admin

Как электричество сделать бесплатным: Как получить бесплатное электричество (мы нашли четыре способа)

Бесплатное электричество в частном доме: схема и описание

Как сделать бесплатное электричество в частном доме, используя разность потенциалов между нулем сети и землей.

Схема получения бесплатной электроэнергии действительно рабочая, в этой схеме используется разность напряжения между нулём сети 220 В и заземлением.

Если говорить простым языком, то принцип следующий: от электростанции к потребителям идут провода – ноль и фаза. Провода имеют свое сопротивление, следовательно, на них будет «просадка» напряжения. Вот это напряжение можно ловить, этот потенциал так же создает перекос фаз.

Возникает вопрос: будет ли учитывать электрический счетчик эту энергию?

Тут всё зависит от типа электросчетчика. Бывают счётчики с одним шунтом (с одним измерительным элементом) – самые распространённые и двух шунтовые (с двумя измерительными элементами). Одно шунтовые, как раз не учитывают ноль – так как измерительный шунт у них расположен на фазе.

Сколько электричества можно получить таким способом зависит от количества абонентов в сети, а также мощности всей проводки. Обычно в среднем около — 10 вольт. Но если подключить повышающий трансформатор, то можно зажечь светодиодную лампу и получить бесплатное освещение.

Схема получения бесплатного электричества

 

Можно использовать любой трансформатор с низким напряжением вторичной обмотки около — 9 вольт, например трансформатор от приёмника или магнитофона.

Важно! Меры предосторожности.

Обязательно в цепь между нулем и трансформатором нужно поставить предохранитель, а ещё лучше автоматический выключатель на 5 — 10 ампер. Если вдруг поменяют фазу с нулем, то вся схема сгорит. Вероятность этого события конечно ничтожно мала, но может случиться всякое. Скорее большая вероятность того, что ноль оборвется, в таком случае сработает автомат. Даже при работе с нулем обязательно отключайте сеть! Ну и даже бесплатный свет не стоит оставлять без присмотра!

Обратите внимание! Информация предоставлена исключительно в ознакомительных целях! Категорически не рекомендуем повторять! Неумелое обращение с сетью 220В опасно для жизни!

В этом видео показана схема бесплатного электричества в работе.

Электричество онлайн. Новые правила присоединения к сетям в вопросах и ответах — Бизнес — Новости Санкт-Петербурга

монфото: pixabay.comПоделиться

Изменения в законодательстве касаются самой массовой категории клиентов компании, на которых приходится львиная доля заявок о техприсоединении: физических лиц, которым требуется мощность до 15 кВт, и предприятий малого и среднего бизнеса, в том числе ИП, запрашивающих мощность до 150 кВт.

Главное новшество состоит в том, что вместо договора о техприсоединении сетевая компания сразу направляет заявителю счет. Его оплата становится подтверждением заключения оферты. Весь документооборот между заявителем и сетевой организацией перенесен в онлайн — от подачи заявки на технологическое присоединение до заключения и исполнения договора. Все операции осуществляются через личный кабинет клиента «Россети Ленэнерго» или Портал-ТП.рф, а также в мобильных приложениях «Россети» и «Клиент Ленэнерго». Документы со стороны сетевой организации подписываются электронной подписью. Установка и допуск в эксплуатацию приборов учета энергии будут осуществляться за счет сетевой организации, акт технологического присоединения заявителю подписывать теперь не нужно.

— С 2014 года мы проводим активную работу по упрощению процесса присоединения, сокращению количества документов и развитию новых способов предоставления услуг, — рассказывает заместитель генерального директора по развитию и технологическому присоединению ПАО «Ленэнерго» Александр Пятигор. — С 2015 года мы развиваем интерактивные сервисы: появился личный кабинет клиента, обслуживание идет через контактные центры. ПАО «Россети» и «Россети Ленэнерго» делали все, чтобы упростить присоединение, и логическим продолжением стало постановление №262, которое мы создавали совместно с Минэнерго еще в 2018 году.

Поделиться

Как подчеркивает Александр Пятигор, в прошлое уходит стандартный многостраничный комплект документов, который подписывается между заявителем и сетевой организацией. Если раньше это было больше 20 листов — это и сам договор, и технические условия, и завершающие документы о техприсоединении, то теперь такой кипы бумаг больше не будет. Все общение переходит в онлайн через личный кабинет клиента, все решается без бумаг.

Поделиться

Дистанционное общение с клиентами компания начала давно, сначала — по телефону.

— В 2013 году «Ленэнерго» была одной из первых сетевых компаний, которая предложила клиентам подавать заявки на технологическое присоединение по телефону, — вспоминает заместитель генерального директора по технологическому присоединению АО «Энергосервисная компания Ленэнерго» Наталия Яковлева. — И количество заявок росло так быстро, что нам пришлось оперативно оптимизировать ручной труд контакт-центра и сотрудников, обрабатывающих заявки. В 2014 году был запущен ЛКК на сайте — личный кабинет клиента. И с тех пор показатели его популярности только растут. Популярность данного сервиса можно оценить в цифрах. На 2015 год доля заявок через ЛКК составляла 17%, в настоящее время этот показатель достигает почти 98%, повлияли, конечно, и обстоятельства последнего времени. Мы стараемся всем клиентам при обращении в контактный центр или в центры обслуживания клиентов рассказывать о плюсах, которые дает дистанционное общение. В первую очередь это экономия времени и материальных ресурсов заявителей.

Поделиться

Как отметила Наталия Яковлева, при предоставлении неполного комплекта документов сетевая компания вынуждена приостановить рассмотрение заявки на техприсоединение. Чаще всего люди приносят старые свидетельства о регистрации права собственности на объект недвижимости. Она уточняет, что необходима выписка из ЕГРН, выданная не раньше 30 дней до даты подачи заявки. Еще одна частая оплошность: представители заявителя по доверенности забывают предъявлять саму доверенность. В этом случае сотрудники центра обслуживания клиентов пишут заявителю письма о недостаточности сведений и документов, и сроки выдачи договора-счета, конечно, увеличиваются.

Если же все документы в порядке, то за счет использования интернет-каналов срок выдачи оферты договора составляет не более 5 дней. При простых случаях может быть достаточно и 1–2 дней, отмечает Александр Пятигор.

То же постановление, которое установило новый порядок, сократило и предельные сроки рассмотрения оферты. Теперь это 10 рабочих дней и 5 рабочих дней на оплату. Именно оплата и является поводом для того, чтобы реализовать техприсоединение на практике. В целом же срок подключения к сетям остался прежним — до 6 месяцев.

Поделиться

Еще одно важное нововведение коснулось установки счетчиков как для людей, так и для предприятий малого и среднего бизнеса.

— С 1 июля 2020 года вступил в силу 522-й федеральный закон, по которому задача обеспечивать учет потребляемой электроэнергии ложится на сетевую организацию и гарантирующего поставщика, — рассказывает Александр Пятигор, — у клиентов больше не должна болеть голова, как самому установить счетчик, а значит, не надо тратить на него деньги.

Поделиться

При этом в «Россети Ленэнерго» подчеркивают, что документы, подписанные электронной цифровой подписью, равнозначны документам «с твердой подписью и синей печатью». Но если потребуется, то можно получить документы и в более привычном виде.

— Менталитет меняется постепенно, и, безусловно, мы идем навстречу клиенту, тем более что законодатель дает нам такое право: если заявителю необходимы документы на бумажном носителе, он вправе обратиться в сетевую компанию после завершения процедуры технологического присоединения, и мы в течение 30 календарных дней отправим документы Почтой России, — объяснил Александр Пятигор.

Он отмечает важный факт: клиенту вообще не нужно подписывать никакие итоговые документы. Если раньше это был двусторонний процесс, то теперь достаточно подписанных сетевой организацией документов, направленных в личный кабинет клиента.

Поделиться

Вопрос — ответ

Перед семинаром «Фонтанка» попросила читателей прислать свои вопросы по технологическому присоединению к сетям. Все вопросы были перенаправлены в «Россети Ленэнерго», и по частным случаям с теми, кто оставил свои контакты, должны связаться представители компании. Мы же объединили наиболее часто встречающиеся вопросы в блоки, по которым Александр Пятигор и Наталия Яковлева дали свои ответы.

— Много вопросов касается счетчиков. Можно ли установить его самостоятельно? Где будет установлен счетчик, если на участке нет еще никаких зданий и сооружений? Кто отвечает за опломбировку и т.п.?

— Безусловно, до 1 июля это была обязанность заявителя, — подчеркивает Александр Пятигор. — С 1 июля в соответствии с ФЗ обязанность по установке и оснащению систем учета и приборов учета вменяется в обязанности электросетевой организации. Это касается и установки счетчиков при техприсоединении, и замены счетчика, который вышел из строя или у которого закончился межповерочный интервал. Если на участке еще нет зданий, то счетчик, по правилам, устанавливается на границе участка. Но мы идем навстречу клиентам и придерживаемся плана энергопринимающих устройств, которые предлагает клиент, даже если сами строения еще отсутствуют.

Поделиться

— На оплату счета дается 5 дней. Бюджетные организации не могут уложиться в такие сроки. Как им быть, заявка же аннулируется?

— Для нас все организации важны, — отметил Александр Пятигор. — Безусловно, есть небольшие особенности присоединения бюджетных организаций. Мы пойдем навстречу по срокам оплаты, но данный вопрос будем и дальше прорабатывать, чтобы исполнить действующее законодательство и не ущемить интересы отдельных потребителей.

— Счет выставляется на всю сумму или можно оплатить поэтапно, по нескольким счетам?

— Счета выставляются на полную сумму, но заявитель может воспользоваться рассрочкой, — объясняет Наталия Яковлева, — законодатель ее предусмотрел для юридических лиц или индивидуальных предпринимателей, которые присоединяют мощность от 15 кВт до 150 кВт. Заявитель может попросить сетевую организацию выставить счет на 10%, а оставшиеся 90% оплатить в течение трех лет равными долями ежеквартально после получения акта о технологическом присоединении.

— В случае если весь документооборот между заявителем и сетевой организацией будет перенесен в онлайн, как может гражданин в суде подтвердить направление уведомления о выполнении технических условий и соблюсти требования статьи 165.1 Гражданского кодекса Российской Федерации?

— Онлайн-документооборот никак не мешает такому подтверждению, — уверен Александр Пятигор, — весь процесс взаимоотношений от подачи заявки до завершения присоединения будет проходить в личном кабинете клиента, в котором он идентифицирован, будет в постоянном доступе. И любой факт, в том числе выполнения технических условий, фиксируется на серверах сетевой организации.

— Очень много вопросов от участников СНТ о том, как присоединиться к сетям, могут ли дачники сами подключить свой домик к сетям или решить вопрос об увеличении мощности без участия председателя?

— В настоящее время законодатель четко указывает, как подавать заявку, если у заявителя объект присоединения находится на территории некоммерческой организации, в частности к ним относятся ДНП, СНТ, — рассказывает Наталия Яковлева. — Если необходимо увеличение мощности для энергопринимающих устройств, то подавать заявку следует председателю СНТ либо лицу по доверенности. Нужно также собрать комплект документов — он не больше, чем для физлица, но имеет свои отличия. В «Ленэнерго» мы просим, чтобы предоставляли выписки из ЕГРН для объектов, мощность энергопотребления которых изменяется, список принимающих устройств и владельцев принимающих устройств, с указанием ФИО, паспортных данных и кадастрового номера участка. Кроме того, чтобы исключить недопонимание, нужно согласие на обработку персональных данных физических лиц, мощность которых изменяется, ситуационный план, а в случае наличия мощности у СНТ — документы, подтверждающие мощность, в качестве которых может выступать акт о присоединении, о разграничении балансовой принадлежности либо договор энергоснабжения. Сетевая компания рассмотрит заявку, в течение 3 дней запросит необходимые сведения.

По конкретным ситуациям читателей «Фонтанки» в «Россети Ленэнерго» обещают дать ответ, связавшись по телефону или электронной почте.

Подводя итоги семинара, Александр Пятигор отметил, что группа «Россетей» продолжает развивать интерактивные сервисы, работает портал сетевых услуг, а также, в рамках утвержденной концепции цифровой трансформации, создано мобильное приложение. «Хотелось бы получить львиную долю заявок на техприсоединение через эти сервисы, — подчеркнул он, — плюс через них мы бы хотели получить и обратную связь».

Наталия Яковлева также напомнила, что на портале сетевых услуг есть подсказки: о перечне документов, о порядке действий. А если остались вопросы, то можно обратиться на горячую линию — 88002200220 — и получить ответы от оператора.

Мария Мокейчева, «Фонтанка.ру»

Как получить бесплатное электричество в квартире | Строительный журнал САМаСТРОЙКА

Многие люди хотели бы получать бесплатное электричество, однако бесплатным бывает только сыр в мышеловке. На самом деле, есть несколько способов получения бесплатной электроэнергии, для питания, например, светодиодного освещения, а также других, маломощных электропотребителей.

В данной статье строительного журнала samastroyka.ru будет рассказано о том, как и из чего, можно получить бесплатную электроэнергию, так сказать, не выходя из квартиры.

Как получить бесплатное электричество

Способ 1 — получение электроэнергии за счет перекоса фаз. Данный способ получения бесплатного электричества, основан на так называемом «перекосе фаз». Очень часто напряжение здесь может быть до 20 Вольт, которых хватит для того, чтобы зажечь декоративную подсветку или небольшие светодиодные лампы.

Данный способ получения бесплатной электроэнергии подойдёт в том случае, если в доме есть модульное заземление или громоотвод. Напряжение снимается с заземления и с рабочего нуля в розетке. При этом очень важно знать, где именно находится ноль, а где фаза. Как найти фазу и ноль без приборов, читайте на сайте строительного журнала.

