выключатели

    Автоматические выключатели используются вместо предохранителей для защиты сложных силовых цепей, таких как электрические стеклоподъемники, люки на крыше и цепи обогревателя. Существует три типа автоматических выключателей: тип с ручным сбросом — механический, тип с автоматическим сбросом — механический и твердотельный с автоматическим сбросом — PTC. Автоматические выключатели обычно располагаются в блоках реле / ​​предохранителей; однако в некоторые компоненты, такие как двигатели стеклоподъемников, встроены автоматические выключатели.

    Конструкция автоматического выключателя (ручного типа)

    Автоматический выключатель в основном состоит из биметаллической ленты, соединенной с двумя выводами и контактом между ними. Ручной автоматический выключатель при срабатывании (ток превышает номинальный) размыкается и должен быть сброшен вручную. Эти ручные автоматические выключатели называются автоматическими выключателями «без цикла».

    Срабатывание автоматического выключателя (ручного типа)

    Автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой.Эта полоса имеет форму диска и вогнута вниз. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается или деформируется вверх, и контакты размыкаются, чтобы остановить прохождение тока. Автоматический выключатель можно сбросить после срабатывания.

    Ручной сброс Тип

    Когда автоматический выключатель размыкается из-за перегрузки по току, автоматический выключатель требует сброса. Для этого вставьте небольшой стержень (канцелярскую скрепку), чтобы переустановить биметаллическую пластину, как показано.

    Тип с автоматическим сбросом — механический

    Автоматические выключатели с автоматическим сбросом называются «циклическими» выключателями. Этот тип автоматического выключателя используется для защиты сильноточных цепей, таких как дверные замки с электроприводом, электрические стеклоподъемники, кондиционер и т. Д. Автоматический выключатель с автоматическим возвратом в исходное положение содержит биметаллическую полосу. Биметаллическая полоса будет перегреваться и открываться от избыточного тока в условиях перегрузки по току и автоматически сбрасывается, когда температура биметаллической ленты остывает.

    Устройство и работа с автоматическим сбросом

    Циклический автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается вверх, и набор контактов размыкается, чтобы остановить прохождение тока. При отсутствии тока биметаллическая полоса охлаждается и возвращается к своей нормальной форме, замыкая контакты и возобновляя прохождение тока.Автоматические выключатели с автоматическим возвратом в исходное положение считаются «циклическими», потому что они циклически размыкаются и замыкаются, пока ток не вернется к нормальному уровню.

    Твердотельный тип с автоматическим сбросом — PTC

    Полимерное устройство с положительным температурным коэффициентом (PTC) известно как самовосстанавливающийся предохранитель.

    Полимерный PTC — это специальный тип автоматического выключателя, называемый термистором (или терморезистором). Термистор PTC увеличивает сопротивление при повышении температуры.PTC, которые сделаны из проводящего полимера, представляют собой твердотельные устройства, что означает, что они не имеют движущихся частей. PTC обычно используются для защиты электрических цепей стеклоподъемников и дверных замков.

    Строительство и эксплуатация полимеров PTC

    В нормальном состоянии материал в полимерном ПТК имеет форму плотного кристалла с множеством частиц углерода, упакованных вместе. Углеродные частицы обеспечивают проводящие пути для прохождения тока. Это сопротивление низкое.Когда материал нагревается от чрезмерного тока, полимер расширяется, разрывая углеродные цепи. В этом расширенном «отключенном» состоянии есть несколько путей для тока. Когда ток превышает порог срабатывания, устройство остается в состоянии «разомкнутой цепи» до тех пор, пока в цепи остается поданное напряжение. Он сбрасывается только при снятии напряжения и остывании полимера. PTC используются для защиты электрических цепей стеклоподъемников и дверных замков.

    УСТРОЙСТВА УПРАВЛЕНИЯ

    Управляющие устройства используются для «включения» или «выключения» протекания тока в электрической цепи.Устройства управления включают в себя различные переключатели, реле и соленоиды. Электронные устройства управления включают конденсаторы, диоды и переключающие транзисторы. Коммутационные транзисторы действуют как переключатель или реле с электронным управлением. Преимущество транзистора — это скорость открытия и закрытия цепи.

    Управляющие устройства необходимы для запуска, остановки или перенаправления тока в электрической цепи. Устройство управления или переключатель позволяет включать или выключать электричество в цепи.Выключатель — это просто соединение в цепи, которое можно разомкнуть или замкнуть. Большинству переключателей требуется физическое движение для работы, в то время как реле и соленоиды работают с электромагнетизмом.

    Коммутаторы

    • Однополюсный одинарный бросок (SPST)
    • Однополюсный, двойной бросок (SPDT)
    • Многополюсный многопозиционный переключатель (MPMT или групповой переключатель)
    • Мгновенный контакт
    • Меркурий
    • Температура (биметалл)
    • Задержка по времени
    • Мигалка
    • РЕЛЕ
    • СОЛЕНОИДЫ

    Переключатель — это наиболее распространенное устройство управления цепями.Переключатели обычно имеют два или более набора контактов. Размыкание этих контактов называется «разрывом» или «размыканием» цепи, замыкание контактов называется «замыканием» или «завершением» цепи.

    Переключатели описываются количеством полюсов и ходов, которые они имеют. «Полюса» относятся к количеству клемм входной цепи, а «Броски» относятся к количеству клемм выходной цепи. Переключатели называются SPST (однополюсные, одноходовые), SPDT (однополюсные, двухпозиционные) или MPMT (многополюсные, многоходовые).

    Однополюсный однопроходный (SPST)

    Самый простой тип переключателя — переключатель «шарнирная защелка» или «лезвие ножа». Он либо «завершает» (включает), либо «размыкает» (выключает) цепь в одной цепи. Этот переключатель имеет один входной полюс и один выходной ход.

    Однополюсный, двусторонний (SPDT)

    Однополюсный входной двухпозиционный выходной переключатель имеет один провод, идущий к нему, и два выходных провода. Переключатель света фар является хорошим примером однополюсного двухпозиционного переключателя.Переключатель диммера фары посылает ток либо в дальний, либо в ближний свет цепи фары.

    Многополюсная многоточечная (MPMT)

    Многополюсный вход, многополюсные выходные переключатели, также известные как «групповые» переключатели, имеют подвижные контакты, подключенные параллельно. Эти переключатели перемещаются вместе для подачи тока на разные наборы выходных контактов. Выключатель зажигания — хороший пример многополюсного многопозиционного переключателя. Каждый переключатель посылает ток из разных источников в разные выходные цепи одновременно в зависимости от положения.Пунктирная линия между переключателями указывает, что они движутся вместе; один не будет двигаться без движения другого.

    Мгновенный контакт

    Переключатель мгновенного действия имеет подпружиненный контакт, который не позволяет ему замкнуть цепь, за исключением случаев, когда на кнопку прикладывается давление. Это «нормально открытый» тип (показан ниже). Выключатель звукового сигнала — хороший пример выключателя с мгновенным контактом. Нажмите кнопку звукового сигнала и раздастся звуковой сигнал; отпустите кнопку, и звуковой сигнал прекратится.

    Вариантом этого типа является нормально закрытый (не показан), который работает наоборот, как описано выше. Пружина удерживает контакты в замкнутом состоянии, кроме случаев, когда кнопка нажата. Другими словами, цепь находится в состоянии «ВКЛ» до тех пор, пока не будет нажата кнопка для разрыва цепи.

    Меркурий

    Ртутный выключатель представляет собой герметичную капсулу, частично заполненную ртутью. На одном конце капсулы расположены два электрических контакта. Когда переключатель вращается (перемещается из истинной вертикали), ртуть течет к противоположному концу капсулы с контактами, замыкая цепь.Ртутные переключатели часто используются для обнаружения движения, например, тот, который используется в моторном отсеке на светофоре. Другие применения включают отключение подачи топлива при опрокидывании и некоторые приложения для датчиков подушки безопасности. Ртуть — опасные отходы, с которыми следует обращаться осторожно.