Также, чтобы электричество было действительно бесплатное, а не учитывалось, нужно чтобы в доме был установлен дисковый электросчетчик. Новые приборы учёта электричества умеют определять «землю» и «реверс», поэтому с ними ничего не получится сделать. Можно попробовать взять ноль до счетчика, например, с ящика в котором он установлен.

Способ 2 — использования водяных генераторов. Такие генераторы вырабатывают электроэнергию за счет воды, которая через них будет проходить. Например, можно установить водяной генератор в квартире с централизованным отоплением или водопроводом. При этом в системе отопления водяной генератор нужно устанавливать, только перед радиатором, чтобы он не мешал нормальному функционированию отопительной системы.

Водяной генератор стоит относительно недорого, а заказать и купить его можно, например, на Алиэкспресс. Получится установить его и в водопроводную трубу перед смесителем. Как и в первом случае, бесплатное электричество будет вырабатываться за счет напора воды.

Получение электричества из воздуха

Способ 3 — использование энергии воздуха. На самом деле, бесплатную электроэнергию из воздуха получают уже сравнительно давно. Однако можно попробовать это сделать прямо в квартире, если позволяет вентиляция.

В данном случае в ней должна быть достаточно большая тяга, чтобы под воздействием энергии воздуха приводился в движение ветрогенератор. Данной электроэнергии вполне хватит для подключения небольших источников светодиодного освещения.

Теперь вы знаете, из чего и как можно получить бесплатное электричество в квартире. Если какие-то из способов не были учтены в данной статье строительного журнала, просьба поделиться ими в комментариях.

Читайте также:

Атмосферное электричество — Энергетика и промышленность России — № 09 (317) май 2017 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 09 (317) май 2017 года

Одним из первых проводил опыты с воздушным электричеством Бенджамин Франклин – ученый и политический деятель, знакомый нам по портрету на стодолларовой купюре. Он изучал природу молний, запуская воздушного змея в грозу. Кстати, именно он изобрел громоотвод, конструкция которого практически не изменилась до наших дней, и ряд электростатических моторов.

Одновременно подобные опыты проводились и в других странах. Так, например, в России был убит молнией сподвижник Ломоносова Георг Рихман, когда в воздух поднимали провода, чтобы продемонстрировать, что электричество накапливается в облаках.

Земля – конденсатор


Сейчас природа атмосферного электричества достаточно хорошо изучена. Однако попытки использовать ее на благо человечества не прекращаются. Что вполне понятно: задачи получения «бесплатной» энергии волновали людей всегда.

Земля – хороший проводник электричества. Как и верхний слой атмосферы – ионосфера. Нижний же слой атмосферы обычно не проводит электричество, является электрическим изолятором. По сути – диэлектриком. Таким образом, планета и слои атмосферы являются огромным конденсатором, способным накапливать электроэнергию, подобно электрическому полю. Гигантский конденсатор постоянно заряжается в одних регионах и разряжается в других, создавая глобальный электрический контур. Таким образом, вероятно, вполне возможно создать атмосферную электростанцию, чтобы получать электричество из воздуха.

В нижних слоях атмосферы Земли идут интенсивные процессы испарения, переноса тепла и влаги, образования облаков, сопровождающиеся явлениями электризации. Молнии и осадки также переносят к земле отрицательный заряд. В результате, у поверхности Земли напряженность электростатического поля достигает 100‑150 В / м летом и до 300 В / м зимой. Перед грозой регистрируют напряженность поля до десятков киловольт на метр и выше! Мы почти не чувствуем этого поля просто потому, что воздух – хороший изолятор.

Таким образом, в вероятности, вполне возможно создать атмосферную электростанцию, чтобы получать электричество из воздуха.

Станция из воздушных шаров


Как могла бы выглядеть атмосферная электростанция? Один из возможных способов ее создания состоит в запуске в атмосферу группы высотных воздушных шаров, способных притягивать электричество. Эти шары соединяются электропроводами, которые также закрепляют их на земле в резервуарах, содержащих раствор воды и электролита. Если такой шар поднимется до нижних ионизированных слоев атмосферы, постоянный электрический ток потечет по проводу через растворенный электролит, что приведет к разложению воды на водород и кислород. Далее эти газы можно будет собрать так же, как в любом другом электролитическом устройстве. Водород можно использовать в качестве горючего для топливных элементов или для автомобилей на водородном топливе.

Эксперименты с аэростатами, изготовленными из тонких листов магниево-алюминиевого сплава, покрытого очень острыми, электролитическим способом изготовленными иглами, провел в Финляндии доктор Герман Плаусон. Иглы содержали также примесь радия, чтобы увеличить местную ионизацию воздуха. Поверхность аэростата также красили цинковой амальгамой, которая в солнечную погоду давала дополнительный ток вследствие фотоэффекта.

Плаусон получил мощность 0,72 кВт от одного аэростата и 3,4 кВт от двух, поднятых на высоту 300 м. На свои устройства он в 1920‑х гг. получил патенты США, Великобритании и Германии. Его книга «Получение и применение атмосферного электричества» содержит детальное описание всей технологии.

Доводы скептиков


Но действительно ли запасы электричества Земли велики?

По мнению скептиков, множество проектов по использованию электрического поля планеты опираются на совершенно мифические механизмы отбора энергии от глобального конденсатора.

Для начала стоит заметить, что возникают противоречия в подсчете емкости конденсатора, образованного поверхностью Земли и ионосферой (расхождение результатов – более чем в 1000 раз!).

Земной конденсатор заряжен до напряжения приблизительно 300 кВ, причем поверхность Земли имеет отрицательный заряд, а ионосфера – положительный. Напряженность поля между «обкладками» такого конденсатора составляет 120‑150 В / м у поверхности и резко падает с высотой.

Как у всякого конденсатора, в нем имеются токи утечки. Эти токи очень малы. Но пересчет на всю поверхность Земли дает суммарный ток утечки около 1800 А. А электрический заряд Земли оценивается в 5,7×105 степени кулон. То есть земной конденсатор должен разрядиться всего за 8‑10 мин.

На практике мы подобной картины не наблюдаем. Значит, существует некий природный генератор, мощностью более 700 МВт, компенсирующий потерю заряда системы Земля – ионосфера.

Современная наука оказалась бессильной объяснить механизмы подзарядки конденсатора. На сегодня существует более десяти гипотез, описывающих механизмы и процессы поддержания постоянного заряда Земли. Но экспериментальная проверка и уточненные расчеты показывают недостаточность количества вырабатываемых зарядов для поддержания стабильного значения поля Земли.

В числе кандидатов на генераторы зарядов рассматривались грозы, циркуляция токов в расплавленной мантии Земли, поток частиц от Солнца (солнечный ветер). Выдвигалась даже экзотическая гипотеза о существовании природного МГД генератора, работающего в верхних слоях атмосферы. Но сегодня наука точно не знает, откуда восполняются заряды природного конденсатора. Возможно, каждый из перечисленных механизмов дает свой вклад в пополнение заряда земного накопителя.

Попытки использовать напряженность поля Земли в утилитарных целях предпринимались более двух веков. Лучшее достижение – уже упомянутые конструкции с использованием аэростатов – позволили получить мощность около 1 кВт, а современные, реально работающие схемы позволяют лишь запитать маломощный светодиод или подзарядить мобильный телефон.

Дело в том, что проводимость атмосферного воздуха составляет только 10–14 степени Сименс / метров. Отобрать от столь высокоомного источника заметную мощность просто невозможно. Для этого детали «генератора» должны иметь более надежную изоляцию – иначе он быстро «закорачивается».

Воздушная электроэнергия


Однако доводы скептиков не останавливают экспериментаторов.

По их мнению, высокая разность потенциалов между поверхностью Земли и ионосферой приводит к формированию мощного электрического поля в тропосфере и стратосфере. Заряд в этом суперконденсаторе поддерживается за счет солнечного излучения, космических лучей, а также радиоактивности земной коры. Все эти излучения взаимодействуют с магнитным полем Земли и атомами в верхних слоях атмосферы, пополняя заряд суперконденсатора.

Постоянный заряд атмосферного суперконденсатора составляет от 250  000 до 500  000 В, что сопоставимо с напряжением высоковольтных электрических линий. Однако разница электрических потенциалов поверхности Земли и атмосферы – это постоянный ток, а не переменный. Общее среднее значение силы тока, протекающего через атмосферный суперконденсатор, только в результате гроз составляет 1500 А (по два ампера на каждую из 750 гроз). Электрическая мощность в ваттах составляет произведение силы тока в амперах на напряжение в вольтах. Приведенные выше цифры означают, что земная атмосфера постоянно рассеивает несколько сотен миллионов ватт электроэнергии. Этой мощности хватает на полное пиковое обеспечение электроэнергией среднего города.

Преимущества и недостатки атмосферных электростанций


В качестве преимуществ отмечаются следующие факторы:

• земельно-ионосферный суперконденсатор постоянно подзаряжается с помощью возобновляемых источников энергии – солнца и радиоактивных элементов земной коры;

• атмосферная электростанция не выбрасывает в окружающую среду никаких загрязнителей;

• оборудование атмосферных станций не бросается в глаза. Воздушные шары находятся слишком высоко для того, чтобы их увидеть невооруженным глазом;

• атмосферная электростанция способна вырабатывать энергию постоянно, если поддерживать шары в воздухе.

Недостатки:

• атмосферное электричество, как и энергию солнца или ветра, трудно запасать. Его необходимо либо использовать сразу же, на месте получения, либо преобразовывать в любую другую форму, например в водород;

• значительная разрядка земельно-ионосферного суперконденсатора может нарушить баланс глобального электрического контура. В этом случае последствия для окружающей среды будут непредсказуемы;

• высокое напряжение в системах атмосферных электростанций может быть опасным для обслуживающего персонала;

• воздушные шары необходимого размера сложно обслуживать и поддерживать на необходимой высоте. Кроме того, они могут представлять опасность для авиации;

• общее количество электроэнергии, которую можно получать из атмосферы, ограничено. В лучшем случае атмосферная энергетика может служить лишь незначительным дополнением к другим источникам энергии.

Если атмосферная электростанция когда‑либо будет построена, то наиболее вероятным местом ее расположения окажется некий островок в океане, а воздушные шары будут крепиться к земле двумя-тремя проводами. Попытка соорудить ее в жилом месте может привести к значительным разрушениям (например, во время торнадо).

Способы получения электроэнергии в домашних условиях

Бесплатное электричество

К настоящему времени рентабельность ферм для майнинга криптовалют сильно понизилась. Это произошло за счет падения рыночной стоимости самих виртуальных активов, из-за подорожания оборудования и электроэнергии. Если раньше затраты на питание фермы составляли около 30% от прибыли, то теперь показатели доходят до 50% и даже 70%, что делает добычу крайне низкопрофитной. Неудивительно, что владельцы ферм начинают искать способы, позволяющие получать бесплатное электричество своими руками. Идея эта не такая уж фантастичная, как может показаться на первый взгляд, но ее реализация потребует серьезной подготовки.

Добыча бесплатного электричество

За рубежом майнеры предпочитают решать проблему не столь радикально. Они просто перебираются туда, где энергия стоит дешевле. Если верить статистике, то ранее самую низкую оплату за потребленное электричество взимал Китай, но после введения запрета на криптовалюту майнинг-фермерам пришлось передислоцироваться в Европу. Дешевое электричество есть в Исландии, то тут существуют проблемы с интернетом. В России же можно поискать регионы с дешевой энергией для начала бизнеса по добыче криптовалюты. Например, если вы установите ферму в Иркутске, то сможете тратить на оплату электричества всего 10% от заработка. Но цифра является приблизительной, если вы используете новейшее оборудование с высокой мощностью, то и энергопотребление у него на порядок выше.

  • Значит, выход только один — научиться добывать бесплатное электричество дома.
  • Получить энергию для фермы безвозмездно в домашних условиях возможно с помощью альтернативных источников.
  • Они уже широко эксплуатируются во всем цивилизованном мире, это солнечные батареи, ветро и водогенераторы.
  • Но следует иметь в виду, что собрать такие установки своими руками можно только при наличии минимальных инженерных знаний, да еще придется потратиться на детали и расходные материалы.

Еще можно добыть бесплатную энергию от магнитов, из земли, но ее будет недостаточно для питания мощной майнинг-фермы.

Как сделать бесплатное электричество

Следовательно, стоит рассмотреть способы, как сделать бесплатное электричество в достаточном количестве, чтобы его хватило для бесперебойного питания майнинг-фермы. Впрочем, можно оставить эту затею и арендовать чужие мощности через сайты облачного майнинга, а криптовалюту добывать в пулах (для чего заранее необходимо изучить тему «Что такое пул»).

Но если оборудование уже есть в наличии и проблема заключается только в том, чтобы сделать его работу более рентабельным, то советы по добыче бесплатного электричества лучше всего изучать по видео-урокам в Ютюбе. А перед этим стоит все-таки определиться, какой способ лучше выбрать.

Если вы проживаете в частном доме, то удобнее всего установить солнечные батареи или ветрогенератор на крыше. Кстати, таким способом можно сэкономить и на отоплении: заменить традиционные радиаторы электрическими. Оборудование альтернативного типа можно купить уже в готовом виде, своими руками потребуется только смонтировать его в своем доме. Но стоимость устройств все же отпугивает большинство людей. Кроме того, солнечные батареи актуальны только в южных регионах, где бывает достаточное количество ясных дней.

Схема добычи электричества

Еще добывать бесплатное электричество можно прямо из земли. Схемы подобного способа широко представлены в интернете. В почве, за счет протекания естественных процессов окисления, похожих на те, что происходят внутри обычной батарейки, образуются электрические импульсы. Но такого количества энергии для питания майнинг-фермы будет точно недостаточно. Еще можно получать электричество от обычных магнитов, для чего их требуется обмотать медной проволокой, создав подобие трансформатора, и поместить в электромагнитное поле. Но чтобы извлечь из устройства столько же электричества, сколько из стационарной розетки, понадобятся очень большие магниты и очень много проволоки.