    Температурный биметаллический

    Термочувствительный переключатель, также известный как «биметаллический» переключатель, обычно содержит биметаллический элемент, который изгибается при нагревании, замыкая контакт, замыкая цепь, или размыкая контакт, размыкая цепь.В реле температуры охлаждающей жидкости двигателя, когда охлаждающая жидкость достигает предельной температуры, биметаллический элемент изгибается, вызывая замыкание контактов в переключателе. Это замыкает цепь и загорается предупреждающий индикатор на панели приборов.

    Время задержки

    Выключатель с выдержкой времени содержит биметаллическую полосу, контакты и нагревательный элемент. Переключатель задержки времени нормально замкнут. Когда ток течет через переключатель, ток течет через нагревательный элемент, вызывая его нагрев, в результате чего биметаллическая полоса изгибается и размыкает контакты.Поскольку ток продолжает течь через нагревательный элемент, биметаллическая полоса остается горячей, сохраняя контакты переключателя открытыми. Время задержки перед размыканием контактов определяется характеристиками биметаллической ленты и количеством тепла, выделяемого нагревательным элементом. Когда питание выключателя отключается, нагревательный элемент охлаждается, и биметаллическая полоса возвращается в исходное положение, а контакты замыкаются. Обычное применение переключателя с задержкой времени — это обогреватель заднего стекла.

    Мигалка

    Мигающий сигнал работает в основном так же, как переключатель задержки времени; кроме случаев, когда контакты размыкаются, ток перестает течь через нагревательный элемент. Это вызывает охлаждение нагревательного элемента и биметаллической ленты. Биметаллическая полоса возвращается в исходное положение, замыкая контакты, позволяя току снова течь через контакты и нагревательный элемент. Этот цикл повторяется снова и снова, пока не отключится питание мигающего устройства. Обычно этот тип переключателя используется для включения сигналов поворота или четырехпозиционного указателя поворота (аварийных фонарей).

    Реле

    Реле — это просто переключатель дистанционного управления, который использует небольшой ток для управления большим током. Типичное реле имеет как цепь управления, так и цепь питания. Конструкция реле содержит железный сердечник, электромагнитную катушку и якорь (набор подвижных контактов). Существует два типа реле: нормально разомкнутые (показаны ниже) и нормально замкнутые (НЕ показаны). Нормально разомкнутые (Н.О.) реле имеют контакты, которые «разомкнуты» до тех пор, пока реле не будет под напряжением, в то время как нормально замкнутые (N.C.) реле имеет контакты, которые «замкнуты» до тех пор, пока реле не сработает.

    Работа реле

    Ток протекает через управляющую катушку, которая намотана на железный сердечник. Железный сердечник усиливает магнитное поле. Магнитное поле притягивает верхний контактный рычаг и тянет его вниз, замыкая контакты и позволяя мощности от источника питания поступать на нагрузку. Когда катушка не находится под напряжением, контакты разомкнуты, и питание на нагрузку не поступает.Однако, когда переключатель схемы управления замкнут, ток течет к реле и питает катушку. Возникающее магнитное поле тянет якорь вниз, замыкая контакты и позволяя подавать питание на нагрузку. Многие реле используются для управления большим током в одной цепи и низким током в другой цепи. Примером может служить компьютер, который управляет реле, а реле управляет цепью более высокого тока.

    Соленоиды — тянущие типа

    Соленоид — это электромагнитный переключатель, который преобразует ток в механическое движение.Когда ток течет через обмотку, создается магнитное поле. Магнитное поле притянет подвижный железный сердечник к центру обмотки. Этот тип соленоида называется соленоидом «тянущего» типа, поскольку магнитное поле втягивает подвижный железный сердечник в катушку. Обычно тянущие соленоиды используются в пусковой системе. Соленоид стартера соединяет стартер с маховиком.

    Работа вытяжного типа

    Когда ток течет через обмотку, создается магнитное поле.Эти магнитные силовые линии должны быть как можно меньше. Если рядом с катушкой, по которой течет ток, поместить железный сердечник, магнитное поле будет растягиваться, как резинка, вытягивая и втягивая железный стержень в центр катушки.

    Управление типом Push / Pull

    В соленоиде двухтактного типа в качестве сердечника используется постоянный магнит. Поскольку «одинаковые» магнитные заряды отталкиваются, а «непохожие» магнитные заряды притягиваются, при изменении направления тока, протекающего через катушку, сердечник либо «втягивается», либо «выталкивается наружу».«Обычно этот тип соленоида используется в электрических дверных замках.

    УСТРОЙСТВА НАГРУЗКИ

    Любое устройство, такое как лампа, звуковой сигнал, электродвигатель стеклоочистителя или обогреватель заднего стекла, потребляющее электричество, называется нагрузкой. В электрической цепи все нагрузки считаются сопротивлением. Нагрузки расходуют напряжение и контролируют величину тока, протекающего в цепи. Нагрузки с высоким сопротивлением вызывают протекание меньшего тока, в то время как нагрузки с более низким сопротивлением позволяют протекать большим токам.

    Фары

    Фары бывают разной мощности, чтобы излучать больше или меньше света. Когда лампы соединяются последовательно, они разделяют доступное напряжение в системе, и излучаемый свет уменьшается. Когда лампочки расположены параллельно, каждая лампочка имеет одинаковое количество напряжения, поэтому свет будет ярче.

    Двигатели

    Двигатели используются в различных системах автомобиля, включая сиденья с электроприводом, дворники, систему охлаждения, системы отопления и кондиционирования воздуха.Двигатели могут работать на одной скорости, например, сиденья с электроприводом, или на нескольких скоростях, например, двигатель вентилятора системы отопления и кондиционирования воздуха. Когда двигатели работают на одной скорости, на них обычно подается системное напряжение. Однако, когда двигатели работают с разной скоростью, входное напряжение может быть в разных точках якоря, чтобы уменьшить, чтобы увеличить скорость двигателя, аналогично тому, как спроектирован двигатель стеклоочистителя, или они могут делить напряжение с резистором, который находится в серия с двигателем, как двигатель вентилятора для системы отопления и кондиционирования воздуха.

    Нагревательные элементы

    Нагревательные элементы установлены в наружных зеркалах, заднем стекле и сиденьях. На нагревательные элементы обычно подается напряжение системы в течение определенного времени для нагрева компонента по запросу.

    ЧТО ТАКОЕ ЗАКОН ОМА?

    Понимание взаимосвязи между напряжением, током и сопротивлением в электрических цепях важно для быстрой и точной диагностики и ремонта электрических проблем.Закон Ома гласит: ток в цепи всегда будет пропорционален приложенному напряжению и обратно пропорционален величине имеющегося сопротивления. Это означает, что если напряжение повышается, ток будет расти, и наоборот. Кроме того, когда сопротивление увеличивается, ток падает, и наоборот. Закон Ома можно найти хорошее применение при поиске и устранении неисправностей в электросети. Но вычисление точных значений напряжения, тока и сопротивления не всегда практично … да и действительно необходимо. Однако вы должны быть в состоянии предсказать, что должно происходить в цепи, в отличие от того, что происходит в аварийном транспортном средстве.

    Source Voltage не зависит ни от тока, ни от сопротивления. Он либо слишком низкий, либо нормальный, либо слишком высокий. Если он слишком низкий, ток будет низким. Если это нормально, ток будет высоким при низком сопротивлении или ток будет низким при высоком сопротивлении. Если напряжение слишком высокое, ток будет большим.

    На ток влияет напряжение или сопротивление. Если напряжение высокое или сопротивление низкое, ток будет высоким. Если напряжение низкое или сопротивление велико, ток будет низким.Ток увеличивается, когда сопротивление падает.

    На сопротивление не влияют ни напряжение, ни ток. Он либо слишком низкий, хорошо, либо слишком высокий. Если сопротивление слишком низкое, ток будет высоким при любом напряжении. Если сопротивление слишком велико, ток будет низким, если напряжение в норме. Мера сопротивления — насколько сложно протолкнуть поток электрического заряда.

    Хорошее сопротивление: для правильной работы некоторым цепям требуется «ограничение» протекания тока. В этом случае используются «резисторы».Резисторы имеют разные номиналы в зависимости от того, насколько ток должен быть ограничен.

    Плохое сопротивление: в большинстве случаев слишком большое сопротивление снижает ток и может привести к неправильной работе системы. Обычно причиной является грязь или коррозия на электрических разъемах или заземляющих соединениях.

    Сделайте простую электрическую схему — Научные проекты

    Дизайн эксперимента:

    Спланируйте эксперимент для проверки каждой гипотезы. Составьте пошаговый список того, что вы будете делать, чтобы ответить на каждый вопрос.Этот список называется экспериментальной процедурой. Чтобы эксперимент дал ответы, которым можно доверять, он должен иметь «контроль». Контроль — это дополнительная экспериментальная проба или прогон. Это отдельный эксперимент, проводимый точно так же, как и другие. Единственное отличие состоит в том, что экспериментальные переменные не меняются. Элемент управления — это нейтральная «контрольная точка» для сравнения, которая позволяет вам увидеть, что происходит при изменении переменной, сравнивая ее с отсутствием изменений. Надежные средства управления иногда очень сложно разработать.Они могут быть самой сложной частью проекта. Без контроля вы не можете быть уверены, что изменение переменной приведет к вашим наблюдениям. Серия экспериментов, включающая контроль, называется «контролируемым экспериментом».

    Пожалуйста, прочтите внимательно!

    Во всех экспериментах используется безопасный низковольтный аккумулятор. Бытовой электрический ток содержит высокое напряжение, которое может привести к серьезным травмам. Не используйте бытовой электрический ток ни в одном из этих экспериментов.

    Тщательно следуйте инструкциям по подключению для каждого эксперимента — неправильное подключение может привести к утечке и / или разрыву батареи.

    Не разбирайте батарею — контакт с материалом внутренней батареи может привести к травме.

    Не бросайте батарею в огонь, не перезаряжайте, не вставляйте обратно, не смешивайте с использованными батареями или батареями других типов — это может взорваться, протечь и причинить травму.

    Создание простой электрической цепи

    В этом эксперименте вы создадите простую электрическую схему. Обратите внимание, что «простой» действительно означает «легкий» (в данном контексте). Означает электрическую цепь с одной батареей, одной лампой и одним выключателем.

    Материалы:

    1. Деревянная доска 12 см x 17 см (5 ″ x 7 ″)
    2. Держатель одноэлементной батареи (MiniScience # MBh2D)
    3. Простой переключатель (MiniScience # KSWITCH)
    4. Миниатюрный патрон лампы (MiniScience # MINIBASE, MINIBASEP, MINIBASEB)
    5. Миниатюрная лампа 1,2 В (MiniScience # E0112)
    6. Винты маленькие
    7. Соединительные провода (рекомендуются сплошные медные провода сечением от 20 до 26)

    Рисунок ниже взят из комплекта «Простая электрическая схема» компании MiniScience.com.

    Что такое электричество? — learn.sparkfun.com

    Добавлено в избранное

    Любимый

    67

    Электричество в действии!

    Изучив физику элементарных частиц, теорию поля и потенциальную энергию, мы теперь знаем достаточно, чтобы заставить электричество течь. Сделаем схему!

    Сначала рассмотрим ингредиенты, необходимые для производства электричества:

    • Электричество определяется как поток заряда .Обычно наши заряды переносятся свободно текущими электронами.
    • Отрицательно заряженные электрона слабо прикреплены к атомам проводящих материалов. Небольшим толчком мы можем освободить электроны от атомов и заставить их течь в общем однородном направлении.
    • Замкнутая цепь из проводящего материала обеспечивает путь для непрерывного потока электронов.
    • Заряды приводятся в движение электрическим полем . Нам нужен источник электрического потенциала (напряжения), который толкает электроны из точки с низкой потенциальной энергией в точку с более высокой потенциальной энергией.

    Короткое замыкание

    Батареи — распространенные источники энергии, преобразующие химическую энергию в электрическую. У них есть две клеммы, которые подключаются к остальной части схемы. На одном выводе имеется избыток отрицательных зарядов, а на другом все положительные заряды сливаются. Это разность электрических потенциалов, ожидающая начала действия!

    Если мы подключим наш провод, полный проводящих атомов меди, к батарее, это электрическое поле будет влиять на отрицательно заряженные свободные электроны в атомах меди.Одновременно подталкиваемые отрицательной клеммой и притягиваемой положительной клеммой, электроны в меди будут перемещаться от атома к атому, создавая поток заряда, который мы называем электричеством.

    После секунды протекания тока электроны на самом деле переместились на очень, на мало — доли сантиметра. Однако энергия, производимая текущим потоком, составляет огромных , особенно потому, что в этой цепи нет ничего, что могло бы замедлить поток или потреблять энергию.Подключить чистый проводник непосредственно к источнику энергии — плохая идея . Энергия очень быстро перемещается по системе и превращается в тепле в проволоке, которое может быстро превратиться в плавящуюся проволоку или пожар.

    Освещение лампочки

    Вместо того, чтобы тратить всю эту энергию, не говоря уже о разрушении аккумулятора и провода, давайте построим схему, которая сделает что-нибудь полезное! Обычно электрическая цепь передает электрическую энергию в другую форму — свет, тепло, движение и т. Д.Если мы подключим лампочку к батарее с помощью проводов между ними, мы получим простую функциональную схему.

    Схема: батарея (слева) подключается к лампочке (справа), цепь замыкается, когда замыкается переключатель (вверху). Когда цепь замкнута, электроны могут течь, проталкиваясь от отрицательной клеммы батареи через лампочку к положительной клемме.

    В то время как электроны движутся со скоростью улитки, электрическое поле почти мгновенно влияет на всю цепь (мы говорим о скорости света быстро).Электроны по всей цепи, будь то с самым низким потенциалом, с максимальным потенциалом или непосредственно рядом с лампочкой, находятся под влиянием электрического поля. Когда переключатель замыкается и электроны подвергаются действию электрического поля, все электроны в цепи начинают течь, по-видимому, в одно и то же время. Ближайшие к лампочке заряды сделают один шаг по цепи и начнут преобразовывать энергию из электрической в ​​световую (или тепловую).


    ← Предыдущая страница
    Электрический потенциал (энергия)

    Электрические цепи

    Эта основная идея исследована через:

    Противопоставление взглядов студентов и ученых

    Ежедневный опыт студентов

    Студенты имеют большой опыт использования бытовой техники, в работе которой используются электрические цепи (фонарики, мобильные телефоны, плееры iPod).Скорее всего, у них появилось ощущение, что вам нужно включить аккумулятор или выключатель питания, чтобы все «работало», и что батареи могут «разрядиться». Они склонны думать об электрических цепях как о том, что они называют «током», «энергией», «электричеством» или «напряжением», причем все эти названия они часто используют как синонимы. Это неудивительно, учитывая, что все эти ярлыки часто используются в повседневном языке с неясным значением. Какой бы ярлык ни использовали учащиеся, они, вероятно, увидят в электрических цепях «поток» и что-то «хранимое», «израсходованное» или и то, и другое.Некоторые повседневные выражения, например о «зарядке батарей», также могут быть источником концептуальной путаницы для учащихся.

    В частности, ученики часто считают, что ток равен напряжению, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, такую ​​как свет или тепло.

    Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

    В частности, студенты часто видят, что ток совпадает с напряжением, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, например свет. или тепло.

    Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Исследователи описали их как:

    Четыре модели простых схем
    • «униполярная модель» — точка зрения, согласно которой на самом деле нужен только один провод между батареей и лампочкой, чтобы в цепи был ток.
    • «модель сталкивающихся токов» — вид, что ток «течет» с обеих клемм батареи и «сталкивается» в лампочке.
    • «модель потребляемого тока» — представление о том, что ток «расходуется» по мере «обхода» цепи, поэтому ток, «текущий к» лампочке, больше, чем ток, «утекающий» от нее обратно к лампочке. аккумулятор.
    • «научная модель» — точка зрения, что ток одинаков в обоих проводах.