Видео: Электичество из магнита

Где брать энергию? Не секрет, что люди рано или поздно исчерпают запасы нефти, газа, угля и даже урана, которые ещё остались на планете. Возникает вполне резонный вопрос: «Что же делать дальше? Где брать энергию?». Ведь вся наша жизнь базируется на использовании энергии. Получается, что после того как закончатся запасы углеводородов закончится и существование цивилизации?

Выход есть! Это так называемые альтернативные источники энергии. Кстати многие из них применяются, причем успешно, уже в настоящее время. Энергия ветра, приливов, солнца и геотермальные источники ─ успешно используется и преобразовывается людьми в электроэнергию. Но это так сказать «официальные альтернативные источники».

В настоящее время, существуют сотни теорий и разработок по созданию и использованию необычных альтернативных источников энергии. Описанные в этой статье альтернативные источники энергии являются необычными только в том смысле, что они пока не стали популярными, массово не используются, непрактичны, убыточны и т.д.

Но это совсем не значит, что они не смогут эффективно применятся возможно уже в самом ближайшем будущем. Ведь та же нефть, как источник энергии была известна с древнейших времен, но только с конца времени промышленной революции, нефть смогли получить и обработать в пригодную для использования форму.

Неизвестно, что мы в будущем будем использовать для получения энергии, но традиционным источникам энергии наверняка есть альтернативы, и вполне возможно, хотя бы один из перечисленных ниже способов получения электрической энергии сможет стать распространенным и популярным.

Вот 5 необычных альтернативных источников энергии, которые вызывают реальную надежду на эффективное использование их в будущем:

Первая экспериментальная электростанция, получающая энергию из соленой воды создана компанией Statkraft в Норвегии. Электростанция для получения электроэнергии использует физический эффект — осмос. С помощью этого эффекта в результате смешивания солёной и пресной воды извлекается энергия из увеличивающейся энтропии жидкостей. затем эта энергия используется для вращения гидротурбины электрогенератора.

Разработаны демонстрационные электростанции на топливных элементах с твердооксидным электролитом мощностью до 500 кВт. Фактически в элементе происходит сжигание топлива и непосредственное превращение выделяющейся энергии в электричество. Это все равно что дизельный электрогенератор, только без дизеля и генератора. А также без дыма, шума, перегрева и с намного более высоким КПД.

Для получения электрической энергии используется термоэлектрический эффект. Это довольно старая технология, опять ставшая актуальной в наше время за счет массового использования энергосберегающих источников света и различных переносных электроприемников. Уже существуют и с успехом используются промышленные разработки, например отопительно-варочные печи, со встроенными термогенераторами, которые в процессе своей работы позволяют получать не только тепло, но и электроэнергию.

Созданы экспериментальные установки, которые позволяют получать электроэнергию за счет использования кинетической энергии — пешеходные дорожки, турникеты на железнодорожных вокзалах, специальный танцпол со встроенными в него пьезоэлектрическими генераторами. Есть идеи в ближайшем будущем создать специальные «зеленые тренажерные залы», в которых группа спортивных тренажерных велосипедов сможет, по словам производителей, генерировать до 3,6 мегаватт возобновляемой электроэнергии в год.

В данном источником энергии является специальный наногенератор, преобразующий в электрическую энергию микроколебания в человеческом теле. Устройству довольно малейших вибраций, чтобы вырабатывать электический ток, позволяющий поддерживать работоспособность мобильных устройств. Современные наногенераторы превращают любые движения и перемещения в источник энергии. Очень перспективны и интересны варианты совместного использования наногенераторов и солнечных батарей.

А что вы думаете по этому поводу? Может быть вам известны другие новые альтернативные источники электроэнергии. Поделитесь в комментариях!

Как получить электричество из земли

Из года в год стоимость электроэнергии в наших домах и квартирах растет, что заставляет большинство людей задуматься об ее экономии. Но есть и такие, что пытаются всеми возможными способами добыть хоть немного бесплатной энергии, например, электричество из земли. Поскольку число этих людей неуклонно растет, есть смысл рассмотреть вопрос подробнее, что и будет сделано в данной статье.

Мифы и реальность

На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.

Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.

Для справки. Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.

Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.

Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.

Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.

Электричество от двух стержней

Данный способ основан совсем на другой теории и никакого отношения к магнитному или электрическому полю Земли не имеет. А теория эта – о взаимодействии гальванических пар в солевом растворе. Если взять два стержня из разных металлов, погрузить их в такой раствор (электролит), то на концах появится разница потенциалов. Ее величина зависит от многих факторов: состава, насыщенности и температуры электролита, размеров электродов, глубины погружения и так далее.

Такое получение электричества возможно и через землю. Берем 2 стержня из разных металлов, образующих так называемую гальваническую пару: алюминиевый и медный. Погружаем их в землю на глубину ориентировочно полметра, расстояние между электродами соблюдаем небольшое, хватит 20—30 см. Участок земли между ними обильно поливаем солевым раствором и спустя 5—10 мин производим измерение электронным вольтметром. Показания прибора могут быть разными, но в лучшем случае вы получите 3 В.

Примечание. Показания вольтметра зависят от влажности почвы, ее природного солесодержания, размеров стержней и глубины их погружения.

В действительности все просто, получившееся бесплатное электричество – это результат взаимодействия гальванической пары, при котором влажная земля служила электролитом, принцип похож на работу солевой батарейки. Реальный эксперимент о разнице потенциалов на электродах, забитых в землю, можно посмотреть на видео:

Электричество от земли и нулевого провода

Данное явление тоже возникает не от магнитного поля Земли, а вследствие того, что часть тока «стекает» через заземление в часы наибольшего потребления электроэнергии. Большинству пользователей известно, что напряжение для дома подается через 2 проводника: фазный и нулевой. Если имеется третий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Этот факт можно зафиксировать, включив меж контактами нагрузку в виде лампочки на 12 В. И что характерно, проходящий из земли на «ноль» ток абсолютно не фиксируется приборами учета.

Воспользоваться таким бесплатным напряжением в квартире затруднительно, поскольку надежного заземления там не найти, трубопроводы таковым считаться не могут. А вот в частном доме, где априори должен быть заземляющий контур, электричество получить можно. Для подключения применяется простая схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже приспособились сглаживать колебания тока трансформатором и присоединять подходящую нагрузку.

Внимание! Не идите на поводу у «добрых» советчиков, предлагающих вместо нулевого проводника использовать фазный! Дело в том, что при подобном подключении фаза и земля дадут вам 220 В, но прикасаться к заземляющей шине смертельно опасно. Особенно это касается «умельцев», проделывающих подобные вещи в квартирах, присоединяя нагрузку к фазе и батарее. Они создают опасность поражения током для всех соседей.

Заключение

Извлекать электроэнергию из магнитного поля планеты своими руками – нереально. Описанные выше способы – другое дело, но их практическая ценность невелика. Разве что заряжать телефон во время похода, но тогда придется тащить с собой металлические трубы. Касаемо второго способа надо отметить, что напряжение между землей и нулем появляется далеко не всегда, а если и есть, то очень нестабильно. Прочие методы требуют большого количества меди и алюминия при неизвестном результате, о чем честно предупреждает автор установки, изображенной на рисунке:

Топ-6 лучших способов получить бесплатную электроэнергию

Дата публикации: 23 января 2020

Сегодня мировые СМИ и предприниматели все больше обращают внимание на альтернативные способы получения энергии. Они помогут не только экономить на электричестве, но и заботиться об окружающей среде. В этой статье собраны 6 самых популярных способов, рассказывающих, как получить бесплатную электроэнергию.

Ток из земли: ТОП-3 способа

Земля — самый большой и мощный источник энергии. В нашей почве объединены три среды — твердая, жидкая и газообразная, что и становится необходимым условием для извлечения электроэнергии. Из-за этого почву можно считать станцией, в которой на постоянной основе хранится электричество.

Есть три основных способа получить бесплатное электричество с помощью почвы:

  1. Нулевой провод — нагрузка — почва.
  2. Медный и железный электроды.
  3. Потенциал между крышей и почвой.

Нулевой провод — нагрузка — почва

Этот метод подразумевает, что будет использоваться третий проводник, соединяющий проводник в земле и нулевой контакт. В результате получится ток напряжением около 15 вольт. Такого вольтажа хватит, чтобы подключить до пяти лампочек и осветить две комнаты.

Впрочем, некоторые умельцы экспериментируют с этим способом и получают напряжение намного превосходящее 20 вольт, способное питать целый дом.

Медный и железный электроды

С помощью этих электродов можно добыть бесплатное электричество из почвы, потратив минимум усилий. Но учтите, что на участке, где расположатся электроды, не будет расти никакой зелени, поскольку она перенасытится солями.

На расстоянии до метра в почву вставляются два прута: один цинковый или железный, другой медный. В этом методе роль электролита играет сам грунт, а с помощью прутьев получается разница потенциалов. В итоге цинковый стержень станет отрицательным электродом, а медный — положительным. Таким способом добывается до трех вольт.

Потенциал между краем крыши и почвой

Те же самые три вольта можно получить, если поймать потенциал между землей и крышей. Чтобы метод сработал, крыша должна быть выполнена из железа, а в почву необходимо установить ферритовые пластины.

Вольтаж увеличится, если пластины взять большего размера или найти более высокую крышу.

Ток из воздуха: ТОП-3 способа

Получать бесплатное электричество для дома из воздуха — желание большинства экономных людей. Как оказалось, эта мечта осуществима.

Вариантов получения тока из воздуха множество, но наиболее популярные среди них — это:

  • ветрогенераторы;
  • грозовые батареи;
  • генератор тороидального электричества Стивена Марка.

Ветряные генераторы уже сейчас используются в странах Европы, Азии и Америки. Поля с этими гигантскими приспособлениями занимают огромные площади и способны обеспечивать энергией техническое предприятие или завод. Единственный минус такого способа — непостоянство ветра. Из-за изменчивости погоды нельзя сказать точно, сколько выработается и накопится энергии.

Подробнее о том, как создать ветрогенератор из подручных средств, читайте здесь: Ветрогенератор из шуруповерта.

Грозовые батареи тоже зависят от погодных условий, поскольку накапливают потенциал из разрядов молний. Эти системы — самые непредсказуемые и опасные в применении, ведь молнии контролировать нельзя.

Еще один прибор, позволяющий получать бесплатную электроэнергию дома, — это генератор тороидального электричества, изобретенный Стивеном Марком. Основу генератора составляют три катушки. Они создают резонансные частоты и магнитные вихри, благодаря которым и появляется электрический ток.

Альтернативные источники энергии позволяют заботиться о природе и использовать ее восполняемые ресурсы по максимуму. Однако стоит помнить, что любые эксперименты с электричеством могут быть опасны. Если у вас нет опыта, то проводите их в присутствии мастера или электрика и с соблюдением всех норм предосторожности.

Вам нужно войти, чтобы оставить комментарий.

Бесплатное ЭЛЕКТРИЧЕСТВО — Свобода для нашего народа 2 — Наука на TJ

Здравствуйте дорогие зрители и подписчики. С вами канал «На пути к родовому поместью», здесь мы рассказываем о нашей жизни и наших мечтах. Мы продолжаем тему: «Бесплатное ЭЛЕКТРИЧЕСТВО — Свобода для нашего народа». Сейчас я хочу рассказать зачем нам Свободное электричество. Нам как ячейке общества нравиться жить ближе к природе, подальше от цивилизации. Но так же нам хочется жить в тепле и комфорте. Так получается что большинство наших устройств завязано на электричестве. В будущем нашем родовом поместье пока нет общественного 220в 50гц. Да и в нашем общественном мире электричество дорожает с каждым годом. А тут я знаю что природное электричество нас окружает всюду. И нас не устаревает покупать электричество как воздух. Нам нужна удочка, а рыбу мы сами наловим. Мечтая О комфорте: мы можем организовать освещение дома, за питать вода-насос, готовить еду, стирать вещи и бельё в стиральной машине, Отопить зимой дом, Обеспечить теплом теплицы. А летом кондиционер будет давать прохладу. И это лишь базовые нужды. В странах Европы давно уже используют энергию солнца, ветра, воды… Чем мы хуже — мы хотим использовать энергию вокруг нас. В нашем мире не принято говорить о синтезе веществ, хотя все вещества это приобразованая энергия. И всё состоит из неё. Цивилизация потребителей разрушает вещества и их соединения чтобы получить энергию. Мы хотим сохранить природу. Свободная энергия везде и её просто нужно уметь собирать. Мы знаем такой закон природы что пустота обязательно чем то заполняется со временем. Так и Вещество появляется в нашем мире, Стоит где то понизить природное давление вещества и частиц, и сразу появиться новое вещество из окружающей нас энергии. Природная энергия, с лёгкостью перешагнёт Ядерную энергетику… Естественно Руководству всего мира не нужно свободное не зависимое общество, и вольный человек. И тема свободного электричества обычно закрыта от человека, как и ядерная энергетика. Верить в это или нет, решать вам. Ну а на сегодня ВСЁ.