    Ежедневный опыт учащихся с электрическими цепями часто приводит к путанице в мышлении. Студенты, которые знают, что вы можете получить удар электрическим током, если дотронетесь до клемм пустой розетки домашнего освещения, если выключатель включен, поэтому иногда считают, что в розетке есть ток, независимо от того, касаются ли они ее. (Точно так же они могут полагать, что есть ток в любых проводах, подключенных к батарее или розетке, независимо от того, замкнут ли переключатель.)

    Некоторые студенты думают, что пластиковая изоляция проводов, используемых в электрических цепях, содержит и направляет электрический ток так же, как водопроводные трубы удерживают и регулируют поток воды.

    Исследования: Осборн (1980), Осборн и Фрейберг (1985), Шипстоун (1985), Шипстоун и Ганстон (1985), Уайт и Ганстон (1980)

    Научная точка зрения

    Термин «электричество» (например, «химия») ) относится к области науки.

    Модели играют важную роль, помогая нам понять то, что мы не можем видеть, и поэтому они особенно полезны при попытке разобраться в электрических цепях.Модели ценятся как за их объяснительную способность, так и за их способность к прогнозированию. Однако модели также имеют ограничения.

    Модель, используемая сегодня учеными для электрических цепей, использует идею о том, что все вещества содержат электрически заряженные частицы (см.
    Макроскопические свойства в сравнении с микроскопическими). Согласно этой модели, электрические проводники, такие как металлы, содержат заряженные частицы, которые могут относительно легко перемещаться от атома к атому, тогда как в плохих проводниках, изоляторах, таких как керамика, заряженные частицы перемещать гораздо труднее.

    В научной модели электрический ток — это общее движение заряженных частиц в одном направлении. Причина этого движения — источник энергии, такой как батарея, который выталкивает заряженные частицы. Заряженные частицы могут перемещаться только при наличии полного проводящего пути (называемого «контуром» или «петлей») от одного вывода батареи к другому.

    Простая электрическая цепь может состоять из батареи (или другого источника энергии), лампочки (или другого устройства, использующего энергию) и проводящих проводов, соединяющих две клеммы батареи с двумя концами лампочки.В научной модели такой простой схемы движущиеся заряженные частицы, которые уже присутствуют в проводах и в нити накала лампочки, являются электронами.

    Электроны заряжены отрицательно. Батарея отталкивает электроны в цепи от отрицательной клеммы и тянет их к положительной клемме (см.
    Электростатика — бесконтактная сила). Любой отдельный электрон перемещается только на небольшое расстояние. (Эти идеи получили дальнейшее развитие в основной идее «Разбираемся с напряжением»).Хотя фактическое направление движения электронов — от отрицательного к положительному полюсу батареи, по историческим причинам обычно описывают направление тока как от положительного к отрицательному полюсу (так называемый « обычный ток »). ‘).

    Энергия батареи хранится в виде химической энергии (см. Главную идею преобразования энергии). Когда он подключен к полной цепи, электроны перемещаются, и энергия передается от батареи к компонентам цепи.Большая часть энергии передается световому шару (или другому пользователю энергии), где она преобразуется в тепло и свет или в какую-либо другую форму энергии (например, звук в iPod). В соединительных проводах очень небольшое количество преобразуется в тепло.

    Напряжение батареи говорит нам, сколько энергии она передает компонентам схемы. Это также говорит нам кое-что о том, как сильно батарея толкает электроны в цепи: чем больше напряжение, тем сильнее толчок (см. Идею фокусировки
    Используя энергию).

    Критические идеи обучения

    • Электрический ток — это общее движение заряженных частиц в одном направлении.
    • Для получения электрического тока необходима непрерывная цепь от одного вывода аккумулятора к другому.
    • Электрический ток в цепи передает энергию от батареи к компонентам цепи. В этом процессе ток не «расходуется».
    • В большинстве схем движущиеся заряженные частицы представляют собой отрицательно заряженные электроны, которые всегда присутствуют в проводах и других компонентах схемы.
    • Батарея выталкивает электроны по цепи.

    Исследование: Loughran, Berry & Mulhall (2006)

    Количественные подходы к обучению (например, с использованием закона Ома) могут препятствовать развитию концептуального понимания, и их лучше избегать на этом уровне.

    Язык, на котором говорят учителя, очень важен. Использование слова «электричество» следует ограничить, поскольку его значение неоднозначно. Говоря о «текущем» токе вместо движения заряженных частиц, можно усилить неверное представление о том, что ток — это то же самое, что и электрический заряд; поскольку «заряд» — это свойство веществ, например масса, лучше называть «заряженные частицы», чем «заряды».

    Идея фокуса
    Введение в научный язык предоставляет дополнительную информацию о развитии научного языка со студентами.

    Использование моделей, метафор и аналогий жизненно важно для развития понимания учащимися электрических цепей, потому что для объяснения того, что мы наблюдаем в цепи (например, зажигание лампочки), необходимо использовать научные идеи о вещах, которые мы не можем видеть, например об энергии. и электроны. Поскольку все модели / метафоры / аналогии имеют свои ограничения, важно использовать их множество.Не менее важно четко понимать сходства и различия между любой используемой моделью / метафорой / аналогией и рассматриваемым явлением. Общее ограничение физических моделей (в том числе приведенных ниже) состоит в том, что они подразумевают, что любой конкретный электрон перемещается по всей цепи.

    Изучите взаимосвязь между идеями об электричестве и преимуществами и ограничениями моделей в
    Карты развития концепции — Электричество и магнетизм и модели

    Вот некоторые полезные модели и аналогии:

    • аналог велосипедной цепи — это полезно для развития идеи потока энергии, для отличия этого потока энергии от тока и для демонстрации постоянства тока в данной цепи.Движение велосипедной цепи аналогично движению тока в замкнутой цепи. Движущаяся цепь передает энергию от педали (т. Е. «Аккумулятор») к заднему колесу (т. Е. «Компоненты схемы»), где энергия преобразуется. Эта модель имеет лишь ограниченную полезность и требует от учащегося осознать, что заднее колесо — это компонент, выполняющий преобразование энергии.
    • модель мармелада — это помогает развить идею о том, что движение электронов в цепи сопровождается передачей энергии.Студенты играют роль «электронов» в цепи. Каждый из них собирает фиксированное количество мармеладов, представляющих энергию, когда они проходят через «батарею», и отдают эту «энергию», когда достигают / проходят через «лампочку». Эти студенческие «электроны» затем возвращаются в «батарею» для получения дополнительной «энергии», которая включает в себя получение большего количества мармеладов.

    Еще одно описание этого вида деятельности представлено в виньетке PEEL.
    Ролевая игра с мармеладом. Эта модель может быть очень мощной, но важным ограничением является представление энергии как субстанции, а не как изобретенной человеческой конструкции.

    • модель веревки — эта модель помогает объяснить, почему в электрической цепи происходит нагрев. Учащиеся образуют круг и свободно держат непрерывную петлю из тонкой веревки горизонтально. Один ученик действует как «батарея» и тянет веревку так, чтобы она скользила через руки других учеников, «компоненты схемы». Студенты чувствуют, как их пальцы становятся более горячими, поскольку энергия преобразуется, когда веревка тянется студенческой батареей

    Для получения дополнительной информации о развитии идей об энергии см. Фокусную идею
    Использование энергии.

    • модель водяного контура — она ​​часто используется в учебниках и на первый взгляд кажется моделью, которая легко понятна учащимся; однако важно, чтобы учителя знали о его ограничениях.

    В этой модели насос представляет батарею, турбину — лампочку, а водопроводные трубы — соединительные провода. Важно указать учащимся, что этот водяной контур на самом деле отличается от бытового водоснабжения, потому что в противном случае они могут, опираясь на свой повседневный опыт, ошибочно прийти к выводу, например, что электрический ток может вытекать из проводов контура таким же образом, как и вода может вытечь из труб.

    Исследование: Лофран, Берри и Малхолл (2006)

    Преподавательская деятельность

    Открытое обсуждение через общий опыт

    Упражнение POE («Прогнозировать-Наблюдать-Объяснить») — полезный способ начать обсуждение. Дайте ученикам батарейку, лампочку фонарика (или другую лампочку с нитью накала) и соединительный провод. Попросите их угадать, как следует подключить цепь, чтобы лампочка загорелась. Примечание: НЕ предоставляйте патрон лампы. Это должно спровоцировать обсуждение необходимости создания полного контура для тока и пути тока в лампочке.Это задание можно расширить, поощряя студентов использовать другие материалы вместо проводов.

    Бросьте вызов некоторым существующим идеям

    Ряд POE (Прогноз-Наблюдение-Объяснение) можно построить, изменив элементы существующей схемы и попросив учащихся дать прогноз и их обоснование этого прогноза. Например, попросите учащихся предсказать изменения, которые могут произойти в яркости лампочки, когда она подключена к батареям с разным напряжением.

    Разъяснение и объединение идей для / путем общения с другими

    Попросите студентов изучить модели и аналогии для электрических цепей, представленных выше.Студенты должны оценить каждую модель на предмет ее полезности для разъяснения представлений об электрических цепях. Студентов также следует поощрять к выявлению ограничений моделей.

    Сосредоточьте внимание студентов на недооцененной детали

    Попросите студентов изучить работу фонаря и нарисовать картинку, чтобы показать путь тока, когда выключатель замкнут. Студенты должны обсудить или написать о том, что, по их мнению, происходит.

    Поощряйте студентов определять явления, которые не объясняются (представленной в настоящее время) научной моделью или идеей.

    Попросите студентов перечислить особенности электрической цепи, которые объясняются конкретной моделью / метафорой / аналогией, и особенности, которые не объясняются.

    Содействовать размышлению и разъяснению существующих идей

    Попросите студентов нарисовать концептуальную карту, используя такие термины, как «батарея», «электроны», «энергия», «соединительные провода», «лампочка», «электрический ток».

    Часто задаваемые вопросы по электрике — Электрик

    На этой странице вы найдете ответы на вопросы, наиболее часто задаваемые нашими клиентами. Эти вопросы предназначены для использования в качестве источника информации о вашей электрической системе. Эти вопросы не предназначены для использования в качестве «руководства по поиску и устранению неисправностей» электрических проблем в вашем доме.Если вы получите травму или ваше имущество будет повреждено в результате ваших собственных электромонтажных работ, Root Electric не несет ответственности. Вам всегда следует обращаться к лицензированному электрику для выполнения ремонта или модификации вашей электрической системы.

    Что такое «короткое замыкание» или «короткое замыкание»?

    «Короткое замыкание» и «короткое замыкание» описывают одну и ту же проблему. Короткое замыкание происходит, когда «горячий» провод (провод, по которому проходит электрический ток, чаще всего «черный» провод) входит в контакт либо с заземленным проводом (также называемым нейтралью, чаще всего «белым» проводом), либо с заземление оборудования («голый медный» провод или «зеленый» провод).При коротком замыкании выделяется чрезмерное тепло. Практическим примером управляемого короткого замыкания является искра, генерируемая дуговой сваркой. Точно так же короткое замыкание, которое происходит в вашем доме, приведет к возникновению тепла и искр, если его не остановить. К счастью, автоматические выключатели в вашей электрической панели отключат питание цепи в случае короткого замыкания.

    Что такое розетка GFCI?

    Розетка GFCI — это розетка, предназначенная для защиты от поражения электрическим током в присутствии влаги.Если ваш дом был построен в 1981 году или позже, есть большая вероятность, что ваша кухня, ванные комнаты, гараж и наружные розетки защищены розетками GFCI. Вы можете идентифицировать розетку GFCI по двум кнопкам на ее лицевой стороне. Одна кнопка скажет «тест», другая — «сброс». Кнопка «тест» приведет к срабатыванию (или выключению) розетки GFCI, а кнопка «сброса» сбросит (или включит) розетку GFCI, если она сработала. Если розетка не перезагружается при нажатии кнопки «сброс», возможно, возникла проблема.

    Розетка в моей ванной не работает, и это не розетка GFCI. Что не так?

    Розетки

    GFCI могут быть подключены последовательно. Например, розетка GFCI в ванной на первом этаже может быть установлена ​​так, чтобы она защищала все ванные комнаты в вашем доме. Эту розетку GFCI также можно найти в вашем подвале, гараже или главной ванной, в зависимости от возраста вашего дома. Если вы заметили, что розетка в одной из ваших ванных комнат не работает, проверьте другие розетки.Если отсутствует более одной розетки в ванной, скорее всего, в одном из упомянутых выше мест есть GFCI, который контролирует все ванные комнаты. Вы можете перезагрузить розетку GFCI, нажав кнопку «сброс». После нажатия кнопки «сброс» вы должны услышать «щелчок», и питание будет восстановлено. Если вы не слышите «щелчка» и питание не восстанавливается, возможно, проблема в цепи, которая представляет опасность. Проконсультируйтесь с квалифицированным электриком, который сможет оценить проблему.

    Холодильник на моей кухне не работает и автоматический выключатель не сработал.Что не так?

    Во многих старых домах проводка устроена так, что есть две кухонные цепи общего назначения. Эти цепи питают розетки на кухонных столешницах, холодильнике и микроволновой печи. Если ваш дом был построен после 1981 года, есть большая вероятность, что на вашей кухне сработала розетка GFCI. Найдите розетку GFCI на своей кухне. Загляните за кастрюлями, сковородками, бытовой техникой и картинами, так как розетки иногда закрываются и забываются. Как только вы найдете выход GFCI, нажмите кнопку «сбросить».После нажатия кнопки «сброс» вы должны услышать «щелчок», и питание будет восстановлено. Если вы не слышите «щелчка» и питание не восстанавливается, возможно, проблема в цепи, которая представляет опасность. Если на вашей кухне нет розеток GFCI, возможно, проблема с проводкой. Проконсультируйтесь с квалифицированным электриком, который сможет оценить проблему.

    У меня в подвале или гараже есть холодильник, который не работает, или розетка GFCI, которую он иногда подключает к поездкам, что приводит к размораживанию холодильника.Что вызывает эту проблему?

    Холодильники охлаждают себя с помощью компрессора, подобного тепловому насосу или кондиционеру. Компрессор приводится в движение электродвигателем. При этом есть две возможности относительно того, почему холодильник теряет мощность: 1) Холодильник начинает перегружать цепь. В зависимости от размера холодильника он может потреблять от 900 до 1500 Вт. Максимально допустимая мощность цепи на 15 А составляет 1480 Вт, максимальная мощность — примерно 1800 Вт.Этот холодильник может перегружать эту цепь, особенно если розетка находится в одной цепи с другими часто используемыми розетками в доме, такими как ванные комнаты или наружные розетки. 2) Электродвигатель может вызвать отключение розетки GFCI. По мере старения холодильников двигатель, приводящий в движение компрессор, изнашивается. По мере износа этого двигателя у него начинают возникать очень незначительные проблемы, которые улавливает GFCI, что приводит к срабатыванию розетки GFCI.

    Когда я использую свою микроволновую печь, установленную в шкафу, гаснет свет и / или срабатывает автоматический выключатель.Что вызывает эту проблему?

    Микроволны, устанавливаемые в шкаф, потребляют от 1100 до 1800 Вт, в зависимости от модели и характеристик конкретного прибора. Большинство встроенных в шкаф микроволн — это приборы, добавляемые в дом после его постройки. Строители обычно устанавливают вытяжку над духовкой / плитой только для отвода дыма от готовки. Эта вытяжка обычно питается от удобной цепи освещения на 15 А, которая используется совместно с другими источниками света и розетками в вашем доме. Максимально допустимая нагрузка цепи на 15 А составляет 1480 Вт, и автоматический выключатель сработает, когда в цепи будет подано около 1800 Вт.Если ваша микроволновая печь, установленная в шкафу, потребляет, скажем, 1500 Вт во время приготовления, она уже начинает выходить из схемы на максимум. Как только освещение кухни и столовой включается, цепь начинает выходить за пределы своей максимальной мощности в 1800 Вт, в результате чего свет гаснет или срабатывает автоматический выключатель. Лучшее решение для микроволновой печи, установленной в шкафу, — это установка новой выделенной цепи на 20 А и 120 В для этой микроволновой печи. Это решение не только соответствует текущим стандартам кодов, но и позволяет микроволнам работать с достаточной мощностью без отключения цепи.