{
«author_name»: «На пути к родовому поместью»,
«author_type»: «self»,
«tags»: [],
«comments»: 4,
«likes»: -12,
«favorites»: 0,
«is_advertisement»: false,
«subsite_label»: «science»,
«id»: 138299,
«is_wide»: true,
«is_ugc»: true,
«date»: «Thu, 23 Jan 2020 23:43:16 +0300»,
«is_special»: false }

{«id»:218413,»url»:»https:\/\/tjournal. ru\/u\/218413-na-puti-k-rodovomu-pomestyu»,»name»:»\u041d\u0430 \u043f\u0443\u0442\u0438 \u043a \u0440\u043e\u0434\u043e\u0432\u043e\u043c\u0443 \u043f\u043e\u043c\u0435\u0441\u0442\u044c\u044e»,»avatar»:»9e27a484-b661-4b83-705c-4d2b700653e7″,»karma»:-135,»description»:»»,»isMe»:false,»isPlus»:false,»isVerified»:false,»isSubscribed»:false,»isNotificationsEnabled»:false,»isShowMessengerButton»:false}

{«url»:»https:\/\/booster.osnova.io\/a\/relevant?site=tj»,»place»:»entry»,»site»:»tj»,»settings»:{«modes»:{«externalLink»:{«buttonLabels»:[«\u0423\u0437\u043d\u0430\u0442\u044c»,»\u0427\u0438\u0442\u0430\u0442\u044c»,»\u041d\u0430\u0447\u0430\u0442\u044c»,»\u0417\u0430\u043a\u0430\u0437\u0430\u0442\u044c»,»\u041a\u0443\u043f\u0438\u0442\u044c»,»\u041f\u043e\u043b\u0443\u0447\u0438\u0442\u044c»,»\u0421\u043a\u0430\u0447\u0430\u0442\u044c»,»\u041f\u0435\u0440\u0435\u0439\u0442\u0438″]}},»deviceList»:{«desktop»:»\u0414\u0435\u0441\u043a\u0442\u043e\u043f»,»smartphone»:»\u0421\u043c\u0430\u0440\u0442\u0444\u043e\u043d\u044b»,»tablet»:»\u041f\u043b\u0430\u043d\u0448\u0435\u0442\u044b»}},»isModerator»:false}

Еженедельная рассылка

Одно письмо с лучшим за неделю

Проверьте почту

Отправили письмо для подтверждения

Хитрый владелец Model S майнит криптовалюту на станциях бесплатной подзарядки Tesla

Майнерская мини-ферма спрятана в багажнике Tesla

Самый ценный ресурс, необходимый для добычи криптовалюты — это электричество. На генерацию монет уже тратится электроэнергии больше, чем потребляет такая страна как Ирландия (и 19 других стран Евросоюза). Это 0,13% мирового энергопотребления стоимостью полтора миллиарда долларов в год — ну а что делать, глобальная финансовая система требует соответствующей инфраструктуры.

В данный момент годовое потребление сети Bitcoin оценивается в 30,25 ТВт·ч. Так, за вчерашний день в плавильной печи «цифрового золота» сгорело 82,86 ГВт·ч. На единственную транзакцию уходит 275 кВт·ч, чего достаточно для суточного электроснабжения девяти больших частных коттеджей.

Ну в общем вы поняли идею. Для проведения транзакций и генерации биткоинов нужно электричество. Много электричества.


Чем дешевле у вас электричество — тем рентабельнее майнинг, поэтому в Китае — где майнится больше половины мировых биткоинов — фермы предпочитают строить в промышленных зонах. Те изначально проектировали рядом с мощными генераторами дешёвого электричества, как ГЭС. В Европе майнеры экспериментируют с маленькими 700-ваттными ветряками для генерации Zcash «из воздуха» в деревенских условиях.

Ветряная установка и оборудование для майнинга

Как видно на скриншоте, получается очень неплохо: каждые сутки на кошелёк «надувает» заметную сумму ZEC.

Но что если вам не повезло жить рядом с промышленной зоной, а ветряка тоже нет? Хуже того, вы проживаете в капиталистической стране, где высокие тарифы на электроэнергию, что тогда? Наверное, большинство скажет, что остаётся забыть о майнинге и тупо купить биткоины за фиат. Но не таков хитрый американец, который рассказал о своём изобретении в закрытой группе Tesla Owners Worldwide на Facebook (via Eco Motoring News).

В группе обсуждали последний взлёт цены биткоина и кто-то в шутку предположил, что может иметь смысл майнить криптовалюту, подключившись к розетке на заправке Tesla. Как известно, компания предлагает покупателям своих электромобилей бесплатно подзаряжаться на фирменных станциях зарядки.

Но оказалось, что шутка одного человека вовсе не является шуткой для другого. Ещё один автолюбитель ответил ему, опубликовав фотографию своей майнерской мини-фермы в багажнике автомобиля.

кликабельно

Судя по фотографии, пользователь на самом деле майнит не биткоины, потому что здесь отсутствуют специализированные платы ASIC. Вместо этого мы видим четыре материнские платы и четыре блока питания. На каждой материнке установлено несколько разъёмов GPU — они подключаются синими кабелями. Судя по всему, к каждой материнке подключено по четыре графические карты. Все материнские платы смонтированы на листах фанеры.

Непосредственно графических ускорителей на фотографии нет, так что остаётся открытым вопрос, действительно ли пользователь майнит что-нибудь в этой конструкции или собрал её ради шутки. Но если он действительно майнит, то можно предположить, что это может быть эфир.

Некоторые эксперты подвергают сомнению реалистичность такой майнерской установки. Во-первых, если оставить её майнить на ночь, то к утру в багажнике будет невероятная температура, а никаких охлаждающих систем здесь не показано. Кроме того, как видно на фотографии, GPU никак не закреплены, то есть дорогостоящее оборудование будет болтаться в багажнике на ходу.

Но если этот парень действительно майнит эфир, то можно посчитать его доход на калькуляторе Cryptocompare. Если взять средний GPU на 20 мегахэшей/с, то его «ферма» выдаёт 320 мегахэшей/с. Соответственно, он намайнит примерно 0,05 ETH за сутки или 1,5 ETH в месяц. По нынешнему курсу это будет примерно $675 в месяц, что примерно соответствует месячному платежу при покупке автомобиля Tesla. Ну то есть парень может взять машину в лизинг и получить её в итоге почти бесплатно, а если курс Etherium ещё вырастет — так и вовсе останется с прибылью.

Кстати, неспроста для новых покупателей Tesla недавно установила максимальный лимит 400 кВт·ч в год на бесплатное электричество. Наверное, они догадывались, что такое может произойти. Неспроста кое-кто намекает, что за личностью Сатоши Накамото может скрываться Илон Маск (вчера Маску пришлось опровергать эти слухи).

8 доступных генераторов своими руками, которые презирает ваша электрическая компания

Невозможно перечислить все причины, по которым вы хотите построить генератор своими руками.

Может быть, вы готовитесь к долгосрочной чрезвычайной ситуации и хотите, чтобы вырабатывал собственную электроэнергию, если сеть выйдет из строя.

Может быть, вы живете в хижине в дикой местности, поддерживаемой землей, поддерживаемой матерью-природой.

Возможно, вы мечтаете о автономной независимости и самостоятельности.

Может быть, вы хотите сэкономить несколько долларов на счетах за электричество или даже полностью избавиться от них.

Может быть, вам не хочется тратить деньги на что-то вроде генератора энергии Patriot.

Или, может быть, вы хотите сделать это ради чистого удовольствия от создания функциональной науки.

Независимо от причины, цель всегда одна и та же; для производства и потребления собственного электричества.

Теперь для жизни вне сети электричество не требуется.Вы можете отключиться от сети без него. Без него люди выживали по всему миру десятки тысяч лет.

Можно разбить лагерь и прокормиться без электричества. Вместо лампочек используйте свечи. Забудьте о печи, используйте тепло камина. Вместо духовки используйте дровяную печь и толстые одеяла. Вы можете сделать это с правильным набором книг по выживанию и ноу-хау лесоруба.

Но электричество значительно облегчает жизнь.И большинство согласятся, что от этого становится лучше.

Например, холодильник и морозильник — очень сложная бытовая техника в нашем современном обществе.

Но электричество — это средство выживания, как и любой другой, просто нематериальное и нематериальное. Но чрезвычайно полезно.

Электричество — это универсальный инструмент, который помогает достичь многих целей, связанных с выживанием. Тепло, свет, готовка, развлечения, общение, строительство.

Приложения бесконечны.

Самое приятное то, что для создания генераторов своими руками не требуется интеллект Никола Тесла.

Или даже степень в области электротехники.

Вы можете купить генераторы энергии и установить их у себя в собственности. Или вы можете построить свой собственный. Генераторы своими руками — чрезвычайно полезные инструменты. И они могут даже способствовать повышению устойчивости вашего автономного форпоста.

Создание собственного генератора — это навык, который имеет огромное значение в ситуации «SHTF».Даже если вы не планируете делать генератор своими руками сегодня, просто знание того, «как» — это ценный навык, которым вы должны обладать.

В качестве способа познакомить вас с навыками выживания, мы раздаем наш # 78 Item Complete Prepper Checklist. Нажмите здесь, чтобы получить БЕСПЛАТНУЮ копию .

Принципы производства электроэнергии


Прежде чем мы перейдем к различным генераторам, которые вы можете построить своими руками, давайте рассмотрим общую концепцию. Все электрические генераторы основаны на одних и тех же основных принципах.Итак, это действительно важные концепции, которые необходимо понять.

Каждый раз, когда вы используете электричество, вы используете энергию, полученную откуда-то еще. Будь то угольная электростанция, водопровод или ветер, энергия исходит из другого вида энергии.

Вы конвертируете один вид энергии ( ветровая, водяная, геотермальная, горения) в другой (, электричество, ).

Итак, как превратить энергию движущейся воды в электрическую энергию, хранящуюся в батарее?

Независимо от того, какие именно генераторы вы собираетесь построить своими руками, эти две части очень важны: статор и ротор.

Статор — это неподвижная оболочка, в которой находится ротор, который вращается внутри статора. Ротор наполнен магнитами, которые при вращении внутри статора генерируют электрический ток.

Этот ток улавливается встроенными катушками статора и передается в накопитель.

Теперь для хранения электроэнергии, вырабатываемой статором и ротором, вам понадобится аккумулятор.

Есть много коммерческих аккумуляторов, предназначенных исключительно для хранения энергии собственного производства.По сути, чем больше батарея, тем больше энергии вы можете сохранить.

Если вы планируете часто использовать генератор, я бы порекомендовал приобрести большую батарею. Один со значительным потенциалом хранения энергии. Или, что еще лучше, набор батарей, соединенных последовательно.

Если вам нужно просто электричество для зарядки фотоаппарата и фонарика, то идеально подойдут небольшие батарейки.

Теперь можно собрать собственную батарею, но лично я предпочитаю вернуть старую батарею к нормальной жизни. Это проще и менее опасно.

Если вы хотите узнать, как восстановить старые батареи, ознакомьтесь с этим курсом по восстановлению батарей EZ.

В качестве способа познакомить вас с навыками выживания, мы раздаем наш # 78 Item Complete Prepper Checklist. Нажмите здесь, чтобы получить БЕСПЛАТНУЮ копию .

Изготовление самодельных генераторов своими руками — 8 лучших решений


Есть несколько способов снять шкуру с кошки.Верно? Если вам нужно электричество своими руками, вы можете смотреть в небо, смотреть на море, смотреть в землю, заглядывать в свой гараж…

Потенциал производства электроэнергии есть повсюду.

Это хорошо, потому что в любой ситуации есть возможность выработки электроэнергии. Вам просто нужно понять, как это использовать.

По этой причине я составил очень краткий, но исчерпывающий список генераторов DIY.

1 — Велогенератор:

Я поставил его первым, потому что это очень простая идея.

Поворачивая шестерни ( или колесо ) вашего велосипеда, вы превращаете его в ротор. Таким образом, вы можете одновременно производить электричество и тренироваться.

Нужно вскипятить воду? Нет проблем, потратите двадцать минут на самодельный велосипедный генератор — и готово!

Нужна лампа для чтения? Нажмите на педаль во время чтения, и у вас будет свет, пока вы находитесь на велосипеде!

Очевидно, это требует физического труда. Вы не будете обогревать большой дом с помощью велосипедного генератора.Но если вам нужно электричество для небольших быстрых задач, велосипедный генератор — отличный способ справиться с этим.

Для этой установки вам даже не понадобится целый велосипед — вы можете собрать велосипедный генератор своими руками, используя старые детали велосипеда. Таким образом, нет необходимости разбирать ваш любимый велосипед.

В следующем видео они используют двигатель беговой дорожки для преобразования энергии ног в электрические вольты, вот где вы можете получить двигатель беговой дорожки.


2 — Гидроэлектрический генератор:

Я собираюсь пойти дальше и назвать гидроэнергетику ЛУЧШИМ вариантом в этом списке.Потому что надежен, стабилен и чрезвычайно эффективен.

Гидроэлектроэнергия используется тысячи и тысячи лет. Древние греки были первыми приписывают преобразование движущейся воды в измельчение пшеницы. Они не использовали электричество, но они использовали энергию. Они превратили проточную воду в полезное занятие по производству муки.

Какая именно концепция лежит в основе производства гидроэлектроэнергии?

Гидравлические колеса — самый популярный способ получения гидроэлектроэнергии.Помещая колесо в движущуюся воду, движение воды передается на прялку. Это колесо затем прикрепляется к ротору. И энергия накапливается статором перед передачей в батарею.

Многие ручьи и реки текут с почти постоянной скоростью. Таким образом, гидроэлектроэнергия вырабатывается круглосуточно — эффективно и рационально.

К сожалению, построить и установить действующую гидроэлектростанцию ​​самому сложно. Не невозможно, но требует большой дальновидности, подготовки и планирования.

И, конечно же, поблизости нужен проточный водоем. Таким образом, они не зависят от местоположения, что делает их относительно редкими.


3 — Энергия ветра:

Сразу после гидроэнергетики ветер является одним из следующих лучших вариантов.

Основная идея та же — большие лопасти улавливают импульс ветра и передают его на ротор / статор.

К сожалению, ветряные турбины представляют проблему для обычного Джо. Обычно они требуют постоянного ухода и обслуживания.