    У меня дома есть светильник, из-за которого постоянно перегорают лампочки. Не вызывает ли это «короткое замыкание» в проводах?

    Короткое замыкание не приводит к перегоранию лампочек. Ваши автоматические выключатели защитят вас от коротких замыканий. В случае короткого замыкания сработает автоматический выключатель, тем самым отключив питание цепи. Самая распространенная причина перегорания лампочек, кроме старости, — это тепло и вибрация. Тепло убьет лампочку, если ее осветительный прибор имеет закрытую линзу, которая не позволяет достаточному потоку воздуха рассеивать тепло от лампочки.Один из способов снизить смертность ламп в этой ситуации — использовать лампу меньшей мощности. Всегда проверяйте этикетки на осветительной арматуре и не устанавливайте лампочки больше, чем указано на этикетках. Это не только приведет к сгоранию лампочки, но и к повреждению изоляции проводки в приборе, что может привести к возгоранию. Вибрация пережигает лампочки, потому что нить накала внутри (толщиной с человеческий волос) трясется до тех пор, пока не порвется. Это тот же принцип, что и когда вы постоянно сгибаете канцелярскую скрепку, заставляя ее ломаться.Светильники, расположенные рядом с дверями или под зонами проезда, такими как ванные комнаты, коридоры или детские спальни, поглощают всю вибрацию от хлопков дверью, шагов, предметов, падающих на пол, или детей, прыгающих и играющих. Один из способов решить эту проблему — перейти на галогенную лампочку. Галогенные лампы размером с кончик пальца и имеют толстые, плотно намотанные нити. («Лампа», которую вы видите с галогенной лампочкой, представляет собой просто отражатель, в котором находится сама лампочка) Галогенные лампы не только сильнее стандартных ламп накаливания, но и более эффективны.

    Другой потенциальной проблемой может быть напряжение в вашем доме. Большинство лампочек, которые вы можете купить в хозяйственном магазине, рассчитаны на работу от 110 или 120 вольт. Во многих домах напряжение достигает 125 вольт. Это более высокое напряжение сократит срок службы ваших лампочек. Решением этой проблемы является покупка лампочек на 130 вольт. Лампочки на 130 вольт можно найти в местном магазине электроснабжения или магазине осветительных приборов.

    ЗАПРОСИТЕ БЕСПЛАТНУЮ ЦЕНУ

    Удовлетворение / безопасность на первом месте с 1986 года

    Я только что купил дом, и мой домашний осмотр показал, что электрическая панель небезопасна.Я должен быть обеспокоен?

    В районе Северной Вирджинии есть две марки электрических панелей, которые, как известно, имеют серьезные дефекты: это панели Federal Pacific «Stab-Lok» и электрические панели Zinsco. Электрические панели Federal Pacific известны наличием автоматических выключателей, которые не срабатывают в случае короткого замыкания. Сами электрические панели также страдают конструктивными недостатками, касающимися шин и того, как автоматические выключатели вставляются в электрическую панель.Самая опасная часть этих электрических панелей заключается в том, что они могут работать без проблем в течение 20 или 30 лет, а затем неожиданно не срабатывают из-за короткого замыкания или перегрузки. Панели Zinsco страдают от аналогичной, но менее серьезной проблемы. Автоматические выключатели в некоторых панелях Zinsco имеют тенденцию перегреваться и плавиться со временем, вызывая выход из строя перегретых автоматических выключателей и других устройств, окружающих их. Представьте, что ваша электрическая панель является основой электрической системы в вашем доме.Все электричество, которое поступает в ваш дом, должно сначала пройти через электрическую панель и каждый автоматический выключатель. Это ваша последняя линия защиты от электрических пожаров. Если у вас есть основания полагать, что ваша электрическая панель небезопасна, проконсультируйтесь с лицензированным электриком. Хотя замена устаревшей электрической панели так же увлекательна, как замена трансмиссии в вашем автомобиле, она также поможет обеспечить годы безопасности в электрической системе вашего дома.

    Я заменил лампочки в люминесцентном светильнике, но они все еще не работают или просто мигают.Я делаю что-то неправильно?

    Ответ, возможно. Люминесцентные лампы прикрепляются к светильникам с помощью 4 штырей: по 2 на каждом конце лампы. Если эти штыри не подходят к каждому концу идеально, они не будут устанавливаться на осветительную арматуру и не будут подавать питание на лампочку. Также убедитесь, что ВСЕ лампочки были заменены. Некоторые люминесцентные светильники не включаются, если заменить только одну из перегоревших лампочек. Наконец, возможно, перегорел балласт.Балласт в люминесцентном светильнике — это черный ящик внутри светильника. По сути, это трансформатор, который преобразует напряжение от 120 вольт в напряжение, необходимое для работы люминесцентной лампы. Если балласт плохой, светильник не включится или лампочки будут тускло мигать.

    У меня есть переносной генератор, который я использую для питания скважинного насоса и нескольких приборов, когда электричество отключается. Когда генератор работает и подключен к панели генератора, он почти не питает светильники и приборы на 240 вольт, такие как мой скважинный насос, не работают.

    У некоторых портативных генераторов более высокого качества есть переключатель на панели управления, который позволяет пользователю переключаться между настройками 120 и 240 вольт. Убедитесь, что этот тумблер установлен на 240 вольт. Если он не подает 240 вольт на панель генератора, приборы, требующие 240 вольт, не будут работать вообще, а цепи на 120 вольт будут испытывать нагрузку, пытаясь нести нагрузку приборов на 240 вольт (что приведет к включению осветительных приборов и приборов на 120 вольт. слабо.

    У меня есть переносной генератор, который я использую для питания скважинного насоса и нескольких приборов, когда электричество отключается. Не могу понять, как подключить шнур питания к генератору и к интерфейсной розетке. Что мне не хватает?

    Генераторы подключаются к вашему дому с помощью так называемой вилки с поворотным замком. Вместо того, чтобы просто вставлять вилку в розетку, вы вставляете вилку с поворотным замком в розетку, а затем поворачиваете вилку примерно на дюйма по часовой стрелке. Это зафиксирует вилку в розетке, что исключает возможность потери соединения.Один из хороших способов убедиться, что вилка надежно закреплена, — это слегка потянуть за нее после того, как она была вставлена ​​в вилку (просто убедитесь, что генератор на этом этапе не работает). Если вилка не входит в розетку или не остается в ней, убедитесь, что вилка правильно совмещена с розеткой. Тщательно проверьте рисунок штырей на вилке и убедитесь, что они соответствуют рисунку штырей на розетке генератора и интерфейсной розетке.

    У меня есть потолочный вентилятор, которым управляет пульт.Когда я нажимаю кнопки на пульте дистанционного управления, ничего не происходит или вентилятор медленно вращается. Что происходит?

    Большинство пультов дистанционного управления потолочными вентиляторами продаются на вторичном рынке. Другими словами, потолочный вентилятор не поставлялся с пультом дистанционного управления. Большинство пультов дистанционного управления устанавливаются на потолочный вентилятор, управляемый с помощью тяговых цепей. Лучше всего включить вентилятор с помощью пульта дистанционного управления. Затем потяните за тяговую цепь, пока не увидите, что вентилятор начинает вращаться с желаемой настройкой «привет».

    У меня есть потолочный вентилятор, который управляется настенным выключателем.Когда я включаю вентилятор настенным выключателем, ничего не происходит или вентилятор медленно вращается. Что происходит?

    Большинство настенных выключателей для потолочных вентиляторов продаются на вторичном рынке. Другими словами, потолочный вентилятор не поставлялся с настенным переключателем. Большинство настенных выключателей устанавливаются на потолочных вентиляторах, которые управляются с помощью тяговых цепей. Лучший способ решить проблему — включить вентилятор с помощью настенного выключателя. Затем потяните за тяговую цепь, пока не увидите, что вентилятор начинает вращаться с желаемой настройкой «привет».