Вот почему большинство крупных ветряных электростанций имеют команду высококвалифицированных инженеров. Их специально обучили управлению этими ветряными турбинами. Но становится легче.

Самым важным аспектом установки ветряной турбины является инвестирование в эффективную установку ротора / статора. Установка турбины, позволяющая улавливать как можно больше ветра.

Однако это действительно работает только в ветреных регионах. Ветер не принесет вам никакой пользы, если вы живете в месте, где воздух постоянно неподвижен ( или даже непредсказуемо ).

Если вы хотите, чтобы ваш ветряной электрогенератор, сделанный своими руками, окупился, вам понадобится много стабильных и надежных ветров.


А вот подробное видео, как превратить старую аккумуляторную дрель в ветряную турбину.


Дополнительным преимуществом энергии ветра и воды является их экологическая устойчивость. Использование этих природных ресурсов (ветер и поток воды ) для выработки электроэнергии не приводит к выбросу загрязняющих веществ в процесс.

В качестве способа познакомить вас с навыками выживания, мы раздаем наш # 78 Item Complete Prepper Checklist. Нажмите здесь, чтобы получить БЕСПЛАТНУЮ копию .

4 — Ручной генератор:

У меня есть фонарик, который не требует зарядки и замены батарей. Это ручной фонарик.

Все, что вам нужно сделать, это повернуть ручку, пока вы не создадите достаточное трение, чтобы привести вещь в действие. Это базовый тип ручного кривошипного генератора, и тот, который вы можете построить, аналогичен ему.

Это электрическое поколение похоже на велосипедный генератор. Он преобразует человеческую энергию в электрическую.Другими словами, вы получаете то, что вкладываете в это.

Если вам нужно экономить калории из-за недостатка еды, ручной генератор — плохой выбор. Но если вы потерялись в море и вам нужно подать сигнал о помощи, очень полезно иметь ручной генератор света.

Это ситуативно — ручные генераторы — не лучший вариант, , но они подойдут в крайнем случае.

Вот видео о том, как превратить старую аккумуляторную дрель в ручной генератор, сделанный своими руками.


5 — Компостный теплогенератор

Как насчет выработки тепла из отходов?

Тепло — это не электричество. , однако, тепло — это форма энергии, которая очень полезна.

Также интересно иметь возможность использовать компостные материалы ( древесных стружек, обрезки травы, мульчу, сено и т. Д. ) для генерирования большого количества тепла. Тепло можно использовать для обогрева небольшого дома, теплицы, или даже для обогрева гидромассажной ванны.


Единственное предостережение — вам необходимо запустить насос для циркуляции воды.Таким образом, хотя эта установка создает тепло, для ее работы требуется некоторое количество энергии.


6 — Генератор атмосферной энергии

Наша атмосфера полна этой потенциальной электрической энергии, ожидающей использования. Но вот в чем проблема: как использовать эту энергию для использования и потребления?

Можно генерировать небольшие количества «бесплатной» энергии, но ничего из того, что я знаю, не было изобретено для этого в больших масштабах . Однако это источник энергии, за которым нужно следить, потому что в нашем современном мире постоянно создаются и разрабатываются новые изобретения.


7 — Солнечная энергия

Все знают о солнечной энергии, и на самом деле многие дома полностью или частично питаются от солнечной энергии.

Сейчас солнечные лучи свободны, но собирать их и преобразовывать в полезную энергию — нет.

Тем не менее, вы можете значительно сократить расходы на установку солнечной системы, если поймете, как она работает и как построить свою собственную солнечную энергетическую систему своими руками.


Если вы хотите правильно настроить систему для самостоятельной работы с солнечной энергией, , посмотрите The Backyard Revolution.

  • Неважно , если у вас нет денег, чтобы потратить на нелепую готовую систему стоимостью 20 тысяч долларов.
  • не имеет значения, если у вас нет времени или терпения, чтобы пройти через испытания и ошибки.
  • Неважно , если вы никогда раньше ничего не строили ( даже стул IKEA )

Это просто, легко и дешево — возможно, это лучший генератор DIY на рынке сегодня!

Щелкните здесь, чтобы узнать больше

8 — Генератор биогаза

Общая идея генератора биогаза довольно проста.Вам просто нужен источник органических отходов, таких как сельскохозяйственных отходов , навоза , городских отходов , растительного материала, сточных вод , зеленых отходов, или пищевых отходов . Затем вы берете эти органические отходы и помещаете их в большой контейнер или резервуар, называемый варочным котлом.

В варочный котел вы заполняете его органическим материалом и водой в определенном соотношении.

При разложении органических отходов выделяется тепло и газ.

Этот биогаз может затем приводить в действие генератор , который затем преобразует дешевый ( часто бесплатный ) биогаз «отходы» в электричество.


Если это похоже на установку, которую вы хотите построить, попробуйте Liberty Generator.

Электричество своими руками для выживания

Очевидно, что электричество облегчает жизнь. Качество человеческой жизни во всем мире резко возросло, когда она стала общим ресурсом.

Но для иллюстративных целей вот краткий список приложений электричества для выживания:

Тепло —

Во-первых, наиболее важным использованием электричества для выживания является способность генерировать тепло.Особенно в зимние месяцы и в более прохладных регионах.

Наличие метода быстрого и эффективного обогрева вашего убежища меняет правила игры.

Кулинария —

Благодаря электричеству вам не придется разжигать огонь каждый раз, когда вы хотите готовить. Также не нужно держать под рукой большой запас сухих дров (, хотя я очень рекомендую ).

Но жизнь легче, если использовать конфорки, электрические сковороды, тостеры или мультиварки. Все это значительно упрощает приготовление еды.

Это еще более важно, чтобы уметь готовить пищу в критической ситуации.

Освещение —

Аварийные свечи и газовые фонари вызывают ностальгию и работают в более короткие сроки. Но все мы знаем, что это не самый эффективный или самый действенный способ осветить комнату.

Современные светодиодные электрические лампы потребляют очень мало энергии и служат очень долго. Есть также много вариантов перезаряжаемых фонарей, фонариков и ламп.Это эффективно и безопасно для окружающей среды.

Развлечения —

Хотите верьте, хотите нет, но развлечения могут быть столь же ценным средством выживания, как и свежие продукты, потому что они сохраняют ваше здравомыслие, что бесценно в ситуации выживания. Черт возьми, здравомыслие — ценный ресурс в любой ситуации.

Зарядка мобильного телефона или небольшого радиоприемника может превратить неприятные обстоятельства в более терпимые.

Конечно, библиотека книг о выживании и игральных карт на выживание также является развлечением без использования электричества.

Пленка / фотография —

Камеры и оборудование для съемки используют электричество и для работы требуются батареи. Поэтому, если вам нужно дождаться выстрела, вам, возможно, придется использовать небольшой самодельный генератор энергии для зарядки и питания вашего оборудования.

Torturing Your Enemies —

Вы смотрели фильм Taken? Ну, в нем Лиам Нисон использует автомобильный аккумулятор, чтобы пытать и допросить похитителей своей дочери. Это довольно жестоко — , но, черт возьми, свою работу он выполняет.

В любом случае, если вам нужна форма «расширенного допроса», электричество ее предлагает.

В качестве способа познакомить вас с навыками выживания, мы раздаем наш # 78 Item Complete Prepper Checklist. Нажмите здесь, чтобы получить БЕСПЛАТНУЮ копию .

Последнее слово

Электричество — один из самых эффективных инструментов выживания, когда-либо использовавшихся человеком. Это облегчает жизнь на Земле. Мы используем его для достижения бесконечного числа целей.

И что самое приятное, энергия повсюду — она ​​ждет вас и ваших генераторов DIY.

Извлеките его из ветра или воды, используйте свою физическую силу или перенесите ее из другого источника энергии.

Если вы поймете концепцию сбора энергии, вы далеко пойдете. Если вы запомните эти принципы, у вас будет возможность построить генератор с нуля практически в любом месте.

Теперь это уверенность в своих силах.

В качестве способа познакомить вас с навыками выживания, мы раздаем наш # 78 Item Complete Prepper Checklist. Нажмите здесь, чтобы получить БЕСПЛАТНУЮ копию .

Помни: готовься, адаптируйся и побеждай,

«На всякий случай» Джек

P.s. Вы знаете, где ближайший ядерный бункер от вашего дома?

В США много природных ядерных убежищ, которые абсолютно бесплатны. И один из них находится рядом с вашим домом.

Щелкните здесь, чтобы увидеть ближайший к вашему дому природный ядерный бункер?

Нажмите на изображение выше, чтобы узнать, где вам нужно укрыться.

Связанные

Инфраструктурный план Байдена сделает электричество безуглеродным к 2035 году

Основой плана президента Байдена по использованию расходов на инфраструктуру для продвижения климатической политики является стандарт чистой электроэнергии для энергетического сектора, который потенциально может стать самый агрессивный из когда-либо принятых федеральным правительством.

Согласно информационному бюллетеню, опубликованному вчера Белым домом, в его предложении по инфраструктуре на 2,3 триллиона заложена цель «добиться к 2035 году 100-процентного безуглеродного производства электроэнергии».

«Если мы будем действовать сейчас, через 50 лет люди будут оглядываться назад и говорить:« Это был момент, когда Америка выиграла будущее », — сказал Байден во время распространения предложения в Питтсбурге.

Хотя подробности о том, как будет введен в действие «стандарт энергоэффективности и чистой электроэнергии», расплывчаты, он остается — как минимум — важной символической вехой в стремлении США сократить выбросы парниковых газов.

И в лучшем случае это могла бы быть мера преобразования, которая ослабит U.S. зависимость от ископаемого топлива менее чем за 15 лет. Соединенные Штаты в настоящее время используют около 40% чистой энергии в сети.

Разница зависит от того, является ли цель 2035 года обязательной или просто желательной. Конгресс будет играть большую роль в определении того, сколько власти стоит за ним.

«Это действительно станет основой для декарбонизации энергетического сектора», — сказала Линдси Уолтер, заместитель директора программы «Климат и энергия Третьего пути».

Предыдущие версии стандарта чистой энергии ставили цель добиться к 2050 году 100% безуглеродной энергии, поэтому Байден значительно продвигает сроки, сказала она.

Белый дом вчера опубликовал несколько подробностей о том, как он планирует внедрить стандарт чистой энергии — упущение, по словам Уолтера, возможно, было преднамеренным из-за грядущих политических препятствий.

Контуры политики, добавила она, вероятно, будут зависеть от того, сможет ли Байден привлечь республиканцев к своей работе или ему нужно протолкнуть законопроект через Конгресс, используя процесс согласования бюджета.

Еще одно потенциальное препятствие: разногласия среди демократов в Конгрессе.Учитывая тонкое, как бритва, большинство в Палате представителей и Сенате демократов, они могут позволить себе потерять лишь горстку голосов.

Если, однако, Байдену удастся донести эту идею до Конгресса, он будет иметь право вводить стандарты, которые ускорят закрытие угольных и газовых электростанций.

Тридцать штатов и округ Колумбия имеют некоторую версию стандарта чистой энергии, но предложение Байдена указывает на радикальный сдвиг для федерального правительства, который приведет к появлению гораздо большего количества солнечных, ветряных и других возобновляемых источников энергии.

Для этого федеральное правительство также должно было бы инвестировать сотни миллиардов долларов в инфраструктуру, необходимую для строительства, например, в линии электропередачи.

На данный момент ключевые игроки в электроэнергетическом секторе, похоже, готовы поддержать план, хотя в ближайшие месяцы определится, сохранится ли эта поддержка.

«Для достижения 100% чистой энергии в будущем потребуются новые безуглеродные технологии, работающие круглосуточно и без выходных, которые доступны по цене для клиентов», — сказал в своем заявлении президент Edison Electric Institute Том Кун.«Мы аплодируем Администрации за поддержку увеличения финансирования исследований и разработок этих технологий, а также за признание того, что, в конечном итоге, технология приведет к достижению 100% чистой энергии в будущем».

Одним из способов поддержки обеих партий могла бы стать программа скидок и сборов для коммунальных предприятий за наращивание мощностей по производству чистой энергии, сказал Уолтер.

Чтобы стимулировать развитие зеленой сети, коммунальным предприятиям будут предоставляться скидки на расходы на добавление солнечной, ветровой и других безуглеродных или энергоэффективных ресурсов, сказала она.В то же время коммунальные предприятия, не соблюдающие контрольные показатели, будут подвергаться начислению платы за слишком медленную работу.

Стандарт чистой электроэнергии позволит Соединенным Штатам достичь 80% чистой энергии в сети к 2030 году, сказала Лия Стоукс, эксперт по климатической политике из Калифорнийского университета в Санта-Барбаре.

В настоящее время Соединенные Штаты ежегодно добавляют в сеть около 2 процентных пунктов чистой энергии. По ее словам, новый стандарт — в сочетании с сотнями миллиардов долларов, предлагаемых для построения сети — будет прибавлять около 5 процентных пунктов в год.По ее словам, это также немедленно поможет сократить выбросы в других углеродоемких секторах экономики.

«Поскольку федеральное правительство оказывает финансовую поддержку отрасли и налогоплательщикам, это то, что мы можем сделать в необходимых темпах и в необходимых масштабах», — сказала она. «Когда у нас будет эта чистая энергия, мы сможем использовать ее для питания нашего транспортного сектора, наших зданий и частей тяжелой промышленности и ограничить выбросы до 70–80% в масштабах всей экономики».

Перепечатано из E&E News с разрешения POLITICO, LLC.Copyright 2021. E&E News предоставляет важные новости для профессионалов в области энергетики и окружающей среды.

Бесплатный генератор электроэнергии от Альберта Патрика Дэвида :: SSRN

15 стр.

Добавлено: 26 ноя 2019

Дата написания: 18 мая 2017 г.

Абстрактные

Исследование по поиску возобновляемых источников энергии в настоящее время является серьезной проблемой во всем мире как замена высокому спросу на ископаемое топливо.Большая часть вырабатываемого электричества использует закон Фарадея, электромагнитную индукцию. Этот закон привел к появлению новых технологий, которые даже породили неправильное представление о бесплатной энергии. Энергия становится бесплатной только в том случае, если нам не нужно платить за ее производство; поэтому мы прибегаем к обильным источникам энергии, которые можем преобразовать в электричество. Исследователь использовал ветер для выработки энергии. Он будет постоянно проходить мимо лопастей вентилятора, заставляя его вращаться. Генератор монтируется в транспортном средстве, открывая лопасти турбулентному ветру, вращая вал для выработки энергии, а затем извлекается и хранится в батарее.Этот процесс также демонстрирует преобразование кинетической энергии ветра в механическую энергию. Результаты для различных настроек сравниваются, чтобы определить лучший сценарий, который будет генерировать полезное количество энергии, и внести изменения в конструкцию прототипа для удовлетворения потребностей конечных пользователей. Вырабатываемая энергия может использоваться во многих приложениях, таких как питание и зарядка мобильных устройств, питание небольших светоизлучающих диодов и лампочек. В этом исследовании основное внимание уделяется конструкции генератора и оценке устройства для определения его возможных приложений и будущих усовершенствований.Этот прототип может повлиять и привлечь будущих исследователей к дальнейшей работе над исследованиями бесплатной или возобновляемой энергии.

Ключевые слова: электромагнитная индукция, энергия ветра, электричество, возобновляемые источники энергии

Рекомендуемое цитирование:
Предлагаемая ссылка


Лучистые бетонные полы из PEX (плита на уровне грунта)

Для бетонных полов (плита на уровне пола) трубка Radiant PEX прикрепляется к арматурной сетке с помощью кабельных стяжек перед заливкой плиты. Этот тип системы обогрева полов из PEX имеет большую массу.

С этим типом лучистого теплого пола пространство может быть изменено только лучистым полом примерно на 1/2 градуса в час.Обычно температура воды, используемая в водопроводе Pex для этого типа лучистого пола, составляет от 90 ° до 115 ° по Фаренгейту. Ни в коем случае не допускайте, чтобы температура поверхности любого излучающего пола из PEX была ниже 85 °, иначе он станет неудобным и небезопасным.

Продукты лучистого отопления для бетона — нажмите здесь

PEX в тонкой плите поверх деревянного каркаса

Проще в новом строительстве, но вы можете установить этот тип излучающего пола в качестве модернизации. Излучающая труба PEX устанавливается поверх каркасных полов и покрывается бетоном или легким бетоном.Нам больше всего нравится этот тип лучистого теплого пола Pex. Наша система теплого пола проста в установке и обеспечивает очень равномерный нагрев. Излучающие полы из тонких плит PEX имеют гораздо более быстрое время отклика. С этим типом излучающего пола обогреваемое пространство можно заменить за счет излучающего пола со скоростью 2 градуса в час. Тонкоплитные лучистые полы имеют множество вариантов напольного покрытия. (плитка, мореный бетон, дерево на шпале, ковролин и т. д.). Обычно температура воды, используемая в этом типе лучистого пола — водопроводная линия Pex находится между 90 ° и 125 ° по Фаренгейту.Небольшое примечание: при установке этого типа лучистого напольного отопления Pex необходимо обеспечить разрыв между бетоном и деревянной основой, чтобы бетон и деревянный пол могли расширяться и сжиматься с определенной скоростью. Мы рекомендуем использовать 6 мил. листовой пластик.

Подпольные системы из PEX с теплообменными пластинами

В типичном проекте реконструкции излучающая трубка PEX защелкивается на излучающих теплообменных пластинах, которые излучают тепло на этаж выше.Пластины излучающего тепла, как правило, создают на полу над собой теплые и более теплые места. Все еще очень удобно. Установка PEX под полы имеет свои недостатки. PEX при нагревании расширяется на 1,1 дюйма на дюйм. 10 футов при повышении температуры на 100 °. Обычно температура для этого типа установки составляет от 120 ° до 145 ° по Фаренгейту. При неправильной установке этот излучающий пол из PEX может быть довольно шумным или из-за неправильного типа передаточных пластин для системы теплого пола Pex.

Пластины для переноса лучистого нагрева и тепловая масса — нажмите здесь

PEX Radiant Tubing Under Floor

В типичном проекте реконструкции излучающая трубка из PEX подвешивается с помощью вешалок ниже уровня пола примерно на 1 дюйм.Это позволяет излучающей трубке PEX немного скользить и немного провисать при расширении, создавая тихий пол. Горячая вода, протекающая через трубки системы обогрева полов PEX, нагревает воздух, который нагревает пол над полом. Требуется изоляция с отражающей поверхностью, установленной лицевой стороной вверх, оставляя от 3 до 4 дюймов воздушного пространства до дна пола. Сияющее тепло PEX от этой напольной системы очень равномерное. Воздух в этом пространстве должен быть застоявшимся, что означает, что все проходы должны быть прокалены, а перекрытия пола также должны быть там, где они встречаются с ленточными балками.Обычно температура для этого типа установки PEX составляет 120 град. и 165 град. Фаренгейт. Мы знаем о многих домах, построенных по этому методу, как новых, так и существующих. В Вермонте, где трубки были подвешены на 16 дюймов по центру, а температура воды от 125 до 180 градусов на выходе из бойлера или с помощью смесительного клапана. Это позволяет держать дома на удобном расстоянии, эффективно и без шума. В более теплом климате вы можете работать с более прохладной температурой, но все это зависит от теплопотерь вашего дома и других факторов.

Продукция лучистого отопления для подпольных систем — Нажмите здесь

Pexheat предлагает PEX Tubing для использования в системах водяного отопления и водопровода.Просмотрите наш каталог трубок.

Почему трубки PEX

Трубка

PEX отлично подходит для систем распределения питьевой воды, но с момента появления на рынке она произвела революцию в системе теплых полов. PEX изготовлен из сшитого (стабилизированного) полимера полиэтилена высокой плотности (HDPE). Или широко известный как PEX. HDPE плавится и непрерывно экструдируется в трубу. Трубки PEX гибкие, устойчивы к накипи и хлору, не вызывают коррозии и не образуют точечных отверстий, их быстрее устанавливают, чем металлические или жесткие пластмассовые, и в них меньше соединений и фитингов.Все трубки PEX Tubing , продаваемые на Pexheat.com, перед отправкой проходят тщательные испытания. Некоторые из наших производителей также предоставляют гарантии «замены», если продукт выйдет из строя после установки. Вы можете чувствовать себя уверенно, используя трубку PEX в вашем следующем теплом полу или установке бытовой системы водоснабжения.

Трубки PEX для теплого пола

Теплый пол использовался веками. Однако причиной сокращения использования лучистого теплого пола в домах и других жилых помещениях в 1900-х годах было то, что многие системы теплого пола были установлены с использованием медных или стальных труб.Эти системы теплого пола вышли из строя из-за усталости металла или химической несовместимости с бетоном. Утечки часто было трудно или невозможно было найти и исправить. Однако трубки PEX все изменили. В 60-е годы европейские исследователи открыли новый полимерный материал, названный сшитым полиэтиленом, или сокращенно PEX. Ничто не сравнится с комфортом и теплом системы лучистого отопления в вашем доме, а системы водяного теплого пола с использованием трубок являются наиболее доступными и простыми в установке.Системы излучающего пола PEX нагревают комнату, пропуская горячую воду через трубы PEX, которые устанавливаются в бетонной плите, прикрепляются под полом или устанавливаются в шпалах над полом. Лучистое тепло PEX Tubing создается в соответствии с высокими стандартами ASTM и обычно в 2–3 раза превышает номинальные значения температуры / разрывного давления ASTM, указанные на трубке, и способны выдерживать значительные температурные изменения, необходимые для системы напольного отопления.

Трубки PEX: преимущества и применение

Трубки

PEX очень просты в установке и очень рентабельны.Он дешевле, чем обычная медная сантехника, и имеет исключительный послужной список, когда речь идет о производительности и долговечности. Труба PEX имеет значительные преимущества перед обычными металлическими трубами, такими как медные, железные или свинцовые. Он также может заменить системы труб из жесткого пластика. Он получил очень положительные отзывы от архитектурных и строительных групп с момента его запуска и быстро завоевал признание строителей. В настоящее время это одна из наиболее часто используемых отопительных труб в отрасли.Все клиенты более чем довольны производительностью и долговечностью труб из PEX для систем теплого пола, а также для бытовых систем водопровода.

Трубки PEX: экономичные решения

Трубы

PEX дешевле, чем другие материалы, используемые для теплого пола. Например, цены на металлы всегда высоки и растут с каждым днем. С другой стороны, трубы из PEX являются экономически выгодными, так как время установки сравнительно меньше.

Благодаря отличному сочетанию превосходных продуктов PEX Tubing и отличного обслуживания, Pexheat является одной из известных компаний в отрасли теплых полов.

Трубы Pex для бытового водоснабжения

Труба Pex в плите

Трубка Pex с пластинами

Подвесные трубки Pex

со шпалами

Бесплатный запрос оценки

Характеристики

Значение

Глубина профиля

60 мм

Камерность

3

Уплотнитель

2-х контурный

Стеклопакет

До 32 мм

Шумоизоляция

42 дБ

Сопротивление теплопередаче

0,64

Противовзломная система

2-й категории

Характеристики

Значение

Монтажная глубина профиля

76 мм

Камерность

5

Уплотнение

2-х контурное

Стеклопакет

До 48 мм

Сопротивление теплопотерям

0,77

Шумоизоляция

46 дБ

Противовзломная система

2-й категории

Характеристики

Значение

Монтажная глубина

92 мм

Камерность

6

Уплотнение

2 фальцевых и 1 центральный контур уплотнения

Стеклопакет

До 60

Теплоизоляция

1,25

Шумоизоляция

47 дБ

Характеристики

Значение

Монтажная глубина

76 мм

Камерность

5

Стекломакет

До 48 мм

Теплоизоляция

0,77 мм

Шумоизоляция

47 дБ

Уплотнение

3-х контурное

Эксплуатационный срок

45 лет





 




К элитным окнам, предлагаемым компанией «Эсток», относятся также современные профили от известного концерна
Salamander Design 3D. Эти изделия ещё в 1998 году
открыли новую тенденцию, которая впоследствии стала поддерживаться большинством представителей оконной промышленности. Это первые пятикамерные системы
с округлым внешним профилем и монтажной шириной 76 мм.

 



При этом высота рамы составляет 80 мм, а перекрытие притвора — 7 и 8 мм, соответственно. Кроме того, стоит отметить тройной
упорный контур уплотнения, изготовленный из погодоустойчивого каучука EPDM. Здесь есть возможность монтажа стеклопакетов толщиной до 48 мм.
Высокая прочность сварных швов обеспечена 3мм-я толщиной наружных стенок.

Окна Salamander
«Design 3D» имеют повышенную стойкость к ударам даже при
достаточно низкой температуре (до -30°С).

При этом рама и створки армируются одинаково.


Всё это добавляет популярности этим профилям у отечественных заказчиков.



 




На сегодняшний день оконный профиль «Дизайн 3Д» остаётся уникальным.

Благодаря своему внешнему виду и функциональным возможностям, отличному сочетанию цены и качества, такие окна достаточно популярны среди многих наших клиентов.



 


Элитные пластиковые окна Саламандер
(Salamander) — уникальное для рынка сочетание высокого качества и
немалой цены элитного пластикового окна ПВХ. Именно поэтому элитные пластиковые окна Саламандер
(Salamander) практически являются монополистом в сегменте элитных
пластиковых окон ПВХ
и пользуются большим спросом, несмотря на высокие цены.

Эти окна весьма респектабельны и являют собой великолепный образец элитного пластикового окна на российском рынке.

Элитные пластиковые окна Саламандер (
Salamander) отличают элегантный дизайн, мягкие линии контуров профиля, округлённых
с традиционным для профилей Саламандер
радиусом 5 мм, надёжность крепления элементов фурнитуры, а главное — идеально ровная глянцевая
поверхность пластикового профиля ослепительной белизны
.

 


В наше время окон ПВХ предлагается просто огромное количество. Начиная от бюджетных и средних вариантов и заканчивая элитными моделями.
На данный момент уверенное лидерство на рынке элитных пластиковых окон удерживают пластиковые окна
Salamander 3D, а также окна
Salamander BluEvolution. Эти элитные окна прочно
заняли свою нишу и всё завоёвывают всё большую популярность не только среди элитных окон в Москве, но и в других городах России и за рубежом.

Элитные окна Salamander 3D
— это, прежде всего, немецкое качество. Вспоминая рекламу автомобиля марки
Volkswagen и краткий, но очень меткий слоган
этой компании — “Das Auto”, мы так же можем с уверенностью сказать, что окна
Salamander 3D
можно описать фразой “Dieses Fenster” — Это Окно! Именно так,
с большой буквы, ибо окна Саламандер 3Д — это Окна с большой буквы!

Хотите узнать почему — читайте дальше и всё поймёте.

Окна Премиум класса Саламандер 3D — это утончённый стиль, надёжная защита, шикарный дизайн и современная дань моде!
 


Элитные пластиковые окна
Salamander Design 3D

обладают отменными характеристиками и показателями:


  • Монтажная ширина 76 мм,


  • максимальная толщина остекления равна 48 мм,


  • сопротивление теплопередаче составляет R = 0,79 м2x°C/Вт.


 


Элитные пластиковые окна

Саламандер 3D


состоят из пяти камер в раме и
четырёх камер в створке. С такими окнами Премиум класса Вашему дому не страшен будет никакой ливень, так как эти окна обладают водосбором наклонной
плоскости
, что позволяет быстро удалять воду и конденсат из фальца.