    У меня на заднем дворе есть светочувствительный элемент. Иногда по ночам он остается включенным всю ночь или просто мигает и гаснет. Что здесь происходит?

    Большинство людей устанавливают фары с датчиком движения, чтобы осветить домашнее животное на заднем дворе или предотвратить кражу со взломом. Если вы получаете слишком много «ложных тревог», читайте дальше.

    У светильников с датчиком движения шкала чувствительности установлена ​​под самим датчиком. Этот циферблат может быть установлен слишком высоко для обычного движения на заднем дворе.Попробуйте повернуть диск вниз, чтобы уменьшить чувствительность датчика движения. Датчик по-прежнему улавливает движение домашнего животного или злоумышленника, но не срабатывает при ветре дерева или растения.

    ЗАПРОСИТЕ БЕСПЛАТНУЮ ЦЕНУ

    Удовлетворение / безопасность на первом месте с 1986 года

    У меня во дворе есть фонарный столб, который не работает даже после того, как я заменил лампочку. Есть короткое замыкание, вызывающее эту проблему?

    Короткое замыкание — потенциальная проблема для фонарного столба.В некоторых случаях установщик не защищал должным образом провод фонарного столба, и через некоторое время он был отрезан несведущим садовником. Однако чаще фонарные столбы перестают работать из-за того, что фотоэлемент умер. Фотоэлемент представляет собой небольшой круглый прибор с красной «волнистой линией» внутри него, который может включать или выключать световой столб, воспринимая солнечный свет или его отсутствие. Фотоэлемент обычно можно найти сбоку от фонарного столба или в защищенном от непогоды боксе в передней части дома. Ремонт фонарного столба обычно так же прост, как замена фотоэлемента.

    Диммер в моем доме очень горячий на ощупь. Я должен быть обеспокоен?

    Диммер — это не что иное, как небольшой трансформатор, который заставляет лампочки тускнеть, уменьшая приложенное к ним напряжение. По мере того, как диммер снижает количество напряжения, подаваемого на лампочки, генерируется избыточное тепло, которое излучается от переключателя через пластину переключателя. Не о чем беспокоиться о тепле, которое вы чувствуете, если только вы не почувствуете запах горящего пластика или не заметите мерцание света.

    У меня дома есть выключатели света, которые, похоже, ничего не делают.

    В большинстве случаев коммутатор что-то делает, но это неочевидно. Многие переключатели света, которые, кажется, ничего не контролируют, управляют так называемыми «переключаемыми розетками». Коммутируемые розетки — это розетки в комнате в вашем доме, которые управляются настенным выключателем. Эти розетки сконструированы таким образом, что торшер можно подключить к розетке и управлять им с помощью настенного выключателя. Большинство новых домов построены с коммутируемыми розетками в качестве источника освещения, потому что они менее дороги для застройщика, чем фактические потолочные светильники.

    У меня дома не работает розетка. Я должен беспокоиться?

    Прежде чем волноваться, найдите небольшую настольную лампу и включите ее в розетку, о которой идет речь. Затем найдите все настенные выключатели в комнате и начните их включать. Если вы обнаружите, что настольная лампа включается, когда вы щелкаете настенным выключателем, вы наткнулись на решение. Некоторые розетки в вашем доме управляются настенным выключателем. Это позволяет подключить торшер к стене в качестве источника света.Если вы не можете найти выключатель, который включает розетку, осмотрите комнату и посмотрите, не погасли ли другие розетки или свет. Затем проверьте электрическую панель, чтобы увидеть, не сработали ли какие-либо цепи. Если это так, сбросьте автоматический выключатель. Если вы не можете найти выключатель света или сработавший автоматический выключатель, а розетка по-прежнему не работает, обязательно вызовите квалифицированного электрика, чтобы оценить проблему.

    Я обнаружил в своей электрической панели сработавший автоматический выключатель, но не могу включить его снова.

    Здесь есть несколько возможностей.Во-первых, автоматический выключатель просто сработал, и его необходимо сбросить. Чтобы сбросить автоматический выключатель, переключатель должен быть полностью установлен в положение «выключено», пока вы не почувствуете «щелчок»; как только переключатель будет установлен в положение «выключено», установите переключатель обратно в положение «включено». Если он возвращается в положение «включено» без повторного отключения, автоматический выключатель был успешно сброшен. Если автоматический выключатель не возвращается в исходное положение и срабатывает, когда переключатель установлен в положение «включено», это может означать короткое замыкание или перегрузку в этой цепи.Если автоматический выключатель не может быть сброшен, обязательно вызовите квалифицированного электрика, чтобы оценить проблему.

    Отзывы клиентов

    Сегодня Джон и Брайан проделали потрясающую работу с обновлением нашей панели. Они были сделаны так быстро и даже проверили другие комнаты и устранили проблемы, не взимая с нас ни цента больше, чем предполагалось. Огромное спасибо! Я абсолютно рекомендую ваши услуги всем, кто в них нуждается.

    Райан Смит
    Арлингтон, Вирджиния

    В моем доме алюминиевый провод.Меня это беспокоит?

    Во всех домах, включая новые, есть алюминиевая проволока. Например, служебный кабель, соединяющий основание измерителя с электрической панелью, представляет собой алюминиевый кабель. Некоторые элементы питания для ваших больших приборов, таких как тепловой насос или плита, также могут быть из алюминия. Алюминий, используемый для этих целей, по-прежнему полностью безопасен. Алюминиевый провод, получивший плохую репутацию, — это разветвленная алюминиевая проводка. Алюминиевая разветвленная проводка чаще всего встречается в домах, построенных между 1965 и 1973 годами.Ответвительные цепи — это цепи для вашего освещения и настенных розеток. Причина, по которой алюминиевый провод имеет тенденцию показывать больше проблемных участков в ответвленных цепях, заключается в большем количестве стыков в ответвленной цепи. Каждая розетка и каждый настенный выключатель в вашем доме имеют как минимум три стыка: один для заземления, один для нейтрали и один для горячего подключения. Каждый из этих стыков — это место для потенциально неплотного соединения. Поскольку алюминий имеет больший коэффициент расширения, чем другие металлы, используемые в электромонтажных устройствах, он имеет тенденцию создавать неплотное соединение в местах сращивания.Эти незакрепленные соединения в конечном итоге начинают искру и выделять тепло, что может привести к пожару, если оставить его без ремонта. Если у вас дома есть алюминиевая проводка любого типа и у вас есть вопросы или опасения, позвоните сертифицированному электрику.

    Почему у меня тускнеет свет, когда я включаю пылесос?

    Как и ваш холодильник, посудомоечная или стиральная машина, ваш пылесос оснащен электродвигателем. Во время работы электродвигатель потребляет постоянное количество электрического тока (так называемый RLA или «ток рабочей нагрузки»).Однако при запуске электродвигатель потребляет примерно в семь раз больше тока, чем он обычно потребляет при стабильной работе (так называемый LRA или «ток заторможенного ротора»). Возьмем, к примеру, пылесос, который потребляет пять ампер при стабильной работе пылесоса. Когда вы включаете вакуум, этот электродвигатель будет потреблять приблизительно тридцать пять ампер электроэнергии, пока двигатель не достигнет своей рабочей скорости. Это создает огромную нагрузку на цепь, к которой подключен вакуум, в результате чего свет тускнеет, пока вакуумный двигатель разгоняется до своей рабочей скорости.При достижении рабочей скорости вакуум потребляет меньше энергии и не приводит к тусклому свету.

    Домашний инспектор заметил, что в моем доме есть осветительные приборы с оранжевыми удлинителями и шнурами для ламп. Это безопасно?

    Короче говоря, «нет». Оранжевые удлинители предназначены для временной подачи питания в места, где нет постоянного источника питания. Однако они не предназначены для постоянной установки на чердаке вашего дома или за гипсокартоном.

    Шнуры для ламп также не подходят для постоянной установки на чердаке вашего дома или за гипсокартоном. Шнуры лампы имеют только два проводника: один горячий и один нейтральный. Электропроводка в вашем доме состоит из двух проводов: одного горячего и одного нейтрального, а также заземляющего провода оборудования. Цепи освещения и розетки в вашем доме также устанавливаются с помощью провода 14 AWG, который рассчитан на одновременное управление несколькими осветительными приборами или приборами. В случае короткого замыкания или перегрузки автоматический выключатель сработает до того, как провод 14 AWG перегреется до точки возгорания.Типичный шнур лампы — 16 AWG или 18 AWG (размер меньше провода 14 AWG), который предназначен только для поддержки одного осветительного прибора. При этом шнур лампы, используемый в качестве постоянной проводки, легко может быть перегружен. Если шнур лампы перегружается, что приводит к перегреву провода и оплавлению изоляции, перегрузки будет недостаточно для отключения автоматического выключателя, что создает серьезную опасность возгорания. Если вы видите оранжевые удлинители или шнуры ламп, используемые в качестве постоянной проводки в вашем доме, проконсультируйтесь с лицензированным электриком.

    Свет в моем доме иногда немного тускнеет, а затем возвращается в нормальное состояние. Что вызывает это?

    Возможно, вы почувствовали «потемнение». Понижение температуры обычно происходит в летние месяцы, когда кондиционеры постоянно работают, чтобы поддерживать прохладу в зданиях и домах. Электросеть перегружается, в результате чего в вашем доме становится меньше электроэнергии. Это может привести к временному приглушению света.

    Другая возможность состоит в том, что может быть ненадежное нейтральное соединение линии электропередачи, соединяющей ваш дом или внутри вашей электрической панели.Если вы столкнулись с этой проблемой, сначала сообщите об этом в энергетическую компанию. Если они не могут определить проблему, вызовите квалифицированного электрика для решения проблемы.

    Моя электрическая духовка, плита, кондиционер и водонагреватель не работают. Что еще хуже, некоторые огни в моем доме работают, а некоторые нет! Что, черт возьми, происходит?

    Возможно, вы потеряли фазу. В вашем доме есть три провода, входящие в основание измерителя: два провода под напряжением, каждый на 120 вольт (так называемая фаза «A» и фаза «B»), и нейтральный провод.Вашим 120-вольтовым приборам, таким как холодильник и микроволновая печь, свет и розетки, требуется только одна фаза (фаза «А» или фаза «В») для работы. Однако вашим приборам на 240 вольт, таким как духовка, плита, кондиционер и т. Д., Нужна как фаза «A», так и фаза «B» (две фазы по 120 вольт каждая дают вам 240 вольт). Если одна из фаз выйдет из строя на линии электропередачи, под землей или в вашей электрической панели, ваши 240-вольтовые приборы и любые осветительные приборы или розетки на обрыве фазы не будут работать.Если вы столкнулись с этой проблемой, сначала сообщите об этом в энергетическую компанию. Если они не могут определить проблему, вызовите квалифицированного электрика для решения проблемы.

    ЗАПРОСИТЕ БЕСПЛАТНУЮ ЦЕНУ

    Удовлетворение / безопасность на первом месте с 1986 года

    Комплект для конструирования цепей

    Имя: _________________________________________________ Дата: _________

    Веб-сайт: http://phet.colorado.edu/ → Перейдите в «Играйте с симами» → перейдите в «Физика» → перейдите в «Электричество» → нажмите «Комплект для конструирования цепей (только для постоянного тока), виртуальная лаборатория → нажмите« Выполнить » Теперь «для начала моделирования

    Часть I: Простые схемы

    И.Простая схема — Создайте простую схему с одной батареей и 3-8 проводами. Когда вы меняете части своей схемы, запишите результат, используя этот простой КЛЮЧ по сравнению с этой простой схемой.

    BB = лампа ярче | BD = диммер лампы | F = огонь | X = не сработало | N = без изменений

    1. Добавьте еще одну лампочку __________
    2. Добавьте еще одну батарею _________
    3. Добавьте 5 батареек _____________

    4. Уменьшите напряжение батареи (щелкните правой кнопкой мыши на батарее) ____
    5.Поместите лампочку ближе к батарее _______
    6. Добавьте больше провода (попробуйте создать очень длинную цепь) _____
    7. Поместите лампочку между двумя батареями ____
    8. Поместите две батареи рядом друг с другом (одна лампочка) ____

    9. Увеличьте напряжение отдельной батареи до максимального ____
    10.
    Присоединить к лампочке только один провод ____

    II. Сумка для захвата — Откройте сумку в правом верхнем углу и проверьте материалы в сумке, чтобы определить, какие из них являются проводниками.Оцените их по этой шкале

    0 = не проводник | 1 = слабый проводник | 2 = хороший проводник | 3 = Великий дирижер

    долларовая купюра _____ Скрепка ____ Пенни ____ Ластик ____

    Грифель для карандашей ____ Рука ____ Собака ____

    III. Выключатели — Выключатели могут использоваться для включения и выключения света, но выключатель просто функционирует, размыкая цепь. Создайте цепь , две лампочки , батарею и выключатель .

    Сделайте набросок своей установки:

    Что происходит с лампочками при включении и выключении?

    I В. Резисторы — Установите цепь с 1 батареей и 1 лампочкой. Добавьте резистор.

    Что происходит с лампочкой, когда вы добавляете резистор?

    VI. Положительный и отрицательный — Установите цепь с двумя батареями.

    Переверните аккумулятор и снова подключите цепь. Что происходит?

    Добавить третью батарею? Свет сейчас работает? Объясните, почему вы думаете, что это происходит.

    ЧАСТЬ II: Расширенные схемы

    I. Измерение напряжения

    Нажмите кнопку «Показать значения» и добавьте вольтметр на плату. Установите схему, в которой есть одна батарея и одна лампочка, как показано на рисунке.

    1. Что произойдет, если поменять местами черный и красный провода? ___________________

    2. Что происходит, если провода вольтметра находятся на одной стороне батареи? ____________

    3. Вставьте другую батарею в цепь рядом с первой батареей.Теперь какое напряжение? _______

    II. Использование схемы

    Схемы используются электриками для построения схем соединений в домах, больших зданиях или даже небольших электронных устройствах. Нажмите кнопку «Схема», чтобы увидеть, что означает каждый символ.

    4. Нарисуйте символы для:

    РЕЗИСТОР, БАТАРЕЯ и ВЫКЛЮЧАТЕЛЬ

    5.Установите следующую схему и проверьте напряжение, поместив вольтметр в показанные места. Перечислите напряжение для каждого места.

    Напряжение = _______________

    Напряжение = _______________

    Напряжение = _______________

    Напряжение = _______________

    III.Цепи серии

    6. Установите схему, показанную на схеме.

    Используйте вольтметр, чтобы определить, какое напряжение проходит через каждую лампочку. Для этого убедитесь, что провода вольтметра расположены по обе стороны от одной лампочки, как показано стрелками на схеме.

    Сколько напряжения проходит через одну лампочку? __________

    7. Снимите лампочку.
    Теперь, какое напряжение проходит через одну лампочку? _______

    8.Аккумулятор на 9 вольт. Основываясь на ваших наблюдениях выше, сколько вольт прошло бы через лампочку, если бы в этой цепи было 9 лампочек? _________

    9. Установите выключатель сразу за аккумулятором. Что происходит, когда вы включаете или выключаете переключатель?

    IV. Параллельные схемы

    1. Установите схему, как показано на схеме.

    Какое напряжение проходит через каждую лампочку в цепи? ________

    2.Добавьте третью лампочку.
    Какое напряжение сейчас проходит через каждую из лампочек? ________

    3. Исходя из ваших наблюдений, лучше ли подключать дом, используя параллельные цепи или последовательные цепи? _____________________

    4. На схеме ниже показаны два светильника (параллельная цепь) с двумя отдельными переключателями. Настройте это на симуляторе.

    Что произойдет, если вы включите переключатель A?

    а.