Окна Премиум Саламандер 3Д превосходно переносят удары без повреждений даже при минус 30 градусах. Окна


Премиум Саламандер 3Д состоят из трёх контуров упорного уплотнения, что очень
благоприятно сказывается на звукоизолирующих характеристиках профиля (шумоизоляция от 40 до 47 дБ) и в Вашем офисе или доме никогда не будет лишних звуков
с улицы.

Естественно, элитные ПВХ-окна

Salamander 3D

изготавливаются в различных цветовых гаммах в зависимости от пожеланий клиентов. Профиль

Salamander Design 3D отлично подходит для установки
на высоком этаже, где имеются повышенные ветровые нагрузки на окно. Незаменим этот профиль и в том случае, если окна ПВХ выходят на шумную улицу или имеются
повышенные требования к теплоизоляции. Стоимость профиля

Design 3D

достаточно высока, но она с лихвой окупается отличным качеством и продолжительным сроком
службы пластикового окна.


 


Дополнительная информация о
профилях Salamander

 

Основные преимущества окон Саламандер 3d:


 

  • Стильный и в тоже время строгий дизайн,

  • Хороший показатель ширины рамы, до
    76 мм,

  • Отменные показатели звукоизолирующих характеристик,

  • Богатый выбор цветовых решений,

  • Наличие водосбора наклонной плоскости,

  • Коэффициент сопротивления теплопередаче —
    0, 77 м2x°C/Вт (с армированием).






Вам с удовольствием помогут с выбором, монтажом и бесплатной доставкой элитных окон

Саламандер 3D


в компании «Эсток»!



 




Преимущества системы Salamander 3D (Саламандер 3Д)

 

  • Идеальная округлость форм рамы, створки и штапика

  • Трёхконтурное уплотнение

  • Пятикамерная система с монтажной шириной профиля
    76 мм

  • Максимальная теплозащита и шумоизоляция
    от 40 до 47 дБ

  • Богатство цветовой гаммы

  • Рама
    110 220 и створка 211 220

  • Монтажная ширина
    76 мм

  • Толщина стеклопакета
    до 48 мм

  • Звукоизоляция
    47 дБ

  • Сопротивление теплопередаче
    0. 77°Kxм2/Вт

  • Срок эксплуатации
    более 45 лет

Отвод воды и вентиляция фальца створки осуществляются через изолированную полость в раме, благодаря чему основная часть фальца рамы защищена от воздействия
наружного воздуха — повышается срок службы фурнитуры, установленной в створке, и повышается общее сопротивление теплопередаче всей системы.


 




Три контура упорного уплотнения существенно увеличивают звукоизолирующие характеристики окон.

 



Три твёрдых довода в пользу трёхконтурной системы уплотнения

 


В окнах Саламандер 3Д три замкнутых контура уплотнения




Казалось бы, пустяк, если бы не много разных «НО»…

ПЕРВОЕ

Предназначение уплотнителей — уплотнять притвор между рамой и створкой в закрытом состоянии. Логично предположить, что чем их больше, тем меньше вероятность доступа
холодного воздуха с улицы в помещение, а следовательно, теплее. Примем за 100% — максимально возможное уплотнение притвора у окон с тремя контурами уплотнениями
(больше трёх всё равно не бывает). Отсюда следует, что уплотнение притвора у окон с двумя уплотнителями составит 66,66% от максимально возможного.

«Ну и что из этого?» — скажете Вы.

А именно из этого следуют ВТОРОЕ и ТРЕТЬЕ «НО»



Слабое место в притворе у ПВХ окон в районе крепления верхней петли створки, но не у окон Salamander 3D



ВТОРОЕ

Если Вы внимательно посмотрите на крепление верхней петли створки на ваших ПВХ окнах, то обнаружите, что уплотнитель створки в этой части закрыт той самой металлической
петлёй, и в этом месте он не выполняет своей функции, т. е. это минус 1/3 часть уплотнения. Хорошо, если Вы выбрали окна Salamander 3D
и у Вас есть в запасе ещё два рабочих контура уплотнения, а представьте: зима, на улице февраль, за окном -25°C, А У ВАС
ОКНА ВСЕГО С ДВУМЯ УПЛОТНИТЕЛЯМИ

ТРЕТЬЕ

Обычная ситуация. Зима, солнечное утро или день, за окном те же минус 15-20 по Цельсию; Вы решили, как всегда,
проветрить комнату и приоткрыли окно (не важно, в каком положении).

Напомним, что день солнечный. Снег, который лежал на внешнем уплотнителе, подтаял, но вода не испарилась, как это бывает летом, а осталась на уплотнителе,
т. к. на улице зима. Вечером, а это может случиться и днём, обычно подмораживает, и Вы решили закрыть окно. Закрыть-то Вы его закрыли, но из-за наледи, образовавшейся
на уплотнителе от подтаявшего снега, теперь может не быть хорошего уплотнения, т. е. опять минус один уплотнитель…

Не хотелось бы повторяться, но хорошо, если Вы выбрали окна Salamander 3D и у Вас есть в запасе ещё два рабочих контура уплотнения, —
а представьте: зима, на улице февраль, за окном -25°C, а у Ваших окон
ВСЕГО ДВА КОНТУРА УПЛОТНЕНИЯ, один из которых БЕСПОЛЕЗЕН

Так, например, профили системы Саламандер 3Д в 1998 году стали родоначальником тенденции, которой последовала вся отрасль.

Эта пятикамерная система благодаря округлым внешним контурам, монтажной ширине 76 мм, тройному контуру упорного уплотнения и возможности установки стеклопакета
толщиной до 48 мм до сих пор остается непревзойденной, как по внешнему виду, белизне и глянцу поверхности, так и по соотношению своих характеристик
цены и качества.


Использованы материалы сайта http://www.kakieokna.ru




 

Окна ПВХ Salamander Streamline

 

Salamander Streamline
это совершенно новая пятикамерная профильная система.


 


Данная система — концентрированное выражение опыта конструкторов и технологов фирмы, а также почти вековых традиций торговой марки Salamander.


 




Пятикамерная система Salamander Streamline увеличенной монтажной ширины 76 мм обладает улучшенными показателями теплозащиты и шумоизоляции.

Приведённое сопротивление теплопередаче составляет R = 0,77 м2°C/Вт (с армированием). Таким образом, компания
SALAMANDER вновь делает доступными широкому сегменту рынка
высокие стандарты оконной индустрии.

Неповторимый внешний дизайн системы Стримлайн как и прежде гарантируют мягкие линии контуров профиля, которые округлены с традиционным для
Саламандер радиусом в 5 мм.
Наряду с уже понравившимся покупателям внешним дизайном этой торговой марки, система
Streamline сохранила и зарекомендовавшие себя технические особенности существующих систем,
а именно наплывы на внутренних стенках профиля, которые обеспечивают надежность крепления элементов фурнитуры и тем самым высокую защиту всей оконной конструкции.

Новейшая серия оконных профилей Streamline предлагает большие возможности и конструкционное разнообразие, пластиковые окна из данной системы имеют явные преимущества: улучшенные показатели по теплозащите и шумоизоляции,
максимальную устойчивость и элегантный внешний вид.


Система Streamline
— оптимальное решение для тех, кто устремлён в будущее и ценит настоящее качество и дизайн.


 



Самый тёплый профиль в мире Salamander Streamline

 




Технические характеристики системы Streamline


  • Монтажная ширина 76 мм


  • Толщина стеклопакета до 48 мм


  • Звукоизоляция 41 дБ


  • Сопротивление теплопередаче 0. 72°К*м2/Вт


  • Срок эксплуатации более 45 лет


  •  


    Тенденцию «улучшать уже проверенное» подтверждает и наличие в системе «Streamline» «лабиринта» внутренних перегородок. Благодаря данному лабиринту происходит рациональное распределение статических нагрузок
    по всему сечению профиля, особенно важно для нагрузок в области крепления ручки и петлевой группы.



    Пластиковые окна премиум-класса


    Что такое окна премиум-класса: основные отличия от окон масс-сектора



    Что такое пластиковое окно для Вас? Мы будем не слишком удивлены, если Вы представляете стандартную белую коробку с чёрным уплотнителем и двухкамерным стеклопакетом.
    Ждут от такого окна обычно самого простого — хорошей светопроницаемости и высоких теплоизоляционных характеристик. Но бывают и другие окна. И именно они называются
    окнами премиум-класса.

     


    Что такое элитные пластиковые окна?

     


    Различия не только в цене

    Окна сегмента премиум отличаются большей продуманностью деталей




    Всё, что относится к категории премиум
    , помимо более высокой стоимости, обычно ассоциируется с непревзойдённым качеством, уникальным функционалом
    и оригинальными стилистическими решениями. Может ли в таком случае пластиковое окно рассматриваться как предмет роскоши? Наш ответ — безусловно.

    При изготовлении оконных конструкций класса

    премиум
    применяется абсолютно другой подход. Повышенное внимание уделяется деталям, качеству, безопасности и эстетичности
    каждого отдельного элемента. Это не означает, что стандартные светопрозрачные конструкции являются некачественными и небезопасными. Но по сравнению с ними окна сегмента
    премиум являются эталоном, который отличают
    улучшенные характеристики.

     

     



    Параметры индивидуализации элитного остекления

     


    Какие факторы обеспечивают премиум-окнам высокое качество

    Немногие окна на российском рынке можно со стопроцентной уверенностью отнести к

    премиум-сегменту.
    Тем не менее, есть оконные компании, которые производят продукцию исключительно высокого качества.

    Секрет их успеха — в использовании лучших комплектующих, и при этом — и это самое главное — в создании собственных окон на их основе.

    Разумеется, лучшие пластиковые окна производятся на современном оборудовании и имеют сертификаты соответствия наивысшим стандартам качества.

    По сравнению с системами масс-сектора они служат на порядок дольше, сохраняя при этом самые высокие характеристики.

    Достижению этого способствует контроль каждого этапа создания окон, от выбора комплектующих до послепродажного обслуживания.

    Стильное пластиковое окно — возможно ли?

    Роскошные окна способны стать частью интерьера


    Все оконные компании, работающие в
    премиум
    сегменте, уделяют повышенное внимание стилю пластикового окна.
    Изделия из натурального дерева были и остаются самыми актуальными вариантами из всех возможных, но при этом и самыми
    дорогими. Наиболее востребованы модели, произведённые из массива дуба, твёрдого, надёжного, благородного материала, который сложен в обработке, но и в процессе
    эксплуатации характеризуется высокой устойчивостью.

     




    Сейчас слово «элитный» обесценилось. Так стали называться изделия, стоящие дорого и сделанные из роскошных материалов. Однако первоначальное значение слова
    «элитный» — это лучший, отборный, без изъянов.

     



    Сравнение окон Salamander Streamline и Salamander 3D



     


    Элитные окна от компании Эсток

     









     




    По всем вопросам заказа, доставки и монтажа звоните по нашим телефонам.
    Tel.: +7-495-589-8676, +7-925-514-6896,
    +7-925-514-6897
    или мы сами Вам перезвоним.




    Серия Толщина стеклопакета, мм Количество воздушных камер Коэффициент теплозащиты, м2С/Вт
    Rehau Blitz3230,63
    Rehau Grazio7050,85
    Rehau Delight-Design7050,8
    Rehau Brillant-Design7050,79
    Rehau Intelio6801,02
    Rehau Geneo6521,05
    Salamander Design 2D3230,67
    Salamander Streamline485 (7)0,91
    Salamander Design 3D4850,77
    Salamander BluEvolution 825261,09
    Salamander BluEvolution 926061,25














    Рабочий диапазон10 м*
    Точность выравнивания± 0,5 мм/м
    Диапазон выравнивания±5°
    Построение наклонных плоскостей
    Рабочая температура+5°C…+35°C
    Температура хранения-20°C…+70°C
    Тип лазера650 нм, <1 мвт, класс II
    Тип резьбы для установки на штатив1/4»
    Элемент питания2×1,5B, щелочные LR6 (AAA)
    Вес175 г
    Габаритные размеры65*57*67 мм


    Цена:

    5 долларов. 95

    +

    Без залога за импорт и $ 19,35 за доставку в Российскую Федерацию

    Подробности

    Пятижильный кабель ВВГнг

    Как мы уже определились выше, проводники нашего кабеля выполнены из меди. Количество жил кабеля может быть от одного до пяти.

    В маркировке первым числом указывается количество жил, а вторым — сечение этих жил. Например, ВВГнг 3х1,5 обозначает, что кабель имеет три жилы с сечением в 1,5 мм2 каждая.

    Одно- и многопроволочный кабель

    Каждая отдельная жила может быть выполнена из одной проволоки соответствующего сечения, или из нескольких проволок скрученных соответствующим образом.

    Это можно узнать так же из обозначения кабеля. «о» обозначаются кабели в которых каждая жила выполнена из одной проволоки. Маркировку «м» соответственно имеют многожильные изделия.

    Структурная форма жил кабеля ВВГнг

    Понятное дело, что одножильную структуру имеют кабели с небольшим номинальным сечением. А вот многожильные кабели имеют еще одно отличие.

    Каждая отдельная жила может иметь не только круглую форму, не очень удобную при больших сечениях, но и так называемую секторальную, или, как ее еще называют, сегментную форму. В этом случае, каждая отдельная жила имеет форму части сектора круга.

    Кабели ВВГ с круглым и секторным расположением жил

    Кабели, имеющие обычную круглую форму, обозначаются символом «к». Проводники с сегментным расположением жил имеют обозначение «с».

    Плоский кабель ВВГнг

    Но, как вы можете видеть на видео, существуют еще и плоские кабели ВВГ. Это когда все жилы уложены вдоль одной плоскости. Такая форма обычно используется для небольших по сечению кабелей.

    Сечение кабелей ВВГ

    Мы говорим и говорим о сечении, но так и не обозначили его номиналы. Для кабеля ВВГ номинальный ряд начинается с 1,5 мм2 и до 50 мм2. При этом, иногда можно встретить изделия с номиналом до 400 мм2, но такие кабели обычно выпускают по спецзаказу.

    Номиналы сечений рабочих, нулевых и заземляющих жил кабеля ВВГ

    И тут следует уточнить, что если номинал кабеля, допустим, 4 мм2, это не обозначает, что все жилы имеют данное сечение. В качестве примера давайте возьмем пятижильный проводник данного сечения.

    Согласно нормам ПУЭ, нулевой проводник и проводник заземления могут иметь меньшее сечение, из-за чего цена на кабель может быть ниже. И в нашем случае, они могут быть 2,5 мм2 каждый.

    Основные жилы1,52,5461016253550
    Нулевая жила1,51,52,54610161625
    Жила заземления1,01,52,52,546101616

    Напряжение кабеля, квНоминальное сечение жил, ммНоминальная толщина изоляции, ммМинимальная толщина изоляции,мм
    0,661 — 2,50,60,44
    4 и 60,70,53
    10 и 160,90,71
    25 и 351,10,89
    501,07
    1-2,50,80,621,3
    4-161,00,8
    25 и 351,20,98
    501,41,16

    Диаметр под оболочкой, ммНоминальная толщина изоляции, ммМинимальная толщина изоляции,мм
    До 61,20,92
    6 – 151,51,18
    15 – 201,71,35
    20 – 301,91,52
    30 – 402,11,69

    Номинальное сечение жил, мм2Допустимый ток нагрузки, А
    С двумя основными жиламиС тремя основными жиламиС четырьмя основными жилами
    1,5242119
    2,5332826
    4443734
    6564945
    10766661
    161018781
    25134115107
    35166141131
    50208177165

    Номинальное сечение,мм 21,52,5461016253550
    Сопротивление жилы, Ом/км12,17,414,613,081,831,150,7270,5240,387

    Сечение кабеляЗначение наружного размера для целей упаковки и транспортировки, ммЗначение массы для целей упаковки и транспортировки, кг/км
    Плоские кабели(а х в)
    2х1,55 х 7,570
    2х2,55,5 х 890
    2х46 х 9,5140
    2х67 х 10,5180
    3х1,55 х 9,595
    3х2,55,5 х 11135
    3х46 х 13200
    Кабели со скрученными жиламиДиаметр
    3х1,5890
    3х2,59,5135
    3х411200
    3х612260
    3х1014,5410
    3х1617590
    3х2520,5810
    3х35231300
    3х50271700
    3х4+1х2,512230
    3х6+1х414310
    3х10+1х616480
    3х16+1х1019650
    4х1,58,5110
    4х2,510170
    4х412240
    4х613320
    4х1016510
    4х1619750
    4х25231150
    4х35261550
    4х50312200
    5х1,59,5135
    5х2,511205
    5х413300
    5х614405
    5х1017,5630
    5х1621950
    5х25261450
    5х35291900
    5х50352700

    Сечение токопроводящей жилы, мм2Для проводов, проложенных
    открытов одной трубе
    двух одножильныхтрех одножильныхчетырех одножильныходного двухжильногоодного трехжильного
    0,511
    0,7515
    1171615141514
    1,5231917161815
    2,5302725252521
    4413835303227
    6504642404034
    10807060505550
    161008580758070
    251401151009010085
    35170135125115125100
    50215185170150160135
    70270225210185195175
    95330275255225245215
    120385315290260295250

    Число жил ВВГ, мм2Число жил ВВГнг, мм2Диаметр, ммМасса кг/км
    1х1,51х1,55,039,0
    1х2,51х2,55,450,0
    1х41х46,070,0
    1х61х66,591,0
    1х101х107,8140,0
    1х161х169,9224,0
    1х251х2511,0321,0
    1х351х3512,0418,0
    1х501х5013,5550,0
    1х701х7015,2765
    1х951х9517,31028
    1х1201х12019,21279
    1х1501х15022,21595
    1х1851х18524,71993
    1х2401х24027,72573
    1х3001х30031,03218
    2х1,52х1,57,160,0
    2х2,52х2,57,981,0
    2х42х49,8136,0
    2х62х610,8178,0
    2х102х1013,2272,0
    3х1,53х1,57,589,0
    3х2,53х2,58,9121,0
    3х43х410,3174,0
    3х63х611,4236,0
    3х103х1014,0373,0
    3х163х1615,8564,0
    3х253х2519,5876,0
    3х353х3521,61159,0
    3х503х5025,21556,0
    4х1,54х1,58,1106,0
    4х2,54х2,59,6160,0
    4х44х411,2233,0
    4х64х612,4316,0
    4х104х1015,3499,0
    4х164х1617,4731,0
    4х254х2521,51138,0
    4х354х3524,31534,0
    4х504х5027,82045,0
    5х1,55х1,59,4139,0
    5х2,55х2,510,4192,0
    5х45х412,3288,0
    5х65х613,6393,0
    5х105х1016,8624,0
    5х165х1619,5939,0
    5х255х2524,11456,0
    5х355х3527,51965,0

    Наименование характеристикиЕд. изм.Значение
    ГОСТГОСТ 31996-2012
    Класс жилы по ГОСТ 22483-20121
    Код ОКП35 2122; 35 3371
    Класс пожарной опасностиО1.8.2.5.4
    Диапазон температур эксплуатации°Сот -50 до 50
    Минимальная температура монтажа°С-15
    Продолжительность эксплуатациилет30
    Напряжение сетиВдо 1000
    Частота переменного тока в сетиГц50 Гц
    Допустимое растягивающее усилиеН150
    Максимально допустимая температура нагрева жил при КЗ°С160
    Продолжительность короткого замыкания, не болеес5
    Расчетная масса (вес) кабеля, 0,66 кВкг/км143
    Расчетная масса (вес) одного метра кабеля, 0,66 кВкг/м143/1000
    Расчетная масса (вес) кабеля, 1 кВкг/км161
    Расчетная масса (вес) одного метра кабеля, 1 кВкг/м161/1000
    Допустимый радиус изгибамм106
    Допустимая токовая нагрузка при прокладке на воздухеА27
    Допустимая токовая нагрузка при прокладке в землеА36
    Допустимый ток односекундного короткого замыканияА0.27
    Объем горючей массыл/км121
    Сопротивление изоляции жилМОм/км10
    Толщина изоляции жил, 1 кВмм0. 8
    Толщина изоляции жил, 0,66 кВмм0.6
    Масса цветного металлаг/м44.5
    Максимальная мощность при прокладке в воздухе, 220 ВкВт7.92
    Максимальная мощность при прокладке в земле, 220 ВкВт10.56
    Максимальная мощность при прокладке в воздухе, 380 ВкВт17.77
    Максимальная мощность при прокладке в земле, 380 ВкВт23.69
    Температура нагрева жил по условию невозгорания°С350
    Длительно допустимая температура нагрева жил°С70
    Допустимая температура в режиме перегрузки°С90
    Электрическое сопротивление жилыОм/км7.41

    Наименование характеристикиЕд. изм.Значение
    Количество жилшт.2
    Максимальный диаметр жилымм1.9
    Наружный диаметр кабеля, 0,66кВмм9.7
    Наружный диаметр кабеля, 1 кВмм10.6
    Максимальный вескг/м0.161
    Материал жилыМедь
    Материал изоляцииПВХ
    Материал оболочкиПВХ
    Тип конструкции жилыок

    Размер кабеля Тип проводника Номинальная толщина
    ПВХ изоляции
    (мм)
    Номинальная
    Толщина ПВХ-оболочки
    (мм)
    Прибл.кабель
    общий диаметр
    (мм)
    Макс. Сопротивление постоянному току
    @ 200C (Ом / км)
    4 × 1,5 мм2 RE или RM 0,8 1,8 1 1,0 12,1
    4 × 2,5 мм2 RE или RM 0,8 1,8 1 1,9 7,41
    4 × 4 мм2 RE или RM 1.0 1,8 14,0 4,61
    4 × 6 мм2 RE или RM 1,0 1,8 15,3 3,08
    4 × 10 мм2 RM 1,0 1,8 18,4 1,83
    4 × 16 мм2 RM 1.0 1,8 20,9 1,15
    4 × 25 мм2 СМ 1,2 1,8 21,9 0,727
    4 × 35 мм2 СМ 1,2 1,8 24,1 0,524
    4 × 50 мм2 СМ 1.4 1,9 27,6 0,387
    4 × 70 мм2 СМ 1,4 2,1 31,4 0,268
    4 × 95 мм2 СМ 1,6 2,2 36,1 0,193
    4 × 120 мм2 СМ 1.6 2,3 39,3 0,153
    4 × 150 мм2 СМ 1,8 2,5 43,5 0,124
    4 × 185 мм2 СМ 2,0 2,7 48,4 0,0991
    4 × 240 мм2 СМ 2.2 2,9 54,6 0,0754
    4 × 300 мм2 СМ 2,4 3,1 60,4 0,0601

    Единица измерения

    Типоразмер кирпича

    Без учета растворных швов, шт

    С учетом растворных швов, шт

    1 м3 кладки

    одинарный

    512

    394

    утолщенный

    378

    302

    двойной

    242

    200

    1 м2 кладки в 0,5 кирпича

    одинарный

    61

    51

    утолщенный

    45

    39

    двойной

    30

    26

    1 м2 кладки в 1 кирпича

    одинарный

    128

    102

    утолщенный

    95

    78

    двойной

    60

    52

    1 м2 кладки в 1,5 кирпича

    одинарный

    189

    153

    утолщенный

    140

    117

    двойной

    90

    78

    1 м2 кладки в 2 кирпича

    одинарный

    256

    204

    утолщенный

    190

    156

    двойной

    120

    104

    1 м2 кладки в 2,5 кирпича

    одинарный

    317

    255

    утолщенный

    235

    195

    двойной

    150

    130

    Вид кирпича

    Толщина стен в кирпичах

    0,5

    (12 см)

    1

    (25 см)

    1,5

    (38 см)

    2

    (51 см)

    2,5

    (64 см)

    Обычный

    (250×120×65мм)

    Кирпич, шт.

    420

    400

    395

    394

    392

    Раствор, м3

    0,189

    0,221

    0,234

    0,240

    0,245

    Модулированный

    (250×120×88мм)

    Кирпич, шт.

    322

    308

    296

    294

    292

    Раствор, м3

    0,160

    0,200

    0,216

    0,222

    0,227

    Вид кладкиРазмер кирпичаКол-во без учета растворных швов, штКол-во с учетом растворных швов*, шт
    В 0,5 кирпичаодинарный6151
    полуторный4539
    двойной3026
    в 1 кирпичодинарный128102
    полуторный9578
    двойной6052
    в 1,5 кирпичаодинарный189153
    полуторный140117
    двойной9078
    в 2 кирпичаодинарный256204
    полуторный190156
    двойной120104
    в 2,5 кирпичаодинарный317255
    полуторный235195
    двойной150130

    Выберите толщину кладки

    1 кв.м. кладки в 0,5 кирпича (толщина кладки 12 см)

    1 кв.м. кладки в 1 кирпич (толщина кладки 25 см)

    1 кв.м. кладки в 1,5 кирпича (толщина кладки 38 см)

    1 кв.м. кладки в 2 кирпича (толщина кладки 51 см)

    1 кв.м. кладки в 2,5 кирпича (толщина кладки 64 см)

    Введите размеры дома:

    Высота (м):

    Ширина (м):

    Длина (м):

    Введите количество внешних дверей:

    Дверей (шт.):

    Введите площадь перегородок:

    Площадь (кв.м.):

    Выберите уровень остекления:

    Уровень (%):

    10%20%25%30%35%40%50%

    Выберите размер кирпича:

    Выбор кирпича:

    ОдинарныйУтолщенныйДвойной

    Приблизительное количество кирпича необходимого для дома: штук






    Старший № Детали Размер кирпича в мм. Размер кирпича в футах.
    1. Индийский размер кирпича / Стандартный размер кирпича в Индии 230 мм X 115 мм X 75 мм 9 дюймов X 4,5 дюйма x 3 дюйма
    2. Размер цементного кирпича 230 мм X 75 мм X 50 мм 9 дюймов X 3 дюйма X 2 дюйма
    3. Размер блока AAC 600 мм X 200 мм x 100 мм 24 дюйма x 8 дюймов x 4 дюйма
    4. Размер бетонного блока 600 мм X 200 мм x 100 мм 24 дюйма x 8 дюймов x 4 дюйма
    5. Размер кирпича первого класса 190 мм X 90 мм X 90 мм 7,5 дюйма X 3,5 дюйма x 3,5 дюйма
    6. Размер кирпича второго сорта 250 мм X 120 мм X 70 мм 9,75 дюйма X 4,75 дюйма X 2,75 дюйма
    7. Размер кирпича третьего класса 230 мм X 100 мм X 75 мм 9 дюймов X 4 дюйма X 3 дюйма




    ОЧНАЯ ФОРМА ОБСЛУЖИВАНИЯ

     

    ЗАОЧНАЯ ФОРМА ОБСЛУЖИВАНИЯ
    Офисы обслуживания:Телефон:
    — Центры обслуживания клиентов

    — Контакт-центр: 8-800-775-91-12 (звонок

    бесплатный)

    — Пункты по работе с клиентами

    (на базе районных электрических сетей)

     
     Интернет:
     

    — Портал по работе с клиентами Россети

    — Личный кабинет на сайте МРСК

    Северного Кавказа

    — Интернет-приемная на сайте МРСК

    Северного Кавказа